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Dual Perspectives

Dual Perspectives Companion Paper: Contributions of the Central Extended Amygdala to Fear and Anxiety, by Alexander
J. Shackman and Andrew S. Fox

Functional Heterogeneity in the Bed Nucleus of the Stria
Terminalis

Nur Zeynep Gungor and Denis Paré
Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102

Early work stressed the differing involvement of the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) in the genesis
of fear versus anxiety, respectively. In 2009, Walker, Miles, and Davis proposed a model of amygdala-BNST interactions to explain these
functional differences. This model became extremely influential and now guides a new wave of studies on the role of BNST in humans.
Here, we consider evidence for and against this model, in the process highlighting central principles of BNST organization. This analysis
leads us to conclude that BNST’s influence is not limited to the generation of anxiety-like responses to diffuse threats, but that it also
shapes the impact of discrete threatening stimuli. It is likely that BNST-CeA interactions are involved in modulating responses to such
threats. In addition, whereas current views emphasize the contributions of the anterolateral BNST region in anxiety, accumulating data
indicate that the anteromedial and anteroventral regions also play a critical role. The presence of multiple functional subregions within
the small volume of BNST raises significant technical obstacles for functional imaging studies in humans.
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Introduction
In 2009, Walker et al. (2009a) proposed a parsimonious explana-
tion for earlier observations suggesting that the amygdala and bed
nucleus of the stria terminalis (BST) play different roles. This
model galvanized interest for the field and still stimulates much
research. Here, we review the functional and anatomical organi-
zation of BNST and then consider empirical findings for and
against this model.

It was first observed that BNST lesions do not affect condi-
tioned fear responses elicited by discrete conditioned sensory
cues (CSs) (LeDoux et al., 1988; Hitchcock and Davis, 1991;
Gewirtz et al., 1998) (Table 1), unless they were very long (�8
min) (Waddell et al., 2006; Walker et al., 2009a). In contrast,
BNST lesions impaired the acquisition and recall of contextual
fear responses (Sullivan et al., 2004; Duvarci et al., 2009; Poulos et
al., 2010), an effect that might depend on the diffuse nature of
contextual cues (Hammack et al., 2015).

Other work indicated that BNST’s involvement in the gen-
esis of anxiety-like responses is not limited to learned associ-
ations but that it extends to unconditioned threats, such as
bright lights (Walker and Davis, 1997), predator odors (Fendt

et al., 2003; Xu et al., 2012), and alarm pheromones (Breitfeld
et al., 2015). Consistent with this, exploratory behavior in the
elevated plus maze (EPM), which assesses the fear of open
spaces rodents naturally display, was also found to be depen-
dent on BNST activity (Waddell et al., 2006; Duvarci et al.,
2009; Kim et al., 2013).

Overall, these findings led to the theory that BNST mediates
sustained anxiety-like responses to diffuse environmental threats
(Walker et al., 2009a), as opposed to the central amygdala (CeA),
which generates defensive behaviors in response to imminent
threats. This parsimonious explanation is well accepted in the
BNST literature and guides not only animal (Daniel and Rainnie,
2016), but also human research (Avery et al., 2016). Indeed, de-
spite their psychological and physiological similarities, anxiety
and fear are triggered by distinct stimuli. Fear-eliciting cues signal
imminent threats with a high probability of occurrence. On the
other hand, anxiety arises in the anticipation of uncertain perils
(Grupe and Nitschke, 2013). Although most of the studies implicat-
ing BNST in aversive responses used such distal and unpredictable
threats, other data suggest that BNST also modulates responses to
discrete cues. However, before addressing this question, we will
briefly summarize major principles of BNST organization.

Anatomical and physiological substrates of BNST functions
Nuclear systematization. BNST’s structure is complex and, com-
pared with the amygdala, still poorly understood. BNST is in fact
a collection of nuclei, with much disagreement regarding their
number and location (e.g., compare Moga et al., 1989 and Ju and
Swanson, 1989). Posteriorly located BNST nuclei are involved in
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reproductive behavior (Simerly, 2002) and have received little
attention from fear/anxiety researchers. Instead, their experi-
ments initially focused on the anterior BNST region (LeDoux et
al., 1988) because it is the main termination zone of CeA axons

(Krettek and Price, 1978a). However, an-
terior BNST nuclei are small, often
smaller than the dendritic arbor of the
neurons they contain (McDonald, 1983;
Larriva-Sahd, 2006), precluding their se-
lective targeting in vivo. Moreover, with
few exceptions, differences in connectiv-
ity between adjacent nuclei are minor.
Thus, it seems more productive to use a
grouping of anterior BNST nuclei based
on regional differences in connectivity.
According to this criterion, BNST
should be divided in three sectors: an-
terolateral (AL), anteromedial (AM),
and anteroventral (AV). Figures 1 and
2A summarize how different BNST re-
gions receive distinct inputs and con-
tribute contrasting projections.

BNST receives few exteroceptive sensory
afferents via the thalamus and cortex. Thus,
the massive glutamatergic projections it gets
from the basolateral complex of the
amygdala (BLA; Fig. 2B) probably play a
critical role in determining how organisms
respond to environmental contingencies.
The three BLA nuclei contribute differen-
tially to this pathway, with the lateral
amygdala having no projections, and the
basal nuclei contributing prominently
(Krettek and Price, 1978a; Weller and
Smith, 1982; Dong et al., 2001a). Although
both basal nuclei project to BNST’s three
anterior sectors, their projections are com-
plementary (Fig. 2B). The basomedial (BM)
nucleus preferentially targets BNST-AM,
whereas the basolateral nucleus (BL) prefer-
entially projects to BNST-AL (Krettek and
Price, 1978a; Dong et al., 2001a). Of note,
the oval portion of BNST-AL is reportedly
devoid of BLA inputs (Dong et al., 2001a).

Physiological cell types and the transmitters they use. So far, five
physiological classes of BNST neurons have been described
(Hammack et al., 2007; Francesconi et al., 2009; Szucs et al., 2010;
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Figure 1. Structure and main connections of BNST. A, Anterior BNST at low (1) and high (2) magnification. Coronal sections processed
torevealNeuNimmunoreactivity.B,Nomenclature.C,Connections.Twomajorfiberbundles,theintra-BNSTsegmentofthestriaterminalis
(ST) and the anterior commissure (AC), naturally divide the anterior part of BNST in three sectors: Dorsal to the AC are the AL and AM sectors,
located lateral and medial to the ST, respectively. Ventral to the AC is the AV region. In contrast with BNST-AL, BNST-AM receives little or no
CeA inputs (see references in main text), (1) it does not project to brainstem autonomic centers (C1) (Norgren, 1976; Ricardo and Koh, 1978;
Saper and Loewy, 1980; Schwaber et al., 1982; Sofroniew, 1983; Gray and Magnuson, 1987, 1992; Shin et al., 2008; Panguluri et al., 2009;
Bienkowski and Rinaman, 2013); (2) it is innervated by largely distinct cortical areas and thalamic nuclei (C2) (Cullinan et al., 1993;
McDonald et al., 1999; Reynolds et al., 2005; Li and Kirouac, 2008; Shin et al., 2008; Bienkowski and Rinaman, 2013); and (3) moreover, its
hypothalamic projections are comparably massive (C3) (Conrad and Pfaff, 1976a, b; Saper et al., 1976; Swanson, 1976; Swanson and
Cowan, 1979; Kita and Oomura, 1982a; b; Dong and Swanson, 2003, 2004, 2006a, b, c; Dong et al., 2000, 2001b). Although the connectivity
of the lateral and medial portions of BNST-AV is similar to that of BNST-AL and AM, respectively, it must be considered separately because
of its heavy noradrenergic innervation, among the densest in the brain (C4 ) (Fallon and Moore, 1978; Forray et al., 2000), as well as its
strong projections to the VTA (Dong et al., 2001b; Georges and Aston-Jones, 2002) and PVN of the hypothalamus (Sawchenko and Swan-
son, 1983; Moga and Saper, 1994). AC, Anterior commissure; Auton, autonomic centers; BS, brainstem; CC, corpus callosum; DA, dopamine;
GP, globus pallidus; Hyp, hypothalamus; Jx, juxtacapsular; NA, noradrenaline; Ov, oval; PVT, paraventricular nucleus of thalamus; Sub,
subiculum; Str, striatum; V, ventricle.

Table 1. Glossary

Term Definition

Unconditioned stimulus (US) Any stimulus that can trigger a response without prior learning experience
Conditioned stimulus (CS) An initially neutral stimulus that gains the ability to evoke responses after being paired with an unconditioned stimulus
Cue fear conditioning The process by which a discrete and salient sensory stimulus, such as a neutral tone, is paired with a noxious US, usually a mild foot shock.

As a result, the CS acquires the ability to elicit the responses originally associated with the US
Contextual fear conditioning The process by which a context where the animal received a noxious US acquires the ability to elicit fear responses
Elevated plus maze An apparatus that consists of open and enclosed arms, used commonly for probing anxiety in rodents
Fear Various types of short-lived defensive responses elicited by imminent threats. Whereas fear is accompanied by feelings of fright in

humans, it is unclear whether animals also experienced such states
Anxiety Various types of enduring responses elicited by diffuse and uncertain treats. Whereas anxiety is accompanied by feelings of dread in

humans, it is unclear whether animals also experienced such states
Anxiogenic Stimulus or process that promotes anxiety
Anxiolytic Stimulus or process that reduces anxiety
Fear-potentiated startle A paradigm where fear is assessed by measuring startle responses elicited by loud noise bursts. After CS-footshock pairings, noise bursts

presented during the CS elicit higher startle responses
Cue-induced reinstatement In drug dependence experiments, animals are often trained to lever press for drug self-administration when cued with the presentation

of a light and tone compound stimulus. Following self-administration, animals undergo an extinction period where lever responses
decrease but do not completely disappear. Next, in cue-induced reinforcement, reintroduction of the light-tone CS results in an
increase of lever presses, even though no drug is delivered in this part of the experiment
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Rodriguez-Sierra et al., 2013) (Fig. 3). Importantly, in BNST-AL,
the most common three cell types (Fig. 3A–C) were accurately
clustered by their mRNA expression for different ion channel
subunits (Hazra et al., 2011). Most BNST-A neurons, including

projection cells, are GABAergic neurons (Cullinan et al., 1993;
Sun and Cassell, 1993; Polston et al., 2004; Poulin et al., 2009) that
can express a variety of peptides in multiple combinations (Gray
and Magnuson, 1987; Ju et al., 1989; Moga et al., 1989). This is the

BNST-AMBNST-AL

CeL CeM

BL BM

BNST-AMBNST-AL

CeL CeM

BL BM

Insula
Brainstem
Autonomic

nuclei

+
MeA

Subiculum

Viscerosensory
Olfactory

Contextual

Nociceptive
Oval

Glutamate

GABA

A B

Figure 2. Reciprocal connections between the amygdala and the anterior part of BNST. A, BNST projections to the amygdala. Black arrows indicate dominant sensory inputs. MeA, Medial nucleus
of the amygdala. B, Amygdala projections to BNST.
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Modified from Rodriguez-Sierra et al. (2013).
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case of the corticotropin releasing factor (CRF) cells located in
the oval nucleus (Sakanaka et al., 1987; Phelix and Paull, 1990),
which also express a fast inwardly rectifying K� conductance
(known as Type III cells; Fig. 3C) (Dabrowska et al., 2013a; but
see Silberman et al., 2013). It should be noted that the number of
CRF-positive BNST neurons is higher in rats than in mice (Wang
et al., 2011). In addition to the prevalent GABAergic neurons,
BNST-AM and AV also contain a low proportion of glutamater-
gic cells (Poulin et al., 2009), some of which are projection neu-
rons (Kudo et al., 2012).

Role of the oval nucleus and CRF. Much evidence suggests that
CRF exerts anxiogenic effects through its actions in BNST. For
instance, intra-BNST (Sahuque et al., 2006) or intracerebroven-
tricular injections of CRF (Lee and Davis, 1997) cause anxiogenic
effects, and the latter are blocked by intra-BNST infusions of
antagonists for CRF Type 1 receptors (CRF-R1) (Lee and Davis,
1997). Less definitive but also suggestive, oral administration of a
CRF-R1 antagonist blocks light-enhanced startle but not condi-
tioned fear to discrete cues (Walker et al., 2009b). Moreover,
stressors, such as footshocks, cause an increase in the expression
of CRF mRNA in BNST-AL and AV, indicating that CRF cells are
activated during stress (for review, see Daniel and Rainnie, 2016).
Consistent with this, chemogenetic inhibition of CRF cells (Pleil
et al., 2015) or optogenetically inhibiting BNST-AL cells express-
ing D1-receptors (Kim et al., 2013), thought to be selectively
expressed by CRF cells (Daniel and Rainnie, 2016), decrease anx-
iety in the EPM and open field.

Despite the strong link between CRF and anxiety in BNST,
there is still uncertainty regarding the underlying mechanisms.
First, given the lack of BLA inputs to the oval nucleus, which
structures “inform” CRF cells of environmental contingencies?
The oval nucleus is devoid of inputs from the subiculum (Culli-
nan et al., 1993; McDonald et al., 1999) and medial amygdala
(Dong et al., 2001a), sites thought to convey contextual or olfac-
tory information required for responses to threatening contexts
and predator odors, respectively. However, it receives visceros-
ensory afferents from the insula (McDonald et al., 1999; Reynolds
et al., 2005) and brainstem autonomic nuclei (Saper and Loewy,
1980; Schwaber et al., 1982) as well as mixed dopaminergic-
glutamatergic inputs from the periaqueductal gray (Li et al.,
2016). Whether these structures provide the critical anxiogenic
signals remains to be tested.

Second, in contrast with CRF cells of the paraventricular
hypothalamic nucleus (PVN), those found in BNST-AL do not
control the release of stress hormones via projections to the
pituitary. Thus, their anxiogenic influence likely depends on a
modulation of synaptic transmission within BNST itself or at
their projection sites. Indeed, CRF cells of the oval nucleus
project to various brainstem autonomic nuclei thought to me-
diate defensive behaviors (Gray and Magnuson, 1987, 1992).
Third, these neurons are not the only CRF-expressing ele-
ments in BNST. Indeed, BNST-AL receives strong CRF inputs
from the lateral sector of CeA (CeL) (Sakanaka et al., 1986).
Fourth, while the somatic expression of CRF-R1 mRNA is low
to moderate in BNST (Potter et al., 1994; van Pett et al., 2000;
Dabrowska et al., 2013a), BNST-AL is heavily innervated by
axons expressing this receptor (Justice et al., 2008; Jaferi and
Pickel, 2009; Jaferi et al., 2009).

Consistent with this, multiple CRF effects, so far all CRF-R1-
dependent, have been described. In BNST-AL, CRF presynapti-
cally potentiates glutamatergic transmission (Kash et al., 2008;

Nobis et al., 2011; Silberman et al., 2013). Postsynaptically, CRF
was reported to depolarize low-threshold bursting (Type II) cells
(Ide et al., 2013), an effect that might explain why CRF increases
spike-dependent inhibitory inputs to Type III neurons in the oval
nucleus (Nagano et al., 2015). Last, in BNST-AV, CRF postsyn-
aptically increases GABA-A IPSC amplitudes but does not alter
EPSCs (Kash and Winder, 2006). Given these multiple and in
some cases opposite effects, it remains unclear how CRF contrib-
utes to anxiety through its actions in BNST.

BNST-AL. Interestingly, other lines of evidence support the
possibility that BNST-AL exerts anxiolytic influences. For in-
stance, BNST-AL stimulation reduces corticosterone levels
(Dunn, 1987), whereas BNST-AL lesions increase gastric ero-
sions after stress exposure (Henke, 1984). Moreover, intra-BNST
infusions of calcitonin gene-related peptide, a peptide that inhib-
its non-Type III neurons in BNST-AL (Gungor and Paré, 2014),
actually increases acoustic startle and fos expression in targets of
BNST-AL (Sink et al., 2011).

In addition, in a variety of stress paradigms, the efficacy of
glutamatergic inputs to BNST-AL is reduced. For example,
chronic restraint stress causes a depression of glutamatergic in-
puts to BNST-AL neurons via �-1 adrenoreceptors (McElligott et
al., 2010). Similarly, chronic cortisol administration and social
isolation interfere with the induction of long-term potentiation
(Conrad et al., 2011), and withdrawal from various drugs of
abuse reduces the intrinsic excitability of BNST-AL neurons
(Francesconi et al., 2009). The only exception to this trend was
obtained in Type III neurons, in which chronic restraint stress
causes a potentiation of glutamatergic inputs (Dabrowska et al.,
2013b).

The opposite results obtained in Type III (CRF-expressing) cells
suggest that anxiety involves the differential recruitment of different
types of BNST-AL neurons. Supporting the notion that functionally
distinct cell subpopulations exist in BNST-AL, it was reported that
different subsets of BNST-AL cells show lower (�25%) or higher
(�10%) firing rates during high than low fear states (Fig. 4B,D)
(Haufler et al., 2013). Interestingly, BNST-AM cells show the oppo-
site trend (Fig. 4A,D). Below, we propose a mechanism for how
BNST-AM activity might promote high fear states.

BNST-AM. An analysis of BNST-A’s connections (Figs. 1, 2)
indicates that BNST-AM is well positioned to mediate BNST’s
anxiogenic influence. Indeed, BNST-AM is the main recipient of
the amygdalar (particularly BM), subicular, and olfactory (me-
dial amygdala) signals that are needed for anxiety-like responses
to threatening contexts and odors (Cullinan et al., 1993; McDon-
ald et al., 1999; Dong et al., 2001a). On the output side,
BNST-AM projects massively to the hypothalamus. Particularly
intriguing in this respect are the complementary projections of
BM and BNST-AM to the ventromedial hypothalamic nucleus
(VMH), a node implicated in the genesis of defensive and aggres-
sive behaviors (Gross and Canteras, 2012; Silva et al., 2013; Lee et
al., 2014; Wang et al., 2015). Indeed, whereas BM sends glutama-
tergic projections to the core of VMH (VMH-C) (Petrovich et al.,
1996), where the nucleus’ glutamatergic output neurons are lo-
cated, BNST-AM projects to its shell (VMH-S) (Dong and Swan-
son, 2006a), which contains GABAergic neurons that inhibit core
neurons (Fu and van den Pol, 2008). This arrangement suggests
that BM might increase its impact on VMH-C by recruiting
GABAergic BNST-AM cells, which would then inhibit VMH-S
cells, disinhibiting VMH-C neurons. Thus, the synergistic actions
of BM and BNST-AM on the VMH are expected to enhance
defensive and aggressive behaviors.
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Opposite to this conclusion, however, two recent Nature stud-
ies from the same laboratory reported that BLA inputs to
BNST-AM (Kim et al., 2013) and BM (Adhikari et al., 2015) exert
anxiolytic influences, the latter being “necessary and sufficient”
for anxiolysis. This conclusion is puzzling given that their com-
mon target, VMH, mediates aversive behaviors, such as avoid-
ance, freezing (Wang et al., 2015) and attack (Lee et al., 2014).
Not to mention that both BL and BM also send glutamatergic
projections to the medial sector of the central amygdala (CeM)
(Krettek and Price, 1978b), thought to be the amygdala’s main
output station for conditioned fear. A possible explanation for
these contradictions is that these two Nature reports depended
heavily on behavioral observations in the EPM and open field,
where predatory or active avoidance behaviors might have been
mistakenly interpreted as decreased levels of anxiety.

BNST-AV. BNST-AV is also well positioned to contribute to
anxiety-like responses. Indeed, BNST projections to PVN mostly
originate from BNST-AV (Sawchenko and Swanson, 1983; Moga
and Saper, 1994) and they regulate the HPA axis (Herman et al.,
2005). Although some glutamatergic (Csáki et al., 2000) and
CRF-expressing (Moga and Saper, 1994) cells project to PVN,
most are GABAergic (Radley et al., 2009; Radley and Sawchenko,
2011). These inhibitory neurons receive excitatory inputs from
the mPFC and subiculum (Radley et al., 2009; Radley and Saw-
chenko, 2011) but few from CeA (Prewitt and Herman, 1998). In
keeping with this, mPFC (Radley et al., 2009) and hippocampal
lesions (Radley and Sawchenko, 2011) decrease the number of
fos-positive GABAergic cells in BNST-AV while increasing fos
expression in PVN. Although these findings indicate that
GABAergic BNST-AV neurons inhibit PVN, other results indi-
cate that the overall influence of BNST-AV over PVN is excit-
atory. Indeed, global BNST-AV lesions interfere with the
recruitment of PVN by various stressors (Crane et al., 2003; Spen-
cer et al., 2005; Choi et al., 2007), whereas selective ablation of
GABAergic cells in BNST-AV increases adrenocorticotropic hor-
mone and corticosterone levels after restraint stress (Radley et al.,
2009). Overall, these findings suggest that GABAergic cells of
BNST-AV inhibit PVN, whereas its glutamatergic cells do the
opposite. Surprisingly, although they account for a minority of

BNST-AV cells, the influence of glutamatergic neurons appears
to dominate. As a result, BNST-AV as a whole exerts an excitatory
influence on PVN.

Interestingly, a similar situation may prevail in BNST-AV’s
projections to the ventral tegmental area (VTA). Indeed, VTA-
projecting glutamatergic cells of BNST-AV increase their firing
rate during both aversive unconditioned and conditioned stim-
uli. In contrast, GABAergic cells are inhibited by both. Optoge-
netically activating glutamatergic cells produces place aversion
and anxiogenic effects, whereas activation of the GABAergic cells
produces place preference and anxiolytic effects (Jennings et al.,
2013).

Intrinsic BNST connectivity. The data reviewed above empha-
sizes that BNST is comprised of several functionally important
sectors. This situation raises the possibility that anxiety involves
inter-regional coordination of activity. Consistent with this idea,
tracing (Dong and Swanson, 2003, 2004, 2006a, b, c) and gluta-
mate uncaging (Turesson et al., 2013) studies have revealed that
BNST neurons form connections with other cells located in the
same or different BNST sectors (Fig. 5). While inhibitory intrare-
gional connections prevail overall, in BNST-AV and the ventral
part of BNST-AM, the incidence of glutamatergic and GABAer-
gic connections is similar (Turesson et al., 2013). Although this is
surprising given that glutamatergic cells account for minority
of the cells (Poulin et al., 2009), this finding is consistent with
evidence that glutamatergic BNST-AV cells exert an outsized
influence over PVN and VTA neurons (Choi et al., 2007; Rad-
ley et al., 2009; Radley and Sawchenko, 2011; Jennings et al.,
2013). Importantly, inter-regional connections can be asym-
metric or reciprocal, purely inhibitory, or dependent on a
mixture of glutamatergic and GABAergic connections (Tures-
son et al., 2013). For instance, BNST-AL to AM and AV pro-
jections are purely GABAergic and markedly stronger than
return connections (Fig. 5). Although it is currently unknown
whether CRF cells in the oval nucleus contribute to these con-
nections, suppression of firing in GABAergic BNST-AL neu-
rons during high fear states (Haufler et al., 2013) might cause
a disinhibition of BNST-AM neurons, contributing to their
higher activity levels during contextual freezing (Haufler et al.,
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2013). On the other hand, BNST-AL’s influence on BNST-AV
will depend on the transmitter content (GABA vs glutamate)
of the targeted BNST-AV neurons, which is unknown at this
time. Similarly, the significance of the mixed glutamatergic
and GABAergic connections between BNST-AM and AV
(Turesson et al., 2013) (Fig. 5) is currently unclear.

Amygdala-BNST interactions
According to the model proposed by Walker et al. (2009a), BL
would send threat signals to CeA and BNST. In turn, neurons in
CeM would respond immediately, activating downstream fear
effectors. By contrast, BNST activation would not only depend on
BL activity, but also on CRF inputs from CeL. As a result, BNST’s
activation would be delayed relative to that of CeM, leading to
more slowly developing and longer-lasting anxiety-like states in
response to sustained but diffuse threats. This model also pro-
poses that BNST, once active, inhibits CeM, preventing its re-
cruitment during the generation of anxiety-like states. Below, we
review empirical findings for and against this model.

CeA involvement in generating responses to long threat-signaling
cues. According to Walker and Davis (1997), CeA would not be
involved in modulating anxiety-like responses to diffuse and un-
certain threats because BNST, once activated, suppresses CeA
neurons. Although this prediction found experimental support
for unconditioned threats, such as bright lights (Walker and Da-
vis, 1997) or predator odors (Fendt et al., 2003; Li et al., 2004;
Rosen, 2004), it did not for the fear of open spaces. Indeed, CeA
lesions reduce anxiety-like behavior in the EPM (Möller et al.,
1997; Moreira et al., 2007). Similarly, contradictory results were
reported for the impact of CeA lesions on conditioned negative

associations to long cues or contexts. Although CeA lesions do
not block fear-potentiated startle to long cues (Walker et al.,
2009a), many found that they reduce freezing to an aversive con-
text (Goosens and Maren, 2001, 2003; Sullivan et al., 2004). How-
ever, some failed to find an effect of CeA lesions (Fanselow and
Kim, 1994) or concluded that CeA is not involved in the expres-
sion but in the consolidation of contextual fear memories (Pitts et
al., 2009).

Relative timing of BNST versus CeM activation. Central in the
Walker et al. (2009a) model is the notion that BNST activation is
delayed relative to that of CeM. However, accumulating data
show that the firing rates of BNST neurons are rapidly altered by
short and long cues, appetitive or aversive (Haufler et al., 2013;
Jennings et al., 2013) (Fig. 6A,B). Moreover, Hammack et al.
(2015) showed that, during exposure to a threatening context, the
difference in freezing between sham and BNST-lesioned animals
is constant for the duration of the context exposure when the
model predicts increasing differences with time. Together, these
results demonstrate that BNST responses to threatening stimuli
or environments are nearly immediate and not necessarily more
important the longer the animal is exposed.

BNST involvement in the processing of short-lasting cues. De-
spite earlier studies showing that BNST does not regulate fear
responses to discrete threatening stimuli, accumulating evidence
indicates otherwise. During the recall of classically conditioned
fear responses, �25% of neurons in BNST-AL and AM displayed
short-latency alterations in firing rates in response to discrete CSs
(Haufler et al., 2013). Consistent with this, muscimol injections
in BNST were found to enhance fear-potentiated startle (Meloni
et al., 2006), suggesting that BNST exerts tonic inhibitory effects
in CeA or their common targets. Support for this notion was
obtained by examining the effects of BNST lesions on the CS
specificity of conditioned fear responses (Duvarci et al., 2009). In
this study (Fig. 6C), rats were subjected to a differential auditory
fear conditioning paradigm where a 30 s auditory CS (CS�) was
paired to footshocks, whereas another (CS�) was not. Although
BNST-lesioned and sham rats acquired similarly high levels of
conditioned fear to the CS�, rats with BNST lesions froze less
than sham rats to the CS�, again indicating that BNST activity
does affect the processing of short cues.

Additional evidence of short cue processing by BNST comes
from the addiction literature. Indeed, a large body of work indi-
cates that BNST plays a critical role in various aspects of addic-
tion, including the dysphoria that follows the pleasurable effects
of drug consumption (Wenzel et al., 2011, 2014), in the stress
associated with drug withdrawal, and in the reinstatement of
drug-seeking (Erb and Stewart, 1999; Aston-Jones and Harris,
2004; Koob, 2009, 2010). In such experiments, animals are trained
to lever-press for drug self-administration when presented with a
short cue. After an extinction period where lever responses have no
effect, reintroduction of cues results in reinstatement of drug seeking
behavior. Critically, BNST inactivation interferes with this cue-
induced reinstatement (Buffalari and See, 2010).

To summarize this section, although the Walker et al. (2009a)
model offers an attractive and parsimonious explanation for the
functional dissociation between the amygdala and BNST, some
of its key postulations are not supported by available experimen-
tal findings. Interestingly, the companion perspective paper
(Shackman and Fox, 2016) reached the same conclusion based on
an entirely different set of data: functional imaging studies in
humans. Thus, although it appears definite that BNST is not
required for the genesis of defensive behaviors triggered by dis-
crete threatening cues, equally incontrovertible evidence indi-

AMAL

AV

Glu

GABA

Figure 5. Intrinsic BNST connections. Pattern of intrinsic connections in the anterior BNST, as
revealed with glutamate uncaging. Neurons were recorded with the whole-cell method in slices
in vitro. Glutamate was uncaged by applying brief flashes of ultra-violet light to a circumscribed
region (250 �m in diameter) of BNST. The light stimulus was moved to systematically scan the
slice in search of BNST sites containing neurons projecting to the recorded cell. For intraregional
connections, the number of blue (GABAergic) and red (glutamatergic) arrows approximates the
relative frequency of inhibitory and excitatory connections, respectively. For inter-regional con-
nections, the thickness of the arrows was adjusted to represent the relative incidence of con-
nections. Data from Turesson et al. (2013).
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cates that it can modulate the processing of such cues. Because
BNST projections to the amygdala constitute a likely neuronal
substrate for this modulation, the next section describes these
connections.

Connections between BNST and CeA. Whereas BNST-AM
contributes negligible projections to CeA (Bienkowski and Rina-
man, 2013), BNST-AL and BNST-AV project strongly to CeM,
and lightly to CeL (Sun and Cassell, 1993; Dong et al., 2001b).
BNST to CeA projections prevalently arise from GABAergic neu-
rons, although a few glutamatergic neurons also contribute
(Gungor et al., 2015). In the opposite direction, CeA projections
to BNST mostly originate in CeL and mainly target BNST-AL,
sparring the juxtacapsular region (Dong et al., 2001a). CeM con-
tributes less to BNST’s innervation (Sun and Cassell, 1993; Bien-
kowski and Rinaman, 2013) and BNST-AM receives far weaker
inputs from CeA than BNST-AL (Krettek and Price, 1978a;
Weller and Smith, 1982; Sun et al., 1991).

Given the asymmetry between BNST to CeA versus CeA to
BNST connections (Fig. 2, blue), it is difficult to determine the
net impact of their interactions. However, it was reported that
CeA axons elicit IPSPs in a higher proportion of BNST-AL cells
(�80%) (Li et al., 2012) than BNST inputs to CeM neurons
(�60%) (Gungor et al., 2015). Furthermore, the GABA-A rever-
sal potential is more negative in BNST than CeA neurons by �10
mV (Gungor et al., 2015). Together, these differences should
conspire to give CeA the upper hand in reciprocal BNST-CeA
interactions.

Complicating matters further, however, is the possibility
that the impact of BNST inputs to CeM is altered via their

actions in CeL. Indeed, different subsets of CeL neurons re-
ciprocally inhibit each other and form different connections
with CeM (Ciocchi et al., 2010; Haubensak et al., 2010; Viviani
et al., 2011; Li et al., 2013). In particular, CeL cells that do not
express somatostatin (SOM �) send GABAergic projections to
CeM, whereas SOM � neurons do not (Li et al., 2013). Thus,
depending on whether BNST axons contact SOM � or SOM �

CeL cells, the impact of BNST inputs in CeM might be damp-
ened or increased, respectively. Given that these two types of
CeL cells are thought to show opposite responses to threaten-
ing CSs in Pavlovian fear conditioning paradigms (Ciocchi et
al., 2010; Haubensak et al., 2010), identifying which one re-
ceives inputs from, and projects to, BNST will be key to un-
derstand CeA-BNST interactions.

In conclusion, overall, the data reviewed here suggest that
BNST’s role is not limited to the generation of aversive responses to
diffuse threats but that it also shapes the impact of discrete threaten-
ing stimuli. In threatening conditions, antagonistic interactions be-
tween BNST and CeA likely determine the intensity and specificity of
aversive responses. However, BNST-AL and CeL cells express a va-
riety of peptides that might affect how these two regions interact. In
addition, much evidence indicates that BNST’s influence over anxi-
ety depends on several functionally distinct cell groups and BNST
regions. Within BNST-AL, CRF-expressing cells in the oval nucleus
are recruited by threats and stressors, but it remains unclear how
they alter the activity of neurons in the rest of BNST and in its targets.
Non-CRF BNST-AL cells might exert an anxiolytic influence, but
their interaction with CRF cells remains largely uncharacterized.
Similarly, GABAergic and glutamatergic BNST-AV neurons regu-
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late their targets (e.g., PVN, VTA) in opposite ways, but we know
little about how they influence each other. Last, recent data suggest
that BNST-AM is also involved in generating defensive behaviors.
To shed light on how BNST contributes to anxiety, we need to char-
acterize the interplay between these different BNST subregion and
the various cell types therein.

Response from Dual Perspective Companion Authors–
Alexander J. Shackman and Andrew S. Fox

Anxiety disorders impose a staggering burden on public
health, existing treatments are inconsistently effective, and
the development of new therapeutics has stalled (Hyman,
2014). The central extended amygdala, including the central
nucleus of the amygdala (Ce) and bed nucleus of the stria
terminalis (BST), plays a pivotal role in contemporary mod-
els of fear and anxiety (Fox et al., 2015; Tovote et al., 2015).
Yet, key aspects of its functional architecture have only re-
cently come into focus. Gungor and Paré provide an insight-
ful review of recent progress, focusing on work in rodents.

Gungor and Paré make it clear that both the Ce and BST are
involved in modulating phasic and sustained responses to
threat. For example, Gungor and Paré show that a sizable
number of BST neurons rapidly respond to punctate threat
and safety cues. This contradicts the hypothesis that the
BST is a “sluggish” system and only responds to persistent
threat (Davis, 2006). Building on this observation, they
highlight evidence showing that the BST plays a crucial role
in shaping phasic responses to acute cues when they are
encountered in potentially dangerous contexts and contrib-
utes to the “overgeneralization” of fear and anxiety (Kheir-
bek et al., 2012; Lissek, 2012). As noted in our companion
review, other work suggests that the lateral Ce also contrib-
utes to overgeneralization. These observations are particu-
larly important because, in humans, overgeneralization
marks populations at risk for developing anxiety disorders
(e.g., Barker et al., 2014; Gazendam et al., 2015), promotes
maladaptive avoidance (Grillon, 2002), predicts the future
emergence of anxiety disorders (e.g., Craske et al., 2012),
and distinguishes anxiety patients from controls (Duits et
al., 2015).

Gungor and Paré emphasize that the BST can be partitioned
into subregions, each containing intermingled cell types
with distinct, even opposing, functional phenotypes. This
indicates that inferences drawn from excitotoxic lesion,
pharmacological inactivation, or neuroimaging studies will
necessarily reflect a mixture of cellular signals. At present,
the tools required to parse these signals do not exist for use
in humans. Conversely, there is no guarantee that the mech-
anisms identified in animal models are evolutionarily con-
served and will translate to humans. Understanding the
relevance of these intermixed signals to the subjective feel-
ings that define neuropsychiatric disease will therefore
require coordinated cross-species research and the devel-
opment of bidirectional translational models combining
precise mechanistic techniques with whole-brain imaging. In-
consistent nomenclature is another important barrier.

For example, in our companion review, we argue that re-
searchers should refrain from using the words “fear” and
“anxiety” to refer to phasic and sustained responses to
threat because it is inconsistent with everyday usage of
these terms.

As outlined in the two Dual Perspective reviews, there is
compelling evidence that the central extended amygdala
plays a key role in orchestrating phasic and sustained re-
sponses to threat. The development and refinement of inte-
grated bidirectional models would open the door to
identifying the specific molecules, cells, and circuits that
mediate effects detected in human imaging studies (com-
pare Ferenczi et al., 2016) and accelerate the of development
of improved treatments for pathological fear and anxiety.
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