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Background: The effect of chemical exposure on obesity has raised great concerns. Real-world 

chemical exposure always imposes mixture impacts, however their exposure patterns and the 

corresponding associations with obesity have not been fully evaluated.

Objectives: To discover obesity-related mixed chemical exposure patterns in the general U.S. 

population.

Methods: Sparse Decompositional Regression (SDR), a model adapted from sparse 

representation learning technique, was developed to identify exposure patterns of chemical 

mixtures with exclusion (non-targeted model) and inclusion (targeted model) of health outcomes. 

We assessed the relationships between the identified chemical mixture patterns and obesity-related 

indexes. We also conducted a comprehensive evaluation of this SDR model by comparing to 

the existing models, including generalized linear regression model (GLM), principal component 

analysis (PCA), and Bayesian kernel machine regression (BKMR).

Results: Eight core exposure patterns were identified using the non-targeted SDR model. 

Patterns of high levels of MEP, high levels of naphthalene metabolites (EOH-Nap), and a pattern 

of high exposure levels of MCOP, MCNP, and MCPP were positively associated with obesity. 

Patterns of high levels of BP3, and a pattern of higher mixed levels of MPB, PPB, and MEP 

were found to have negative associations. Associations were strengthened using the targeted SDR 

model. In the single chemical analysis by GLM, BP3, MBP, PPB, MCOP, and MCNP showed 

significant associations with obesity or body indexes. The SDR model exceeded the performance 

of PCA in pattern identification. Both SDR and BKMR identified a positive contribution of 

EOH-Nap and MCOP, as well as a negative contribution of BP3 and PPB to obesity.

Conclusion: Our study identified five core exposure patterns of chemical mixtures significantly 

associated with obesity using the newly developed SDR model. The SDR model could open a new 

avenue for assessing health effects of environmental mixture contaminants.

Keywords

Sparse Decompositional Regression Model; Exposure mixtures; Exposure pattern; Obesity

1. Introduction

Obesity is a common public health concern that affects 13% of adults worldwide and 

imposes a major disease burden (Afshin et al., 2017). Except for genetic background 

and lifestyle changes (Lin et al., 2019; Ling and Ronn, 2019), the potential influence of 

environmental chemicals has raised great interest (Thayer et al., 2012). Fully evaluating the 

chemical exposure levels of obese people and identifying chemical mixture signals/patterns 

associated with obesity are critical for its prevention. Previous studies have demonstrated 

that certain chemicals disrupt endogenous hormonal homeostasis and are involved in the 

programming of adipogenesis, which may lead to weight gain (Heindel et al., 2017). 

Environmental phenols, parabens, polycyclic aromatic hydrocarbons (PAHs), and phthalates 

have potential endocrine disruption effects, and their associations with obesity have been 

reported in previous studies (Liu et al., 2017; Scinicariello and Buser, 2014a; Stahlhut 

et al., 2007). However, the classical methods to assess the health effect of chemicals 

mainly focus on individual chemical or limited types of environmental contaminants. An 
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environment-wide association study (EWAS) used data from NHANES to explore the 

associations between a panel of exposures and obesity in adolescents (Haddad et al., 2022), 

which successfully extended the scope of exposures without exploring the combined effect 

among chemicals. In summary, the real-world complex chemical mixture exposure and their 

synergistic health impact remain inadequately addressed. Such effects can result from the 

similarity of exposure sources and metabolite pathways (Kim et al., 2017; Shaheen et al., 

2016). Although some advanced statistical approaches have been developed to explore the 

health effects of mixed exposure (Lazarevic et al., 2019; Taylor et al., 2016), identifying 

the core exposure patterns (fundamental chemical mixture signals/combination) from high-

dimensional exposure data and thereafter estimating the health effect of these patterns 

haven’t received enough attention.

Sparse coding technique, a newly developed representation learning technique initially 

applied in feature learning in the computer science domain, was adapted as Sparse 

Decompositional Regression (SDR) model to identify exposure patterns of study population. 

After learning sets of overcomplete features, SDR uses an L1 regularized optimization to 

obtain and highlight sparse coefficients to represent the original raw data. The sparse coding 

technique, with its capability of efficient and effective representation learning (Kavukcuoglu 

et al., 2009; Lee et al., 2006; Rozell et al., 2008), allows the capture of underlying signals/

patterns from the raw data (Chang et al., 2018; Chang et al., 2021; Chang et al., 2015; 

Liu et al., 2022; Mao et al., 2022). In this study, obesity-related core exposure patterns 

composed of potential obesity-related chemicals, including phenols, parabens, PAHs, and 

phthalates (Hatch et al., 2008; Liu et al., 2017; Scinicariello and Buser, 2014a; Wu et al., 

2019), were discovered by SDR model in a U.S. national representative population data from 

National Health and Nutrition Examination Survey (NHANES) 2005–2012. In addition, 

the SDR model allows the incorporation of targeted health outcomes (e.g., obesity) during 

representation learning, which helps enforce the relevance of derived core exposure patterns 

with health outcomes. We also employed evaluation of SDR model through comparing 

to the most commonly used model (generalized linear regression model (GLM)), another 

pattern identification model (principal components analysis (PCA)), and Bayesian kernel 

machine regression (BKMR) to determine the performance of SDR model. Furthermore, 

the association of chemical exposure patterns with obesity was evaluated. SDR model will 

provide a new avenue for the efficient and effective discovery and assessment of the impact 

of chemical exposure patterns on health.

2. Methods

2.1. Study population

All of the study population was from NHANES, a cross-sectional study conducted every 

two years to assess the nutrition and health status of a representative U.S. population (Zipf 

et al., 2013). Subsamples of the participants were measured with different combinations 

of environmental chemicals. To extend the scope of exposure chemicals, we used data 

from NHANES 2005–2012 and all the participants provided informed consent. The survey 

protocol was approved by the National Center for Health Statistics Research Ethics Review 

Board. Information such as demographic characteristics, dietary intake, body examination, 

Zhang et al. Page 3

Ecotoxicol Environ Saf. Author manuscript; available in PMC 2023 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and biospecimen measurement was recorded comprehensively. The detailed patient selection 

strategy was illustrated in Fig. S1. In total, 40790 participants took part in NHANES 

2005–2012. Due to the study design, a representative subsample was available of the 

targeted chemicals (n = 10769 left). We excluded those with missing values of the 

chemical concentration or anthropometric data (including body weight, height, and waist 

circumference) (n = 1307 excluded). Those who were less than 20 years old, pregnant, 

previously diagnosed with cancer or malignancy, or underweight (BMI≤18.5) were excluded 

(n = 3985 excluded). Participants with missing data on covariates were also excluded from 

the final analysis (n = 664 excluded). The final sample size was 4813 participants.

2.2. Measurement of chemicals in urine

Spot urine samples were collected at mobile examination centers. The concentrations 

of environmental phenols, parabens, phthalates metabolites, and PAHs metabolites were 

analyzed using previously reported methods (CDC, 2018b). Chemicals with less than 

90% detected were excluded from our analysis to reduce the evaluation bias derived 

from simple substitution of the values under the lower limit of detection (LOD) 

(Lubin et al., 2004). Specifically, triclosan, butyl paraben, ethyl paraben, mono-n-methyl 

phthalate, mono-isononyl phthalate, and mono-(2-ethyl)-hexyl phthalate, with detection 

frequencies ranging from 22.3% to 77.0% were excluded (Table S2). We further added 

up the molar concentration of metabolites from the same parent compound. More 

details are provided in the Supplementary Material. Finally, fifteen chemicals were 

retained in the analysis (including PAH: naphthalene metabolites (ΣOH-Nap), fluorine 

metabolites (ΣOH-Flu), phenanthrene metabolites (ΣOH-Phe), 1-hydroxypyrene (1-OH-

Pyr); phenol: benzophenone-3 (BP3) and bisphenol A (BPA); paraben: methyl paraben 

(MPB) and propyl paraben (PPB), phthalate: mono(carboxynonyl) phthalate (MCNP), 

mono(carboxyoctyl) phthalate (MCOP), diethylhexyl phthalate metabolites (ΣDEHP), 

dibutyl phthalate metabolites (ΣDBP), mono-(3-carboxypropyl) phthalate (MCPP), mono-

ethyl phthalate (MEP), and mono-benzyl phthalate (MBzP)).

2.3. Outcomes and co-variation assessment

Anthropometric indexes were measured at the mobile examination centers. Participants with 

a BMI of 30 kg/m2 or higher were general obese according to WHO reference (WHO, 

2017). Abdominal obesity was classified by absolute waist circumference (≥102 cm in men 

and ≥88 cm in women).

Information on demography, nutrition intake, habits, and medical status was collected by 

direct interview. We considered age, sex, race, educational level, family income to poverty 

ratio (PIR), smoking status, and total caloric intake status per day as potential covariates as 

previously described (Zhang et al., 2019). In addition, creatinine concentration was natural 

logarithm transformed and considered a covariate to account for urinary dilution (Barr et al., 

2005).

2.4. Sparse decompositional regression (SDR) model

To explore the higher-level dependencies as well as the underlying regularities in the 

raw chemical exposure data, we combined the concept of sparse feature learning and feed-
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forward regression into a unified framework, namely Sparse Decompositional Regression 

(SDR), to realize efficient and effective mining of combinatorial patterns related to the 

mixture of chemical exposures, as well as their association with health outcomes. Given 

X = X1, …, XN ∈ Rm × Nas a set of samples (N) with a combination of chemical exposure 

levels (i.e., raw chemical exposure profile with m chemicals; e.g., m=15 in NHANES 

dataset) and L as the health outcome (e.g., BMI), the formulation of SDR model is defined 

as follows (Fig. 1B).

minA( ∗ ), D, Z, W, G ∥ X − DZ ∥F
2 + ∥ Z − Gσ(WX) ∥F

2 + λI ∥ Z ∥1 + ∥ AZ − L ∥F
2

s . t . di 2
2 = 1, ∀i = 1, …, h; ( ∗ )target − only item

A detailed description of the items in the formulation can be found in Fig. 1B and 

Supplementary Material. To avoid or reduce potential false predictions where chemical 

concentrations are varied in exposure levels, feature transformation and scaling were 

conducted in data preprocessing. The concentration of the chemicals was right-skewed, and 

a lntransformation was used to improve the normality. Afterward, minmax normalization 

was applied for feature scaling, and X, the raw chemical exposure profile was a transformed 

and scaled dataset. The first constraint:∥ X − DZ ∥F
2, penalizes the reconstruction error of 

raw chemical exposure with mixture chemical exposure patterns (D) and the corresponding 

sparse feature matrix (Z), which helps minimize the loss of information; the second 

constraint:∥ Z − Gσ(WX) ∥F
2, penalizes the approximation error of sparse feature matrix 

(Z) with the auto-encoder, which helps improve the accuracy of sparse feature matrix 

approximation for new participants; the third constraint: ∥ Z ∥1 penalizes the sparsity of 

the sparse feature matrix, which helps ensure the utilization/activation of dominant mixture 

chemical patterns during the learning process, and only sparse patterns were used for data 

reconstruction; and the last term (target-only): ∥ AZ − L ∥F
2 penalizes the approximation 

error of outcome (L) with sparse feature matrix (Z), which helps refine the learning 

process toward improved outcome association. A step-wised joint minimization of the above 

equation leads to a highly efficient and effective solution for mixture chemical exposure 

pattern discovery (Fig. 1B and Supplementary Material).

To optimize the number (h) of mixture chemical exposure patterns while stabilizing the 

reconstruction of the raw chemical exposure profile (X) based on mixture chemical exposure 

patterns (D), we first bootstrapped the SDR model 100 times with samples randomly 

selected per iteration. Consequently, it led to the discovery of 100 sets of chemical 

exposure patterns, D1, …, D100 , and the corresponding sparse feature matrix Z1, …, Z100 , 

where Di = d1
i , …, dh

i  and Zi = Z1
i , …, ZN

i . Then, we utilized the consensus clustering 

strategy with all preidentified chemical exposure patterns ([D1,...,D100]) to obtain the 

core chemical exposure patterns (abbreviated as core patterns) as D = d1, …, dk , where 

k is the number of clusters optimized by consensus clustering approach (helping reduce 

redundant exposure patterns, detailed information on consensus clustering is provided in 

Supplementary Material), and di is core chemical exposure pattern i defined as the median 

chemical exposure patterns within cluster i. In the present study, the chemicals with higher 
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relative abundance in each core pattern were used to represent the corresponding core 

pattern. Last, we fixed the dictionary as the core patterns (D), and updated <Z, G, W> 

(non-targeted) or <Z, G, W, A> (targeted) through our SDR model. The SDR parameters, 

including the number of core chemical exposure patterns (k), dictionary size (h, referring 

to the mixture chemical exposure pattern number in each bootstrap, as shown in Fig. 1A), 

and sparsity (referring to the number of mixture chemical exposure patterns to be used for 

raw chemical exposure profile reconstruction) of this study were optimized with a stepwise 

strategy (see Supplementary Material for details).

Pairwise Pearson correlation was utilized to measure the similarity between core patterns 

learned from non-targeted and targeted SDR models, and for each pairwise comparison, the 

patterns were considered consistent when Pearson’s correlation (r) > 0.9 and p < 0.05. The 

importance of individual chemicals in each core pattern was evaluated by a perturbation 

strategy to identify the driving components in the associations between core patterns and 

health as described in Supplementary Material.

Finally, we assessed the association of core mixture chemical exposure patterns (D) with 

health outcomes through regression analysis with adjustment for other confounding factors 

(Fig. 1B and C).

2.5. Statistical analysis

Comparisons of continuous and categorical variables between groups were conducted by 

t-test and chi-square tests, respectively. Concentrations of chemicals were ln-transformed 

to improve the skewness. Pearson correlation analysis was carried out to estimate the 

relationship between chemicals.

As a further evaluation, we also compared our newly developed SDR model with GLM, 

PCA, and BKMR.

2.5.1. Generalized linear regression model—Generalized linear regression model 

was employed to assess the association between single chemical exposure and obesity-

related outcomes (i.e., logistic regression for general obesity and abdominal obesity, 

multivariable linear regression for BMI and waist circumference). The participants were 

divided into tertile groups based on chemical concentration, and the association between 

individual chemicals and obesity was assessed by comparing the second and third tertiles 

to the first tertile of a chemical’s concentration. All multivariable analyses were adjusted 

for gender, ethnicity, educational levels, age, family income-to-poverty ratio, smoking status, 

energy intake levels, and ln-transformed creatinine.

2.5.2. Principal components analysis (PCA)—PCA is a dimension reduction 

method in which uncorrelated principal components (PCs) are created as the linear 

combination of the highly correlated components Wold et al., 1987). The first few PCs, 

with a major contribution to the variance, were used in the regression analysis. Varimax 

rotation was used to make a smaller number of chemicals of high factor loadings and the rest 

of low factor loadings. Principal components with eigenvalues larger than one were retained 

in the following analysis.
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2.5.3. Bayesian kernel machine regression (BKMR) model—BKMR model can 

fit the high-dimensional nonlinear and nonadditive exposure reaction function and obtain 

health effects of mixed exposures on outcomes by comparing all of the chemicals fixed at a 

certain percentile with all of them at median levels (Bobb et al., 2018, 2015). The posterior 

inclusion probabilities (PIPs), which represent the probability that a particular chemical was 

included in the model, were calculated with 50,000 iterations. Fixing all the other chemicals 

at median levels, the dose-response curve of chemicals with outcome was estimated.

Sensitivity analysis was conducted with further adjusting for physical activity. Since 

standard Global Physical Activity Questionnaire (GPAQ) was not available in all the 

NHANES 2005–2012 cycles, we defined physical active as doing any vigorous or moderate 

activities for at least 10 min in the past 30 days (NHANES 2005–2006) or in a typical week 

(NHANES 2007–2012).

Due to the complex sampling design of NHANES, the sample weights are usually applied 

in analysis using NHANES data (CDC, 2018a; Haddad et al., 2022; Patel et al., 2010). 

However, weighted estimation could introduce over-adjustment bias when variables used 

for calculating weights are already adjusted as covariates in regression analysis. Therefore, 

the unweighted estimation was used in all the models throughout this study (Blount et al., 

2006; Gelman, 2007; Graubard and Korn, 1999). A P value of 0.05 was set as the significant 

criterion. SDR was conducted in Matlab (version R2018b), and all the other analyses were 

performed with R (3.5.1). BKMR was provided by the open-source R package “bkmr” 

(version 0.2.0).

3. Results

3.1. Population characteristics

This study consisted of 4813 participants, 37.8% of whom were classified as generally obese 

and 55.8% were classified as having abdominal obesity (Table S1). The average age was 

significantly higher in the obesity group and females were overrepresented. We also found 

the distributions of race, educational levels, family income to poverty ratio, and smoking 

status were significantly different between groups (Table S1).

3.2. Urinary chemical concentrations

Twenty-three out of 29 chemicals were detected in ≥ 90% of study participants (Table 

S2). The molar concentrations of chemicals derived from the same parent compound were 

summed (Table S3), resulting in 15 exposure biomarkers for downstream analysis. The 

concentrations of all 15 exposure biomarkers showed right-skewed distributions (Table S3). 

Urinary concentrations of BP3, MPB, metabolites of DEP (MEP), and the metabolites 

of naphthalene (ΣOH-Nap) were proportionally most abundant in phenols, parabens, 

phthalates, and PAHs, respectively. The Pearson correlation of these chemicals showed 

significant positive pairwise correlations (r ranging from 0.02 to 0.90) (Fig. S2). Chemicals 

with similar structures exhibited higher correlations, particularly for metabolites of PAHs 

and parabens.
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3.3. Core pattern identification and its association with obesity

With preoptimized parameters of the SDR model (Fig. S3 and S4) and a predetermined 

number of core patterns, the core patterns were then discovered via the non-targeted SDR 

model followed by consensus clustering, where no health outcome was involved in the 

model construction. Specifically, 1600 individual patterns were obtained after bootstrapping 

100 times in non-targeted SDR model with dictionary size and sparsity set to 16 and 4, 

respectively. Then, 8 clusters corresponding to 8 different core patterns were identified 

using consensus clustering based on all 1600 patterns. The composition and distribution of 

each chemical in the 8 core-pattern-related clusters are shown in Fig. S5. Afterwards, the 

expression level of each chemical in the core pattern is defined as the median expression 

level of the chemical in the corresponding cluster. Last, the SDR model is fine-tuned with 

fixed core patterns preobtained from previous steps. In addition, correlation analysis of the 

expression of these eight patterns (Fig. S6) revealed low and moderate correlations between 

patterns (0.01 <|r|<0.51, p < 0.05).

The association of each pattern with body index-related outcomes was estimated by 

adjusting for covariates, and five patterns were significantly associated with obesity and 

body indexes. Core pattern 1 (high expression of ΣOH-Nap), core pattern 4 (high expression 

of MEP), and core pattern 7 (high expression of MCNP, MCOP, and MCPP) were positively 

associated with obesity and body indexes (p < 0.05). Core pattern 2 (high expression 

of BP3) and core pattern 5 (high expression of MPB, PPB, and MEP) were negatively 

associated with obesity and body indexes (p < 0.05) (Table 1).

To further improve the association between core patterns and health outcomes, we 

incorporate health outcomes (i.e., general obesity, BMI, abdominal obesity, and waist 

circumference) in pattern discovery using the targeted SDR model. The majority of core 

patterns in the non-targeted and targeted models were significantly correlated (Pearson 
correlation > 0.9 and p value<0.05) (Fig. 2), which means that the exposure data itself 

makes the greatest contribution to core pattern identification. Interestingly, we observed 

differences between the two models in association with health outcomes (Fig. 2, Fig. S7, 

Table S4, and Table S5). Most of the associations between core patterns and outcomes 

were strengthened. For example, five core patterns were found to be associated with general 

obesity in the non-targeted SDR model, while the associations of four of the core patterns 

were strengthened (larger OR in positive association and smaller OR in negative association) 

in targeted SDR model, and one additional association was found in the targeted SDR 

model. The explanation of these findings is due to that the targeted model was forced to 

identify core patterns more associated with outcomes.

3.4. Individual chemical importance score in core patterns

To identify the most influential chemicals in each core pattern, the percentage of the change 

in the regression coefficient (Δp) and importance scores (IS) were analyzed. In general, 

the chemicals with high relative abundance in pattern composition were those with a high 

percentage of the change in regression coefficient and importance scores (Fig. S8–S11). 

For example, the core pattern with high levels of MEP (Core pattern 4) was found to 

be positively associated with obesity, and MEP was assigned a high importance score, 
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indicating that MEP was the largest contributor to health outcomes in this exposure pattern 

(Fig. S8–S11). However, another core pattern characterized by high levels of MPB, PPB, 

and MEP (Core pattern 5) was negatively associated with obesity, and MPB and PPB, 

but not MEP, was assigned a large importance score, indicating that MPB and PPB made 

the largest contribution to the negative association while MEP made no or a neglectable 

contribution (Fig. S8–S11). The importance score was also refined in the targeted SDR 

model. The targeted SDR model of abdominal obesity didn’t identify the core pattern with 

high levels ΣOH-Nap (Core pattern 1). However, ΣOH-Nap was assigned a relatively high 

importance score (IS=0.261) in the core pattern characterized by high levels of MEP (Core 

pattern 4) (Fig. S9).

3.5. Evaluation of SDR model by comparing to classic models

We also applied GLM, PCA, and BKMR to explore the association between the 

fifteen chemicals and obesity-related outcomes. GLM is the most classic model used in 

environmental epidemiology studies and mainly focuses on individual chemical effects. 

Similar to the SDR model, PCA and BKMR enable the assessment of the association of 

mixed exposure on health outcomes.

In multivariate logistic and linear regression analysis, the chemicals were grouped based on 

tertiles, and BP3, MBP, PPB, and MCOP showed significant associations (after adjusting for 

all the covariates) with obesity and body indexes in the highest group (Table S6–S7). Also, 

MCNP revealed a positive association with body indexes.

Using PCA, we identified four important principal components that explained 71.6% of 

the variance. We conducted logistic and linear regression to evaluate the association of 

PCs and obesity and body indexes, respectively. We found that PC 4, mainly composed 

of MPB, PPB, and BP3, was significantly associated with both obesity and body indexes; 

PC 3, mainly composed of MCOP, MCPP, and MCNP, was significantly associated with 

abdominal obesity and body indexes (Table 2).

According to the BKMR models, the joint effects of mixed chemical exposure on general 

obesity, BMI, abdominal obesity, and waist circumference showed negative trends (Fig. 

S12). The probabilities of inclusion (PIPs) derived from BKMR models are summarized 

in Table S8. The PIP is a ranking measurement to see to what extent the data favors the 

inclusion of a variable in the regression. PPB, BP3, MCOP, 1-OH-Pyr, and ΣOH-Nap 

contributed the most to the association of joint chemicals exposure with obesity. We 

also estimated the exposure-response functions of each chemical with outcomes (Fig. 3). 

We observed that ΣOH-Nap and MCOP had positive exposure-response associations with 

outcomes when all the other chemicals were fixed at their median levels, while BP3, PPB, 

and 1-OH-Pyr showed negative associations.

Table 3 summarizes the results obtained using the different models. Consistent with the 

Pearson correlation results (Supplementary material Fig. S2), both PCA and SDR are 

capable of capturing underlying patterns from the data. The SDR model not only provides 

consistent and robust discoveries but also identifies associations that are beyond the scope of 
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PCA (Table 3), which leads to improved predictive power toward health outcomes (i.e., AUC 

and RSME, Fig. S13, p < 0.001).

3.6. Sensitivity analysis with further adjusting for physical activity

After further adjusting for physical activity, the results of non-targeted and targeted SDR 

models remained stable (Table S9 and S10). For the comparison between two pattern 

identification models (SDR and PCA, results of PCA are shown in Table S11), SDR also 

showed improved predictive power toward health outcomes (i.e., AUC and RSME, Fig. S14, 

p < 0.001).

4. Discussion

We identified eight representative core exposure patterns in the general U.S. population by 

non-targeted SDR model. The exposure patterns of high expression of ΣOH-Nap, MEP, 

and a high coexpression pattern of MCNP, MCOP, and MCPP were positively associated 

with obesity, while the patterns of high expression of BP3 and coexpression of MPB, PPB, 

and MEP were negatively associated with obesity and body indexes. In the targeted SDR 

model, their associations were strengthened. We also explored three commonly used models, 

including the generalized linear regression model, PCA, and BKMR. The associations of 

BP3, MPB, PPB, MCOP, MCNP, and ΣOH-Nap with obesity were consistent in both SDR 

model and classic models, while the association of MEP with obesity was specifically 

identified by SDR model only.

Humans are exposed to various kinds of environmental chemicals; however, the 

identification of chemical exposure patterns and their association with human health 

remains largely unexplored and requires urgent investigation in terms of both technology 

development and deployment. Existing models used in multiagent studies mainly focus 

on the discovery of the most relevant chemicals and their combinatorial effects on health 

outcomes (Lazarevic et al., 2019; Stafoggia et al., 2017), ignoring potential contributions 

of coexposure patterns in the general population. Principal component analysis (PCA) is 

a classic model attempting to identify and estimate the effect of chemical patterns on 

outcomes (Wold et al., 1987). By reducing the dimension of chemical exposure space 

based on the first few principal components computed from chemical exposure data while 

preserving the majority of the chemical data variation, PCA leads to the most variation-

preserving exposure patterns that are not necessarily interpretable or related to the outcomes. 

In this study, we applied the SDR model for identifying multivariate core exposure patterns 

by mining intrinsic patterns from raw data (non-target model) and enabling the outcome 

incorporation during pattern discovery (targeted model). As shown in Fig. S3 and S4, the 

number of core patterns is largely independent of parameter settings, which is due to the 

capability and robustness of SDR in discovering the underlying characteristics of the data. 

Our study suggests that the general population of NHANES 2005–2012 was exposed to 

eight core exposure patterns. In non-targeted and targeted SDR models, the core exposure 

patterns have similar profiles, which indicates that the exposure data itself makes the greatest 

contribution to core pattern identification. By penalizing the approximation error of outcome 
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(L) with sparse feature matrix (Z), the core patterns identified in targeted model are refined 

toward improved outcome association.

Different from dimension-reduction in PCA, SDR falls into the category of sparse 

representation learning, which learns sets of overcomplete features to reconstruct the 

original data (Mairal et al., 2008; Rubinstein et al., 2010). In detail, the SDR model first 

increases the dimensionality of the chemical exposure space to improve the representation 

power through sparse coding and to discover underlying exposure patterns, which 

contributes to the sparse reconstruction of the original exposure space without linear 

restrictions of relationships among chemical components. Next, consensus clustering on the 

underlying exposure patterns, learned with bootstrapping strategy, leads to the discovery of 

robust core patterns minimizing redundancy and the risk of missing core exposure patterns 

due to the random nature of sampling. In PCA, the exposure status of all the participants 

could be represented by the combination of the same patterns, and each pattern was a 

combination of all the chemicals. In SDR, we assume the exposure status of the study 

population is represented by sparse exposure patterns and each individual is a combination 

of a limited number of patterns. Under this condition, the patterns identified in SDR 

are more precise in representing the exposure status of each individual. Consistent with 

the Pearson correlation results (Fig. S2), both PCA and SDR are capable of capturing 

underlying patterns from the data. However, through extensive experimental evaluation, 

the SDR model exceeds the performance of PCA in the identification of core exposure 

patterns by improving specificity, especially among chemicals of highly correlated exposure 

levels. PCA only provided limited combinations of chemicals (the number of PCs ≤ the 

number of chemicals) and tended to group chemicals from the same class together, which 

potentially resulted in weakened/distorted associations. For example, in our study, the PAH 

metabolites were grouped in PC1, which consequently weakened the previously reported 

association of ΣOH-Nap with obesity (Bushnik et al., 2019; Scinicariello and Buser, 2014b; 

Zhang et al., 2019), but the significant contribution of ΣOH-Nap to the positive association 

between core pattern 1 and obesity was observed using the SDR model and BKMR. 

Similarly, the association between MEP and obesity in PC2 was also weakened in PCA 

but identified using the SDR model. The positive association of MEP with obesity has been 

reported (Hatch et al., 2008; Stahlhut et al., 2007). As a result, compared with the patterns 

derived from PCA, the core patterns learned from SDR demonstrated significantly improved 

predictive power toward health outcomes (i.e., AUC and RSME, Fig. S11, p < 0.001).

The SDR model provides a mechanism to evaluate the importance of individual chemicals 

in the association of core exposure patterns and outcomes. Chemicals with high importance 

scores were considered the driver components in the associations between core patterns and 

health. In general, the chemicals with a high importance score are those with high relative 

abundance within each core pattern composition, but the importance score is much more 

precise in evaluating their contributions. In our study, the core pattern highly expressed 

of MBP, PPB, and MEP was found to be negatively associated with obesity, and MEP 

was the third most highly expressed chemical in the core pattern. However, the importance 

score of MEP is much smaller than MBP and PPB, which indicates MEP had no or a 

neglectable contribution to the negative association. The BKMR model also performed well 

in evaluating the importance of chemicals and their dose-response association with health. 
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In this study, the positive contribution of ΣOH-Nap and MCOP, as well as the negative 

contribution of BP3 and PPB on obesity were identified in both SDR and BKMR models.

Different approaches are best suited to answer different questions, and they all have 

limitations. Specifically, GLM ignores the fact that chemicals are exposed simultaneously 

and the joint effect is not simply equal to the sum of all the effects (Kim, 2019). 

Consequently, GLM could not evaluate the joint effect of chemical mixtures, and results 

obtained with GLM suffer from distortion introduced by chemical collinearity (Marill, 

2004). The PCA model is limited by linear function assumptions to identify linear subspace 

feature extractors, which doesn’t necessarily represent the real exposure status (Chin and 

Suter, 2007). BKMR estimates the whole effect of chemical mixtures on health outcomes 

with each chemical increased by one unit, where the whole effect of chemical mixtures 

with both high and low exposed chemicals could not be estimated (Bobb et al., 2015). 

The major limitation of SDR originates from its design/focus on the combinatorial impact 

evaluation of multiple chemical exposures; as a result, it leaves the detailed interaction 

information among these chemicals from the mixed patterns unassessed. In addition, the 

limitations of this study include (1) the chemicals explored in this study are limited, and 

the concept of exposome could be deployed to better understand the origin of diseases and 

extend the scope of exposures from environmental chemicals to all the nongenetic factors, 

including synthetic chemicals, dietary factors, physiology status, physical activity, and the 

corresponding biological responses (Haddad et al., 2019; Vermeulen et al., 2020; Wild, 

2005, 2012); (2) we excluded chemicals with detection frequency less than 90% and simply 

substituted the values under LOD, which could leave out important chemicals; (3) other 

covariates, such as medicine usage and surgery, are important factors associated with obesity 

but were not included as the covariates since they are not available in all the NHANES 

2005–2012 cycles, which could be considered in future studies with improved cohort; (4) the 

cross-sectional study design couldn’ t assess the causal relationship between chemicals and 

exposure. To overcome these limitations, prospective cohort studies with extended exposure 

are warranted to explore the non-genetic origin of obesity.

In summary, we identified five exposure patterns/signals associated with obesity including 

the positive association of ΣOH-Nap, MEP, and the combination of MCNP, MCOP, and 

MCPP, as well as the negative association of BP3, and the combination of MPB, PPB, 

and MEP. Our newly developed SDR model undoubtedly offers an improved capability and 

novel solution, specifically in mixture chemical pattern discovery as well as the evaluation 

of their combinatorial impact on health outcomes. With a comprehensive evaluation of other 

models, we identified the contribution of ΣOH-Nap, MCOP, BP3, MPB, and PPB to the 

associations with obesity. Considering the limitation of the cross-sectional study design, 

prospective cohort studies are required to explore the risk of obesity after chemical pattern 

exposure. Nevertheless, we believe that SDR model could open a new avenue for assessing 

health effects of environmental mixture contaminants.
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Refer to Web version on PubMed Central for supplementary material.
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MEHHP Mono-(2-ethyl-5-hydroxyhexyl) phthalate

MEHP Mono-(2-ethyl)-hexyl phthalate

MEOHP Mono-(2-ethyl-5-oxohexyl) phthalate

MEP Mono-ethyl phthalate

MiBP Mono-isobutyl phthalate

MNMP Mono-n-methyl phthalate

MNP Mono-isononyl phthalate

MPB methyl paraben
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NHANES National Health and Nutrition Examination Survey

PAHs polycyclic aromatic hydrocarbons

PCA principal components analysis

PPB propyl paraben

SDR Sparse Decompositional Regression

References

Afshin A, et al. , 2017. Health effects of overweight and obesity in 195 countries over 25 years. N. 
Engl. J. Med 377, 13–27. 10.1056/NEJMoa1614362. [PubMed: 28604169] 

AnonWHO, 2017. Defining Adult Overweight and Obesity.

Barr DB, et al. , 2005. Urinary creatinine concentrations in the U.S. population: implications for 
urinary biologic monitoring measurements. Environ. Health Perspect. 113, 192–200. 10.1289/
ehp.7337. [PubMed: 15687057] 

Blount BC, et al. , 2006. Urinary perchlorate and thyroid hormone levels in adolescent and adult 
men and women living in the United States. Environ. Health Perspect. 114, 1865–1871. 10.1289/
ehp.9466. [PubMed: 17185277] 

Bobb JF, et al. , 2015. Bayesian kernel machine regression for estimating the health effects of multi-
pollutant mixtures. Biostatistics 16, 493–508. 10.1093/biostatistics/kxu058. [PubMed: 25532525] 

Bobb JF, et al. , 2018. Statistical software for analyzing the health effects of multiple 
concurrent exposures via Bayesian kernel machine regression. Environ. Health 17, 67. 10.1186/
s12940-018-0413-y. [PubMed: 30126431] 

Bushnik T, et al. , 2019. Association of urinary polycyclic aromatic hydrocarbons and obesity in 
children aged 3–18: Canadian Health Measures Survey 2009–2015. J. Dev. Orig. Health Dis. 1–9. 
10.1017/S2040174419000825. [PubMed: 30919803] 

CDC, National Health and Nutrition Examination Survey Analytic Guidelines. 2018a. (https://
wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx).

CDC, NHANES 2011–2012 Laboratory Methods. 2018b. (https://wwwn.cdc.gov/nchs/nhanes/
continuousnhanes/labmethods.aspx?BeginYear=2011).

Chang H, et al. , 2015. Stacked Predictive Sparse Decomposition for Classification of Histology 
Sections. Int J Comput Vis. 113, 3–18. 10.1007/s11263-014-0790-9. [PubMed: 27721567] 

Chang H, et al. , 2018. Unsupervised Transfer Learning via Multi-Scale Convolutional Sparse Coding 
for Biomedical Applications. IEEE Trans Pattern Anal Mach Intell. 40, 1182–1194. 10.1109/
tpami.2017.2656884. [PubMed: 28129148] 

Chang H, et al. , 2021. From Mouse to Human: Cellular Morphometric Subtype Learned From Mouse 
Mammary Tumors Provides Prognostic Value in Human Breast Cancer. Front Oncol. 11, 819565. 
10.3389/fonc.2021.819565. [PubMed: 35242697] 

Chin T-J, Suter D, 2007. Incremental kernel principal component analysis. IEEE Trans. Image Process. 
a Publ. IEEE Signal Process. Soc. 16, 1662–1674.

Gelman A, 2007. Struggles with survey weighting and regression modeling. Stat. Sci. 22 (153–164), 
12. 10.1214/088342306000000691.

Graubard BI, Korn EL, 1999. Analyzing health surveys for cancer-related objectives. JNCI: J. Natl. 
Cancer Inst. 91, 1005–1016. 10.1093/jnci/91.12.1005. [PubMed: 10379963] 

Haddad N, et al. , 2019. A scoping review on the characteristics of human exposome studies. Curr. 
Pollut. Rep. 5. 10.1007/s40726-019-00130-7.

Haddad N, et al. , 2022. An exposome-wide association study on body mass index in adolescents using 
the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and 2013–2014 
data. Sci. Rep. 12, 8856. 10.1038/s41598-022-12459-z. [PubMed: 35614137] 

Zhang et al. Page 14

Ecotoxicol Environ Saf. Author manuscript; available in PMC 2023 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx
https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/labmethods.aspx?BeginYear=2011
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/labmethods.aspx?BeginYear=2011


Hatch EE, et al. , 2008. Association of urinary phthalate metabolite concentrations with body mass 
index and waist circumference: a cross-sectional study of NHANES data, 1999–2002. Environ. 
Health 7, 27. 10.1186/1476-069x-7-27. [PubMed: 18522739] 

Heindel JJ, et al. , 2017. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 
68, 3–33. 10.1016/j.reprotox.2016.10.001. [PubMed: 27760374] 

Kavukcuoglu K, et al., Learning invariant features through topographic filter maps. 2009 IEEE 
Conference on Computer Vision and Pattern Recognition. IEEE, 2009, pp. 1605–1612.

Kim JH, 2019. Multicollinearity and misleading statistical results. Korean J. Anesth. 72, 558–569. 
10.4097/kja.19087.

Kim S, et al. , 2017. Considering common sources of exposure in association studies - urinary 
benzophenone-3 and DEHP metabolites are associated with altered thyroid hormone balance 
in the NHANES 2007–2008. Environ. Int 107, 25–32. 10.1016/j.envint.2017.06.013. [PubMed: 
28651165] 

Lazarevic N, et al. , 2019. Statistical methodology in studies of prenatal exposure to mixtures of 
endocrine-disrupting chemicals: a review of existing approaches and new alternatives. Environ. 
Health Perspect. 127, 26001. 10.1289/ehp2207. [PubMed: 30720337] 

Lee H, et al. , 2006. Efficient sparse coding algorithms. Adv. Neural Inf. Process. Syst. 19.

Lin WY, et al. , 2019. Performing different kinds of physical exercise differentially attenuates the 
genetic effects on obesity measures: Evidence from 18,424 Taiwan Biobank participants. PLoS 
Genet 15, e1008277. 10.1371/journal.pgen.1008277. [PubMed: 31369549] 

Ling C, Ronn T, 2019. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 29, 1028–1044. 
10.1016/j.cmet.2019.03.009. [PubMed: 30982733] 

Liu B, et al. , 2017. Bisphenol A substitutes and obesity in US adults: analysis of a population-
based, cross-sectional study. Lancet Planet Health 1, e114–e122. 10.1016/s2542-5196(17)30049-9. 
[PubMed: 29308453] 

Liu XP, et al. , 2022. Clinical Significance and Molecular Annotation of Cellular Morphometric 
Subtypes in Lower Grade Gliomas discovered by Machine Learning. Neuro Oncol. 10.1093/
neuonc/noac154.

Lubin JH, et al. , 2004. Epidemiologic evaluation of measurement data in the presence of detection 
limits. Environ. Health Perspect. 112, 1691–1696. 10.1289/ehp.7199. [PubMed: 15579415] 

Mairal J, et al. , 2008. Learning multiscale sparse representations for image and video restoration. 
Multiscale Model. Simul. 7, 214–241. 10.1137/070697653.

Mao XY, 2022. iCEMIGE: Integration of CEll-morphometrics, MIcrobiome, and GEne biomarker 
signatures for risk stratification in breast cancers. World J Clin Oncol 13, 616–629. 10.5306/
wjco.v13.i7.616.

Marill KA, 2004. Advanced statistics: linear regression, part II: multiple linear regression. Acad. 
Emerg. Med. 11, 94–102. 10.1197/j.aem.2003.09.006. [PubMed: 14709437] 

Patel CJ, et al. , 2010. An environment-wide association study (EWAS) on type 2 diabetes mellitus. 
PLoS One 5, e10746. 10.1371/journal.pone.0010746. [PubMed: 20505766] 

Rozell CJ, et al. , 2008. Sparse coding via thresholding and local competition in neural circuits. Neural 
Comput. 20, 2526–2563. 10.1162/neco.2008.03-07-486. [PubMed: 18439138] 

Rubinstein RB, A. M, Elad M, 2010. Dictionaries for sparse representation modeling. Proc. IEEE 98, 
1045–1057. 10.1109/JPR0C.2010.2040551.

Scinicariello F, Buser MC, 2014a. Urinary polycyclic aromatic hydrocarbons and childhood 
obesity: NHANES (2001–2006). Environ. Health Perspect. 122, 299–303. 10.1289/ehp.1307234. 
[PubMed: 24380973] 

Scinicariello F, Buser MC, 2014b. Urinary polycyclic aromatic hydrocarbons and childhood 
obesity: NHANES (2001–2006). Environ. Health Perspect. 122, 299–303. 10.1289/ehp.1307234. 
[PubMed: 24380973] 

Shaheen N, et al. , 2016. Presence of heavy metals in fruits and vegetables: Health risk implications 
in Bangladesh. Chemosphere 152, 431–438. 10.1016/).chemosphere.2016.02.060. [PubMed: 
27003365] 

Zhang et al. Page 15

Ecotoxicol Environ Saf. Author manuscript; available in PMC 2023 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stafoggia M, et al. , 2017. Statistical approaches to address multi-pollutant mixtures and multiple 
exposures: the State of the Science. Curr. Environ. Health Rep. 4, 481–490. 10.1007/
s40572-017-0162-z. [PubMed: 28988291] 

Stahlhut RW, et al. , 2007. Concentrations of urinary phthalate metabolites are associated with 
increased waist circumference and insulin resistance in adult U.S. males. Environ. Health Perspect. 
115, 876–882. 10.1289/ehp.9882. [PubMed: 17589594] 

Taylor KW, et al. , 2016. Statistical approaches for assessing health effects of environmental chemical 
mixtures in epidemiology: lessons from an innovative workshop. Environ. Health Perspect. 124, 
A227–a229. 10.1289/ehp547. [PubMed: 27905274] 

Thayer KA, et al. , 2012. Role of environmental chemicals in diabetes and obesity: a National 
Toxicology Program workshop review. Environ. Health Perspect. 120, 779–789. 10.1289/
ehp.1104597. [PubMed: 22296744] 

Vermeulen R, et al. , 2020. The exposome and health: where chemistry meets biology. Science 367, 
392–396. 10.1126/science.aay3164. [PubMed: 31974245] 

Wild CP, 2005. Complementing the genome with an “exposome”: the outstanding challenge of 
environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. 
Prev. 14, 1847–1850. 10.1158/1055-9965.Epi-05-0456.

Wold S, Kim Esbensen, Paul Geladi, 1987. Principal component analysis. Chemometrics and 
Intelligent Laboratory Systems. 2, 37–52. 10.1016/0169-7439(87)80084-9.

Wild CP, 2012. The exposome: from concept to utility. Int J. Epidemiol. 41, 24–32. 10.1093/ije/
dyr236. [PubMed: 22296988] 

Wu C, et al. , 2019. Repeated measurements of paraben exposure during pregnancy in relation to 
fetal and early childhood growth. Environ. Sci. Technol. 53, 422–433. 10.1021/acs.est.8b01857. 
[PubMed: 30427191] 

Zhang Y, et al. , 2019. Association between exposure to a mixture of phenols, pesticides, and 
phthalates and obesity: comparison of three statistical models. Environ. Int 123, 325–336. 10.1016/
j.envint.2018.11.076. [PubMed: 30557812] 

Zipf G, et al. , 2013. National health and nutrition examination survey: plan and operations, 1999–
2010. Vital. Health Stat. 1, 1–37.

Zhang et al. Page 16

Ecotoxicol Environ Saf. Author manuscript; available in PMC 2023 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The main structure of the SDR model and its application in our study. A, Application 

of the SDR model to NHANES study data to identify core exposure patterns associated 

with obesity and other body index-related outcomes. Each participant had their exposure 

status (chemical profile). The SDR model was employed to identify exposure patterns (the 

chemical mixture signals), and limited exposure patterns were combined to reconstruct the 

original exposure profile of each participant. After bootstrapping 100 times, we obtained 

100 sets of exposure patterns. Consensus clustering was used to reduce the redundancy of 
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exposure patterns to get the core patterns, and thereafter, the sparse combination of core 

patterns was used to reconstruct the original exposure status. The association of core patterns 

with outcomes was further evaluated. B, The mathematical formulation and optimization 

scheme of the SDR model in non-targeted and targeted modes; A detailed description of 

each item can be found in the Methods. C, The computational pipeline of the SDR model.

Zhang et al. Page 18

Ecotoxicol Environ Saf. Author manuscript; available in PMC 2023 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Association of core exposure patterns with general obesity using the non-targeted (pink 

color) and targeted (blue color) SDR models. The numbers in each panel represent the 

odds ratio (OR) for general obesity. All regressions were adjusted for sex, race, educational 

levels, age, family income–to-poverty ratio, smoking status, energy intake levels, and urinary 

creatinine. OR are only indicated for significant associations (p < 0.05).

Zhang et al. Page 19

Ecotoxicol Environ Saf. Author manuscript; available in PMC 2023 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Univariate exposure-response function (95% CI) between selected chemical concentrations 

and obesity-related outcomes (A: general obesity, B: BMI, C: abdominal obesity, D: waist 

circumference) while fixing the concentrations of other chemicals at median values (N = 

4813), NHANES 2005–2012. Models were adjusted for sex, race, educational levels, age, 

family income-to-poverty ratio, smoking status, energy intake levels, and urinary creatinine.
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Table 3

Comparison of SDR with classic methods in the assessment of the association between chemical mixture 

exposure and obesity.

Methods Chemicals/Chemical mixtures associated with obesity and body indexes

SDR ΣOH-Nap↑, MEP↑, (MCNP, MCOP, and MCPP)↑, BP3↓, (MPB, PPB, and

MEP) ↓

GLM BP3↓, MPB↓, PPB↓, and MCOPf

PCA (MCNP, MCOP, and MCPP)↑, (BP3, MPB, PPB)↓

BKMR ΣOH-Nap↑, MCOP↑, 1-OH-Pyr↓, BP3↓, PPB↓

Note: ↑indicates the positive association with outcomes and ↓ indicates the negative associations.
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