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ARTICLE

Real-time decoding of question-and-answer speech
dialogue using human cortical activity
David A. Moses1, Matthew K. Leonard1, Joseph G. Makin1 & Edward F. Chang1

Natural communication often occurs in dialogue, differentially engaging auditory and sen-

sorimotor brain regions during listening and speaking. However, previous attempts to decode

speech directly from the human brain typically consider listening or speaking tasks in iso-

lation. Here, human participants listened to questions and responded aloud with answers

while we used high-density electrocorticography (ECoG) recordings to detect when they

heard or said an utterance and to then decode the utterance’s identity. Because certain

answers were only plausible responses to certain questions, we could dynamically update the

prior probabilities of each answer using the decoded question likelihoods as context. We

decode produced and perceived utterances with accuracy rates as high as 61% and 76%,

respectively (chance is 7% and 20%). Contextual integration of decoded question likelihoods

significantly improves answer decoding. These results demonstrate real-time decoding of

speech in an interactive, conversational setting, which has important implications for patients

who are unable to communicate.
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The lateral surface of the human cortex contains neural
populations that encode key representations of both per-
ceived and produced speech1–9. Recent investigations of

the underlying mechanisms of these speech representations have
shown that acoustic10–12 and phonemic4,13,14 speech content can
be decoded directly from neural activity in superior temporal
gyrus (STG) and surrounding secondary auditory regions during
listening. Similarly, activity in ventral sensorimotor cortex
(vSMC) can be used to decode characteristics of produced
speech5–9,15–17, based primarily on kinematic representations of
the supralaryngeal articulators7–9 and the larynx for voicing and
pitch17. A major challenge for these approaches is achieving high
single-trial accuracy rates, which is essential for a clinically rele-
vant implementation to aid individuals who are unable to com-
municate due to injury or neurodegenerative disorders.

Recently, speech decoding paradigms have been implemented
in real-time applications, including the ability to map speech-
evoked sensorimotor activations18, generate neural encoding
models of perceived phonemes19, decode produced isolated
phonemes20, detect voice activity21, and classify perceived sen-
tences14. These demonstrations are important steps toward the
development of a functional neuroprosthesis for communication
that decodes speech directly from recorded neural signals.
However, to the best of our knowledge there have not been
attempts to decode both perceived and produced speech from
human participants in a real-time setting that resembles natural
communication. Multimodal decoding of natural speech may
have important practical implications for individuals who are
unable to communicate due to stroke, neurodegenerative disease,
or other causes22,23. Despite advances in the development of
assistive communication interfaces that restore some commu-
nicative capabilities to impaired patients via non-invasive scalp
electroencephalography24, invasive microelectrode recordings25,
electrocorticography (ECoG)26, and eye tracking methodolo-
gies27, to date there is no speech prosthetic system that allows
users to have interactions on the rapid timescale of human
conversation.

Here we demonstrate real-time decoding of perceived and
produced speech from high-density ECoG activity in humans
during a task that mimics natural question-and-answer dialogue
(see Supplementary Movie 1). While this task still provides
explicit external cueing and timing to participants, the interactive
and goal-oriented aspects of a question-and-answer paradigm
represent a major step towards more naturalistic applications.
During ECoG recording, participants first listened to a set of pre-
recorded questions and then verbally produced a set of answer
responses. These data served as input to train speech detection
and decoding models. After training, participants performed a
task in which, during each trial, they listened to a question and
responded aloud with an answer of their choice. Using only
neural signals, we detect when participants are listening or
speaking and predict the identity of each detected utterance using
phone-level Viterbi decoding. Because certain answers are valid
responses only to certain questions, we integrate the question and
answer predictions by dynamically updating the prior prob-
abilities of each answer using the preceding predicted question
likelihoods. Incorporating both modalities significantly improves
answer decoding performance. These results demonstrate reliable
decoding of both perceived and produced utterances in real-time,
illustrating the promise of neuroprosthetic speech systems for
individuals who are unable to communicate.

Results
Overview of the real-time decoding approach. While partici-
pants performed a question-and-answer natural speech

perception (Fig. 1a) and production (Fig. 1b) task, we acquired
neural activity from high-density ECoG arrays that covered
auditory and sensorimotor cortical regions. In real-time, neural
activity was filtered to extract signals in the high gamma fre-
quency range (70–150 Hz; Fig. 1c, Supplementary Fig. 1), which
correlate with multi-unit activity28 and have been previously used
to decode speech signals from auditory4,10,13,14 and
sensorimotor5,7,8,15,16 brain regions. We used these high gamma
signals to perform real-time speech event detection, predicting
which time segments of the neural activity occurred during
question perception (Fig. 1d, blue curve) or answer production
(Fig. 1d, red curve). The speech event detector was trained to
identify spatiotemporal neural patterns associated with these
events, such as rapid evoked responses in STG during question
perception or causal activity patterns in vSMC during answer
production, which were used during real-time decoding to predict
the temporal onsets and offsets of detected speech events (see
Supplementary Fig. 2 and Section 4.6.1 for more details on the
event detection procedure).

For each time segment that was labeled as a question event, a
classification model was used to analyze the high gamma activity
and compute question likelihoods using phone-level Viterbi
decoding29 (Fig. 1e). In this approach, a hidden Markov model
(HMM) was used to represent each question utterance and
estimate the probability of observing a time segment of high
gamma activity assuming that the participant was hearing the
sequence of phones that comprise the utterance. The most likely
question was output as the decoded question (Fig. 1f).

We hypothesized that answer decoding could be improved by
utilizing knowledge about the previously decoded question. We
designed this question-and-answer task such that specific answer
responses were only valid for certain questions (Table 1). For
example, if a participant heard the question “How is your room
currently?”, there were five valid answers (“Bright”, “Dark”,
“Hot”, “Cold”, and “Fine”). We used the relationship between
each question and the valid answers to define context priors
(Fig. 1g), which were represented by a flat probability distribution
for within-question answers and zero probability for out-of-
question answers. A context integration model combined these
context priors with decoded question likelihoods to compute
answer prior probabilities (Fig. 1h). This context integration
model was used during online real-time decoding and offline
analysis (except where specifically indicated).

As with question decoding, for each time segment that was
labeled as an answer event, a classification model was used to
analyze the high gamma activity and compute answer likelihoods
using phone-level Viterbi decoding (Fig. 1i). The context
integration model combined these answer likelihoods with the
answer priors to obtain answer posterior probabilities (Fig. 1j),
and the answer with the highest posterior probability was output
as the decoded answer (Fig. 1k).

Prior to testing, models were fit using data collected during
separate training task blocks. The question classification models
were fit using data collected while participants listened to multiple
repetitions of each of the question stimuli, and the answer
classification models were fit using data collected while
participants read each answer aloud multiple times. The speech
detection models were fit using both of these types of training
task blocks. Information about the amount of data collected for
training and testing with each participant is provided in
Supplementary Table 1.

Question and answer decoding performance. In offline analysis
using the real-time decoding approach, we evaluated decoding
accuracy for questions, answers without context integration, and
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Fig. 1 Schematic of real-time speech decoding during a question (blue) and answer (red) task. a On each trial, participants hear a question and see a set of
possible answer choices on a screen. b Participants are instructed to freely choose and verbally produce one of the answers when a green response cue
appears on the screen. c Simultaneously, cortical activity is acquired from ECoG electrodes implanted across temporal and frontal cortex and then filtered
in real-time to extract high gamma activity. d A speech detection model uses the spatiotemporal pattern of high gamma activity to predict whether a
question is being heard or an answer is being produced (or neither) at each time point. e When the speech detection model detects a question event, that
time window of high gamma activity is passed to a question classifier that uses phone-level Viterbi decoding to compute question utterance likelihoods.
f The question with the highest likelihood is output as the decoded question. g To integrate questions and answers, the stimulus set was designed such that
each answer was only likely for certain questions (context priors). h These context priors are combined with the predicted question likelihoods to obtain
answer priors. i When the speech detection model detects an answer event, that time window of neural activity is passed to an answer classifier that uses
phone-level Viterbi decoding to compute answer utterance likelihoods. j The context integration model combines these answer likelihoods with the answer
priors to yield answer posterior probabilities (purple). k The answer with the highest posterior probability is output as the decoded answer. The answer
choice icons shown in (a, b) were made by www.freepik.com from www.flaticon.com
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answers with context integration. The primary performance
evaluation metric was decoding accuracy rate, which was defined
as 1 minus the utterance error rate using the actual and predicted
utterances for each prediction type. Here, an utterance refers to
one of the question stimuli or answer choices. The utterance error
rate was defined as the edit (Levenshtein) distance between the
actual and predicted utterance sequences across all test blocks for
a participant. This value measures the minimum number of
deletions, insertions, and substitutions (at the utterance level)
required to convert the predicted utterance sequence into the
actual utterance sequence, which is analogous to the word error
rate metric commonly used in automatic speech recognition
(ASR) systems to assess word-level decoding performance. Thus,
the decoding accuracy rate describes the performance of the full
decoding approach, including contributions from the speech
event detection, utterance classification, and context integration
models.

For all participants, accuracy rate for decoding of each
prediction type (questions, answers without context, and answers
with context) was significantly above chance (p < 0.05, one-tailed
bootstrap test, 4-way Holm-Bonferroni correction30; Fig. 2a for
participant 1, Supplementary Fig. 3a for other participants;
Supplementary Table 2). Chance accuracy rate was computed
using bootstrapped sequences of randomly-sampled utterances
(see Section 4.8.3). Overall, the accuracy rates for questions
(participant 1: 2.6, participant 2: 3.1, participant 3: 2.1 times the
chance level) and answers with context (participant 1: 7.2,
participant 2: 3.5, participant 3: 3.7 times the chance level)
demonstrate that the full system (event detection, utterance
classification, and context integration) achieves reliable decoding
of perceived and produced speech from ECoG signals. Impor-
tantly, we also observed a significant increase in decoding
accuracy rate during answer decoding when context was

integrated compared to when it was not integrated (participant
1: p= 1.9 × 10−3, participant 2: p= 7.9 × 10−5, participant 3: p=
0.029, one-tailed permutation test, 4-way Holm-Bonferroni
correction). These results indicate that the context integration
model was able to leverage the question predictions to improve
decoding of the subsequent answer responses for each participant.

To better understand how each of the components contributed
to the overall performance of the full system, we examined the
utterance classification and context integration models separately
from the speech detection model. In this work, we explicitly
differentiate between the terms classification and decoding: Given
a set of features (such as a time window of neural signals),
classification refers to the prediction of a single label from these
features, and decoding refers to the prediction of an arbitrary-
length label sequence from these features. To evaluate classifica-
tion performance, we used true event times determined from
acoustic transcriptions of the test blocks, ensuring that the
appropriate time window of neural signals was associated with
each classification target (each test trial). Using these true event
times, we calculated question and answer classification accuracy,
defined as the proportion of correct utterance classifications in
the test blocks. These classification accuracy values directly
measure the efficacy of the utterance classifiers and can be
compared to the decoding accuracy rates to assess the efficacy of
the speech detectors (for an alternative metric, information
transfer rate, see Supplementary Note 1 and Supplementary
Table 3). For all participants, classification accuracy was above
chance for each prediction type (p < 0.05, one-tailed bootstrap
test, 4-way Holm-Bonferroni correction; Fig. 2b, Supplementary
Fig. 3b). Similar to the full system decoding accuracy rate, answer
classification accuracy was higher when integrating context
(participant 1: p= 0.033, participant 2: p= 1.9 × 10−6, participant
3: p= 9.2 × 10−4, one-tailed exact McNemar’s test31, 4-way
Holm-Bonferroni correction; see Supplementary Note 2 and
Supplementary Table 4 for further characterization of the context
integration effects).

We also assessed classification performance using cross
entropy, a metric that compares the predicted utterance like-
lihoods and the actual utterance identities for each trial across all
test blocks for a participant (see Section 4.8). Given utterance log
likelihoods predicted by a classification model for trials in the test
blocks, cross entropy measures the average number of bits
required to correctly classify those utterances. These values
provide further insight into the performance of the utterance
classification and context integration models by considering the
predicted probabilities of the utterances (not just which utterance
was most likely in each trial). Lower cross entropy indicates better
performance. For all participants, cross entropy was better than
chance (p < 0.05, one-tailed bootstrap test, 4-way Holm-Bonferroni
correction; Fig. 2c, Supplementary Fig. 3c) and was significantly
better for the answer predictions when integrating context
(participant 1: p= 7.6 × 10−6, participant 2: p= 2.6 × 10−17,
participant 3: p= 3.1 × 10−11, one-tailed Wilcoxon signed-rank
test, 4-way Holm-Bonferroni correction).

To evaluate the performance of the event detector, we
computed a detection score that incorporates frame-by-frame
detection accuracy and a comparison between the number of
detected and actual utterances (Fig. 2d, Supplementary Fig. 3d;
see Section 4.8.1). For all participants, detection scores for
questions and answers were high (above 85%) but not perfect.
This result is consistent with our observation of decoding
accuracy rates that were slightly lower than their corresponding
classification accuracies.

Finally, to characterize the contribution of individual electrodes
during utterance classification and speech detection, we calcu-
lated the discriminative power of each ECoG electrode (see

Table 1 The question/answer sets

QA
set number

Question Answer

1 Which musical instrument do you like
listening to?

Piano

Which musical instrument do you dislike
hearing?

Violin

Electric guitar
Drums
Synthesizer
None
of these

2 How is your room currently? Bright
Dark
Hot
Cold
Fine

3 From 0 to 10, how much pain are you in? Zero
From 0 to 10, how nauseous are you? One
From 0 to 10, how happy do you feel? Two
From 0 to 10, how stressed are you? Three
From 0 to 10, how comfortable are you? Four

Five
Six
Seven
Eight
Nine
Ten

4 When do you want me to check back
on you?

Today

Tomorrow
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Section 4.8.1). Here, discriminative power provides an estimate of
how much each electrode contributes to a model’s ability to
discriminate between utterances or speech events. Although the
absolute magnitudes of these values are difficult to interpret in
isolation, the spatial distribution of discriminative powers across
electrodes indicates which brain areas were most useful for
decoding. We found that for question decoding, discriminative
power was highest across STG electrodes (Fig. 2e, Supplementary
Fig. 3e), which is consistent with auditory responses to heard
speech observed in this region. Clusters of discriminative power
for question decoding were also observed in vSMC, although the
relevant electrodes in this region were sparser and more variable
across participants. The electrodes that contributed most to
answer decoding were located in both vSMC and STG (Fig. 2f,
Supplementary Fig. 3f), reflecting activity related both to speech
production and perception of self-produced speech. Lastly,
electrodes that contributed to speech detection were distributed
throughout sensorimotor and auditory regions (Fig. 2g, Supple-
mentary Fig. 3g).

Effects of data limitations and hyperparameter selection.
Overall, the reliable decoding performance we observed may
reflect certain idiosyncrasies of the neural data and recording
constraints associated with each participant. To understand the
limitations of the decoding models used in this task, we assessed
their performance as a function of several factors that can vary
across participants: amount of data used during model fitting,
specific model hyperparameters used during testing, and, as
described in Supplementary Note 3 and Supplementary Fig. 4,
spatial resolution of the cortical signals.

First, we analyzed how the amount of neural data used during
training affects decoder performance. For each participant, we fit
utterance classification models with neural data recorded during
perception and production of an iteratively increasing number of
randomly drawn samples (perception or production trials during
training blocks) of each utterance. We then evaluated these
models on all test block trials for that participant. We found that
classification accuracy and cross entropy improved over approxi-
mately 10–15 training samples (Fig. 3a, Supplementary Fig. 5a).
After this point, performance began to improve more slowly,
although it never completely plateaued (except for the answer
classifier for participant 2, where 30 training samples were
acquired; Supplementary Fig. 5a). These findings suggest that
reliable classification performance can be achieved with only 5
min of speech data, but it remains unclear how many training
samples would be required before performance no longer
improves. We also performed a similar analysis with the detection
models to assess speech detection performance as a function of
the amount of training data used. We found that detection
performance plateaus with about 25% of the available training
data (as little as 4 min of data, including silence) for each
participant (Supplementary Fig. 6; see Supplementary Method 1
for more details).

Next, we investigated the impact that hyperparameter selection
had on classification performance. Hyperparameters are model
parameters that are set before training a model on a dataset and
are not learned directly from the dataset. Prior to evaluating
performance offline with real-time simulations, we performed
cross-validated hyperparameter optimization on the models used
during decoding (see Section 4.7). Using an iterative optimization
algorithm32,33, we evaluated different sets of hyperparameter
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values for each test block using a leave-one-block-out cross-
validation procedure. We performed 250 optimization epochs for
each test block (each epoch evaluated one unique set of
hyperparameter values). During the primary performance
evaluation for each test block (which were used to obtain the
results in Section 2.2), we used the hyperparameter values that
produced the best performance on the held-out validation set
associated with that block.

To understand how hyperparameter selection affected perfor-
mance, we compared classification performance on one test block
for each participant across the 250 hyperparameter sets that were
evaluated for each utterance type (without using the context
integration model) during optimization on the associated
validation set. For each participant, we observed large variability
in classification accuracy and cross entropy across the different
hyperparameter sets, suggesting that hyperparameter values can
have a large impact on performance (Fig. 3b, Supplementary
Fig. 5b). For each participant and metric, we also found that the
optimal hyperparameters on the validation set were always better
than the median performance observed across all hyperparameter
sets. This finding demonstrates that the optimizer successfully
chose high-performing hyperparameter values to use during
testing and also that hyperparameter values that performed well
in certain test blocks are generalizable to other test blocks.

Viterbi classification and phonetic modeling. To gain a more
intuitive understanding of the neural and stimulus-dependent
features that drove decoding performance, we examined the
specific phone-level decisions made by the answer classification
models (independently from the context integration model)
during testing (Fig. 4). These classifiers represented each utter-
ance as a hidden Markov model (HMM), with phones as hidden
states and neural data as observed states. During testing, we
computed phone likelihoods at each time point during a detected
utterance. We then performed Viterbi decoding on the HMM
associated with each utterance to compute the most likely path
through the hidden states (phones) given the observed sequence
of neural data.

We examined how estimated phone likelihoods affected the
probability of each utterance across time. For example, when a
participant produced the answer “Fine” (in response to the
question “How is your room currently?”), an answer classifier
used the sequence of phone likelihood estimates (predicted from
neural data) to update the predicted probabilities of each possible

answer at each time point during the utterance (Fig. 4a). The
pattern of the answer probabilities illustrates how phonetic
similarity drives the classifier predictions. For example, the
utterances “Fine”, “Five”, and “Four” remain equally likely until
the decoder receives neural activity associated with production of
the /′aI/ phone, at which point “Four” becomes less likely.
Subsequently, “Fine” and “Five” are equally likely until the
decoder receives neural activity associated with the /n/ phone, at
which point “Fine” becomes and remains the most likely
utterance. Similarly, there is a brief increase in the probability
of “Bright” about halfway through the utterance, consistent with
the presence of the /′aI/ phone (after which the probability
decreases). At the end of the utterance, the presence of the /′aI/
and /n/ phones is associated with an increase in the probability of
“Nine”.

To understand how much phonetic information the answer
classifiers required before finalizing an utterance prediction, for
each test trial we computed the earliest time point during Viterbi
decoding at which the utterance that was most likely at the end of
decoding became and remained more likely than the other
utterances. We defined the decision finalization time as the
percent of time into the utterance when this time point was
reached (using the actual speech onset and offset times from the
transcriptions). We computed these decision finalization times
for each trial in which the answer classification models correctly
predicted the produced answer (94 trials total across all
participants and test blocks).

We found that the decision finalization times typically
occurred before all of the neural data from an utterance was
seen (p= 2.1 × 10−15, one-tailed single-sample Wilcoxon signed-
rank test; Fig. 4b). Because some utterances began with the same
phones (e.g., the phones /s ′I/ at the start of “Six” and
“Synthesizer”), we expected the lower bound for the finalization
times to occur after speech onset even if the actual phone identity
at each time point was known. To compute this lower bound, we
re-calculated the finalization times for these trials using phone
likelihoods constructed directly from the phonetic transcriptions.
Because no two utterances had the exact same phonetic content,
these transcription-based finalization times always occurred
before the speech offset (p= 1.6 × 10−16, one-tailed single-sample
Wilcoxon signed-rank test). The neural-based finalization times
were significantly later than the transcription-based finalization
times (p= 1.2 × 10−10, one-tailed Wilcoxon signed-rank test),
which is expected when using imperfect phone likelihoods from
neural data. Overall, these results demonstrate that the answer
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classifiers were able to finalize classification decisions before the
offset of speech using estimated phone likelihoods. Furthermore,
this observation cannot be explained entirely by the phonetic
separability of the utterances themselves.

We also characterized the performance of the answer phone
likelihood models that were used during utterance classification.
Across all participants and test blocks, we used the answer phone
likelihood models to classify which phone was being produced at
each time point. In total, there were 10585 time points that
occurred during speech production, and the overall phone
classification accuracy across these blocks was 25.12% (the
chance level was 2.70% if choosing randomly from the 37
different phones produced during testing). When silence data
points were included, the number of time points was 165804 and

the overall phone classification accuracy was 50.97%. This ability
of the phone likelihood models to discriminate between phones
was a major factor in the success of the utterance classification
models during testing.

Based on recent findings suggesting that the clustering of
neural encoding of phonemes in vSMC during speech production
is largely driven by place of articulation8,15, we hypothesized that
the phone confusions observed in this analysis would be
organized by place of articulation. To assess this hypothesis, we
divided the set of phone labels into 9 disjoint sets according to
place of articulation (excluding the silence token /sp/). We then
collapsed each actual and predicted phone label from the phone
classification results into one of these 9 phonetic category labels.
We found that the mutual information between the actual and

Actual utterance: “Fine”

150

100

D
ec

is
io

n 
fin

al
iz

at
io

n 
tim

e
(%

 o
f u

tte
ra

nc
e)

50

0

Neural
models

Labial

Coronal

Velar
Glottal

High front vowel

Low front vowel
High back vowel

Low back vowel

Diphthong

Phonetic
transcriptions

1.0

0.8

C
on

fu
si

on
 v

al
ue

 (
no

rm
al

iz
ed

 b
y 

ro
w

)

0.6

0.4

0.2

0.0

Predicted phone

Speech
onset

Speech
offset

sp

sp
p
b
m
f
v
t

d

ð

n

z
s

r
l

k
g
w
h
i

l
‘i

‘l
‘ε

^
‘^C

’

‘a
‘el

‘al
al

alΩO
’

ΩO
’

ΩO
’

‘æ
‘u

θ

0.2

0.1

0.0
–0.2

A
ct

ua
l p

ho
ne

–0.1 0.0 0.1 0.2 0.3 0.4 0.5

Time after speech onset (s)

V
ite

rb
i p

at
h 

pr
ob

ab
ili

ty

spf ‘ai

Decision
finalization Fine

Five

Nine

Bright
Four

n

sp p b m f v t d ðn zs r l k g w h i l‘i ‘l ‘ε ^ ‘^
C

’ ‘a ‘e
l

‘a
lal al

Ω
O

’

Ω
O

’

Ω
O

’‘æ ‘uθ

a b

c

Fig. 4 Within-trial temporal characteristics and phone-based performance of the answer (speech production) classification models. a Viterbi path
probabilities during production of the utterance “Fine” demonstrate how the classifier uses phone-level information to predict answers as speech unfolds
over time. Each curve depicts the probability of an answer given the neural data at each time point. The probabilities at the final time point represent the
answer likelihoods that are passed to the context integration model. Only the five most likely utterances are labeled and colored for visualization purposes.
The time at which the correct utterance becomes more likely than the other utterances (and remains more likely throughout the remainder of the decoding
window) is marked as the decision finalization time. b Decision finalization times for answer classification using neural data and the phonetic transcriptions
across all participants and test blocks. Each red dot represents the decision finalization time for a correctly predicted trial (percent of the utterance relative to
the actual speech onset and offset for that trial). Each boxplot depicts a line marking the median value, box heights representing the interquartile range, and
whiskers extending beyond the box edges by 1.5 times the interquartile range. The observed finalization times typically occurred before speech offset (⋆p <
10−14, one-tailed single-sample Wilcoxon signed-rank test), indicating that the classifiers were able to predict the identity of an utterance before processing
all time points in the neural (or phonetic) time window associated with an utterance. This characteristic is only partially explained by the stimuli and
transcribed vocalizations (*p < 10−9, one-tailed Wilcoxon signed-rank test). c Phone confusion matrix using the answer phone likelihood model for every
time point in each test block across all participants. Colored squares indicate phonetic classes organized by place of articulation. /sp/ is the silence phone.
This matrix illustrates reliable discrimination between the majority of the phones and intuitive confusions within articulatory classes (e.g., /s/ vs. /z/)
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predicted labels using this categorization was significantly higher
than randomized phonetic categorizations (p= 0.0012, one-tailed
bootstrap test)34, supporting the hypothesis that phone confu-
sions during production can be partially explained by place of
articulation. The resulting confusion matrix visually illustrates
these findings (Fig. 4c), with a prominent diagonal (indicating
good overall classification performance) and confusions that are
consistent with this hypothesis (such as the confusions between
the alveolar fricatives /s/ and /z/ and between many of the labial
phones).

Discussion
We demonstrate that high-resolution recordings directly from the
cortical surface can be used to decode both perceived and pro-
duced speech in real-time. By integrating what participants hear
and say, we leveraged an interactive question-and-answer beha-
vioral paradigm that can be used in a real-world assistive com-
munication setting. Together, these results represent an
important step in the development of a clinically viable speech
neuroprosthesis.

The present results provide significant advances over previous
work that has used neural signals to decode speech. We used a
novel behavioral paradigm that mimics the turn-taking and
conversational aspects of natural speech communication. By
designing the question/answer sets to contain stimuli that would
be challenging and meaningful to decode successfully while
leveraging the established functional speech representations in
auditory and sensorimotor cortical areas, we were able to evaluate
our ability to decode a type of speech that is useful for individuals
who could benefit from neuroprosthetic technology. Specifically,
conversational speech consists of utterances by both speakers that
tend to be related to the same topic. Here, we demonstrated that
predicting which question was heard improves the ability to
decode the subsequent answer, with the question serving as a
constraining context. Also, we did not observe a performance
improvement when restricting the possible answer predictions
based on the predicted question. Using true question identities as
context resulted in increased answer classification accuracy for
one participant, suggesting that further improvements to question
classification would still be useful in some scenarios. However,
this modification did not significantly improve answer predic-
tions for the other two participants, revealing the upper bound of
the context integration models. In practice, it may be sufficient to
use automatic speech recognition (ASR) with a microphone to
decode the questions. However, there are both scientific and
technical advantages to a fully-contained and generalizable speech
decoding system that uses the listener’s perception, including
selective attention35, as context for subsequent decoding.

Our results were achieved with methods that have been used
successfully in ASR research and applications29,36, specifically
Viterbi decoding with hidden Markov models (HMMs), except
here we used neural activity as features during decoding instead
of acoustic signals. We selected an HMM model architecture for
several reasons, with arguably the most important being its
inherent robustness to certain kinds of variability in the structure
of speech. During Viterbi decoding, the answer classifiers were
robust to variability in the exact duration and pronunciations of
the produced answers because the amount of time each HMM
could spend in each phone state was flexible. Similarly, both the
question and answer classifiers were robust to slight inaccuracies
in the detected speech onsets and offsets because each HMM
started and ended with a silence state. The phone likelihood
models underlying these utterance classifiers relied on dis-
criminable phonetic encoding in the neural activity, which has
been described in previous studies with both perceived4,12 and

produced15,16,37 speech. Although other methods such as deep
neural network modeling may be able to overcome these and
other types of variability, the demonstrated methodologies we
used allow for robust decoding of continuous speech from neural
activity, including in data-limited settings such as clinical
recordings with epilepsy patients.

Additionally, we found that it is both possible and practical to
determine which time segments of continuous neural signals are
associated with perceived and produced speech events directly
from the neural activity itself, similar to previous work on pro-
duced speech detection21. By training models to detect speech
events from neural activity, we were able to achieve reliable
detection accuracy for perception and production events even
though they occurred intermittently throughout testing blocks
that lasted on the order of minutes. Despite the high detection
scores exhibited by the speech detectors, however, the observed
discrepancies between the decoding accuracy rates and classifi-
cation accuracies indicate that further improvements to the
speech detection approach would improve overall decoder
performance.

We identified several participant-specific and practical factors
that influenced speech decoding performance. First, it is generally
true (in many types of modeling applications) that more training
data leads to improved decoder performance. However, we
showed here that even in our relatively complex behavioral task
involving both speech perception and production, speech detec-
tion and utterance classification performance began to plateau
after only a few minutes of training data. Although we were
limited in how much data we could collect here due to clinical
constraints, for patients whose quality of life can be improved by
a speech prosthesis, there may be a high tolerance to obtain a
substantial amount of speech data to use during training. In those
scenarios, alternative models with a greater number of learnable
parameters and the ability to model nonlinearities (e.g., artificial
neural networks) could leverage additional training data obtained
over hours or days38.

Additionally, the total amount of time that was available with
each participant prevented us from using optimized models
during online testing. Our results demonstrated that hyperpara-
meter optimization can have a substantial effect on classification
performance. Because the discrepancy between hyperparameter
values was the only practical difference between the online and
offline decoding models, the online decoding performance at the
patient’s bedside would have been improved to the levels
observed in offline real-time analyses if optimization prior to
online testing was feasible.

Finally, while we observed that canonical brain networks
involved in speech perception and production were engaged in
the different phases of the task, there were some differences
among participants. With only three participants in this study, we
were not able to make quantitative and definitive claims about the
relationship between decoder performance and functional-
anatomical coverage, although this may be an important factor
in determining where to place electrode arrays in patients who
will benefit from this technology. Other potential sources of
variability in decoder performance across the participants include
alertness and task engagement. Additionally, despite using a task
that allows participants to choose what to say voluntarily, they
were still provided with visual cues listing their response options.
While we do not have evidence to suggest that visual presentation
or the act of reading influenced the present results, future work
could evaluate similar paradigms that do not involve these aspects
of visual and language processing.

We also showed that phonetic features were a key driver of
classification for produced utterances by characterizing how the
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answer classifiers incorporated information across time within
individual trials and discriminated between the possible utter-
ances. The HMM-based models learned to recognize neural
activity patterns associated with phonetic features (such as cor-
onal articulation and vowel height) and adjusted their online
utterance probability estimates depending on the presence of
these features at each time point. Consistent with previous find-
ings, the phonetic confusions exhibited by our classifiers were
partially explained by place of articulation features8,15, suggesting
that the phone likelihood models struggled to discriminate
between within-category speech sounds during decoding.
Although these phonetic representations are only an approx-
imation of the underlying kinematic and articulatory repre-
sentations of speech in vSMC5,8, the use of simple phonetic labels
to describe behavior enabled the classifiers to leverage standard
ASR techniques during decoding. Nevertheless, it is likely that
decoding performance could be improved by incorporating
descriptions of the behavior that are more correlated with the
neural representations.

Compared to the HMM-based classifiers used in this work, the
state-of-the-art decoding approaches in ASR with acoustic signals
are substantially more powerful, leveraging deep and recurrent
artificial neural networks to discover structure in the input data39.
At present, it is difficult to implement these algorithms effectively
in neural speech recognition applications that require decoding of
speech from neural signals, primarily due to the relatively small
amount of data that can be collected to train models38. However,
advances in data collection, such as chronic recording setups in
ambulatory settings40, and statistical methods for building models
using smaller training datasets41,42 could make these types of
sophisticated decoding approaches more practical.

For some impaired individuals, such as patients with locked-
in syndrome who are conscious but unable to communicate
naturally due to paralysis22,23,43,44, restoration of limited
communicative capability is associated with significant increa-
ses in self-reported quality of life23,44. Although current state-
of-the-art communication prostheses based on letter-by-letter
typing, cursor control, and target detection are already bene-
ficial to some patients and are highly generalizable, many are
slow and unnatural compared to the type of communication
potentially afforded by a speech-based prosthesis, requiring
patients to spell out intended messages slowly at rates less than
8 words per minute25. An ideal speech prosthesis would be
capable of decoding spontaneous, natural speech controlled by
a patient’s volition and would balance the tradeoff that cur-
rently exists in neural prosthetics between generalizability and
naturalness. Ultimately, such a system would also generalize to
imagined or covertly-produced speech45, particularly for the
case of fully paralyzed individuals. There may be additional
challenges in translating the approaches presented here to the
imagined speech setting; for example, it is unknown whether
phone-based models are appropriate for imagined speech, and
the specific training procedures used here may need to be
modified in cases where patients are unable to speak or move.
Nevertheless, the present results are a promising step towards
this goal, demonstrating that produced speech can be detected
and decoded from neural activity in real-time while integrating
dynamic information from the surrounding context.

Methods
Participants. Three human epilepsy patients undergoing treatment at the UCSF
Medical Center participated in this study. For the clinical purpose of localizing
seizure foci, ECoG arrays were surgically implanted on the cortical surface of one
hemisphere for each participant. All participants were right-handed with left
hemisphere language dominance determined by their clinicians.

The research protocol was approved by the UCSF Committee on Human
Research. Prior to surgery, each patient gave his or her written informed consent to
participate in this research.

Neural data acquisition. Participants 1 and 2 were each implanted with two 128-
channel ECoG arrays (PMT Corp.) and participant 3 was implanted with a 256-
channel ECoG array (Ad-Tech, Corp.). Participants 1 and 3 had left hemisphere
coverage and participant 2 had right hemisphere coverage. Each implanted array
contained disc electrodes with 1.17 mm exposure diameters arranged in a square
lattice formation with a 4 mm center-to-center electrode spacing. We used the open
source img_pipe package46 to generate MRI brain reconstruction images with
electrode locations for each participant (Fig. 2, Supplementary Fig. 3).

We used a data acquisition (DAQ) rig to process the local field potentials
recorded from these arrays at multiple cortical sites from each participant. These
analog ECoG signals were amplified and quantized using a pre-amplifier (PZ5,
Tucker-Davis Technologies). We then performed anti-aliasing (low-pass filtering at
1500 Hz) and line noise removal (notch filtering at 60, 120, and 180 Hz) on a digital
signal processor (RZ2, Tucker-Davis Technologies). On the DAQ rig, we stored
these neural data (at 3051.76 Hz) along with the time-aligned microphone and
speaker audio channels (at 24414.06 Hz). These neural data were anti-aliased again
(low-pass filtered at 190 Hz) and streamed at a sampling rate of 381.47 Hz to a real-
time computer, which was a Linux machine (64-bit Ubuntu 14.04, Intel Core i7-
4790K processor, 32 GB of RAM) implementing a custom software package called
real-time Neural Speech Recognition (rtNSR)14.

High gamma feature extraction. The rtNSR package implemented a filter chain
comprising three processes to measure high gamma activity in real-time (Sup-
plementary Fig. 1). We used high gamma band activity (70–150 Hz) in this work
because previous research has shown that activity in this band is correlated with
multi-unit firing processes in the cortex28 and can be used as an effective repre-
sentation of cortical activity during speech processing4,10,13–15.

The first of these three processes applied eight band-pass finite impulse
response (FIR) filters to the ECoG signals acquired from the DAQ rig (at 381.47
Hz). The logarithmically increasing center frequencies of these filters were 72.0,
79.5, 87.8, 96.9, 107.0, 118.1, 130.4, and 144.0 (in Hz, rounded to the nearest
decimal place)13,15. The filters each had an order of 150 and were designed using
the Parks-McClellan algorithm47.

The second process in the filter chain estimated the analytic amplitude values
for each band and channel using the signals obtained from the band-passing
process. An 80th-order FIR filter was designed using the Parks-McClellan
algorithm to approximate the Hilbert transform. For each band and channel, this
process estimated the analytic signal using the original signal (delayed by
40 samples, which was half of the filter order) as the real component and the FIR
Hilbert transform approximation of the original signal as the imaginary
component48. The analytic amplitudes were then computed as the magnitudes of
these analytic signals. This filtering approach was applied to every fourth sample of
the received signals, effectively decimating the signals to 95.37 Hz.

The final process in the filter chain averaged analytic amplitude values across
the eight bands, yielding a single high gamma analytic amplitude measure for each
channel.

After filtering, the high gamma signals were z-scored using Welford’s method
with a 30-second sliding window49. To mitigate signal artifacts such as channel
noise and epileptic activity, we clipped the z-score values to lie within the range of
[−3.5, 3.5]. We used the resulting z-scores as the representation of high gamma
activity in all subsequent analyses and real-time testing.

Experimental task design. The overall goal of this task was to demonstrate real-
time decoding of perceived and produced speech while leveraging contextual
relationships between the content of the two speech modalities. To achieve this, we
designed a question-and-answer task in which participants listen to questions and
respond verbally to each question with an answer. There were 9 pre-recorded
acoustic question stimuli and 24 possible answers (Table 1). Questions were
recorded by a female speaker at 44.1 kHz and were presented to each participant
aurally via loudspeakers. Each visual answer choice was represented as a small
rectangle containing the text prompt and a small image depicting the text (Fig. 1b;
images were included to increase participant engagement). The stimuli were
divided into four question/answer sets (QA sets 1–4). The answers in each QA set
represented the answer choices that would appear on the screen for each of the
questions in that set.

We used the following three types of task blocks: (1) question (perception)
training, in which participants heard each question 10 times in a random order
(stimulus length varied from 1.38–2.42 s in duration with an onset-to-onset
interval of 3 s); (2) answer (production) training, in which participants read each
possible answer choice aloud 10 times in a random order (each answer appeared on
the screen with a gray background for 0.5 s, was changed to a green background for
1.5 s to represent a go cue for the participant to read the answer, and removed from
the screen for 0.5 s before the next answer was displayed); and (3) testing, in which
participants heard questions and responded verbally with answers (choosing a
response from the possible options presented on the screen after each question).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10994-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3096 | https://doi.org/10.1038/s41467-019-10994-4 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


During the testing blocks, a green circle appeared on the screen after each question
was presented to cue participants to respond aloud with an answer of their
choosing. We encouraged the participants to choose different answers when they
encountered the same questions, although they were free to respond with any of the
presented answer choices during each trial. There was 2–3 s of silence and a blank
screen between each trial. In each block, the questions played to the participant
were chosen based on how many questions and answers are in each QA set
(questions with more valid answers had a greater chance of being played in each
trial). Trials in which the participant failed to respond or responded with an invalid
choice (less than 0.5% of trials) were excluded from further analysis. There were 26
question-and-answer trials in each testing block.

During each block, time-aligned behavioral and neural data were collected and
stored. The data collected during training blocks were used to fit the decoding
models. The data collected during testing blocks were used to decode the perceived
questions and produced answers in real-time and were also used offline during
hyperparameter optimization.

Phonetic transcription. After data collection, both questions and answers were
phonetically transcribed from the time-aligned audio using the p2fa package50,
which uses the Hidden Markov Model Toolkit and the Carnegie Mellon University
Pronouncing Dictionary51,52. The phone boundaries were manually fine-tuned
using the Praat software package53. Including a silence phone token /sp/, there
were a total of 38 unique phones in the question stimuli and 38 unique phones in
the produced answer utterances, although these two phone sets were not identical.

Modeling. After collecting training data for a participant, we fit models using the
time-aligned high gamma z-score neural data and phonetic transcriptions. Model
fitting was performed offline, and the trained models were saved to the real-time
computer to be used during online testing. As described in Section 4.7, the values
for many model parameters that were not learned directly from the training data
were set using hyperparameter optimization. We used three types of models in this
work: speech detection models, utterance classification models, and context inte-
gration models.

Speech detection: Before using the neural data to train speech detection models,
we analyzed the collected data to identify electrodes that were responsive to speech
events13,14. For each time point in the neural data, we used the phonetic
transcriptions to determine if that time point occurred during speech perception,
speech production, or silence. We then performed Welch’s analysis of variance
(ANOVA) on each electrode to identify channels that were significantly modulated
by the different types of speech events. Channels that had a Welch’s ANOVA p-
value less than a threshold hyperparameter were included in the feature vectors
used to train and test the speech detection models.

Speech events were modeled discriminatively as conditional probability
distributions of the form p(ht|yt). Here, ht represents the speech event at time t and
is one of the values in the set {perception,production,silence}, and yt is the
spatiotemporal neural feature vector at time t. The ht labels were determined from
the phonetic transcriptions: for any given time index t, ht was perception if the
participant was listening to a phone at time t, production if the participant was
producing a phone at time t, or silence otherwise. Each of these feature vectors was
constructed by concatenating high gamma z-score values for relevant electrodes
across all of the time points in a time window relative to the target time point,
capturing both spatial (multiple electrodes) and temporal (multiple time points)
dynamics of the cortical activity13,14 (Supplementary Fig. 7). Specifically, a feature
vector associated with the speech event label at some time index t consisted of the
neural data at the time indices within the closed interval [t+ νshift, t+ νshift+
νduration], where νshift and νduration represent the window onset shift and window
duration, respectively, and were determined using hyperparameter optimization.

To compute the speech event probabilities p(ht|yt) at each time point, we fit a
principal component analysis (PCA) model with the constraint that the
dimensionality of the projected feature vectors would be reduced to the minimum
number of principal components required to explain a certain fraction of the
variance across the features (this fraction was a hyperparameter determined during
optimization). We then used these new projected feature vectors and the speech
event labels to fit a linear discriminant analysis (LDA) model implementing the
least-squares solution with automatic shrinkage described by the Ledoit-Wolf
lemma54. After training, these PCA-LDA models could be used during testing to
extract the principal components from a previously unseen spatiotemporal feature
vector and predict speech event probabilities from the resulting projection (the
LDA model assumed flat class priors when computing these probabilities). We
used the Python package scikit-learn to implement the PCA and LDA models55.

During testing, the predicted speech event probabilities were used to detect the
onsets and offsets of speech events (Supplementary Fig. 2) with a multi-step
approach. For every time point t, the p(ht|yt) probabilities were computed using the
speech event probability model (Supplementary Fig. 2a). For perception and
production, these probabilities were smoothed using a sliding window average
(Supplementary Fig. 2b). Next, these smoothed probabilities were discretized to be
either 1 if the detection model assigned time point t to the associated speech event
type or 0 otherwise (Supplementary Fig. 2c). These probability-thresholded binary
values were then thresholded in time (debounced); a speech onset (or offset) was

only detected if this binary value changed from 0 to 1 and remained 1 for a certain
number of time points (or the opposite for offsets; Supplementary Fig. 2d).
Whenever a speech event offset was detected (which could only occur after an
onset had been detected), the neural data in the detected window were passed to
the appropriate utterance classification model (Supplementary Fig. 2e). The
number of recent time points used during probability averaging, probability
threshold value, time threshold duration, and onset and offset index shifts (integers
added to the predicted onset and offset time indices before segmenting the neural
data) were all treated as hyperparameters and set via optimization (with separate
parameters for perception and production).

Utterance classification: For each participant and utterance type (questions and
answers), we used classification models to predict the likelihood of each utterance
given a detected time segment of neural activity. For each utterance, we constructed
a hidden Markov model (HMM) to represent that utterance56, with phones qt as
hidden states and spatiotemporal neural feature vectors yt as observed states at each
time index t. Each of these HMMs was created using the representative phone
sequence for the associated utterance (determined from the phonetic
transcriptions). The transition matrix for each HMM, which specified the
transition probabilities p(qt+1|qt), was defined such that each hidden state was one
of the phones in the associated representative sequence and could only self-
transition (with some probability pself) or transition to the next phone in the
sequence (with probability 1− pself). A self-transition probability of 1 was used for
the final state. We used the silence phone token /sp/ as the initial and final states
for each HMM. Given a time series of high gamma z-score values, each of these
HMMs yielded the likelihood of observing those neural features during perception
or production of the underlying phone sequence. These likelihoods are robust to
natural variability in the durations of the phones in the sequence, which is a key
motivation for using HMMs in this approach (even with a single speaker producing
the same utterance multiple times, phone durations will vary).

Similar to the relevant electrode selection procedure used for the speech
detection models, we identified which channels should be considered relevant to
the type of speech processing associated with each utterance type. Using the three
previously described data subsets (perception, production, and silence), we
performed two-tailed Welch’s t-tests for each channel between the appropriate
subsets for each utterance type (perception vs. silence for questions and production
vs. silence for answers). Channels with a p-value less than a threshold
hyperparameter value were considered relevant for the current utterance type and
were used during subsequent phone likelihood modeling.

PCA-LDA models were then trained to compute the phone emission likelihoods
p(yt|qt) at each time point t. The hyperparameters associated with these models,
including the feature time window parameters and the PCA minimum variance
fraction, were optimized separately from the parameters in the speech event model.

During testing, we used Viterbi decoding on each HMM to determine the
likelihood of each utterance given a detected time segment of high gamma z-
scores13,14,29,45 (Supplementary Fig. 8). We computed the log likelihood of each
utterance using the following recursive formula:

υðt;sÞ ¼ welogpðyt jsÞ þmax
i2S

υðt�1;iÞ þ logpðsjiÞ
h i

; ð1Þ

where υ(t,s) is the log probability of the most likely Viterbi path that ends in phone
(state) s at time t, p(yt|s) is the phone emission likelihood (the probability of
observing the neural feature vector yt if the current phone is s), p(s|i) is the phone
transition probability (the probability of transitioning from phone i to phone s), we

is an emission probability scaling factor (a model hyperparameter) to control the
weight of the emission probabilities relative to the transition probabilities (see
Supplementary Note 4), and S is the set of all possible phones. To initialize the
recursion, we forced each Viterbi decoding procedure to start with a Viterbi path
log probability of zero for the first state (the initial silence phone /sp/) and negative
infinity for every other state.

After decoding for each HMM, the Viterbi path log probability at the final state
and time point for that HMM represents the log likelihood ‘u of the corresponding
utterance u given the neural data. Log probabilities are used here and in later
computations for numerical stability and computational efficiency.

The computed log likelihoods for each utterance were then smoothed and
normalized using the following formula:

‘�u :¼ ω‘u � log
X

j2U expðω‘jÞ
h i

; ð2Þ

where ‘�u is the smoothed and normalized log likelihood for utterance u, ω is the
smoothing hyperparameter, and U is the set of all valid utterances (for the current
utterance type). Because differences in utterance log likelihoods can be large (e.g.,
in the hundreds), the smoothing hyperparameter, which lay in the closed interval
[0, 1], was included to allow the model to control how confident its likelihood
predictions were. The closer ω is to zero, the smoother the log likelihoods are (less
sample variance among the log likelihoods). The final log term in Eq. 2 represents
the LogSumExp function and was used to compute the normalization constant for
the current smoothed log likelihoods. After computing this constant and
subtracting it from the smoothed log likelihoods, the ‘�u values satisfied the
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following equality: X
j2U

expð‘�j Þ ¼ 1: ð3Þ
These ‘�u values were used as the utterance classification model’s estimate of the

utterance log likelihoods given the corresponding neural data.
Context integration: Because each answer was only valid for specific questions

and an answer always followed each question, we developed a context integration
model that used predicted question likelihoods to update the predicted answer
probabilities during testing. Based on our previous demonstration that auditory
sentences could be decoded from neural activity14, we hypothesized that we could
use reliable decoding of the questions to improve answer predictions.

Prior to testing, we defined the relationships between questions and answers in
the form of conditional probabilities. These probabilities, referred to as the context
priors, were computed using the following formula:

pðuajuqÞ ¼
1

NA;q
if uaand uq are in sameQA set;

0 otherwise;

(
ð4Þ

where p(ua|uq) is the context prior specifying the probability of responding to the
question uq with the answer ua and NA,q is the number of answers in the same
question-and-answer (QA) set as uq (the number of valid answers to uq; Table 1).
These context priors assume that the valid answers to any question are equally
likely.

During testing, the context integration model receives predicted utterance log
likelihoods from both the question and answer classification models. Each time the
model receives predicted question log likelihoods (denoted ‘�UQ

, containing the log

likelihoods ‘�uq for each question utterance uq), it computes prior log probabilities

for the answer utterances from these question likelihoods and the pre-defined
context priors using the following formula:

logp
Q
uað Þ ¼ log

X
uq2UQ

exp logpðuajuqÞ þ ‘�uq

h i8<
:

9=
;þ c; ð5Þ

where pQ(ua) is defined as the prior probability of the answer utterance ua
computed using ‘�UQ

, UQ is the set of all question utterances, and c is a real-valued

constant. Each time the model receives predicted answer log likelihoods (the ‘�ua
values for each answer utterance ua), it computes posterior log probabilities for the
answer utterances from these answer likelihoods and the answer priors. The
unnormalized log posterior probabilities ϕua were computed for each answer
utterance ua using the following formula:

ϕua :¼ m log p
Q
ðuaÞ þ ‘�ua þ d; ð6Þ

where m is the context prior scaling factor and d is a real-valued constant. Here, m
is a hyperparameter that controls the weight of the answer priors relative to the
answer likelihoods (a larger m causes the context to have a larger impact on the
answer posteriors). We then normalize these answer log posterior values using the
following formula:

ϕ�ua :¼ ϕua � log
X
j2UA

expðϕjÞ
" #

; ð7Þ

where ϕ�ua is the normalized log posterior probability of ua and UA is the set of all
answer utterances. The constants c and d do not need to be computed in practice
because they are canceled out during the normalization step in Eq. 7. These ϕ�ua
values satisfy the following equality:X

j2UA

expðϕ�j Þ ¼ 1: ð8Þ
Finally, the predicted utterance identities are computed as:

ûq ¼ argmax
uq2UQ

‘�uq ; ð9Þ

ûa� ¼ argmax
ua2UA

‘�ua ; ð10Þ

ûaþ ¼ argmax
ua2UA

ϕ�ua ; ð11Þ

where ûq , ûa� , and ûaþ are the system’s predictions for questions, answers without
context, and answers with context, respectively. The ûq and ûaþ predictions are the
system outputs during decoding, and the ûa� predictions are used in offline
analyses. For a more thorough mathematical description of the context integration
procedure, see Supplementary Note 5.

Although an answer followed each question during testing, it was possible for
the speech detector to fail to detect question or answer events (or to detect false
positives). Because of this, we did not force the context integration model to always
expect answer likelihoods after receiving question likelihoods or vice versa. Instead,
during each test block, we maintained a set of values for the answer priors that were

only updated when a new set of question likelihoods was received. When a new set
of answer likelihoods was received, the current answer prior values were used to
compute the posteriors. If answer likelihoods were received before receiving any
question likelihoods, answer posteriors and answer with context predictions would
not be computed from those likelihoods (although this did not actually occur in
any test blocks).

Hyperparameter optimization. Each type of model (speech detection, utterance
classification, and context integration) had one or more parameters that could not
be learned directly from the training data. Examples of physiologically relevant
hyperparameters include a temporal offset shift between perceived and produced
phones and the neural data (which could account for neural response delays or
speech production planning), the duration of the spatiotemporal neural feature
vectors used during model training and testing, and a p-value threshold used when
deciding which electrodes should be considered relevant and included in the
analyses.

Instead of manually selecting values for these hyperparameters, we performed
cross-validated hyperparameter optimization using the hyperopt Python
package32,33. This package uses a Bayesian-based optimization algorithm called the
Tree-structured Parzen Estimator to explore a hyperparameter space across
multiple epochs. Briefly, this optimization approach samples hyperparameter
values from pre-defined prior distributions, uses a loss function to evaluate the
current hyperparameters, and then repeats these steps using knowledge gained
from the evaluations it has already performed. After a desired number of epochs,
the hyperparameter set associated with the minimal loss value across all epochs is
chosen as the optimal hyperparameter set.

We performed hyperparameter optimization for each participant, model type,
and test block. We used a leave-one-block-out cross-validation scheme for each test
block. Specifically, during an optimization run for any given test block, the
hyperparameters were evaluated on a held-out validation set comprising all of the
other test blocks available for the current participant. We used 250 epochs for each
optimization run. All of the hyperparameters that were set via optimization are
described in Supplementary Table 5, and the full optimization procedure is
described in Supplementary Method 2.

Evaluation methods and statistical analyses. Primary evaluation metrics: We
used the following metrics during the primary evaluations of our system: decoding
accuracy rate, classification accuracy, cross entropy, speech detection score, and
electrode discriminative power (Fig. 2). The decoding accuracy rate metric repre-
sented the full performance of the system (the combined performance of the speech
detection, utterance classification, and context integration models). When com-
puting the accuracy rates for each prediction type (questions, answers without
context, and answers with context) and participant, we obtained overall actual and
predicted sequences by concatenating the actual and predicted utterances across all
of the test blocks. We then calculated an utterance error rate using these sequences,
which is an analog of the commonly used word error rate metric and is a measure
of the edit (Levenshtein) distance between the actual and decoded utterance label
sequences in a given test block. The accuracy rate was then computed as 1 minus
the utterance error rate (or 0 if this difference would be negative, although this was
never observed in our experiments).

Classification accuracy and cross entropy metrics were computed for each
participant by using only the utterance classification and context integration
models (and not the speech detection models). In this approach, we performed
decoding on the test blocks using the actual speech event times and the previously
trained utterance classification models. Because the HMMs used to represent the
utterances were designed to start and end the Viterbi decoding process during
silence, we padded 300 ms of silence time points before and after the utterance in
each speech-related time window of neural data passed to the classifiers. We then
performed context integration model optimization with these new classification
results and applied the optimized context integration models to the results. After
this step, we pooled all of the pairs of actual and predicted utterance labels for each
prediction type across all of the test blocks for each participant.

Classification accuracy was defined as the proportion of trials in which the
utterance classification model correctly predicted the identity of the utterance. To
obtain the mean and variance of the classification accuracy, we used classification
accuracies computed on bootstrapped resamples of the trials (one million
resamples). To measure information transfer rate (which we did not consider a
primary evaluation metric in this work), we used these classification accuracy
values, speech durations from the test blocks, and the number of possible answer
responses (see Supplementary Note 1 for details).

The cross entropy metric quantified the amount of predictive information
provided by the utterance classification and context integration models during
testing and hyperparameter optimization. We computed cross entropies using the
surprisal values for each classification trial, prediction type, and participant. For a
given trial and prediction type, the relevant surprisal value for that trial is equal to
the negative of the predicted log probability associated with the actual utterance
label. The cross entropy is equal to the mean of these surprisal values. To obtain the
mean and variance of the cross entropy, we used cross entropies computed on
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bootstrapped resamples of the trials (one million resamples). Lower cross entropy
indicates better performance.

To evaluate and optimize the speech detector, we created a score metric that
computes a weighted combination of a frame-by-frame accuracy aframe and a
general event detection accuracy aevent. The frame-by-frame accuracy measures the
performance of the speech detector using the detected presence or absence of a
speech event at each time point. This measure is analogous to sensitivity and
specificity analyses commonly used for binary prediction. Phonetic transcriptions
were used to determine the actual times of the speech events and compute true
positives, true negatives, false positives, and false negatives. When using these
transcribed speech times, we decremented each speech onset time and incremented
each speech offset time by 300 ms to label some silence time points before and after
each utterance as positive frames. We performed this modification to encourage the
optimizer to select hyperparameters that would include silence before and after
each utterance in the detected neural feature time windows, which is useful during
utterance classification. We calculated the frame-by-frame accuracy measure using
the following formula:

aframe :¼
wPNTP þ ð1� wPÞNTN

wPNP þ ð1� wPÞNN
; ð12Þ

where wP is the positive weight fraction, NTP is the number of true positives
detected, NTN is the number of true negatives detected, NP is the total number of
positive frames in the test data, and NN is the total number of negative frames in
the test data. The positive weight fraction was included to allow control over how
important true positive detection was relative to true negative detection. In
practice, we used wP= 0.75, meaning that correctly detecting positive frames was
three times as important as correctly detecting negative frames. We used this value
to encourage the optimizer to select hyperparameters that would prefer to make
more false positive errors than false negative errors, since the performance of the
utterance classifiers should diminish more if a few speech-relevant time points were
excluded from the detected time window than if a few extra silence time points
were included. The general event detection accuracy, which measures how well the
speech events were detected without considering which time points were associated
with each event, was computed using the following formula:

aevent :¼ 1�min 1;
NDE � NAEj j

NAE

� �
; ð13Þ

where NDE and NAE are the number of detected and actual speech events in the
current test block, respectively. To compute the speech detection score sdetection,
these two measures were combined using the following formula:

sdetection ¼ wFaframe þ ð1� wFÞaevent; ð14Þ
where wF is the frame-by-frame accuracy weight fraction, which allows control
over how much impact the frame-by-frame accuracy measure has on the speech
detection score relative to the general event detection accuracy. In practice, we let
wF= 0.5 for an equal weighting between the two measures. For each participant
and utterance type, the overall detection score was computed by taking the average
of the detection scores for each test block.

To assess the importance of each electrode during phone and speech event
likelihood modeling, we estimated the discriminative power of each electrode
within the trained PCA-LDA models13. We arbitrarily selected a test block for each
participant and obtained the trained and optimized utterance classification and
speech detection models associated with that test block. For each of these models,
we examined the learned parameters within the LDA model. For each feature in the
LDA model (which is a principal component), we measured the between-class
variance for that feature by computing the variance of the corresponding class
means. We used the values along the diagonal of the shared covariance matrix as a
measure of the within-class variance of each feature (because we did not force
diagonal covariance matrices in the LDA models, this is only an approximation of
the true within-class variances). Similar to a coefficient of determination (R2)
calculation, we then estimated the discriminative power for each LDA feature as a
ratio of the between-class variance to the total variance using the following
formula:

ηi ¼
σ2b;i

σ2w;i þ σ2b;i
; ð15Þ

where ηi, σ2b;i, and σ2w;i are the estimated discriminative power, between-class
variance, and within-class variance, respectively, for the ith LDA feature. To obtain
the discriminative powers for each original feature in the spatiotemporal neural
feature vectors (the inputs to the PCA model), the absolute values of the PCA
component weights were used to project the LDA feature discriminative powers
back into the original feature space. Finally, the discriminative power for each
electrode was set equal to the maximum discriminative power value observed
among the original features associated with that electrode (that is, the maximum
function was used to aggregate the discriminative powers across time for each
electrode within the spatiotemporal feature vectors). The resulting discriminative
power values were used to quantify the relative contributions of each electrode
during phone or speech event discrimination.

Auxiliary decoding analyses: As described in Section 2.3, we investigated the
sensitivity of the decoding models to limited data availability and sub-optimal

hyperparameter configurations (Fig. 3). Thorough descriptions of these analyses
are provided in Supplementary Method 1. The analysis of how spatial resolution
affected decoder performance is described in Supplementary Note 3.

As described in Section 2.4, we performed additional analyses on the Viterbi
decoding and phone likelihood modeling approaches used by the answer classifiers
(Fig. 4). Thorough descriptions of these analyses are provided in Supplementary
Method 3.

When performing answer classification with hard or true priors instead of soft
priors, the question likelihoods in each trial were modified prior to context
integration. For hard priors, the likelihood of the most likely question was set to 1
and the likelihoods of the other questions were set to 0. For true priors, the
likelihood of the question that was actually presented to the participant was set to 1
and the likelihoods of the other questions were set to 0. After this modification, the
context integration procedure was performed normally to obtain the answer
predictions.

Statistical testing: The statistical tests used in this work are all described in
Section 2. For all tests, we considered p-values less than 0.05 as significant. We used
a 4-way Holm-Bonferroni correction30 for the chance comparisons with the three
prediction types (questions, answers without context, and answers with context)
and the answer with vs. without context comparison because the neural data used
during these analyses were not independent of each other. Thorough descriptions
of all of the statistical tests are provided in Supplementary Method 4.

Real-time decoding. In our previous work, we introduced the rtNSR software
package14. Written in Python57, this package is flexible and efficient due to its
modular structure and utilization of software pipelining58. With further develop-
ment, we used rtNSR here to present the audio and visual stimuli, process the
neural signals, and perform speech decoding in real-time (Supplementary Fig. 9).
We also used it for offline model training and data analysis.

Due to clinical time constraints, we were not able to perform hyperparameter
optimization prior to real-time testing with the participants. All of the results
reported in this work were computed using offline simulations of the data with the
rtNSR system, a process that we described in our previous work. During the offline
simulations, the real-time process that reads samples from the real-time interface
card is replaced with a process that simulates input samples from a dataset on disk.
The remainder of the decoding pipeline remains the same. During online testing at
the patient’s bedside, the system performed decoding without experiencing
systematic/runtime errors and with negligible latency using hyperparameter values
chosen via trial and error on datasets that were previously collected. Therefore, we
can reasonably expect that the decoding results we observe in our offline
simulations would have been identical to those in the online setting with the
patients, since the only relevant differences between the online and offline tests
were the specific values of the hyperparameters.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Deidentified copies of the data used in these analyses can be provided upon reasonable
request. Please contact the corresponding author via email with any inquiries about
the data.

Code availability
The rtNSR software package used for real-time demonstration and offline analyses can be
provided upon reasonable request. Please contact the corresponding author via email
with any inquiries about the code.
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