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ABSTRACT OF THE THESIS

Visibility-based distributed deployment
of robotic teams in polyhedral terrains

by

Aaron S. Ma

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2016

Professor Jorge Cortés, Chair

Due to recent technological advances, robotic swarms are currently a large

interest for surveillance, disaster response, and exploration. In order to solve this

problem, we develop distributed deployment strategies for 1.5D and 2.5D polyhedral

terrains that are influenced by research in computational geometry, graph theory,

and distributed controls. Similarly to the guarding of art gallery problems, we guard

an environment through the collective visibility of a team of robots. We consider

scenarios where the robots are constrained to moving on the ground in 1.5D and 2.5D

polyhedral terrains. Our objective is to determine strategies for deploying robots in

xii



polyhedral terrains that guarantees complete visibility of the terrain.

In the 1.5D polyhedral terrain, we determine a set of locations, that guar-

antees that the terrain is completely visible when occupied. We then develop a set

of instructions that each robot distributively executes in order to occupy the set of

locations. Finally, we find a closed-form expression for the time required for the 1.5D

deployment strategy to complete that scales with the size of the terrain.

In the 2.5D polyhedral terrain, we develop a set of instructions for the robots to

follow that collectively explores, colors, and guards the polyhedral terrain. We define

rules for the agents to label certain locations that must be occupied in order to achieve

complete visibility, inspired by coloring of planar graphs. Finally, we characterize the

best and worse time complexity for the algorithm to complete that depends on the

structure and size of the polyhedral terrain.
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Chapter 1

Introduction

Currently there is large interest in distributed robotics and automation for

use in surveillance and disaster response. Similarly to the guarding of art gallery

problems, we guard the environment through the collective visibility of a team of

robots. Here we consider scenarios where the robots are constrained to moving on

the ground in 1.5D and 2.5D polyhedral terrains. Our objective is to determine

strategies for deploying robots in polyhedral terrains that are guaranteed to achieve

complete visibility within some determined time.

1.1 Literature Review

This thesis builds on research of the classical art-gallery problem [1] in compu-

tational geometry. The work [2] shows that n/3 guards are sufficient and sometimes

necessary to guard the inside of any polygon with n vertices. Many variations of

the art-gallery problem exist. We focus here on guarding polyhedral environments.

In [3], methods for calculating and analyzing the visibility of polyhedral terrains are

1
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explored. [4] discusses a polynomial time approximation scheme for guarding of 1.5-

dimensional terrains. A centralized, locally optimal, polynomial-time approximation

scheme (PTAS) for guarding a terrain is introduced in [5]. In our analysis and algo-

rithm design for guarding 2.5D polyhedral terrains, we use results from 4 coloring of

planar graphs [6]. [7] characterizes the number of agents required to guard a 2.5D

terrain using coloring techniques on planar graphs. A planar graph is considered col-

ored when its vertices are labeled in such a way that no two neighbors share the same

label. Algorithms have been proposed to color such planar graphs in no more than 5

colors [8, 9] (in time linear with the number of graph vertices), and no more than 4 col-

ors [10] (in time quadratic with the number of graph vertices). While guarding 2.5D

polyhedral terrains, we construct a face-spanning tree, a tree that visits every face of a

planar graph. Although research in face-spanning trees is sparse, [11] provides results

on the lower bound of the number of vertices in a face-spanning tree which we use for

our results. The thesis also builds on notions from distributed robotic networks [12]

and distributed deployment of mobile robots to guard art galleries based on visibility

and line of sight [13].

1.2 Statement of contributions

We design distributed algorithms for robotic teams to achieve full visibility of

polyhedral terrains. Our contributions are structured in two blocks, one correspond-

ing to 1.5D environments and the other one corresponding to 2.5D environments.

For 1.5D environments, we begin by characterizing a guarding set to achieve

full visibility of the terrain based on identifying alternate peaks. This allows us to

determine a number of agents that are always sufficient and some times necessary
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to guard any 1.5D environment. Building on this result, we design two deployment

strategies and determine closed-form expressions for the time it takes each strategy to

complete. The first strategy allows for more flexible initial conditions, while the sec-

ond strategy that we introduce completes in less time. The strategies for deployment

in 1.5D environment are iterative processes where the agents communicate through

vision, compute, move, and detect where they are in their environment.

In the 2.5D environment we define locations that are redundant in terms of

guarding and visibility. We determine the maximum number of locations that are not

redundant (removing an agent that guards a redundant location does not change the

collective visibility) and use this result as the sufficient number of agents to guard

any 2.5D terrain. We determine a distributed 2.5D deployment strategy that yields

complete visibility by utilizing planar graph coloring and redundant locations. Finally

we find the time that it takes for our 2.5D deployment strategy to complete. Various

simulations throughout the thesis illustrate our results.

Chapter 1, in part, has been submitted for publication of the material as it

may appear in the Dynamic Systems and Control Conference, 2016, Cortés, Jorge.

The thesis author was the primary investigator and author of this paper.



Chapter 2

Overview of terrain guarding

In this chapter, we define material necessary for this thesis as well as our objec-

tive and motivation for developing algorithms for polyhedral terrain deployment. We

begin by defining notations, planar graphs, coloring of planar graphs, and polyhedral

terrains. We end the chapter by stating our objectives and intended contributions in

computational geometry and distributed robotics.

2.1 Notation

Given a set S, we let |S| denote its cardinality. We let ceil : R→ Z denote the

ceiling function which rounds its argument to the next highest integer. We denote by

p1p2 the line segment between points p1, p2 ∈ Rd. A set C ⊂ Rd is convex if the line

segment between any pair of its points is contained in C. In R3, we use xp, yp, and zp

to denote the components of the point p ∈ R3. Given p1, p2 ∈ R3, the slope of p1p2 is

sp1p2 =
zp2 − zp1√

(xp2 − xp1)2 + (yp2 − yp1)2
.

4
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When convenient, we embed the Euclidean plane R2 into the Euclidean space R3

through the map i defined by i(a1, a2) = (a1, 0, a2). With this embedding, we have

yv = 0 for any point p ∈ i(R2) ≡ R2.

2.2 Planar graphs and coloring

An undirected graph G = (V,E) is a pair composed of a vertex set V and an

edge set E consisting of bidirectional edges between vertices. The degree of a vertex

is the number of edges connected to it. Planar graphs are undirected graphs whose

vertices belong to R2 and whose edges can be drawn on a plane in such a way that

no edges cross each other.

A planar graph is colored when its vertices are labeled in such a way that no

two neighboring vertices share the same label. Planar graphs can be colored with no

more than 4 colors, cf. [6]. Centralized algorithms can color planar graphs with no

more than 4 colors (in O(n2) time), see [10], and with no more than 5 colors (in O(n)

time), see [8]. An example of a 4 colored planar graph is given in Figure 2.2.

2.3 Polyhedral terrains in 1.5D and 2.5D

1.5D and 2.5D polyhedral terrains correspond to the graphs of continuous

piecewise affine functions on R and R2, respectively. Formally, given a continuous

piecewise affine function f : I ⊂ R→ R, with I an interval, its associated 1.5D terrain

is S1.5(f) = {(x, f(x)) : x ∈ I} ⊂ R2. Similarly, given a continuous piecewise affine

function f : I ⊂ R2 → R, with I a polygon, its associated 2.5D terrain is S2.5(f) =

{(x, y, f(x, y)) : (x, y) ∈ I} ⊂ R3. When convenient, we drop the dependence on f
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and simply denote Sd.5 ⊂ Rd+1 to refer to either of these two cases.

Note that a polyhedral terrain Sd.5 can also be seen as an undirected graph

with vertices in Rd+1. In the case d = 1, these vertices correspond to the points in

R2 where the graph of two affine components of f intersect. In the case d = 2, these

vertices correspond to the points in R3 where the graph of three affine components

of f intersect. The set of edges connecting vertices in S1.5 and S2.5 are denoted E1.5

and E2.5, respectively. All vertices, vi in S1.5, except for v1 and v|V | have degree of

2, with neighbors, vi−1 and vi+1. It follows that v ∈ S1.5 are ordered monotonically

with respect to the x-axis, such that xvi−1 < xvi < xvi+1 for i ∈ {2, . . . , |V | − 1}. In

S1.5, we define J(v1,v2) (resp. J[v1,v2]) to be the set of all vertices v ∈ V such that

min(xv1 , xv2) < xv < max(xv1, x
v
2) (resp. min(xv1, x

v
2) ≤ xv ≤ max(xv1, x

v
2)). A vertex

vi in S1.5 is a peak if svi−1,vi > svi,vi+1
. Conversely vi is a valley if it is not a peak.

We denote by P and V the collection of peaks and valleys, respectively, in increasing

order with respect to their x-coordinate. Given a vertex v, we denote its adjacent

peak to the right by p+(v) and to the left by p−(v).

In our treatment of 2.5D terrains, we find it convenient to use triangulated

planar graphs. Denote by pr : R3 → R2 the projection map onto the first two

components, pr(x, y, z) = (x, y). This map projects S2.5 onto a planar graph, which

denote by S∗2.5. Edges maintain their connectivity through conversion, and we denote

them by e∗ ∈ E∗. Figure 2.2 shows a 2.5D terrain, S2.5, transformed into its planar

graph equivalent, S∗2.5.

Two vertices, v1 and v2, are visible to each other if v1v2 never intersects with

Sd.5. We use the following test to determine if two vertices are visible. Given vertices
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v1, v2, the visibility test consists of checking whether

sv1v2 > sv1w, ∀w ∈ Kv1v2 . (2.1)

If the test is passed, then the vertices are visible to each other. In S1.5, Kv1v2 = J(v1,v2)

is the set of vertices between v1 and v2. In S2.5, Kv1v2 is the set of points on S2.5 that

share x and y-coordinates with v1v2. The visibility set of a vertex v in Sd.5, denoted

Q(v), is the set of all vertices visible to v. Given Vw ⊂ V , the collective visibility set,

Q(Vw) =
⋃
v∈Vw

Q(v),

is the set of all vertices visible to them. Sd.5 is completely visible from Vw ifQ(Vw) = V .

We say that a terrain is fully guarded when an agents occupy v ∈ Vw such that

Q(Vw) = V . Figure 2.1 shows S1.5, S1.5 with peaks highlighted, and S1.5 with agents

that occupy a Vw such that the terrain is fully guarded.



8

(a) A polyhedral terrain

(b) A polyhedral terrain with peaks highlighted

(c) A fully guarded S1.5

Figure 2.1: A 1.5D terrain, S1.5, is shown by itself, with peaks denoted by
green circles, and with v ∈ Vw such that Q(Vw) = V , denoted by red crosses.
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(a) A polyhedral terrain, S2.5.

(b) The planar graph associated with S2.5.

(c) The colored planar graph associated with S2.5.

Figure 2.2: The 2.5D terrain converted into a planar graph. The planar
graph is then 4-colored.
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2.4 The terrain guarding objective

We consider scenarios where a team of robots, deployed on Sd.5, with d ∈ {1, 2},

seek to achieve full visibility of the environment. In this chapter we describe in detail

the model for the robotic network and its capabilities. Each individual robot, also

referred to as agent, has a unique identifier i ∈ {1, . . . , |A|}, which provides a sense of

priority when two agents decide to execute conflicting actions. The agents are capable

of omni-directional vision and can localize vertices at infinite distance. Agents are only

able to communicate and share information when they are visible to each other. The

agents have the capability to share attributes about vertices such as their coordinates

and color assignments. In S2.5, we allow agents to place relays on a vertex to allow

communication between any two agents that occupy vertices that are neighbors of

it. In S1.5, agents are able to traverse between adjacent peaks at every time step. In

S2.5, agents are able to traverse between vertices connected by an edge at every time

step. We consider the motion of the robots slow in comparison to the time required

for computation.

We refer to the guarding set, G ⊂ V , as the set of vertices that the agents

decide to occupy. This set is determined in a dynamic fashion by the agents as they

explore the environment. Sd.5 is fully guarded if Q(G) = V . Our objective is to

design a coordinated strategy for the agents to distributively explore the polyhedral

terrain Sd.5 and determine the guarding set to achieve full visibility. We also seek to

characterize the number of agents required to achieve this as well as the time required

by the coordination strategies for achieving full visibility.
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2.5 Centralized vs. decentralized

The relevance of robotic swarms and their applications demand novel decen-

tralized algorithms. There are both advantages and disadvantages of a decentralized

methods in robotics. Advantages include the parallel computation, the ability for

individual agents to allocate more resources to a single task, and robust dynamics. In

the terrain guarding case, decentralized methods usually leads to less optimal results.

Many algorithms have been employed to solve the terrain guarding problem

in a centralized fashion, and is sometimes required to optimize deployment time or

minimize number of robots. Figure 2.3 shows the results of S1.5 being solved in a

centralized manner that needs less agents than our proposed method. It is particularly

difficult to solve the terrain guarding problem from a decentralized standpoint because

we need to consider the communication ability of the agents, and that the agents are

unaware of the structure of S1.5 or S2.5 before attempting to guard it. In Figure 2.4 the

agents are unaware of the rest of Sd.5 during execution of the strategies, showcasing

the difficulty of optimal deployment.

Chapter 2, in part, has been submitted for publication of the material as it

may appear in the Dynamic Systems and Control Conference, 2016, Cortés, Jorge.

The thesis author was the primary investigator and author of this paper.
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(a) A centralized solution

(b) Our decentralized solution

Figure 2.3: The results of a centralized and our decentralized deployment
onto S1.5
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(a) Exploration of S1.5

(b) Exploration of S∗∗
2.5

Figure 2.4: S1.5 and S∗2.5 are shown in the middle of the distributed strategy
executions. We show how the agents are unaware of the parts of Sd.5 that
they are unable to see. Vertices and edges are faded out to represent the
what information is available to the agents and red dots to represent a vertex
occupied by an agent.



Chapter 3

1.5D terrain guarding

This chapter studies the distributed deployment problem over 1.5D polyhedral

terrains. We identify a guarding set that guarantees full visibility and study its size

to obtain a characterization of a sufficient and sometimes necessary number of robotic

agents required to complete the task. Building on this characterization, we design

strategies to place agents in the identified guarding set.

3.1 Guarding set via alternate peaks

Here we characterize a guarding set that achieves full visibility of a 1.5D poly-

hedral terrain S1.5. We begin our analysis with a simple fact about the visibility

regions of adjacent peaks.

Lemma 3.1.1 (Visibility from adjacent peaks): Given two adjacent peaks, v1 and

v2 ∈ P, all intermediate vertices of S1.5 are visible to them, i.e., J[v1,v2] ⊂ Q(v1) and

J[v1,v2] ⊂ Q(v2).

Proof 3.1.2 Since v1 and v2 are adjacent peaks, all vertices vi ∈ J(v1,v2) are valleys

14
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and have the property, svi−1,vi ≤ svi,vi+1
. Therefore the slope between adjacent vertices,

vi and vi+1 ∈ J(v1,v2), monotonically increases with increasing x along the interval xv1

to xv2, implying sv1v > sv1k for all v ∈ J(v1,v2) and k ∈ Kv1v = J(v1,v). Hence, all

vertices between v1 and v2 are visible from either v1 or v2. �

Figure 3.1: Visibility of two adjacent peaks are shown. The red dots represent
a vertex occupied by an agent (v1 and v2), and the green dots represent visible
vertices in between v1 and v2

An example of vertices visible as a result of Lemma 3.1.1 is shown in Figure 3.1.

As a consequence of Lemma 3.1.1, we deduce that J[p−(v),p+(v)] is visible from v.

Inspired by this observation, we consider the subset of alternating peaks, denoted

Gap ⊂ P , corresponding to all peaks with odd indices. Note that if |P| is even, then

one can alternatively consider the set of peaks with even indices.

The set Gap is the largest set of peaks in S1.5 such that every other peak is

skipped. This results in |Gap| = ceil(|P|/2). We order the indices of Gap in increasing

order with respect to their x-coordinate.

The next result determines the set of vertices visible from Gap.
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Proposition 3.1.3 (Visibility set of Gap): The visibility set of Gap is given by

Q(Gap) =


V if |P| odd,

J[v1,p|P|] if |P| even.

Proof 3.1.4 From Lemma 3.1.1, we deduce that if v1 and v2 are two peaks with a

single peak v between them, so that p+(v1) = v = p−(v2), then Q(v1 ∪ v2) contains

J[p−(v1),p+(v2)]. Thus, Q(Gap) is equal to J[p−(g1),p+(g|Gap|)] and the result follows. �

(a) Agents occupy vertices in Gap on S1.5

(b) Visibility as a result of occupying Gap

Figure 3.2: Agents occupy vertices in Gap represented by red dots. Q(Gap)
is represented by green dots.

Gap and Q(Gap) is shown in Figure 3.2. Notice in this case that V|V | is not

visible to any agents. As a consequence of this result, we identify Gap ∪ {p|P|} as a
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sufficient set of vertices to achieve full visibility.

Theorem 3.1.5 (Complete visibility): The 1.5D environment S1.5 is fully visible

from G = Gap∪{p|P|}. Furthermore, |G| = floor(|P|/2)+1 is sufficient and sometimes

necessary to achieve full visibility of S1.5.

Proof 3.1.6 The fact that Q(G) = V readily follows from Proposition 3.1.3. If |P| is

odd, then G = Gap and therefore |G| = ceil(|P|/2) = floor((|P|/2 + 1). If |P| is even,

|G| = ceil(|P|/2) + 1 = floor((|P|/2 + 1). To show that |G| agents are sometimes

necessary, we provide a specific example. Consider an environment where all vertices

are peaks. Then, the visibility set of any vertex v is exactly Q(v) = J[p−(v),p+(v)],

which implies that any guarding set must contain at least every other vertex in order

to achieve full visibility. �

Figure 3.3: A completely guarded S1.5 is shown with G = Gap ∪ {p|P|}. The
red dots represent vertices occupied by an agent (v1 and v2), and the green
dots represent visible vertices in between v1 and v2.

3.2 1.5D terrain guarding strategies

Given our analysis in the previous chapter, here we design distributed strate-

gies to deploy |A| = floor(|P|/2) + 1 agents on G = Gap ∪ {p|P|}. We begin with an
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informal description of the algorithm.

[Informal description]: All agents are initially located at vertex, v0, whose
position in S1.5 is unknown to them. Agents explore S1.5 and incremen-
tally distribute themselves on G = Gap ∪ {p|P|}. Half of the agents, Alft,
go left, while the other half, Arght, goes right (if |A| is odd, we let Alft

have one extra agent). Agents in Alft are then given a unique integer ID
∈ {1 . . . |Alft|}. Agents in Arght are similarly identified. Depending on the
location of v0 within the environment, either Alft or Arght will contain too
many agents. Agents keep track of a variable termed “goal”. Once an
agent detects the edge of S1.5 (either v1 or v|V |), it raises its “goal” flag,
which signals visible neighboring agents that the other group needs more
agents to complete the algorithm. Two strategies are then possible. Let
A− be the group of agents that does not have enough agents, andA+ be the
group that has too many. In both strategies, A− deploys until they guard
as many alternating peaks as they can. Then, in the 1.5D alternate

peak strategy with wait, agents in A− wait until they receive a “goal”
message from A+ to continue exploring and finally guarding S1.5. In-
stead, in the 1.5D alternate peak strategy w/o wait, agents in A−
make the assumption that the “goal” flag will eventually come from A+

and continue deploying towards the boundary of S1.5 (creating a void in
visibility coverage that will eventually be filled by the agents in A+).

Algorithm 1 provides a formal description of 1.5D alternate peak strategy

with wait and 1.5D alternate peak strategy w/o wait. The steps that are

only executed under 1.5D alternate peak strategy w/o wait are marked with

the symbol †. All other steps are common to both strategies.

Remark 3.2.1 (Wait versus no wait): The strategies differ in how the agents re-

act when they determine that there are not enough agents in their group to reach

the boundary of the environment. While the 1.5D alternate peak strategy w/o

wait completes in less time, it requires all agents to start on the same initial con-

dition (otherwise the use of the “continue” flag might be detrimental to algorithm

completion). Instead, the 1.5D alternate peak strategy with wait requires in

general more time to complete, but agents can be initialized at multiple locations. •
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Algorithm 1 : 1.5D alternate peak strategy

Agent a variables:
bool goal=False, continue=False
int direction=-1 | a ∈ Alft or 1 | a ∈ Arght

While Q(G) is not V :
Communicate

if any visible agents to a have goal is True:

a sets goal to True

a sets direction to direction of agent with goal to True

Move

if any of the following conditions are met:

• Agent a occupies v 6∈ P
• a ∈ Alft and J(v,p+(v)] is occupied or a ∈ Arght and J[p−(v),v) is occupied

• a does not have the greatest ID of all agents that occupy v

• †: a has goal is False and continue is True

a moves one peak dictated by direction

else:

a stays at vertex v

Detect

if v1 or v|V | is visible:

a sets goal to True

a sets direction away from detected v1 or v|V |

†: if the time elapsed is equal to 2A−+a.ID−2
a sets continue to True
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Remark 3.2.2 (Ordering of agents): Agents with lower unique IDs occupy a peak

only if no other agent with lower ID occupies the same peak. As the algorithm

executes, the agents are then ordered within their respective groups of A− and A+ in

decreasing order of ID from v0 in the direction they are initialized. This allows the

agents to determine when the “goal” flag should have arrived by (agents in A+ with

lower ID receive the “goal” flag before agents with greater ID). Due to the speed at

which the “goal” flag propagates in A+, agents in A− rationalize that they are not in

A+ if they do not receive the “goal” flag in 2A−+ ID −2 time steps. •

Figure 3.4 shows an example of agents being deployed on S1.5 using the 1.5D

alternate peak strategy with wait. At time step: 4, A+ reaches the leftmost

boundary and raises the “goal” flag. At time step: 7, A− runs out of agents and

begins to wait for the “goal” flag. By time step: 15, the network has completely

deployed achieving full visibility of the environment.

3.3 1.5D terrain guarding strategy time analysis

In this chapter we characterize the number of time steps required by the pro-

posed strategies for completion. We recall that an agent can move between adjacent

peaks in one time step. For the following analysis, let i be the index of v0 in P and

define

i∗ =


i if i ≤ |P|/2,

|P| − i+ 1 if i > |P|/2.
(3.1)



21

Figure 3.4: Execution of 1.5D alternate peak strategy with wait on
a 1.5D environment with 16 peaks. From Theorem 3.1.5, |A| = 9 agents
are sufficient to achieve full visibility. All agents begin at the same initial
location, v0, of index 6 with respect to P , and split into two groups. The
location of agents with the “goal” flag not raised are shown by a red dot
where the number states the number of agents on that vertex. Agents with
a raised “goal” flag are denoted with a red cross.
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The following three sets cover all possibilities for the location of the initial vertex v0,

A = {v0 | if |A| even, i ≤ |P|/6 + 1 or i ≥ 5|P|/6− 1

and if |A| odd, i ≤ |P|/6 or i ≥ 5|P|/6},

B = {v0 | if |A| even, |P|/6 + 1 < i < 5|P|/6− 1

and if |A| odd, |P|/6 < i < 5|P|/6},

and region C, which only exists if |P| is odd and corresponds to i = |P|+1
2

. Figure 3.5

illustrates these three cases. We are ready to characterize the time complexity of the

Figure 3.5: Illustration of cases A, B, and C for the locations of the common
initial condition of the agents. The 1.5D environment S1.5 has |P| = 17.

strategy with wait.

Theorem 3.3.1 (1.5D alternate peak strategy with wait completion time):

The number of time steps required by the 1.5D alternate peak strategy with

wait to complete is

T =



|P| − i∗ v0 ∈ A,

|P|+ i∗

2
− |A−| − 3

2
v0 ∈ B,

3(|P|−1)
4

v0 ∈ C.

(3.2)
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Proof 3.3.2 For simplicity of exposition, we only consider the case when i ≤ (|P|+

1)/2 (the case when i > |P|
2

is analogous). Consequently, i∗ = i, Alft = A+, and

Arght = A−. We first consider the scenario when both groups of agents reach the

boundary of the environment at the same time. Note that this is only possible if

v0 ∈ C.

Case C: If |P| is odd and v0 is the peak with index |P|+1
2

, the agents split up perfectly

since there are the same number of peaks to the left and right. The agents reach the

boundaries and send the “goal” message at the same time. The algorithm completes

when the goal messages meet at |P|+1
2

. The time to completion is then the sum of

the time to reach the boundaries, and the time that it takes for the flags to reach the

|P|+1
2

, which is

|P|+ 1

2
− 1 +

|P|+1
2
− 1

2
=

3(|P| − 1)

4
.

Next, we consider the scenario when both groups of agents do not reach the

boundary of the environment at the same time. In this scenario, it is A+ which reaches

the boundary first. Agents move one peak at a time, distributing themselves on every

other peak. Because of this, note that A− runs out of agents after exactly 2|A−| time

steps. On the other hand, it takes exactly i∗ − 1 time steps for agents in A+ to reach

the boundary of S1.5 and raise the “goal” flag. At this time, the rightmost agents in

A− are located at peak i∗ + (i∗ − 1) = 2i∗ − 1. Once the “goal” flag is raised, since

agents can communicate with agents at adjacent peaks, the speed at which the “goal”

flag is communicated is effectively two peaks per time step.

Two things might happen depending on whether or not the “goal” flag reaches

the rightmost agents in A− before this group runs out of agents. Let t denote the
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number of time steps elapsed since A+ first raised the “goal” flag. After t time steps,

the goal flag is at 1 + 2t. If A− does not run of agents, its rightmost agents are at

2i∗− 1 + t. Therefore, we are looking for the solution to 1 + 2t = 2i∗− 1 + t, which is

t = 2i∗ − 2.

The total elapsed time since the beginning is then i∗ − 1 + (2i∗ − 2) = 3i∗ − 3. This

time must be less than or equal to than the time it takes A− to run out of agents, i.e.,

i∗ ≤ 2

3
|A−|+ 1. (3.3)

Case A: One can see that equation (3.3) is satisfied if and only if v0 ∈ A. Because

the “goal” flag reaches the rightmost agent in A− before A− runs out of agents, A−

moves at one time step towards the rightmost boundary through the entirety of the

strategy. Once A− reaches the boundary, the agents will have distributed themselves

on G. Therefore, if v0 ∈ A, we deduce that the number of time steps required for

completion is T = |P| − i∗.

Case B: If instead, v0 ∈ B, this means that equation (3.3) is not satisfied, i.e., A−

runs out of agents before the “goal” flag reaches its rightmost agents. After the “goal”

flag is raised, agents in A+ move at 1 peak per time step and occupy their half of G

by the time the “goal” flag reaches the rightmost boundary, since no agent has to

travel more than |P|/2 peaks. Since agents in A− previously occupy alternating peaks,

they all must travel the same number of peaks to reach their final configuration. The

rightmost agent in A− receives the “goal” flag last and is the last agent to occupy

its peak in G. Therefore, we need to compute the time it takes for A− to receive the
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message and the leftover time needed for the rightmost agent in A− to move to the

boundary of S1.5. A− runs out of agents at vertex d = i∗ + 2|A−|. With the notation

used above, the time required for the “goal” flag to reach this vertex is the solution to

1 + 2t = d, i.e., t = (d− 1)/2. Once the A− has received the message it takes

|P| − d,

steps to reach the boundary. Therefore, the total number of time steps is

T = i∗ − 1 + (d− 1)/2 + |P| − d = |P|+ i∗

2
− |A−| −

3

2
. �

From Theorem 3.3.1, one can see that, in region B, the time complexity mono-

tonically increases as the initial location moves from the left boundary of this region

(at |P|/6+1 or |P|/6, depending on whether |A| is even or not), to the peak closest to

|P|
2

, Next, we determine the completion time of the 1.5D alternate peak strategy

w/o wait.

Theorem 3.3.3 (1.5D alternate peak strategy w/o wait completion time): The

number of time steps required for the 1.5D alternate peak strategy w/o wait to

complete is

T =



|P| − i∗ v0 ∈ A,

7|P|
8
− i∗

4
v0 ∈ B,

3(|P|−1)
4

v0 ∈ C.

(3.4)

Proof 3.3.4 With respect to the proof of Theorem 3.3.1, the scenarios when the initial
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condition belongs to A and C are the same. In case A, the “goal” flag is communicated

completely before either group runs out of agents. Similarly, in case C the algorithm

completes before the “continue” flag is raised.

Case B: In this case, agents in A− determine as soon as possible that they

are in A− and raise their “continue” flag. Agent, a, in A− raises its “continue”

flag at 2A−+ID −2 time steps, where ID is the unique identification of the agent.

Since the agents deploy in order of decreasing ID, this is the amount of time the

“goal” flag should have reached a if a belongs A+. a then moves at one peak per turn

in its initial direction until it receives the “goal” flag. When furthest agent in A−

reaches the boundary it raises the “goal” flag. This means that if v0 is in region B,

two “goal” flags may be active at the same time and propagate from the boundaries

to the center. The algorithm terminates when agents no longer move, which occurs

where the two “goal” flags meet. We use this fact to determine the time of execution

for 1.5D alternate peak strategy w/o wait in region B. For this analysis, we

examine the “goal” flag from A−. The rightmost agent in A− reaches the boundary

and raise the “goal” flag in t1 = |P | − i∗ since the 1.5D alternate peak strategy

w/o wait allows agents to move at one peak per time step to the boundary when

“continue” is raised. The rightmost “goal” flag travels at two peaks per time step and

meets the leftmost “goal” flag in t2 = d
2

time steps, where d is the distance from the

rightmost boundary to where the “goal” flags meet. To determine d, we interpolate

between two boundary initial conditions of region B. For v0 = |P |
2

, A− and A+ reach

their respective boundaries at or around the same time. The goal flags meet at the

center of S1.5, and d = |P |
2

. For v0 = |P |
6

, the goal flag from A+ reaches the rightmost

agent in A− just as the “continue” flag is raised and meets with rightmost “goal” flag
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at d = 0. We interpolate for:

d =
3

4
(i∗ − |P|

6
)

which allows us to determine the time of execution:

T = t1 + t2 = |P| − i∗ +
3

4
(i∗ − |P|

6
) =

7|P|
8

+
i∗

4
�

Chapter 3, in part, has been submitted for publication of the material as it

may appear in the Dynamic Systems and Control Conference, 2016, Cortés, Jorge.

The thesis author was the primary investigator and author of this paper.

Figure 3.6: The time of execution vs. v0 is shown for S1.5 with 500 peaks.
On the y-axis we list the T , the time of execution, over |P|, the number of
peaks. The x-axis describes the initial starting location v0.



Chapter 4

2.5D terrain guarding

This chapter studies the distributed deployment problem over 2.5D polyhedral

terrains. We introduce the concept of (non-)redundant vertex of a guarding set and

characterize a sufficient and sometimes necessary number of vertices of guarding sets

without redundant vertices. We build on this result to design a distributed strategy

to efficiently place the robotic agents and achieve full visibility.

4.1 Guarding set via non-redundant vertices

S2.5 contains many sets of vertices, G, such that Q(G) = V . We begin by

defining a reducible set of vertices that are analogous to valleys in S1.5. In this

chapter we determine S∗∗2.5, a planar graph determined by contracting reducible sets

in S∗2.5. Next we define a redundant vertex and quantify how many non-redundant

vertices can exist in S∗∗2.5.

Consider a set of vertices, R∗, such that all vertices within the convex hull of

R∗ are visible to each other. Refer to Rhull as the set of vertices that contribute to

28
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the convex hull of R∗, and R as the set of all other vertices, R = R∗\Rhull. We call

R a reducible set. We create a new planar graph, S∗∗2.5, which is a modification of S∗2.5,

where every R in S∗2.5 contracts into a vertex as shown in Figure 4.1. The vertices

that remain in S∗∗2.5 are then V ∗∗.

(a) S∗
2.5 (b) S∗∗

2.5

Figure 4.1: Here is an example of a reducible set in S∗2.5 being contracted.
Assume that the blue triangles represent vertices in R. |R| = 7 is reduced
to |R| = 1 after contraction.

We now define a redundant vertex in S2.5.

Definition 4.1.1 (Redundant vertex): Consider a vertex, v, that is occupied in

guarding set G. Define ∆v as the set of triangles, t, in contact with v as determined by

vertices and edges in S∗∗2.5. v is a redundant vertex if there is another occupied vertex

that is able to see t for all t ∈ ∆v. Conversely v is non-redundant, if and only if there

exists t ∈ ∆v such that t is not visible to any other occupied vertex. Furthermore, if

v is a redundant vertex with respect to some guarding set, G, then Q(G) = Q(G\v).

Let Γ denote the set of all non-redundant vertices and let non-redundant pairs,

p, be two vertices, v1 and v2, that define v to be non-redundant. v1 and v2 are

connected with each other and v to form a triangle uniquely visible to v. Both v1 and

v2 must be unoccupied to satisfy that v is a non-redundant vertex. In general, if v is

non-redundant, it can have any number of p that belong to set P(v). Vertices that are
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unoccupied, but do not have any unoccupied neighbors belong to U. A pair of vertices

form an edge that belongs to, at most, two triangles in S∗∗2.5. By manipulating Γ such

that pairs are shared among two non-redundant agents, we are able to maximize the

Γ.

Theorem 4.1.2 (Upper bound of |Γ|): The maximum number of non-redundant ver-

tices is |Γ| = |2V ∗∗|/3.

Proof 4.1.3 Figure 4.2 shows the worst-case scenario that yields |Γ| = 2|V ∗∗|/3,

where every vertex in Γ only contains one pair that defines them as non-redundant.

Every pair is shared by two non-redundant vertices and U = ∅. �

For the following deployment strategy, we guard non-redundant vertices. We

conclude that |A| = 2|V ∗∗|/3 is sufficient and sometimes necessary as a result of

Theorem 4.1.2.

Figure 4.2: The configuration that contains the maximum number of non-
redundant vertices in S∗∗2.5. Here, the green squares are non-redundant ver-
tices, and the red circles are redundant vertices.
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4.2 2.5D terrain guarding strategy

Given |A| = 2|V ∗∗|/3 we determine an algorithm for distributed coverage of

S2.5. We design an algorithm that distributes agents on G, determined by a gen-

eral coloring of S∗∗2.5. Our strategy for coordinated exploration and guarding entails

maintaining strong connectivity of the communication between agents and relays at

any given time of deployment. We allow the agents to place relays, r ∈ R, which

provide communication between neighboring vertices. The agents start on a single

vertex and detect vertices in S2.5 as they explore. Let U = V \Q(G) be the set of

vertices that the agents have not detected yet. Let K be the set of vertices that

are not in U and have no neighbors in U . Finally let D be the set of vertices that

are not in U but have neighbors in U . Agents assign colors to the vertices as they

are detected (v 6∈ U). We refer to the colors that the agents assign to vertices as

COL = {1 , 2 , Gc}, where Gc is a label for a color in {3 , 4 , 5 , 6} that is instantiated

during the execution of the algorithm and denotes vertices that agents plan to occupy

or place a relay (Q(G) = Q(Gc)).

Lemma 4.2.1 (Three-coloring of a triangle): Every triangular face in S∗∗2.5 contains

a vertex labeled a color in Gc after coloring.

Proof 4.2.2 Vertices in a triangle are all connected. Therefore a triangle must be

colored with three unique colors. Since we color the vertices, {1 , 2 , Gc}, at least one

vertex must be labeled a color in Gc. �

Occupying all vertices that are not {1 , 2} guarantees complete visibility, since

every face on S2.5 is a triangle. We proceed to define 2.5D non-redundant peak

strategy:
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[Informal description]: |A| agents start on v0 that is assigned color Gc.
All neighboring vertices are visible and are put into a set, D. D contains
vertices that have been detected, but not yet colored. Once all vertices
in D are colored, D is set to ∅. While exploring, the agents color vertices
in D and keep track of a graph, C, that contains vertices and edges they
detect, as well as the colors they assign. Agents color a vertex with either
1 or 2 if possible. If that is not possible, the agents non-uniquely label
the vertex Gc. The agents simultaneously explore S2.5 and create a tree
T with v0 as the root. Agents look one at a time for an unoccupied (by
relay or agent) vertex v in D of color Gc if it exists. If it does not exist,
the agents find a vertex ∈ D with color in {1, 2}. The agent that finds
v, moves to it. The color of v is changed from either 1 or 2 to Gc. If
a child agent of a with respect to T moves, then a moves to the vertex
that the child agent last occupied. Agents then use Algorithm 3 to refine
the guarding set so that |A| is sufficient. We consider the coloring and
refining guarding set processes to take negligible time with respect to the
exploration routine. Finally the S2.5 Deployment algorithm repeats until
agents occupy G such that Q(G) = V .

Remark 4.2.3 (Exploration): As a result of moving to the exploration process, ver-

tices in S∗2.5 are discovered. These vertices are visible and now belong to Q(G) through

completion of the 2.5D non-redundant peak strategy. When new vertices are dis-

covered, agents re-evaluate S∗∗2.5 and D. •

As a result of the 2.5D non-redundant peak strategy we define S∗∗2.5G as

the subgraph that is the result of removing v that are not labeled Gc and their corre-

sponding edges from S∗∗2.5. S
∗∗
2.5G contains only vertices that are occupied by an agent

or relay. We continue to uniquely color S∗∗2.5G with colors in Gc = {3 , 4 , 5 , 6}. Colors

in S∗∗2.5G are applied to S∗∗2.5 which results in unique labeling of S∗∗2.5. We determine

the number of colors, |COL| sufficient and sometimes necessary for labeling S∗∗2.5. The

upper bound of |COL| follows:

Theorem 4.2.4 The number of colors sufficient and sometimes necessary for color-
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Algorithm 2 : 2.5D non-redundant peak strategy

Agent a variables:
bool explored=False
int ID

While Q(G) is not V :
Coloring

if explored is True:

for all v ∈ D that neighbor a:

if v has no neighbors with color 1 :

a colors v to 1

else if v has no neighbors with color 2 :

a colors v to 2

else:

a colors v to Gc

a sets explored to False

a broadcasts and updates colors in D

a sets D to ∅

Explore

if an unoccupied vertex v ∈ D of color Gc exists:

if a has the lowest ID that neighbors v

a moves to v

a broadcasts and updates tree

a sets explored to True

else if a neighbors v ∈ D of color 1 or 2 :

if no agents with lower ID have moved this time step

a moves to v

a broadcasts and updates tree

a sets explored True

if a child agent, ac, of a moved:

a moves to last occupied vertex of ac

Refine guarding set

execute Algorithm 3
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ing S∗∗2.5 is given by

|COL| =



4, if S∗∗2.5G contains no cycles

5, else if S∗∗2.5G contains no three-cycles,

6, else.

Proof 4.2.5 It is straightforwarded that a graph that contains no cycles can be 2-

colored. with no cycles present, only {3, 4} are necessary to color S∗∗2.5G, which results

in a 4-coloring of S∗∗2.5. Proof that a planar graph with no three-cycles (triangles) is

always 3-colorable is shown in [14], resulting in a 5-coloring of S∗∗2.5. It is known that

any planar graph is 4-colorable, and since S∗∗2.5G is necessarily planar, it is always

4-colorable.

The resulting S∗∗2.5G is shown in Figure 4.5. In the case presented, S∗∗2.5G contains

3-cycles so we are only able gaurantee an upper bound of |COL| = 6, (|COL| = 4

for S∗∗2.5G), however we easily color S∗∗2.5G with 3 colors, and S∗∗2.5 with 5 colors as

shown in Figure 4.6. We continue to prove termination of 2.5D non-redundant

peak strategy with Q(G) = V .

Lemma 4.2.6 (Completion of the 2.5D non-redundant peak strategy): The ex-

ploration process results in complete exploration of S2.5.

Proof 4.2.7 The agents are able to determine if vertices belong to K or D since

they can determine if all planes surrounding a vertex are visible or not. U 6= ∅ and

D = ∅ cannot both be true therefore, until U = ∅, the agents are always able to move

towards a vertex in D. Thus, |Q| monotonically increases by at least 1 every turn

until Q(G) = V . �
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We proceed to define Algorithm 3:

[Informal description]: Agent, a, independently determines if it is a re-
dundant agent by checking if another active agent shares a triangle in
∆v. If a is redundant, it broadcasts that it is a redundant and counts the
number of neighboring redundant neighbors, n. Then a broadcasts n. If
a is redundant and has the lowest n of all agents, then a places a relay
on its vertex. If there are multiple agents that have the lowest number of
neighboring redundant neighbors, then the agent with the lowest index in
A executes this action.

Algorithm 3 : Redundant agent removal

Agent a variables:
bool redundancy = True
int n = 0

While an agent occupies a redundant vertex:
Calculate

if there exists t ∈ ∆v that is exlusive to a:

a sets redundancy to False

Communicate

if redundancy is True:

a communicates redundancy to neighbors

for each neighbor with redundancy equal to True

n = n+1

Place relay

if redundancy is True and n least of all redundant agents

a places a relay at v

a no longer occupies v

Remark 4.2.8 (Redundant agent removal): By construction, this process guar-

antees |Q| never decreases. It is necessary that Algorithm 3 be recursive because the

set of redundant agents changes every time a redundant agent is removed. •
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Finally, we determine that 2.5D non-redundant peak strategy will com-

plete in under |V ∗∗| − 1 time steps.
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(a) Initialization of the 2.5D

non-redundant peak strategy

(b) Exploration and coloring after
one time step

(c) Exploration and coloring after
4 time steps

(d) Fully guarded S2.5

Figure 4.3: Execution of 2.5D non-redundant peak strategy on S∗∗2.5 with
135 vertices. In (a) the agents start on arbitrary vertex, v0, represented
by blue triangles. The vertices that are visible to the agents are denoted
with black dots. The agents label the newly detected vertices surrounding
v0 with colors priority: 1 = green triangles, 2 = pink triangles, and Gc =
black stars. In (b), one agent moves to the unoccupied vertex with color
Gc, and colors the newly discovered vertices. The vertices that the agents
actively guard are represented with blue diamonds and the shift of the robots
is represented by a black arrow. In (c), four time steps have passed as
the agents continue deployment. At this point, one of them detects that it
occupies a redundant vertex, v. In order to resolve this, the agent places
a relay, represented by red squares, at v to maintain communication to the
agents and to notify other agents not to occupy v. Finally in (c), after
74 time steps, the 2.5D non-redundant peak strategy completes with 63
active agents and 11 relays.
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Figure 4.4: The communication network is shown with emphasized red lines.
The network created by 2.5D non-redundant peak strategy is strongly
connection.

4.3 2.5D terrain guarding strategy time analysis

We characterize the time steps for execution of 2.5D non-redundant peak

strategy. We provide a coloring scheme such that we label vertices with priority

{1 , 2 , Gc}. In general, the algorithm will complete for any coloring scheme, not just

the one that we provide. Therefore, the upper and lower bounds on the completion

time is determined to cover any imaginable coloring scheme that is applied to the

strategy, as long as {1 , 2} are uniquely labeled. The number of time steps is ulti-
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Figure 4.5: S∗∗2.5G is shown.

mately determined by the color scheme(including which vertices to convert from 1

or 2 to Gc if no unnocupied Gc are available during the exploration phase), which

dictates efficacy of exploration.

Theorem 4.3.1 (The 2.5D non-redundant peak strategy completion time): The

S2.5 deployment strategy takes at most |V ∗∗| − 3 time steps to complete.

Proof 4.3.2 The strategy completes when Q(G) = V . From Lemma 4.2.6, |Q| is

increased by at least 1 every turn. Furthermore, the coloring and refining of the

guarding set processes do not reduce |Q|. Therefore, the completion time is dictated
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Figure 4.6: S∗∗2.5G is shown with colors. Even though there are three-cycles,
and we can only gaurantee that S∗∗2.5G is no more than 4-colorable, we are
able to color the resulting graph with only 3 colors.

(a) Fully guarded S2.5 (0◦) (b) Fully guarded S2.5 (120◦)

Figure 4.7: Results of 2.5D non-redundant peak strategy in S2.5 are
shown.
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by how quickly the agents explore S∗∗2.5. Since Q includes v0, and at least two other

vertices (since every vertex has at least two neighbors in the polyhedral terrain), the

strategy takes no more than |V ∗∗| − 3 time steps to complete. �

Although it is possible for the algorithm to take up to |V ∗∗| − 3 time steps, it

is highly unlikely and can be avoided through smarter coloring schemes. We provide

an example the worst case scenario as shown in Figure 4.8. In this execution we use

a color scheme that prioritizes labeling by {1 , 2 , Gc}. During the exploration phase,

there are no unnocupied vertices with color Gc, therefore the agent has to label a

vertex with color 1 or 2 to Gc and proceed to move to that vertex.

We determine the lower bounds on completion time of the 2.5D non-redundant

peak strategy.

Theorem 4.3.3 (The 2.5D non-redundant peak strategy completion time): The

S2.5 deployment strategy takes at least #f−2
dout−2 − 1 time steps to complete, where #f is

the number of faces and dout is the max out-degree of vertices in S∗∗2.5.

Proof 4.3.4 To prove Theorem 4.3.3, we start by defining a face-spanning subgraph

as a tree in G that contain atleast one vertex on the boundary of every face in G. The

2.5D non-redundant peak strategy creates S∗∗2.5G as shown in Figure 4.4 which is

a face-spanning subgraph of S∗∗2.5 since it contains vertices on the boundary of every face

in S∗∗2.5. In [11], the lower bound on the number of vertices in a face-spanning subgraph

is determined to be #f−2
dout−2r Since 2.5D non-redundant peak strategy starts on a

vertex, it takes T = #f−2
dout−2 − 1 time steps to complete.
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2.5D non-redundant peak strategy on regular triangular planar graphs

We explore the number of time steps required for execution of our strategy

on regular planar graphs. A regular triangulated planar graph is a graph such that

every vertex has the same out-degree, only contains triangular faces, and is planar.

This small set of graphs are coincidentally the Schlegel diagrams of regular triangular

polyhedrons, where a Schlegel diagram is the projection of a polytope from Rd to

Rd−1 through a point beyond one of its faces as shown in Figure 4.9. There are only

three regular triangular polyhedrons: The tetrahedron, octohedron, and icosahedron.

We consider 2.5D non-redundant peak strategy execution on any regular

triangular planar graph and given them additional information reguarding the out-

degree of vertices in S∗∗2.5. We are now able to define U(v) as the set of undetected

neighboring vertices of v. Since the agents know the out-degree of every vertex in

S∗∗2.5, they are able to deduce |U(v)|. We ammend the exploration phase of 2.5D

non-redundant peak strategy in Algorithm 4.

Here, we improve the exploration method by prioritizing relabeling of vertices

that have more undetected neighbors. With this ammendment, we achieve an inter-

esting result in execution of 2.5D non-redundant peak strategy on regular planar

triangular graphs.

Proposition 4.3.5 Execution of 2.5D non-redundant peak strategy completes

in a defined number of time steps with the ammendment given by Algorithm 4 on

Schlegel diagrams of regular triangular polyhedrons. Execution on tetrahedon takes 1

time step. Execution on octohedrons take 2 time steps with 1 relay. Execution on

icosahedrons take 5 time steps.

S∗∗2.5G after any execution of 2.5D non-redundant peak strategy on Schlegel
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Algorithm 4 Exploration ammendment

Explore

if an unoccupied vertex v ∈ D of color Gc exists:

if a has the lowest ID that neighbors v

a moves to v

a broadcasts and updates tree

a sets explored to True

else if a neighbors v ∈ D of color 1 or 2 and |U(v)| = max
w∈D
|U(w)|

if no agents with lower ID have moved this time step

a moves to v

a broadcasts and updates tree

a sets explored True

if a child agent, ac, of a moved:

a moves to last occupied vertex of ac

diagrams of regular triangular polyhedrons always contain the same pattern as shown

in Figure 4.10. The execution of 2.5D non-redundant peak strategy on all of the

regular triangular polyhedrons is shown in Figure 4.11.

Chapter 4, in part, has been submitted for publication of the material as it

may appear in the Dynamic Systems and Control Conference, 2016, Cortés, Jorge.

The thesis author was the primary investigator and author of this paper.
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(a) An initial S∗∗
2.5 (worst case) after coloring

(b) Second step of S∗∗
2.5 (worst case) after coloring

(c) Third step S∗∗
2.5 (worst case) after coloring

(d) Last step of S∗∗
2.5 (worst case) after coloring

Figure 4.8: A S∗∗2.5 with the potential of taking |V ∗∗|−3 time steps to complete.

(a) An Octohedron (b) Schlegel diagram of octohedron

Figure 4.9: The transformation of a regular polyhedron (octohedron) to a
graph using Schlegel diagrams.
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Figure 4.10: A couple varied executions of 2.5D non-redundant peak

strategy on an octohedron graph. All final configurations contain 2 agents,
1 relay, and requires 2 time steps to complete.
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Figure 4.11: A couple varied executions of 2.5D non-redundant peak

strategy on a regular planar paths.



Chapter 5

Lab work

As part of my work towards my degree, I work in the Multi-agent Robotics

(MURO) lab directed by Professor Jorge Cortés and Professor Sonia Mart́ınez. The

MURO lab focuses on implementation of distributed algorithms for robots, and re-

search in human-swarm interaction. My duties in the lab include mentoring of un-

dergraduate students, development of Robotic Operating System (ROS) programs,

survey and implementation of algorithms to aid localization and control of multi-agent

systems, and android development for human-robot interaction. The MURO lab uses

both mobile ground robots(Figure) and quadcopters that interact cooperatively

(a) Turtlebot (b) AR parrot drone 2

Figure 5.1: The mobile ground robot (Turtlebot) and aerial robot (AR parrot
drone 2) models that we use in MURO lab are shown.

47
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5.1 Robotic operating system

Robotic Operating System is a set of software libraries that aid robotic ap-

plications. The set of libraries affiliated with ROS extend from localization, control,

and machine vision techniques. ROS derived its popularity from the wireless com-

munication protocols made simple using a subscribe and publish model as shown

in Figure 5.2. This communication protocol allows for implementation of practical

robots that match many assumptions made in distributed robotic algorithms. For

example, we are able to emulate situations where two agents are only able to com-

municate if visible to each other by enabling or disabling communication through

ROS.

Figure 5.2: The ROS subscriber publisher model simplified. Here
there are 4 physical machines communicating with each other, Turtle-
bot 1,Turtlebot 2,Turtlebot 3, and Turtlebot 4. ROS uses a subscriber pub-
lisher model where an agent publishes a message onto a topic. Subscribers
poll to receive messages to the topics that they are subscribed to. Here Turtle-
bot 1 publishes to a topic called “Localization” which contains information
regarding the location of Turtlebot 1. Turtlebot 1,Turtlebot 2, and Turtle-
bot 3 subscribed to “Localization” and receive the message that Turtlebot 1
published.
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5.2 Lab implementation and Kalman filtering

While a part of the MURO lab, I have been a part of implementing and

demonstrating algorithms. Such algorithms include extended Kalman filters(EKF)

and control algorithms for turtlebots and AR parrot drones, cyclic pursuit, several

voronoi deployments, and formation control. Figure 5.3 shows the ROS network used

in the MURO lab for combining the EKF, a distributed algorithm, and controls.

Figure 5.3: Here the ROS network in MURO lab is shown.

In order for our robots to function, we needed reliable localization. Previ-

ously, locations were published when a downward facing camera detected a turtlebot.

This was a problem because the downward facing camera would often not detect

the turtlebot due to lighting conditions. A fundamental solution is to implement an

extended Kalman filter, which allows for more accurate state estimations and consis-

tently published messages. We measure the location of a turtlebot, yk and assume the

measurement noise wk is Gaussian, with a variance that we experimentally determine.

For the extended Kalman filter created for turtlebots, we assume unicycle dynamics:
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x1,k+1 = x1,k u1,kcos(θk)

x2,k+1 = x2,k u1,ksin(θk)

θk+1 = θk + u2,k

Generalized as xk+1 = Fkxk +Gkuk + wk

The Kalman filter fuses the state measurement, yk, and state prediction, x̂k|k−1,

to get best state estimation, x̂k|k, as long as the spectral densities of disturbance in

our state prediction and measurement error, Q and R respectively, are known. The

Kalman filtering process is as follows.

0. TurtleBots Move:

xk+1 = Fkxk +Gkuk + wk

yk = Hkxk + Jkuk + rk

1. Predict the next State, Output and Covariance:

x̂k+1|k= Fkx̂k|k+Gkuk

yk = Hkxk + Jkuk

Pk+1|k= FkPk|k F −T
k +Qk

2. Incorporate new measurements (Measurement Update):

Lk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1

x̂k|k= x̂k|k−1+Lk(yk−ŷk|k−1 )

Pk|k= (I − LkHk)Pk|k−1

Where H is our measurement model, F is our state model, P is the covariance

matrix (a measurement of state estimate accuracy), and L is our the Kalman gain.
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When assumed that no measurements are skipped, we can combine elements of the

Kalman gain and covariance in one step called the Riccati difference equation (RDE).

Pk+1|k= FkPk|k−1F
T
k − FkPk|k−1H

T
k (HkPk|k−1H

T
k +Rk)−1HkPk|k−1F

T
k +Qk

Lk = −PkH
T
k R
−1
k

In a time-invariant model, a solution to P exists and can be determined by

the discrete Algebraic Riccati Equation (dARE).

L∞ = P−∞H
T (HP−∞H

T +R)−1

There are several state estimation methods that can be used for non-linear

dynamics including particle, scented Kalman, ensemble Kalman, linearized Kalman,

and the extended Kalman filter. Some of these methods, such as the particle filter

are more practical when the state is near a repulsive equilibrium, and the probability

density function diverges as time increases. The most commonly used non-linear

filter is the extended Kalman filter, which runs under the assumptions that the state

evolution is non-linear and the measurement is linear(F is non-linear, H is linear). In

order to run the extended Kalman filter, F needs to be linearized when solving the

Riccati difference equation.

F =
∂f

∂x
(x̂k−1|k−1,ûk−1|k−1,0) =


1 0 −tvk−1sin(θk−1)

0 1 tvk−1cos(θk−1)

0 0 1


5.3 Android

Another goal of the MURO lab is to enable human-robot interaction. With

our test-bed we control small fleets of robots with high level human motivations.
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We developed an application for the MURO lab on android that allows for wireless

communication to our robots as shown in Figure 5.4. The application is useful for

demonstrating distributed algorithms by allowing the user to switch between types

of deployment, such as Lloyd’s algorithm, formation control, and obstacle avoidance,

and provides parameters for influencing these algorithms.

Figure 5.4: The android application that allows us to communicate with our
fleet of robots.
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Final notes

6.1 Conclusion

We have explored algorithms on distributed exploration and guarding deploy-

ment for coordinated agents in 1.5D and 2.5D environments.

In the 1.5D setting, we have determined that the minimum sufficient and some

times necessary number of agents required to guard the terrain is floor(|P|/2)+1. We

have developed two methods for exploration and guarding of 1.5D terrains. In both

strategies, we assume that the agents are unaware of their initial location and the

structure of the 1.5D terrain. The agents begin by splitting into two groups, A+ and

A−, determined by which group of agents reach the boundary of S1.5 first. We first

introduce the more simple algorithm, 1.5D alternate peak strategy with wait,

such that agents in A− wait to receive the “goal” flag from A+ before continuing

to deploy on S1.5. We then introduce the second algorithm, 1.5D alternate peak

strategy w/o wait, such that agents in A− rationalize that they belong in A− and

then continue to deploy on S1.5. The time of execution was determined for both

53
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strategies after they are introduced.

In the 2.5D polyhedral terrain setting we begin by transforming S2.5 to S∗2.5,

which is the result of projected S2.5 to a plane. We incorporated visibility of S2.5

in our treatment of S2.5 deployment by transforming S∗2.5 to S∗∗2.5, which is the re-

sult of contracting visible convex hulls (reducible vertices) in S∗2.5. We introduced

the concept of guarding sets with non-redundant vertices. Combining this concept

with coloring strategies for planar graphs, we have devised a distributed algorithm

for simultaneous exploration and guarding. The resulting algorithm constructs a

tree for communication and removes redundant vertices so that |A| = 2|V ∗∗|/3 is

sufficient. The lower and upper bounds of time of execution was determined for

2.5D non-redundant peak strategy. The lower bound was determined by recog-

nizing that 2.5D non-redundant peak strategy deploys agents in a tree on S∗∗2.5

that spans all faces, and the lower bound of vertices in a face-spanning subgraph is

known. The upper bound was determined by generation of a worst case scenario as

shown in Figure 4.8. Finally, the time of execution is determined for regular planar

triangulated graphs, which requires that the agents know that they are deploying on

a regular graph, and the out-degree of vertices is known.

6.2 Future work

In the 1.5D terrain environment, future work includes constraining agent ca-

pabilities. For example, we will explore the problem when the agents have a limited

range of visibility. This is a challenging problem in which may result in a deployment

strategy that utilizes peaks less than we have presented in this thesis. We would also

like to consider the scenario where agents are not able to travel peak to peak at every



55

time step, but a distance along edges in S1.5. By removing these assumptions, we

would more accurately depict a deployment in S1.5. This would also make determi-

nation of sufficient and sometimes necessary number of agents and time of execution

more complex and perhaps impossible without knowing more information about S1.5

beforehand.

In the 2.5D terrain environment, future work also includes constraining agent

capabilities. By constraining the agents to a limited ranged of visibility, Lemma 4.2

no longer holds. There are a couple possible solutions to this problem. One solution

would be to transform S2.5 into a new type of planar graph with the visibility range of

agents in mind. Another solution would be to use the visibility graph of S2.5, which

is a graph where vertices are connected if they are visible to each other. However,

determining an optimal guarding through the use of a visibility graph is done through

centralized methods and is considered NP-Complete. Further research in our algo-

rithm could be the determination of an algorithm that creates a face-spanning tree

with no 3-cycles. If successful, such an algorithm would be a 5-coloring deployment

solution for planar graphs.

In the MURO lab, future work includes the implementation of our S2.5 de-

ployment strategy with our test-bed. In order to do this, we plan on simulating a

S∗∗2.5 environment by projecting the graph onto the floor where the turtlebots are de-

ployed. This requires mounting of several projectors on the ceiling of our lab. A

method for distributing work among the projectors is needed as well since the height

of the turtlebots may occlude projection to the floor. Once we can project S∗∗2.5 onto

the floor, we will then implement 2.5D non-redundant peak strategy on each of

the turtlebots, while supervising communication ability with the overhead camera.
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