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ABSTRACT OF THE THESIS

Imagined We: Understanding and Bridging the Gap

Between Human Cooperation and Multi-agent Reinforcement Learning

by

Minglu Zhao
Master of Science in Statistics
University of California, Los Angeles, 2023

Professor Tao Gao, Chair

Cooperation is a fundamental characteristic of humans that enables complex social interac-
tions and joint achievements beyond the capacity of individuals. Multi-agent reinforcement
learning (MARL) is one prevailing approach employed to model such cooperative behavior.
While MARL as a generic algorithm serves well for modeling agents’ different social inten-
tions through adjusting the relations between their reward functions, theories from cognitive
science suggest that MARL per se does not suffice for modeling human-unique cooperation.
During cooperation, humans spontaneously establish a sophisticated framework of shared
agency, in which a joint representation of an imagined central agent emerges automatically
and owns normative power. We delve into the discrepancies between these two coopera-
tion paradigms through two case studies. Inspired by the theory of shared intentionality in
cognitive science, we further introduce the Imagined We framework, a novel approach that

emulates human behavior across various tasks requiring joint efforts and communication.
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CHAPTER 1

Introduction

Cooperation is an essential characteristic of human multi-agent interaction systems that
enables agents to achieve what individuals cannot accomplish alone. Anthropological stud-
ies suggest that cooperation is indeed a human-unique behavior where we form complex
social institutes with the most advanced mode of coordination [BR09]. Modern advance-
ments in Artificial Intelligence (AI) have been tailored towards simulating efficient multi-
agent interactions across a myriad of tasks, generating intricate behavior within gaming
platforms as well as real-life domains. One major area of machine learning focusing on be-
havior modeling is reinforcement learning (RL). RL is a prominent learning-based model
with deep roots in psychology and neuroscience [LMB21,PBA21]. Through trial-and-error,
RL approximates the optimal action policy achieved by maximizing long-term expected
rewards [SB18]. Multi-agent reinforcement learning (MARL) extends RL to multi-agent set-
tings and has been successfully applied to various challenging group coordination scenarios,
such as autonomous-driving coordination [SSS16], as well as teaming in games like Dota

2 [BBC19] and StarCraft [VBC19].

However, while MARL has demonstrated high-quality coordination that parallels human
behavior, fundamental disparities exist between the MARL paradigm and human coopera-
tion as viewed from cognitive and social science perspectives. MARL approaches generally
define cooperation as having all agents maximize a joint reward [BBDO08|. This perspective
pre-determines cooperation before the learning phase begins, positioning joint efforts on a

task as the singular objective. Consequently, team members have neither the incentive to



deviate from collaboration nor any alternative but to cooperate in order to optimize team
reward. With the pre-assumed incentive to cooperate, the only concern remaining for MARL
is how to cooperate in the best possible way. Contrarily, from a social and cognitive science
lens, real-world cooperation diverges significantly from this setup, extending beyond agents
passively working on a group task. While agents working together as a team want to maxi-
mize the group reward, in reality there also exists subsidiary components of agents’ reward
functions that originate from the self interests of individuals, minimizing action costs, for
example. The existence of such individualism mandates agents to maintain a separate set of
individual reward objectives, the accomplishment of which might necessitate actions that are
against the cooperative goal. Despite these complexities, cognitive theories posit that hu-
mans still display cooperative behavior even from an early age, likely due to humans’ unique
ability to represent teammates as equal partners forming a shared agency [Tom19]. Human
cooperation thus morphs into a mixed-interest problem that requires the harmonious coor-
dination of individual interests. Mixed-interest tasks like prisoners’ dilemma and tragedy
of the commons are also treated as the most fundamental questions for study in economics
and sociology. With this reasoning, it is indeed unclear whether the successful coordination
behavior modeled by Al algorithms are truly cooperative from a human-cooperation perspec-
tive, where the potential challenges in cooperation have been avoided in the problem setting
by default. To build Al models that can truly mimic human cooperation and thus more
efficiently serve as humans’ partners in cooperative tasks, efforts in modeling human-unique

cognitive processes of cooperation is indispensable.

With the inherent differences between human cooperative behavior and the approach
employed by MARL algorithms, we design a series of modeling experiments to identify
the potential gaps that hinders modeling truly human-like cooperation. Inspired by the
theory of shared intentionality in cognitive science, we further introduce a new framework
for cooperation modeling called Imagined We, which successfully emulates human behavior

across various tasks that require joint efforts as well as communication.



The thesis is organized as follows: Chapter 2 provides a background in both MARL
and cognitive science, detailing their respective approaches to cooperation. I first review
the state-of-the-art approaches in MARL focusing on modeling cooperative behavior; then
I review the major cognitive science perspectives on how humans, among all creatures,
uniquely cooperate with each other, with a focus on highlighting the differences with current
Al modeling perspectives. Chapter 3 presents a series of modeling experiments for examining
the potential gap between MARL and human-like cooperation. In Chapter 4, I define the
Imagined We framework and explain the results of our experiments. Finally in Chapter 5, [

suggest potential future research directions as part of our ongoing work.



CHAPTER 2

Background and Related Work

In this chapter, I describe the approaches towards modeling cooperation by the MARL
community, as well as the cognitive science perspective towards cooperation, aiming to draw

a comparison between the two to lay the foundation for our methodology.

2.1 Multi-agent reinforcement learning for cooperation

2.1.1 Reinforcement learning and Markov decision process (MDP)

Reinforcement learning is an area of machine learning where the model learns how to act,
which is a mapping from environment to actions, to maximize a numerical reward sig-
nal [SB18]. While no direct supervision is required, RL learns by directly interacting with
the environment through trial-and-error. From the perspective of dynamical systems, RL
problems can be framed as Markov Decision Processes (MDP), where a decision maker in-
teracts with the environment. At each timestep ¢, the agent selects action a; € A based on
the environment state s; € S. The action would lead to some reward in the next timestep
ri11 € R by reward function r(s,a) = E[R; | S;—1 = s, A;—1 = a] and transits to a new state
S¢+1 by transition function P(S; = s’ | S;_1 = s, A;_1 = a). The goal of reinforcement learn-
ing is to maximize the expected discounted cumulative sum of future rewards E[>",° 7],

where 7 is a discount factor.

Various frameworks have been proposed to achieve this objective. One major branch

of work is the value-based reinforcement learning, where the goal of training is to find the



optimal policy value function Q7 (s,a) = E;[R: | St = s, A; = a]. The agent then acts by

taking the action that maximizes the Q function using the idea of Bellman update:

Qi11(81,ar) = Qu(s¢,a) + a1 + 7 max Qi(st11,a) — Qi(st, ar)) (2.1)

With the development of Deep Learning, neural networks structures have been introduced
to RL frameworks. In the value-based RL paradigm, value networks are designed as deep
networks to allow for application to higher-dimensional state spaces, with parameters trained
through gradient descent to minimize Q value prediction error [MKS15, HS15]:

, (2.2)

2
ekJrl < ek - aveEs’NP(s’|s,a) |:<Q0(37 CL) - (Tt+1 + VmaX(QG_ (S/7 CL/>> :|
@ 0=0),

where (Qy- is a target network that is a delayed copy of the training network, usually

incorporated to stabilize training.

Another line of work aims to directly improve policies my(a | s) = P(a | s) using the policy
gradient theorem, which provides a gradient ascent method for updating policy parameters
0 to maximize the reward (Equation 2.3). With such parameterization, the policy directly
generates the action to take, and thus the framework can be applied to environments with

continuous action spaces as well as to generate stochastic policies.

J(0) = Exy[Y )

VoJ(0) = E[Vo(logm(a | s))R(s,a)] (2:3)

0+ 0+ aVeJ(0)
Combining the two frameworks yields another popular framework named actor-critic
methods, where an actor network generates actions evaluated by a critic network. This

method capitalizes on the strengths of both strategies and is utilized in various state-of-the-

art algorithms [LHP15,SLA15,SWD17, HZA18].



2.1.2 Multi-agent reinforcement learning

Multi-agent RL (MARL) builds upon the single-agent RL framework and is applied to sce-
narios with more than one agent, where the environment dynamics are influenced by the
joint actions of all agents [Lit94]. Under the Multi-agent Markov Decision Process (MMDP)
framework, the goal of training is to find a joint policy set © = (4, ..., 7,) to maximize the

expected return E[> 7 vr], where each agent ¢ = 1...n has one policy m;(s) : S — A.

One way of transitioning from single-agent to multi-agent settings is to model each agent
independently, treating others as part of the environment [Tan93, TMK17]. This decentral-
ized model is scalable and suits partially observable scenarios but can face stability and
convergence issues due to the non-stationarity of the environment as agents’ policies evolve
— changes in the environment are not explainable by the change of the agent’s own pol-
icy [MLL12]. This limitation has been recognized in recent works with various stabilization
techniques proposed under the decentralized framework [OPA17,FNF17,ZYL18,SYZ20]. Al-
ternatively, a centralized training approach considers all agents’ observations and actions,
producing state-action values reflecting their coordination’s effectiveness [HBZ04]|. Here,
the environment is seen as stationary, even when agents’ policies change, avoiding the non-
stationarity issue. However, scalability becomes a challenge as the number of agents in-

creases.

Modern MARL approaches often fall between these two design extremes and train agents
using the paradigm of centralized training with decentralized execution (CTDE) [HBZ04,
OSV08,SLG17,RSS18|. Actor-critic training [SB18] is well adapted to this framework, where
decentralized actors decide the action policy only through local information, and centralized
critics evaluate the group performance using augmented information, including other agents’
policies and potential communication [LWT17, FFA18,1IS19]. The centralization exists only
in evaluation but not in control, since otherwise the algorithm may be considered as a

single-agent learning problem. Critically, the framework can be applied to scenarios with



different social intentions in a similar way by adjusting the relations between agents’ reward
functions [LWT17]. For competition, the reward functions are zero-sum; for cooperation,

agents align their rewards through the same reward function [BBDOS].

Modern MARL strategies often navigate the middle ground between the two design
extremes, utilizing a paradigm known as centralized training with decentralized execution
(CTDE) [HBZ04,05V08,SLG17,RSS18]. The actor-critic training technique fits well within
this framework [SB18]. Here, decentralized actors use local information to form action poli-
cies, while centralized critics assess the group’s performance using expanded information,
including other agents’ policies and potential communication [LWT17, FFA18,1S19]. Criti-
cally, centralization is reserved for evaluation, not control, otherwise, the algorithm would
essentially become a single-agent learning problem. Conveniently, MARL offers a generic
solution to different cooperative [SZL21,ZYL18|, competitive [SSS17, XCW20, ZKB20], or
mixed interest settings [LP02] by modulating the relationship between agents’ reward func-
tions. Competitive settings are often treated as zero-sum games in which the reward gained
by one agent is exactly the loss of the other. When the environment is fully cooperative, all
n agents typically observe the same joint reward value r; at each time step [BBDOS], effec-
tively sharing the reward evenly among group members. The focus of our work is primarily
on MARL modeling in cooperative environments, exploring how such a setting impacts the

agents’ coordination behavior.

2.2 Cognitive science perspectives towards cooperation

2.2.1 Challenges faced by MARL in mixed interests scenarios

MARL enjoys the flexibility of being able to train agents with different social intentions
through adjusting the relations between reward functions. The problem setup intuitively
suggests that as long as a reward function is properly specified, agents should be able to

learn intelligent behavior of any kind [SSP21]. However, when facing general-sum games



that are beyond pure cooperation or competition, efficient solutions are far from guaranteed
using the current MARL approaches [SC96,1.ZL17]. One classic prototype of the multi-agent
cooperation challenges faced by people is the Stag Hunt problem [Sky04]. In Stag Hunt, two
hunters must decide individually whether to hunt a stag or a hare. Only when the two both
hunt for the stag can they obtain the stag reward, which is higher than the reward of the
hare. On the other hand, hunting alone for the hare renders minimal risk. In other words,
the two agents choose between whether to ambitiously hunt the stag and expect the partner
to think the same way while taking the risk, or to give up on cooperation and the higher
benefits and safely hunt the hare. From a game theory perspective, there are two pure-
strategy Nash equilibria: one that both agents cooperate and the other that both defect.
Without a cooperative mindset, agents directly trained with the reward function matrix may

easily converge to the local minima where both defect.

A similar idea lies in the formation of people’s bargaining behavior. Members of a group
usually hold distinct skill sets and reward structures. While everyone is aware that jointly
working on a task facilitates its completion, there is little guarantee that individual members
will contribute to the group activity as expected. From a reward-maximization perspective
as suggested by MARL approaches, coordination in such cases might not be the optimal
solution. Imagine a scenario with a farmer and a baker: the baker needs wheat to make
bread, while the farmer can produce wheat but needs bread to survive. Intuitively, the best
case scenario would be for both parties to cooperate by forming a trading system. However,
since both farming and baking takes time and effort, both parties may encounter more loss if
the coordination system is not guaranteed. To avoid potential threats from the other party
defecting, as in the stag hunt game, the reward-maximization agents may simply abandon

the joint reasoning and only work for self interests by picking the safe option.

Towards the extreme of such self-interest behavior further leads to the famous phe-
nomenon of tragedy of the commons: individuals with access to a repertoire of limited

public goods act by their self-interest, which causes the depletion of the resources [Har68|.



Since the agents are purely driven by the reward-maximization principle, taking all resources
whenever possible is the optimal way from the individual perspective. Without considering
group benefits, group members’ behavior are free of moral constraints including ownership
and fairness which guide prosocial behaviors. Intuitively, such a situation hampers the fu-
ture coordination of the group. In order for cooperation to emerge from the scenario, agent’
behavior should be effectively regulated with a collaborative mindset. Modeling this concept
thus demands a formulation of the group perspective that is beyond acting to maximize

rewards as proposed by MARL methods.

2.2.2 The cognitive science perspectives on how humans cooperate

On the other hand, while facing such mixed-interests dilemmas in everyday life, humans still
manage to establish robust cooperation even when game theory suggests otherwise, such as
when different groups have unmatched power and when repetitive interactions cannot be
guaranteed. One case study on the producer-middleman relationships in precolonial Africa
indicates that humans indeed reached a form of cooperative agreement by conforming to an
imagined regulatory system [Leel4]. Under the potential threats posed by an imbalanced
power between the producers and the middlemen, the game theory will suggest a result of
renouncing cooperation from both sides as a local minimum Nash equilibrium solution. Nev-
ertheless, humans choose to agree on an imagined credit system that enforces cooperation,
creating an opportunity to depart from the suboptimal solution and achieving a greater col-
lective reward as a result. Such evidence manifests the normative power and creativity of

human cooperation that can emerge beyond trial-and-error training.

Indeed, cognitive studies indicate that effectively regulated human cooperation emerges
from a young age and is further considered as human-unique by evolutionary studies com-
paring human behavior with chimpanzees [Tom19]. One signature characteristic of human
cooperation is the enforcement of commitment. Developmental studies conducted with chil-

dren indicate that humans starting from 2-3 years old demonstrate a strong tendency to



maintain and regulate the cooperative structure of a group that agents should jointly commit
to a task. In a group task where children prematurely receive their own share of the rewards,
they still persisted in participating in the joint activity so that both partners ended up with
rewards — and more often than if the partner just asked for help in a similar situation but
outside of any collaboration [HWT12]. Further, 18-month-old toddlers attempt to re-engage
partners when the partner leaves the joint activity [WCTO06]. Young children jointly commit
to tasks and often explicitly acknowledge this (e.g., A: “Let’s X.”; B:“OK”) [MGK16]; When
children break a commitment, they acknowledge their leaving [GBC09] and express guilt for
doing so [VCT16]. In this case, for humans the notion of cooperation persists even indepen-
dently of rewards, which serves as a social contract to which they expect both partners to

commit.

To maintain and further promote cooperative behavior, children tend to view collabo-
rators as equal partners jointly working on the task with respective roles. When roles are
not adequately played by collaborative partners, children usually protest with normative
words [KST18]. Developmental studies also demonstrate children’s preference for fairness in
collaborative tasks where they recognize teammates’ efforts in a fair way. Under unequal dis-
tribution of spoils, 3-year-old children who got more spoils shared with their partner to equal-
ize, which they did not do outside of collaboration [HWG11]. When a collaborative partner
does not share the spoils fairly, children tend to protest against the behavior [WLM11].
With a strong conceptualization of fairness, young children further excluded free riders (as

opposed to partners) from the spoils [MFT15].

In this way, starting early in development, humans form specific understandings of how
cooperation should be carried out and what behavior should be regularized. Ideas from
philosophy argues that this is likely due to humans’ unique socio-cognitive ability to represent
the self and others as a collective whole and intend the group to do something together,
a concept referred to as the shared intentionality framework [Gil92, Bra92|. Under this

framework, agents approach a group task as a whole, taking a joint perspective when planning

10



for actions. This is essentially constructing a supraindividual agent “We” in one’s mind and
asking oneself “what does "We’ expect me and others to do?” This representation of the
“We” intention is hypothesized to be the fundamental infrastructure differentiating humans
from other animals [Tom19]. The shared intentionality framework thus serves as a stronger

cooperation motivation with normative constraints that is beyond sharing rewards as defined

in MARL approaches.
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CHAPTER 3

Understanding the Gap

Inspired by the differences in interpretations between MARL and cognitive science studies
regarding cooperation, we were curious about whether MARL models would be able to
handle complex social dilemmas as faced by humans, using coordinated hunting as a case
study. This chapter introduces two case studies we performed to better understand the

coordination achieved by MARL.

3.1 General method

3.1.1 Test environment

Coordinated hunting is commonly observed in many species [MTS14, HSB97, GCE05, YY10,
Bed88] and requires sophisticated team planning to execute efficiently. To analyze the perfor-
mance of MARL in coordination tasks, in our experiments we adapt a previously developed
non-cooperative hunting task for use in a cooperative environment [GNS09]. This task lies
at the border between proposed evolutionary demands for cooperation and empirical studies
of the same, exploring a current gap between the two. It has also been widely adopted in
MARL research as a benchmark test [LWT17]. In the task, predator and prey agents are
trained so that predators aim to catch the prey as much as possible, while prey aim to avoid

the predator.

12



3.1.2 Algorithm

In order to comprehend the effectiveness of state-of-the-art MARL algorithms, we employ
one of the most significant MARL algorithms, the Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) [LWT17], as a representation of the general methodology adopted
in the field. This algorithm builds upon the classic actor-critic framework in reinforcement
learning [SB18]. Here, actor networks (policy networks) generate actions, denoted as mga (a|s),
using the network parameters . Critic networks (value networks) evaluate actions through

action-value functions Qg (s, a) using the network parameters 6°.

During training, the critic network minimizes the estimation error L(6¢) between the

network output Qye(s,a) and the target of update y:

L(QC) - Es,a,r,s’ [(Q96<S7 a) - y)2] : (31)

On the other hand, the actor network aims to maximize the objective function J(6%) by

updating the network parameters following the policy gradient V. J(6%):

VigaJ (0%) = Espr ammga [ Voo log mpa (a]s)Qge(s, a)] . (3.2)

MADDPG is an extension of the actor-critic framework for multi-agent settings where
each agent has its own actor and critic networks, allowing training of both competitive
and cooperative agents. Detailed pseudocode for the MADDPG algorithm is presented in
Algorithm 1 (Figure 3.1).

MADDPG has successfully demonstrated its capability in multi-agent coordinated hunt-
ing games where rewards are shared amongst agents [LWT17]. The training regimen of
MADDPG exhibits two aspects of cognitive realism. Firstly, it employs cognitive constraints,
meaning that each agent makes decisions based on its own observations without accessing

information from other agents. Secondly, the model operates with cognitive intelligence,

13



Algorithm 1 Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

1: for episode = 1 to M do
2: Initialize random process K for action noise
3: Reset initial state x

4: for timestep ¢t = 1 to max-episode-length do

5: for agent + = 1 to N do

6: Make observation o; = O;(x)

7: Take action a; = pga(0;) + K,

8: end for

9: Transit to new state 2’ and obtain reward r = (ry,...,ry) based on a =

(ay,...,an)

10: for agent + = 1 to N do

11: Make observation o; = O;(z")

12: Store (o0, a,r,0’) to replay buffer D, o = (01,...,0n), o' = (0],...,0y)
13: Randomly sample a minibatch of S samples (0’ a’,r7,0”) from D
14: Set y/ = 1! +vQq-(07,a"), where aj, = figre (0F)

15: Update critic by minimizing the loss:

16 L) = £ 3,07 — Qor(0h,09))?

17: Update actor by policy gradient:

18: Vo = 53, Ve tigs (01)V 0, Qoe (07, ., ..., az, ay), a; = puge (o))

19: end for
20: Update target network parameters for each agent i:
21: 0;¢ = 705 4+ (1 — 7)0°
22: 010 =707 + (1 —7)0;°
23: end for
24: end for

14



Environment

Figure 3.1: Hlustration of MADDPG algorithm with three agents.

treating other participants as actual agents rather than inanimate objects within the envi-
ronment. Fach agent anticipates the actions of others in the field, a process that can be
interpreted as a primitive version of Theory of Mind [Wel92]. Furthermore, the action eval-
uation of each agent is context-dependent, considering the states and predicted actions of all
agents, which aligns with Tomasello’s theory of coordinated hunting [TCCO05]. Based on this
assessment, agents subsequently adjust their policies to optimize their performance. Still,
this planning remains individual-centric — while evaluating the collective context, agents are
only concerned with their own actions. In this way, the algorithm serves as a competent
representation for the MARL field and is the algorithm we adopted in the following case

studies.

3.2 Case study 1: Free-rider effects

In the first case study, we explored how MARL behaves under the scenario with mixed
interests [ZTD22|. Specifically, on top of the goal to catch the prey together, predators also

incur individual action costs. Such setting thus poses a potential threat of the free rider

15



problem to the coordination [Ols89]: Rational individuals benefit from the shared public
goods even if they do not pay individual action costs. In the MADDPG approach towards
the hunting task [LWT17], predators and prey have no action costs; thus, the free-rider
problem is avoided altogether, since the only motivation for free-riding is to avoid individual

costs in cooperation.

3.2.1 Experimental design

In the experiments, we systematically test MADDPG’s performance in coordinated hunting

with 4 experimental manipulations inspired by anthropological and animal studies.

3.2.1.1 Reward distribution among predators

Drawing inspiration from field observations of chimpanzee behavior where proximity to prey
at the time of its demise plays a pivotal role in reward division [JDT19], we manipulate reward
distribution among predators based on their distance-to-kill. Sensitivity to the distance-
to-kill functions as a measure of selfishness: with a high index, rewards are concentrated
around predators close to the kill, while a low index leads to broader dispersal. At extremes,
pure selfishness results in the predator making the kill taking all the reward, while pure
unselfishness leads to even distribution. All predators in a given condition adhere to the
same mechanism. Formally, we define the reward distribution as an exponential function of
the distance-to-kill, such that

R o< (d; +1—Fk)~%, (3.3)

where an agent ¢ with d; distance-to-kill receives R; proportion of the reward, with selfish

index s. The constant k£ denotes the minimum distance between two agents.
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3.2.1.2 Action costs inducing the free-rider problem

Agents’ inclination to free-ride during coordinated hunting is motivated by avoiding individ-
ual costs [Ols65, Ols89]. As action costs rise, agents prefer to remain static to lower these
costs while still receiving allocated group rewards. To examine the free-rider problem’s in-
tensity in relation to reward distribution, we define the action costs to be proportional to
the force exerted by agents, with the action cost for agent i, C; = a * F;, where F; is the
force exerted by agent ¢, and a denotes the action cost ratio in the specific condition. The

action costs are applied to individual agents no matter which reward mechanism they take.

3.2.1.3 Group size

Numerous animal studies have shown that hunting party size is positively correlated with
the success of the hunters across different species [MW99, SPM18 MTS14, Bed88, CC95]. We
explore this correlation by testing various predator group sizes and their impact on hunting

performance.

3.2.1.4 Hunting risks

Hunting risks influence animal behavior, with some species showing increased participation
when risks are high [MTS14, New07]. We investigate this dynamic by altering the speed of
prey, thereby manipulating hunting risks and studying their interplay with reward distribu-

tion.

3.2.2 Results

Our results demonstrated significant main effects for all four variables, with the selfish index
showing significant interaction with the other three. An analysis of two-way interaction terms

revealed that the performance of selfish agents (measured by kills per episode) increased

17



with group size, while the performance of unselfish agents remained constant or declined
with larger groups (Figure 3.2). Taking the group size of 6 as an example, without loss of
generality, performance improved with increasing selfishness, with the most selfish predators
achieving the highest performance. Action cost had a negative effect on performance, with a
more pronounced effect on unselfish agents. The unselfish agents failed to gain any rewards
when action cost reached .01, while selfish agents maintained high performance even under

the largest action cost condition.

Our result strongly indicates the presence of the free-rider problem under the reward-
sharing mechanism. The study thus highlights the modeling concern originated from the
gap between MARL problem settings and the realistic settings in nature — agents working
together not only care about the group benefits but also hold individual interests. In this
case without an explicit enforcement of cooperation, agents modeled through the reward-
based MARL abandoned the optimal Nash equilibrium of jointly hunting the prey together

and settled for the local minima equilibrium to not move at all.

3.3 Case study 2: Joint commitment to one goal under distrac-

tions

In this case study, we explored whether cooperation modeled through MARL holds when
there exists distractions [TGZ22]. The MADDPG algorithm was applied to a similar hunting

environment with multiple predators but chasing multiple prey agents.

3.3.1 Experimental design

In the experiments, we investigate whether a group of three predators can demonstrate robust
commitment when confronted with multiple prey options. The reward allocation mechanism
remains constant, with an even distribution of rewards among predators upon capturing a

prey. There are no associated action costs for any agent. We manipulate the quantity of prey
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Figure 3.2: Performance of MADDPG in the coordinated hunting task.

to be 1, 2, 4. The game is structured such that the prey moves faster than the predators,
necessitating a cooperative strategy where predators persistently chase a single prey. While
there are no predefined targets, in order to improve performance and maximize cumulative
rewards, the optimal strategy would be for the predators to hunt collectively, targeting one

prey at a time.

3.3.2 Results

Our results indicate a significant main effect of prey group size on the task performance.

Surprisingly, as the number of prey agents increases, the performance of predators gradually
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decreases — despite the increased opportunity to accumulate rewards due to a larger prey
population. In this way, the simple incentive of sharing rewards does not suffice for the
agents to coordinately learn to commit on one prey target to hunt. In order to maximize the
reward function, the MADDPG agents turn to whichever prey that is closer to themselves
without considering group intentions. Humans however can still coordinate efficiently when

presented with a large number of potential targets [TGZ22].
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CHAPTER 4

The Imagined We Framework

4.1 Motivation

Theories in cognitive science suggest that humans follow a shared agency perspective during
cooperation, where members of a team form a “We” mind with joint mental states including
a common-ground, joint attention, and joint intention to work on tasks as a whole [Tom09].
In this way, to form a shared intention, each agent individually demonstrates a readiness
to commit to the joint goal through her behavior. During this process, collaborators view
themselves not as individuals, but as part of an imagined, larger joint entity “We” acting
under the shared beliefs, shared desires, and shared intentions of the group [Gil99]. With
a “bird’s eye perspective”, a true central controller “We” with complete knowledge of the
situation could perfectly coordinate all cooperators. However, in reality there is no central
controller, and it is unrealistic and inefficient for all agents to share all knowledge. As a result,
we call our framework “Imagined We” where each agent instead individually simulates a We
agent, making We imagined. IW contains joint mental states given observation of joint

actions already made by themselves and other agents [T'SZ20, TGZ22].

4.2 Formulation

Our model builds upon the current progress of Bayesian modeling of shared intention. Under
a Bayesian-theory-of-mind (BToM) framework named Imagined We (IW), collaborators view

themselves not as individuals, but as part of an imagined, larger joint entity “We” acting
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under the shared beliefs, shared desires, and shared intentions of the group [Gil99] (Figure
4.1). Since there is no ground truth of “We” to infer, agents use the idea of bootstrapping
with BToM inference to determine what “We” want to do by looking at what “We” have

done:

P(“We” mind | Joint action, Environment) o (1)
4.1
P(Joint action | “We” mind, Environment) P(“We” mind | Environment)

—_—
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Figure 4.1: Imagined We representation.

In the context of the cooperative hunting task, the environment is fully observable without
any uncertainty. The only uncertainty stems from the intention of “We” concerning “which
prey should "We’ pursue persistently?” We simulate the inference of “We” intention through
a three-step bootstrapping method: goal sampling, planning, and inference (Figure 4.2.)
Specifically, the agents start by sampling one goal as the current goal of their version of the

“We” agent — in this context, which prey they believe is the target based on their version of
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IW. In the planning phase, given the goal, each agent acts by asking “what does ‘we’ expect
me and others to do?” Aside from taking its own action following the intention of “We”,
an individual agent also expects others to take their actions as demanded by “We.” In this
way, each agent is simulating a centralized planner from its own perspective, with only one
goal to pursue. In practice, this is achieved by applying the MADDPG algorithm which
outputs a joint action, including the agent’s own action to take as well as an expectation of
other agents’ actions. After taking one’s own action based on the policy determined in the
planning phase, each agent observes the actions actually taken by other agents. This enables
a Bayesian ToM inference process: Conditioning on the observed actions, each predator
computes the posterior probability of a given target being their joint goal. After updating
the posterior of the Imagined We mind, each agent goes back to the first step, sampling a
new goal and repeating the process. As more observations accumulate, agents further update
their belief in the mind of “We” and gradually converge to a version of “We” that is treated
as the mutual agreement among collaborators. The resulting “We” version thus serves as a

social contract that agents aim to follow .
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Inverse Inverse
Planning Planning
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Figure 4.2: The framework of bootstrapping an Imagined We.
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4.3 Experiments

We apply the IW model to a coordinated hunting scenario with three predators hunting 1,
2, or 4 prey agents, same setting as the study in section 3.3 [TGZ22]. Contrast to the result
of MADDPG model (reward sharing, denoted by RS in the figure) that we found in the case
study in section 3.3, the main effect of prey set size was not significant. The results revealed

that the performance of the IW model did not decrease as the number of targets increased

4.3.
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Figure 4.3: Model and human performance under different prey set sizes.

Besides the overall performance, we further assess hunting quality in humans, IW model,
as well as a baseline MADDPG model by measuring the “duration of touch”, which refers
to the continuous time steps when at least one hunter is in contact with the prey. This
duration is used as an indicator of the likelihood of a successful catch similar to real life
scenarios. We classify the quality of raw rewards into three categories based on touch du-
ration: low (1 time step), medium (2 time steps), and high (3 or more time steps) (Figure
4.4.) Results indicate that IW model demonstrated a relatively good quality of hunting and
outperformed the MADDPG model in acquiring high-quality rewards, although it still has

room for improvement as compared to human performance.

We further studied predators’ goal consistency by measuring the entropy of the touched

prey distribution, where lower entropy suggests a greater shared focus among the hunters
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Figure 4.5: Results of the entropy of touched target distribution.

(Figure 4.5.) In both the set size 2 and 4 scenarios, the IW model demonstrated notable
similarities with human goal entropy. Both the humans and the IW model consistently
showed higher goal entropy than the MADDPG model, indicating that the IW model more

effectively mirrors human behavior in goal pursuit than the MADDPG model.

In this way, cooperators modeled by IW were able to quickly bootstrap commitment to the

same arbitrary intention without even the need for explicit communication. IW successfully
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captures humans’ robust commitment in cooperation: resisting alternative targets, achieving
greater quality of hunt, and maintaining a relatively high goal consistency among hunters.
This indicates that there is indeed a bonus for agents to cooperate in tasks, and manifesting

such bonus requires joint commitment as a stronger constraint for the team behavior.

4.4 Other applications

The IW framework has also been successfully applied to communication scenarios, where
communication serves to coordinate perspectives, aligning “We” minds for better cooperation
among agents [SLZ21]. Assuming agents to be rational and utility-maximizing cooperators,
cooperation simulated by Imagined We framework successfully solves ambiguity in a signaling
game (Figure 4.6.) In this cooperative task, a signaler and a receiver navigate a gridworld
environment aiming to reach a target item, known only to the signaler. The signaler acts
first, choosing to walk towards an item, send a signal indicating a single feature of the target
(shape or color), or quit, while each step incurs a shared cost. The trial concludes either
after the receiver’s turn or when the target item is reached, with correct selection rewarding
both agents, but traveling to the wrong item resulting in negative utility proportional to the
steps taken. Under the framework of IW, the meaning of a signal is explicitly linked to the
sender’s intent, conveying information to resolve uncertainty about shared beliefs, desires,
or actions. Results demonstrate that the IW model, compared to baseline models, shows

superior performance under uncertainty without needing deep recursion.
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CHAPTER 5

Conclusions and Future Directions

Our work focuses on highlighting the differences between assumptions taken by the main-
stream MARL models and cognitive theories in modeling cooperation. MARL enjoys the
flexibility of being able to train agents with different social intentions through adjusting
the relations between reward functions and defines cooperation as sharing the same objec-
tive. However, this assumption creates a disconnect with real-life human cooperation, where

cooperative circumstances often encompass mixed interests.

Drawing on insights from cognitive science studies, we highlight canonical challenges iden-
tified by these theories that can potentially disrupt MARL training. In particular, within a
coordinated hunting scenario, agents demonstrate an inability to learn effective cooperation
when action costs come into play, signifying the presence of a free-rider effect. Moreover,
when multiple prey serving as distractors are introduced into the environment, agents strug-
gle to converge on a single prey for a joint hunt, leading to a decline in performance despite
the increased availability of resources. In this way, to effectively mimic human-like coopera-
tion, it is essential to consider modeling constraints that extend beyond the simple sharing
of rewards. Inspired by the theory of shared intentionality in cognitive science, we introduce
a novel modeling architecture Imagined We, where collaborators perceive themselves not
merely as isolated individuals, but as components of a larger imagined entity, a “We”, acting
under the shared beliefs, desires, and intentions of the group. We show that this framework

can enhance cooperation efficiency and more effectively mirror human behavior.

As we move forward, we will continue to refine and expand the Imagined We framework
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to facilitate more sophisticated cooperative behavior. When agents work together on a joint
task, a host of critical factors come into play including fairness (determining how much re-
source each member is entitled to), ownership (identifying and respecting the property rights
of others), and efficient role allocation (assigning roles that best align with individual skills
and abilities). By modeling these essential concepts, we aim to deepen our understanding of
the mechanisms underlying human cooperation. This in-depth knowledge will in turn equip
us to design Al systems that can collaborate more efficiently and safely with humans in the

future.
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