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Deep learning automates
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ECG-gated CT images
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Hari K. Narayan4 and Francisco J. Contijoch1,3*

1Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States,
2Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego,

La Jolla, CA, United States, 3Department of Radiology, University of California, San Diego, La Jolla,

CA, United States, 4Department of Pediatrics, University of California, San Diego, La Jolla, CA,

United States

Introduction: 4D cardiac CT (cineCT) is increasingly used to evaluate cardiac

dynamics. While echocardiography and CMR have demonstrated the utility of

longitudinal strain (LS) measures, measuring LS from cineCT currently requires

reformatting the 4D dataset into long-axis imaging planes and delineating the

endocardial boundary across time. In this work, we demonstrate the ability of

a recently published deep learning framework to automatically and accurately

measure LS for detection of wall motion abnormalities (WMA).

Methods: One hundred clinical cineCT studies were evaluated by three

experienced cardiac CT readers to identify whether each AHA segment had

a WMA. Fifty cases were used for method development and an independent

group of 50 were used for testing. A previously developed convolutional neural

network was used to automatically segment the LV bloodpool and to define

the 2, 3, and 4 CH long-axis imaging planes. LS was measured as the perimeter

of the bloodpool for each long-axis plane. Two smoothing approaches were

developed to avoid artifacts due to papillary muscle insertion and texture

of the endocardial surface. The impact of the smoothing was evaluated by

comparison of LS estimates to LV ejection fraction and the fractional area

change of the corresponding view.

Results: The automated, DL approach successfully analyzed 48/50 patients in

the training cohort and 47/50 in the testing cohort. The optimal LS cuto� for

identification of WMA was −21.8, −15.4, and −16.6% for the 2-, 3-, and 4-CH

views in the training cohort. This led to correct labeling of 85, 85, and 83% of

2-, 3-, and 4-CH views, respectively, in the testing cohort. Per-study accuracy

was 83% (84% sensitivity and 82% specificity). Smoothing significantly improved

agreement between LS and fractional area change (R2: 2 CH = 0.38 vs. 0.89

vs. 0.92).

Conclusion: Automated LV blood pool segmentation and long-axis plane

delineation via deep learning enables automatic LS assessment. LS values
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accurately identify regional wall motion abnormalities and may be used to

complement standard visual assessments.

KEYWORDS

cardiac computed tomography, left ventricle, wall motion abnormality, longitudinal

strain, image segmentation, deep learning

Introduction

Longitudinal strain (LS), measured using echocardiography

(1) or cardiac magnetic resonance (2), has been proven useful

in evaluating patients at risk of chemotherapy cardiotoxicity

(3) and those with aortic stenosis (4, 5), cardiac amyloidosis

(6) atrial fibrillation (7), and heart failure patients (8). In

revascularized STEMI patients, CMR-based LS was superior

and incremental to LVEF and scar size in the prediction of

MACE (9).

LS can also be used as a quantitative metric to improve

detection of wall motion abnormalities (WMA) (10, 11) and

in the setting of infarction WMA have been shown to be

independent predictors of adverse events (12, 13). Further, in

patients without overt cardiovascular disease, presence of a

WMA leads to a 2.4–3.4 higher risk of cardiovascular morbidity

and mortality, independent of established risk factors (14).

Cardiac computed tomography (CT) is increasingly used

to evaluate both coronary artery anatomy (15, 16) and cardiac

function (17). Recent work has shown that ECG-gated CT can

detect regional wall motion abnormalities (18–21) and that

findings agree with echocardiography (22, 23) and CMR (18, 24).

However, quantitative evaluation of cardiac function on 4D CT

data can require significant computational processing such as 3D

segmentation or measurement of wall thickening.

While several automated methods have been developed

for the evaluation of cardiac chamber size and global

function (25–28), automated estimation of LS from 4DCT

is not currently available as it requires the combination

of manual/semi-automated reformatting of the 4D dataset

into long-axis imaging planes as well as delineation of the

endocardial boundary across frames (29).

Recently, a deep learning framework has been shown to

automatically and accurately identify the long-axis planes within

a 4D CT dataset and, using the same architecture, segment

the LA and LV blood pools (30). Specifically, long-axis views

generated via the DLmethod were in close agreement with user-

defined planes and >94% of views were diagnostically accurate.

By segmenting both the LV and LA blood pools, this creates

the opportunity to evaluate LS by measuring the LV endocardial

perimeter (after removal of the mitral valve plane).

In this study, we evaluate the ability of this recently

developed deep learning algorithm to be adapted to obtain

automated LS estimates from each long-axis view. To test the

clinical utility of our approach, we evaluated whether automatic

LS can be used to detectWMA in a set of 100 clinical cases which

were visually analyzed by three trained experts for the presence

of WMA. We created two cohorts (n = 50 training and n =

50 testing cases). We used the training cohort to determine the

optimal LS threshold for detecting a WMA and report accuracy

in the independent testing cohort.

Methods

Study population

This study was approved by our system’s institutional review

board with waiver of informed consent. Five hundred and five

ECG-gated contrast enhanced cardiac CT studies were acquired

between April 2018 and December 2020 which had (1) full

R-wave to R-wave (RR) coverage and (2) an imaging report

including the explicit mention of cardiac function as normal or

abnormal (either globally or regionally) (Table 1). All CT scans

were performed on the same wide-detector CT scanner with 256

detector rows and 16 cm z-axis coverage (Revolution scanner,

GE Healthcare, Chicago IL).

Visual inspection by (author ZC) resulted in 97 studies

being excluded due to poor image quality, lead artifacts which

impacted the LV blood pool, or failure to visualize the entire LV.

Imaging reports were used to attempt to balance the study

cohort. Two hundred and forty six studies were reported to

have “normal” function in the report while 162 were classified as

having “abnormal” function. To balance between patients with

normal and abnormal function, the studies with normal function

acquired at the end of the review period (acquired between

August and December 2020, n= 66 studies total) were excluded.

From the remaining n = 180 studies with normal function

and n = 162 studies with abnormal function, 100 studies were

randomly selected. As described below, studies selected were

then visually inspected by three experts for the determination

of normal/abnormal used in our study. Therefore, this step was

aimed at arriving at a relatively balanced distribution of normal

and abnormal studies without introducing bias into the selection

process. The process is shown as a flowchart in Figure 1.

All studies had functional phases reconstructed at 10%

RR intervals using the vendor default cardiac function image
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TABLE 1 Patient cohort information.

Entire dataset Training

cohort

Validation

cohort

Cohort size, n 100 50 50

Age, years 59± 14 59± 15 59± 13

Male, % 61 58 64

Median LVEF, % 62.4

(IQR: 41.7–69.3)

62.1

(IQR: 38.9–69.6)

63.8

(IQR: 45.1–68.5)

Abnormal segments 27%

(432/1,600)

27%

(219/800)

27%

(213/800)

Normal studies, n 54 28 26

Study indication, n

Coronary disease 50 21 29

Pulm. vein ablation 33 19 14

Heart failure 9 4 5

Aortic stenosis 5 4 1

Cardi-oncology 3 2 1

LVEF, left ventricular ejection fraction.

reconstruction method. Images were reconstructed on a 512 ×

512 pixel matrix in the axial plane over a field of view of 240 ±

20mm with 0.625mm slice thickness.

Expert identification of wall motion
abnormalities

The CT studies were independently evaluated for WMA by

three cardiovascular imagers with 15 years (A.K), 14 years (SK),

and 5 years (HKN) of experience interpreting cardiac studies.

For each study, wall motion at 16 AHA segment locations

(not including the apical segment) was labeled, in a blinded

fashion, as either (1) normal, (2) hypokinetic, (3) akinetic or

dyskinetic. This was performed using movie reformats of the 4D

CT dataset along standard 2D short- and long-axis views. This

led to 1,600 segments being labeled. Given the limited number of

hypo- and dyskinetic segments and the interobserver variability,

we combined hypokinetic, akinetic and dyskinetic labels into a

single “abnormal” class and only performed per-imaging plane

and per-study comparison. A long-axis view was considered

abnormal if it contained one or more AHA segments that were

labeled abnormal. Given that three long axis videos were made

per patient, this resulted in 300 long-axis videos (150 in the

training and 150 in the testing cohort), each with a normal or

abnormal designation. A CT study was classified as abnormal if

it had one or more abnormal LAX video. For comparison to our

DL-based approach, the three expert scores were combined such

that a segment was labeled abnormal if there was agreement by

two or more readers.

Automated estimation of longitudinal
strain along each long-axis plane

As described by Chen at al. (30), automated blood pool

and long-axis views were generated by using a modified U-net

architecture. Briefly, the algorithm was first trained to perform

blood pool segmentation of the left atrium and ventricle. Then,

an output was added after the last max-pooling layer in the

downsampling path. This was used to regress the translation

vector (to define the spatial position of the long-axis view) and

direction vectors (to define the orientation of the view) for each

of the long-axis views. The code to perform this segmentation

and slice planning is available here: https://github.com/ucsd-

fcrl/DL_CT_Seg-Plane_Prediction_Final_v_ZC.

The bloodpool segmentation at each of the long-axis

views was evaluated and the left atrial segmentation was used

to identify portions of the left ventricle bloodpool which

correspond to the mitral valve. Based on this designation,

the length of the LV endocardial boundary was calculated.

This methodology has been previously been used with

echocardiographic imaging (31, 32) and prior work in CT

has measured global LS using epicardial contours (33). The

process is shown in Figure 2. We expect our approach will

more closely match speckle tracking echocardiography (as

GLS is measured close to the endocardial boundary) rather

than tagged CMR (where evaluation focuses primarily on

mid-myocardial deformation) (34). Further, by measuring LS

using an automated approach, our method aims to eliminate

a significant source of variation (manual contouring by

operators) (34).
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FIGURE 1

Flowchart of patient inclusion/exclusions.
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FIGURE 2

Processing of ECG-gated CT for evaluation of LS. (A) ECG-gated volumes are analyzed using a deep-learning (DL) framework that provides the

location of the 2-chamber, 3-chamber, and 4-chamber long axis planes and delineates the LV and LA blood pools. From this information,

long-axis slices of the segmentations were created throughout the cardiac cycle. (B) The perimeter of the left ventricle and the LV/LA boundary

pixels were identified and used to extract the LV perimeter. Method A did not perform any additional processing of the perimeter. However, a

convex hull was applied to correct for papillary muscle artifacts (leading to Method B). Further, a cubic splint was fit to the result of the convex

hull to correct for variations in texture (Method C). (C) For each long-axis view and each analysis method, the length of the perimeter was

measured at end-diastole (the timeframe with largest LV volume) and end-systole (the timeframe with smallest LV volume) and used to calculate

LS.

Papillary muscle artifacts and
correction approaches

Measuring LS directly from the segmentation was

susceptible to artifacts due to the papillary muscles. An example

is shown in Figure 3A. Two smoothing approaches were

implemented and evaluated, First, the concave areas created by

the papillary muscles were “filled in” by using the binary “close”

function with a disk of 10 pixels and then fitting a convex hull to

the perimeter of the endocardial bloodpool for each frame (35).

An example result of this approach is shown in Figure 3.

However, there are limitations with this approach. First, the

perimeter measured depends on the “texture” of the surface.

This may lead to overestimation of the perimeter. Second, use

of the convex hull fills the area of the papillary muscle insertion

with a straight line that may underestimate the perimeter. To

address these limitations, we fit a “natural” spline curve (36) to

the perimeter obtained after closing and filling via the convex

hull. Fitting was performed after downsampling the curve by

a user-defined factor of 5. The result of the three methods, in

the same patient as above, is shown in Figure 3. The code used

to generate the different LS measures is available here: https://

github.com/ucsd-fcrl/DL_CT_GLS_Final.

For all three methods, LS was calculated as the change

in length over time. The unsmooth LS result as well as LS

after convex hull and convex hull + curve fitting refinement

were evaluated by comparing the LS estimate to the LV

ejection fraction and the fractional area change (FAC) of the

corresponding view.

Determination of LS cuto�s in training
cohort and evaluation in testing cohort

We varied the threshold used to determine whether a LS

value (for a particular view) accurately detected the presence

of a WMA, as determined by our three experts. Using the

training cohort (n = 50), we identified the thresholds which

optimized performance for each LAX view and identified the

single threshold that had peak performance when applied to all

LAX views. Optimal performance was based on the threshold

corresponding to the upper left most point on the receiver

operating characteristic (ROC) curve.

The accuracy, sensitivity, and specificity of these

thresholds were then evaluated in an independent cohort of

n= 50 patients.

Statistical evaluation

Normally distributed values are expressed as mean ±

standard deviation while non-normal values are reported
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FIGURE 3

Measurement of endocardial perimeter based on the blood pool segmentation is susceptible to artifacts created by the papillary muscles. (A)

The papillary muscles create indentations which impact the measurement of the perimeter. The end-diastolic (left) and end-systolic (right)

perimeters for each of the views are shown. They are all overestimated. (B) By modeling the blood pool as a convex hull, we can correct for the

errors from indentations created by papillary muscles. However, the perimeter measurement remains a�ected by the perimeter’s texture. (C)

Fitting of a curve to the perimeter avoids issues related to the surface texture.

using the median and interquartile range (IQR). Two-tailed

categorical z-test was used to compare data proportions (e.g.,

proportions of abnormal videos) in the training and a testing

cohort. To compare R2 values between fractional area change

(FAC) and LS for different smoothing methods in dependent

samples, the Fisher’s r-to-z transformation was utilized to

determine statistical significance. Statistical significance was set

at P ≤ 0.05.

The ability of LS to detect WMA was compared against

the expert labeled ground truth label and was reported via

confusion matrix and Cohen’s kappa value. Both per-long

axis video and per-study comparisons were performed.

Readers reviewed long-axis and short-axis movies of the

cardiac cycle and labeled each AHA segment. A video was

labeled as abnormal if it had one or more abnormal AHA

segments present. A study was defined as abnormal if it

had one or more long-axis videos labeled as abnormal.

Interobserver agreement in terms of labeling wall motion as

normal or abnormal between three experts was measured

using Fleiss’s Kappa (37) since there were more than

two observers.

Anonymized long-axis images, calculated perimeters, and

corresponding expert annotations will be made available

upon request.

Results

Sixty-one subjects were men and 49 were women with a

mean age of 59 ± 14. Studies were obtained for evaluation

of coronary disease (n = 50), pre-ablation assessment of

pulmonary vein anatomy (n = 33), assessment prior to left

ventricular assist device placement (n = 9), preoperative

assessment for transcatheter aortic valve replacement (n =

5), and evaluation of cardiac function after chemotherapy

(n = 3). The LV blood pool had a median intensity

of 530 HU (IQR: 435–663). Out of the 1,600 segments

evaluated, 27% (432/1,600) were labeled abnormal by

experts. This led to 39.3% (118/300) abnormal long-

axis videos and 46 studies with at least one abnormal

AHA segment. There were no significant differences (all

P-values > 0.05) between the training and testing cohorts in

terms of the percentages of sex, abnormal videos, abnormal

CT studies.

Median LV ejection fraction (EF) for the training and

validation cohorts were 62.1 and 63.8%, respectively.

In the training cohort, normal studies had an EF of

69.0% (interquartile range of 65.1–73.0%) while abnormal

studies had an EF of 38.1% (IQR: 28.3–48.6%). In the

validation cohort, normal studies had an EF of 67.8%
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FIGURE 4

Agreement between LS and FAC increases with use of the convex hull and perimeter curve fitting. The perimeter measured using our deep

learning method is susceptible to artifacts due to the insertion points of the papillary muscles and by the texture of the endocardial surface. Use

of a convex hull to “fill” in the papillary insertions and curve fitting of the surface improves agreement (R2) with fractional area change of the

corresponding long-axis view. Dotted lines represent the 95% confidence interval of the linear fit.

(IQR: 63.6–74.2%) and abnormal studies had an EF of 49.0%

(IQR: 26.0–56.0%).

Automated, DL approach successfully analyzed 48/50

patients in the training cohort and 47/50 in the testing cohort.

The five failures occurred due to incorrect prediction of long-

axis planes. In two of these five cases, the patients had a metal

prosthetic mitral valve.

84.6% (1,354/1,600) of segments were labeled identically

by all three reviewers. The interobserver agreement amongst

the three observers in terms of classifying a segmental wall

motion into normal vs. abnormal, measured via Fleiss’s Kappa,

was 0.746, which indicates strong agreement. Fleiss’s Kappa for

agreement in classifying a LAX video was 0.800 (0.791, 0.811,

and 0.797 for the 2, 3, and 4 CH views, respectively) and the value

for classifying a patient was 0.786.

Correction for papillary muscle artifacts

The papillary muscle artifacts and the rough endocardial

surface led to poor agreement between the fractional area

change and longitudinal strain (LS) when LS is measured
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FIGURE 5

WMA classification accuracy using LS in the training cohort. Receiver operating characteristic curves for the three long-axis views are shown for

the three LS methods (blue: naive, red: convex hull, orange: convex hull + curve fitting). The optimal operating point for the convex hull with

curve fitting is depicted by a black dot. The operating point of the convex hull with curve fitting in the testing cohort is shown by the black

diamond.

without use of the convex hull or surface smoothing (Figure 4).

Specifically, the R2 between fractional area change (FAC)

and LS is between 0.38 and 0.42 depending on the long-

axis view. When the convex hull is used to fill in the

voids created by papillary muscles, R2 increases (0.83–0.89,

Figure 4). Curve fitting of the endocardial surface leads

to a further increase in R2 (0.91–0.92, Figure 4). The

increase in R2 was statistically significant (p < 0.05) for

all views.

Determination of LS cuto�s and
classification performance in training
cohort

For all long-axis views, the area under the ROC curve

using the convex hull and curve fitting was high (0.957–0.984,

Figure 5) and the optimal threshold corresponded to a

100% specificity performance, accuracy >91.7% and sensitivity

between 84.2 and 90.0% There was a small range of

LS thresholds amongst LAX views with a higher cutoff

identified for the 2 CH view (−0.218) relative to the 3

and 4 CH views (−0.154 and −0.166, respectively). Per-

patient performance (95.8% accuracy, 90.0% sensitivity, 100%

specificity) was comparable to the values obtained for each

long-axis view.

We also evaluated the ability of a single threshold to

classify WMA across all long-axis views. When pooled,

LS thresholding had an area under the ROC of 0.965 and

the use of −0.170 as the cutoff led to 92.4% accuracy,

83.0% sensitivity, and 100% specificity. This led to

95.8% accuracy, 90.0% sensitivity, and 100% specificity

when classifying patients. Complete values are shown in

Table 2.

Per-study and per-video classification
performance in testing cohort

Using the convex hull and curve fitting approach, we then

applied the thresholds identified in the training cohort to the

testing population. The accuracy and specificity remained high

(>83.0 and>87.1%, respectively) when each view was evaluated

independently. Sensitivity ranged between 63.2% (4 CH view)

and 81.3% (2 CH view). This led to an overall accuracy in

classifying LAX views of 84.4% with a specificity of 92.0%.

The use of a single threshold had similar performance (85.1%

accuracy, 94.3% specificity). In both the individual and single

threshold case, the per-patient accuracy was 83.0% in the testing

cohort. Complete values are shown in Table 3.

Discussion

We demonstrate how deep learning (DL) segmentation of

the left atrial and left ventricular bloodpools can be combined

with automated prediction of the long-axis imaging planes to

automatically calculate longitudinal strain along each long-axis

view and detect wall motion abnormalities. In this study, we

applied the previously trained DL tool to our CT studies without

retraining or refinement and developed steps to extract LS from

the resulting data. To the best of our knowledge, this is the first

study to automatically quantify LS along long-axis views from

ECG-gated cardiac CT angiograms. To demonstrate the clinical
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TABLE 2 Use of training cohort for identification of LS cuto�s for WMA detection using the curve fitting approach.

Thresh AUC Acc Sens Spec PPV

Individual

threshold

2 CH −0.218 0.970

(0.914–1)

93.8

(89.9–100)

90.0

(76.9–100)

100 100

3 CH −0.154 0.984

(0.942–1)

91.7

(83.9–99.5)

84.2

(67.8–100)

100 100

4 CH −0.166 0.957

(0.892–1)

91.7

(83.9–99.5)

85.0

(69.4–100)

100 100

Per-LAX view 92.4

(88.0–96.7)

81.4

(71.4–91.3)

100 100

Per-patient 95.8

(90.2–100)

90.0

(76.9–100)

100 100

Single

threshold

Per-LAX view −0.170 0.965

(0.930–0.999)

92.4

(88.0–96.7)

83.1

(73.5–92.3)

100 100

Per-patient 95.8

(90.2–100)

90.0

(76.9–100)

100 100

Thresh, optimal threshold identified for classification; AUC, area under the receiver operating characteristic curve; Sens, sensitivity; Spec, specificity; PPV, positive predictive value; 2 CH,

two-chamber view; 3 CH, three-chamber view; 4 CH, four-chamber view; LAX, long-axis view. 95% confidence interval values are given in the parenthesis.

TABLE 3 Performance of LS in the testing cohort using the curve-fitting approach.

Thresh Acc Sens Spec PPV

Individual

threshold

2 CH −0.218 85.1

(74.9–95.3)

81.3

(62.1–100)

87.1

(75.3–98.9)

76.5

(56.3–96.6)

3 CH −0.154 85.1

(74.9–95.3)

73.7

(53.5–93.5)

92.9

(83.3–100)

87.5

(71.3–100)

4 CH −0.166 83.0

(72.2–93.7)

63.2

(41.5–84.9)

96.4

(89.6–100)

92.3

(77.8–100_

Per-LAX view 84.4

(78.4–90.4)

72.2

(60.3–84.2)

92.0

(86.2–97.7)

84.8

(74.4–95.2)

Per-patient 83.0

(72.2–93.7)

84.2

(67.8–100)

82.1

(68.0–96.3)

76.2

(58.0–94.4)

Single

threshold

Per-LAX view −0.170 85.1 (79.2–91.0) 70.4 (58.2–82.6) 94.3 (89.4–99.1) 88.4 (78.8–98.0)

Per-patient 83.0

(72.2–93.7)

79.0

(60.6–97.3)

85.7

(72.8–98.7)

79.0

(60.6–97.3)

Thresh, optimal threshold identified for classification; AUC, area under the receiver operating characteristic curve; Sens, sensitivity; Spec, specificity; PPV, positive predictive value; 2 CH,

two-chamber view; 3 CH, three-chamber view; 4 CH, four-chamber view; LAX, long-axis view. 95% confidence interval values are given in the parenthesis.

utility, we evaluated the ability of automated LS to detect WMA.

When applied to the testing cohort, the LS identifiedWMAwith

accuracy > 83.0% and specificity > 92.9%.

A single LS threshold value of −17.0% had similar

performance during the training phase as unique thresholds

for each long-axis view and higher performance in the testing

cohort. This LS cutoff is similar to those previously reported in

other populations and with other imaging methods. In a meta-

analysis of chemotherapy-induced cardiotoxicity, Oikonomou

et al. reviewed studies which had high-risk cutoff values of

−21.0 to −13.8% (3). Similarly, Kearney et al. found LS in

controls to be −21 ± 2% while patients with AS had LS

between −18 and −15% depending on the AS severity (4)

and Zhu et al. found mortality in AS patients was higher in

those with LS > −15.2% (5). Recently, Chen et al. reported

another automated method to detect wall motion abnormalities

using ECG-gated CT which relies on a volume rendering

approach (38). Our results are slightly lower than the per-patient

accuracy (93.5%), sensitivity (91.9%), and specificity (94.7%)

reported in this prior work. This is likely due to the fact that
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LS provides a single metric of performance which may mask

subtle abnormalities.

This method could add to the clinical interpretation of

cardiac CT angiograms by serving as an aid for expert readers.

It is also likely that providing the LS score for each view is

of value. For example, reporting the LS score along with the

relevant cutoff would enable the expert to gain a sense of

both the prediction of the algorithm as well as the confidence

of the prediction. Also, it is possible that a high sensitivity

threshold provides more clinically useful predictions, especially

if applied to patients in a screening type of setting. However,

this utility is left for future studies. Full R-R ECG-gated

imaging has higher dose than obtaining only a single phase.

This can be partially mediated by dose modulation. Twenty-

five percentage of the studies evaluated in this study had mA

reduction of >50% during the cardiac cycle without an impact

on clinical interpretability.

While the development of the deep learning segmentation

required specialized graphics hardware, the use of the DL and

the subsequent LS processing can be easily incorporated into a

clinical pipeline and can be readily performed on conventional

computers. Further, there are additional metrics that can be

readily obtained from this tool, such as the mitral annular plane

systolic excursion (MAPSE). However, the extraction and utility

of such metrics is left for future studies.

As mentioned, 3D methods to measure endocardial

displacement using ECG-gated CT have been previously

described (18–21). Solving for endocardial displacement is

computationally intensive and delineating the endocardial

surface throughout the chamber can be time-intensive.

However, recent work aims to avoid these limitations (39).

Therefore, our streamlined, automated approach could serve as

an initial check to determine whether more extensive assessment

is needed.

Our study had several limitations. First, our single

site/scanner study only evaluated studies which had global

function reported on radiology reports. These factors could

introduce biases and motivate a dedicated study to validate our

findings in an external, broader cohort across multiple vendors.

However, detailed evaluation of wall motion abnormalities in

a standardized, AHA segment fashion is not readily available.

Second, the DL segmentation failed to produce accurate

segmentations and/or long-axis imaging planes in 5/100 patients

(n = 2 in the training cohort and n = 3 in the testing

cohort). The 95% success rate is likely sufficient for clinical

use, especially given that the result of the DL blood pool

segmentation and long-axis planes can be displayed to the

reader for review. Our study excluded studies with low image

quality, lead artifacts, and incomplete coverage of the LV as

the DL method developed by Chen et al. relied on these

exclusion criteria (25). Therefore, future work is needed to

determine the failure rate in a larger, more diverse, dataset.

Further, our approach identifies WMA using LS since the DL

segmentation only provides endocardial boundary information.

If epicardial segmentations were available, then other metrics

such as regional wall thickening could be measured. As a

retrospective study, paired echocardiography andMRI data were

not available. Future work should directly compare LS measured

with CT to these more-conventional methods. Lastly, LS is

correlated with other metrics of function such as fractional

area change (FAC) and ejection fraction (EF). Our study was

not designed nor powered to identify whether LS is a better

independent predictor of WMA than these other metrics but

others have documented the utility of LS (7, 9).

In conclusion, longitudinal strain (LS), typically measured

with MRI or echocardiography, has been previously shown to

be diagnostic and prognostic of several patient populations.

We leverage a recently developed deep learning approach

to automate LS estimation in ECG-gated CT angiograms

(cineCT) and demonstrate that LS can be used to detect wall

motion abnormalities.
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