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Inferring Microscopic Kinetic Rates from Stationary State
Distributions
Purushottam D. Dixit*,† and Ken A. Dill†

†Department of Systems Biology, Columbia University, New York, New York 10032, United States
‡Laufer Center for Physical and Quantitative Biology, Departments of Chemistry, and Physics and Astronomy, Stony Brook
University, Stony Brook, New York 11794, United States

ABSTRACT: We present a principled approach for estimat-
ing the matrix of microscopic transition probabilities among
states of a Markov process, given only its stationary state
population distribution and a single average global kinetic
observable. We adapt Maximum Caliber, a variational principle
in which the path entropy is maximized over the distribution of
all possible trajectories, subject to basic kinetic constraints and
some average dynamical observables. We illustrate the method by computing the solvation dynamics of water molecules from
molecular dynamics trajectories.

■ INTRODUCTION
We propose a method for inferring the kinetic rate matrix for
stochastic systems for which the steady state popuations are
known. The types of systems of interest include protein
folding,1−3 ion channels,4 molecular motors,5 the evolutionary
dynamics of protein sequences,6 the collective firing patterns of
neurons,7 or noisy gene expression.8 In such studies, stationary
probabilities {pi} of N stable states {i} are often known or
estimated from experimental data,6,7 detailed molecular
mechanics calculations,3 coarse grained theories,1,4 or from
Maximum Entropy.6,7,9−12 Moreover, suppose further that we
know some average global dynamical quantity, such as the
average mutation rate (number of amino acid changes per unit
time), the average current through an ion channel, or the
average number of neurons that change their state from spiking
to resting (and vice versa) per unit time step. How can we infer
the full distribution of microscopic state-to-state rates, given
just the stationary-state populations and one or more average
overall rate quantities?
More specifically, we are interested in a principled way to

solve the following under-determined “inverse” kinetics
problem. Consider a stationary and irreducible Markov process
among i = 1,2,3,...,N states. Suppose you know the following:
(a) the stationary state probability distribution, {pi} of the
occupancies of those states, and (b) the value ⟨w⟩ of some
dynamical observable w averaged over the ensemble of
stationary state trajectories. From these N + 1 quantities, we
want to infer the N × N microscopic transition probabilities,

= + = | =k P X t dt j X t i( ( ) ( ) )ij (1)

between those states.
While the stationary distribution indeed constrains the

transition probability matrix, it does not uniquely determine
it. Here, we develop a procedure based on the principle of
Maximum Caliber, a variant of the principle of Maximum

Entropy, that is applicable to dynamical processes.13,14 This
variational principle allows us to uniquely infer ∼N2 transition
probabilities that are consistent with ∼N imposed constraints.
First, we define the path entropy, S, over a given ensemble {Γ}

of trajectories Γ ≡ ... → i → j → k → l... as

∑= − Γ Γ
Γ

S p p( )log ( )
{ } (2)

Maximum Caliber is a variational principle that chooses a
unique probability distribution {P(Γ)} over trajectories from all
possible candidate distributions as the one that maximizes the
path entropy while otherwise satisfying the relevant stationary
and dynamical constraints.13−16

Consider an ensemble of stationary state trajectories {Γ} (see
above) having a total time duration T. Restricting our attention
to first-order Markov trajectories allows us to greatly simplify
the path entropy and carry out our analysis in terms of
trajectories of single steps, i → j.2,17−19 The Markov property
implies that the probability of any particular trajectory Γ can be
expressed in terms of the transition probabilities {kij},

Γ = ··· · · ···P k k k( ) ij jk kl (3)

The path entropy of the above ensemble is directly propor-
tional to the total duration T of the trajectory. The path
entropy per unit time is given by20,21

∑= −S pk klog
i j

i ij ij
, (4)

The microscopic transition probabilities of any Markov
process are subject to two types of constraints. First, from state
i at time t, the system must land somewhere at time t + dt.
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Second, a system in state j at time t + dt must arrive f rom
somewhere, so

∑ ∑= ∀ = ∀k i p pk j1 and
j

ij j
i

i ij
(5)

Third, we require one additional constraint that is global, that
is, averaged over the entire ensemble of trajectories. We fix the
path ensemble average of some dynamical quantity w. The
average ⟨w⟩Γ over any given stationary trajectory Γ is given by

⟨ ⟩ = + + + +Γw
T

w w w
1

(... ...)ij jk kl (6)

The path ensemble average ⟨w⟩ is

∑⟨ ⟩ = Γ ⟨ ⟩
Γ

Γw P w( )
(7)

Since Γ is a stationary state trajectory, the path ensemble
average ⟨w⟩ of eq 7 simplifies to

∑⟨ ⟩ =w pk w
i j

i ij ij
, (8)

Maximization of the path entropy subject to these three
constraints can be expressed equivalently in terms of max-
imization of a quantity called the Caliber :14

∑ ∑ ∑

∑ ∑ ∑γ

= − + −

+ − − − ⟨ ⟩

pk k a pk p

l pk p pk w w

log ( )

( ) ( )

i j
i ij ij

i
i

j
i ij i

j
j

i
i ij j

i j
i ij ij

,

, (9)

where γ is the Lagrange multiplier associated with the
constraint ⟨w⟩ and {ai} and {li} enforce the to-somewhere
constraint and the f rom-somewhere constraint, respectively.
To solve for the matrix kij of transition probabilities, we take

the derivative of the Caliber with respect to kij and equate it
to zero. This gives

γ
β

λ+ * = + − ⇒ * = γ−p k a p l p pw k
p

(1 log ) ei ij i i j i i ij ij
i

i
j

wij

(10)

where we have made the substitutions: eai−1 = βi/pi and elj = λj.
The values kij* are the transition probabilities that satisfy the
constraints and otherwise maximize the caliber. For simplicity
of notation, we drop the superscript * in the remainder of this
paper, that is, kij* ≡ kij.
In this problem, the values of pi are given. To compute the kij

values, we first must determine the values of the Lagrange
multipliers βi, λj, and γ. We do so by substituting the constraint
relations mentioned above.
Determining the Lagrange Multipliers. For a given

value of γ, the modif ied Lagrange multipliers βi and λj are
determined by satisfying the to-somewhere and f rom-somewhere
conditions indicated above. From eqs 5

∑

∑ ∑

∑

β
λ

β
λ

β
λ

λ
β

=

= ⇒ =

=

p
W

p p
p

W
p

W

p
W

1 and

and

j

i

i
j ij

j
i

i
i

i
j ij

i

i j
j ij

j

j i
i ij

(11)

where e−γwij = Wij. Equation 11 can be simplified if we define a
nonlinear operator D over column vectors x ̅ = [x1,x2,...]

T as
D[x]̅i = pi/xi. We have

λ β β λ̅ = ̅ ̅ = ̅W D W D[ ] and [ ]T (12)

where λ ̅ = [λ1,λ2,...]
T and β̅ = [β1,β2,...]

T are the column vectors
of Lagrange multipliers.
For a particular value of the Lagrange multiplier γ, eqs 12 can

be numerically and self-consistently solved for {βi} and {λi}. In
practice, we choose an appropriate γ by first constructing
transition probabilities {kij} for multiple values of γ (see eq 10)
and choosing the value of γ that satisfies

∑ ∑ βλ⟨ ⟩ = = γ−w pk w we
i j

i ij ij
i j

i j
w

ij
, ,

ij

(13)

where ⟨w⟩ is the prescribed value of the ensemble average of
the dynamical quantity w.

Detailed Balance. So far, the treatment above is generally
applicable to nonequilibrium systems. However, if we are
interested in restricting our attention to systems in thermody-
namic equilbrium, we can impose an additional constraint that
the system must satisfy detailed balance, pikij = pjkji. In this case,
the Caliber can be expressed as

∑ ∑ ∑

∑ ∑ ∑

∑

γ

= − + −

+ − − − ⟨ ⟩

+ −

pk k a pk p

l pk p pk w w

d pk p k

log ( )

( ) ( )

( )

i j
i ij ij

i
i

j
i ij i

j
j

i
i ij j

i j
i ij ij

i j
ij i ij j ji

,

,

, (14)

Here, dij are Lagrange multipliers that impose the detailed
balance condition. Differentiating with respect to kij and setting
the derivative to zero, we find (see eq 10)

γ
β

λ δ

+ = + − + − ⇒

= γ−

p k a p l p pw p d d k

p

(1 log ) ( )

e

i ij i i j i i ij i ij ji ij

i

i
j

w
ij

ij

(15)

where δij = edij−dji = 1/δji.
Now we have to determine the modified Lagrange

multipliers βi, λj, δij, and γ from the imposed constraints. Let
us first impose detailed balance to determine δij. We have

β
λ δ βλ δ βλ δ= = = =γ γ γ− − −pk p

p
p ke e ei ij i

i

i
j

w
ij i j

w
ij j ji j i

w
ji

ij ij ji

(16)

Since δij = 1/δji, we have

δ
βλ

βλ
βλ βλ= ⇒ =γ γ γ+ − − +k

p
e

1
eij

j i

i j

w w
ij

i
i i j j

w w/2( )ij ji ij ji

(17)

In eq 17, identifying ρi = (βiλi)
1/2,

ρρ
=k

p
Wij

i j

i
ij
sym

(18)

where e−γ/2(wij+wji) = Wij
sym is the symmetrized form of Wij = e−γwij

(see above). It is easy to see that kij in eq 18 satisfies detailed
balance. The Lagrange multipliers ρ̅ = [ρ1,ρ2,...,ρN] and γ are
determined by the same procedure as described above. We have
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∑ ∑ ∑ρ
ρ ρ

ρ
= ⇒ = ⇒ =k

p
W W

p
1 1

j
ij

j

i

i
j ij

j
ij j

i

i

sym sym

(19)

In other words, ρ̅ is the solution of the nonlinear equation

ρ ρ̅ = ̅W D[ ]sym (20)

and γ is determined by adjusting the path ensemble average

∑ ∑ ρρ⟨ ⟩ = = γ− +w pk w we
i j

i ij ij
i j

i j
w w

ij
, ,

/2( )ij ji

(21)

■ AN ILLUSTRATION: COMPUTING THE DYNAMICS
OF A SOLVATION SHELL FROM SIMULATED
POPULATIONS

We now illustrate how the present MaxCal method can be used
to take a stationary-state distribution and a global dynamical
constraint and to infer microscopic kinetics. Consider a shell of
solvating water molecules surrounding a single water molecule.
The number, n(t), of water molecules in the hydration shell is a
quantity that fluctuates with time t (see Figure Figure 1). We

want to compute how fast the water molecules enter or exit the
solvation shell. If the time interval dt is small, n(t) and n(t + dt)
will be statistically correlated. Here, we construct a Markov
process to model the time series {n(t)}. We will require the
Markov process to reproduce (a) the stationary distribution
p(n) that is observed in molecular dynamics simulations, and
(b) the average change in occupancy Δ per time step of
duration dt, a path ensemble average (see Appendix for details
of molecular simulation). While the choice of dynamical
constraint(s) remains somewhat arbitrary, it is validated only a
posteriori. In other words, the constrain(s) is a modeling aspect
of any maximum entropy method.22 We have

∑Δ = ⟨| + − |⟩ = | − |n t dt n t i j p i k( ) ( ) ( )
i j

ij
, (22)

where n(t) = i and n(t + dt) = j.
Since the system should satisfy detailed balance, the

transition probability kij for a transition n(t) = i → n(t + dt)
= j is given by (see eq 18),

ρρ
=

γ− | − |

k
p i

e

( )ij
i j

i j

(23)

For a given value of γ, we determine the Lagrange multipliers
ρi from eqs 20 above. In order to determine the Lagrange
multiplier γ which dictates the rate of transition between states,
we first construct Markov processes for different values of γ.
Panel B of Figure Figure 2 shows that the path ensemble
average of the change in occupation number per unit time step

Δ is exponentially decreasing with γ. From trajectories sampled
at every 5 fs from the MD simulation, we find that experimental
trajectory average Δexpt = | + − |n t dt n t( ) ( ) ≈ 0.0629 which
corresponds to γ ≈ 3.29. From here onward, we use γ = 3.29
and construct the transition probabilities {kij} (see eq 23). Note
that the path ensemble average Δ and consequently the
Lagrange multiplier γ, depend on the time interval dt between
two observation (dt = 5 fs here).
From the Markov process constructed with γ = 3.29 (see

above), we now compute various dynamical quantities: (a) the
probability Pd of jump size d, (b) the occupancy autocorrelation
⟨δn(0),n(τ)⟩, and (c) the transition probabilities kij, and we
compare to those obtained directly from the MD simulation
trajectory. In general, the MaxCal method will be of value when
transitions are hard to simulate, such as for large kinetic
barriers. Here, we are just illustrating with a toy problem for
which we can determine the transition probabilities independ-
ently from the simulations.
From the long simulation trajectory, the probability Pd of

jump size is estimated as the histogram of d = n(t + dt) − n(t).
Here d could be both positive and negative. Pd is given by

∑= +P p n k( )d
n

n n d,
(24)

The normalized occupancy autocorrelation is simply the joint
probability that n(t) and n(t + τ) are equal. It is given by

δ
τ

⟨ ⟩ =
∑

∑τ
p n K

p n

( ) ( )

( )n n
n nn

n
(0), ( ) 2

(25)

where K(τ) = kτ is the τth power of the matrix of transition
probabilities {kij}.
In Figure 3 we plot Pd, ⟨δn(0),n(τ)⟩, and {kij} estimated from

the molecular dynamics trajectory and compare them to our
predictions from Markov modeling. Even though we con-
strained only the mean value Δ = ⟨|d|⟩ of Pd, the modeled
Markov process captures the entire distribution Pd with high
accuracy. Similarly the occupancy correlation ⟨δn(0),n(τ)⟩ is also

Figure 1. Hydration shell (black circle) around a central water
molecule (blue disc) is dynamically populated by other water
molecules in the bulk solvent medium (red discs). The probability,
p(n) that the hydration shell has exactly n water molecules is a key
quantity in determining the solvation free energy of liquid water.23,24

Figure 2. Panel A: The stationary distribution p(n) of the number of
water molecules in the hydration shell of radius r = 3.2 Å of a reference
water molecule. Panel B: The dependence of the ensemble average of
change in water occupancy number Δ = ⟨|n(t + dt) − n(t)|⟩ on the
Lagrange multiplier γ. We see that Δ depends exponentially on γ. A
higher γ implies slower dynamics and vice versa. We choose γ = 3.29
to match the observed Δ ≈ 0.0629 in the molecular dynamics
simulation.
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reproduced with high accuracy even though we did not utilize
any information about it when inferring the transition
probabilities of the Markov process. Moreover, our modeling
also accurately captures the individual transition probabilities
{kij} over 4 orders of magnitude.

■ DISCUSSION AND SUMMARY
We have presented here a variational approach that computes
N × N microscopic transition probabilities of a Markov process,
given only knowledge of a stationary state population
distribution and one trajectory-averaged dynamical property.
In this approach, we maximize the path entropy subject to
constraints; that is, we maximize the Caliber. We show that this
method gives correct values of dynamical quantities in an
example of molecular dynamics simulations of a water solvation
shell around a single water molecule. This method may be
useful for analyzing single-molecule experiments such as on ion
channels,4 dynamics of neuron firing,7 and the dynamics of
protein-sequence evolution,6 for example.

■ APPENDIX I: MD SIMULATION
We performed a molecular dynamics simulation on 233 water
molecules25,26 at 300 K and at a constant volume using
NAMD27 with help of the Langevin thermostat. The oxygen
atom of one of the water molecules was fixed at the origin. The

time step of integration was 1 fs and the trajectory was stored
every 5 fs. Sampling the trajectory every 5 fs ensures that
correlations in n(t) have not vanished.
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