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Abstract: A search for resonances produced in 7 TeV proton-proton collisions and decay-

ing into top-quark pairs is described. In this Letter events where the top-quark decay pro-
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at the Large Hadron Collider are considered. Two techniques that rely on jet substructure

are used to separate top-quark jets from those arising from light quarks and gluons. In ad-

dition, each massive jet is required to have evidence of an associated bottom-quark decay.

The data are consistent with the Standard Model, and limits can be set on the production

cross section times branching fraction of a Z ′ boson and a Kaluza-Klein gluon resonance.

These limits exclude, at the 95% credibility level, Z ′ bosons with masses 0.70-1.00 TeV as

well as 1.28-1.32 TeV and Kaluza-Klein gluons with masses 0.70-1.62 TeV.

Keywords: Hadron-Hadron Scattering

Open Access, Copyright CERN,

for the benefit of the ATLAS collaboration

doi:10.1007/JHEP01(2013)116

mailto:atlas.publications@cern.ch
http://dx.doi.org/10.1007/JHEP01(2013)116


J
H
E
P
0
1
(
2
0
1
3
)
1
1
6

Contents

1 Introduction 1

2 ATLAS detector 3

3 Data and Monte Carlo samples 3

4 Event selection and physics object reconstruction 4

5 The HEPTopTagger algorithm 5

6 The Top Template Tagger method 9

7 Background estimates 12

7.1 Background determination for the HEPTopTagger analysis 12

7.2 Background determination in the Top Template Tagger analysis 15

8 Systematic uncertainties 19

9 Results 24

10 Conclusions 26

The ATLAS collaboration 34

1 Introduction

Many models of new phenomena beyond the Standard Model (SM) predict resonances in

the TeV mass range that decay primarily into top-antitop quark pairs1 (tt̄). This Letter

reports on a search for such phenomena in proton-proton (pp) collisions at the Large Hadron

Collider (LHC) where both top quarks are reconstructed in their fully hadronic final states

and have large transverse momentum (pT). The decay products of each high-pT top quark

are collimated and merge into one jet with large invariant mass.

Previous searches mostly considered cases where in one or both of the top-quark decays,

the intermediate W boson decays leptonically and hence the top-quark decays result in one

or two isolated leptons, missing energy from the neutrinos, and jets in the final state [1–8].

The requirements of a well-identified charged lepton isolated from nearby hadronic energy

deposits and missing transverse energy reject a large fraction of background from multijet

production. However, difficulties arise in these final states when the top-quark decay

1In the following “top quark” refers to both the top quark and its anti-particle.
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particles are collimated, since leptons from the top-quark decay are no longer isolated and

thus background contributions with lepton candidates originating from hadronic jets are

more difficult to distinguish from the signal.

An alternative approach that is reported in this Letter is to consider final states with

high-pT top quarks that decay hadronically and where the decay products are collimated in

the direction of the top-quark. Such searches require the top quarks to have pT in excess of

200-300 GeV and require rejection of the large background of gluon jets, light-quark jets, as

well as c- and b-jets. The CMS Collaboration employed this technique in a recent study [9].

In the present analysis, two complementary algorithms are used to identify top-quark

decays and reconstruct the top-quark momentum for data collected with the ATLAS

detector at a centre-of-mass energy of 7 TeV. The first algorithm is the HEPTopTag-

ger method [10, 11] that tests the substructure of a jet reconstructed with the Cam-

bridge/Aachen (C/A) algorithm [12] with a large distance parameter R = 1.5 (“fat jets”)

for its compatibility with a hadronic top-quark decay. This method is effective in identify-

ing top-quark jets with pT > 200 GeV. The second algorithm is the Top Template Tagger

method [13, 14] that uses a large set of possible patterns of energy deposits (templates) from

hadronic top-quark decays to identify the best match to the observed energy deposits. The

quality of the match is used to reject light quark and gluon jets. The Top Template Tagger

uses jets reconstructed with the anti-kt algorithm [15] with a smaller distance parameter

of R = 1.0 and is optimised to identify top quarks with pT > 450 GeV. The invariant

mass distributions of the tt̄ pair candidates identified using each algorithm are examined

for evidence of resonance structure.

Two specific models that predict resonances of masses m with narrow and broad decay

widths Γ are considered: leptophobic topcolour Z ′ bosons with Γ/m = 1.2% [16] and

Kaluza-Klein (KK) gluons from the bulk Randall-Sundrum model (RS)2 with Γ/m =

15.3% [17–19]. The theoretical cross sections for the Z ′ boson model and the bulk Randall-

Sundrum model (RS) are calculated with the Pythia v6.421 MC generator [20] and the

Madgraph v4.4.51 [21] MC generator, respectively. A k-factor of 1.3 is applied to the

Z ′ boson cross sections to account for NLO effects [22]. Recent results from the ATLAS

Collaboration in the lepton plus jets channel [7, 8] exclude Z ′ bosons (KK gluons) with

masses 0.5-1.15 TeV (0.5-1.5 TeV) at 95% credibility level (CL). The CMS Collaboration

obtained similar results [9, 23] excluding 0.50-1.49 TeV for narrow (Γ/m = 1.2%) Z ′ signals,

0.50-2.04 TeV for broad (Γ/m = 10%) Z ′ signals, and 1.00-1.82 TeV for KK gluon signals.

This Letter is organised as follows: section 2 describes the ATLAS detector and sec-

tion 3 summarises the data samples and Monte Carlo (MC) event generators used in the

analysis. The event selection and the definition of the reconstructed objects are given

in section 4. The HEPTopTagger and Top Template Tagger algorithms are described in

section 5 and section 6, respectively. Estimates of the background rates and systematic

uncertainties are given in section 7 and section 8, respectively. In section 9 the resulting

tt̄ mass spectrum and exclusion limits are presented.

2The left-handed (gL) and right-handed (gR) couplings to quarks in this model are: gL = gR = −0.2gS
for light quarks including charm, where gS =

√
4παs; gL = gS and gR = −0.2gS for bottom quarks; and

gL = gS and gR = 4gS for the top quark.
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2 ATLAS detector

The ATLAS detector [24] at the LHC [25] covers nearly the entire solid angle3 around the pp

collision point. The inner tracking detector (ID) comprises a silicon pixel detector, a silicon

microstrip detector, and a transition radiation tracker, providing tracking capability within

|η| < 2.5. The ID is surrounded by a thin superconducting solenoid providing a 2 T axial

magnetic field and by liquid-argon (LAr) electromagnetic sampling calorimeters with high

granularity. An iron/scintillator tile calorimeter provides hadronic energy measurements

in the central rapidity range (|η| < 1.7). The end-cap and forward regions, covering 1.37 <

|η| < 4.9, are instrumented with LAr calorimeters for both electromagnetic and hadronic

energy measurements. The calorimeter system is surrounded by a muon spectrometer

incorporating three superconducting toroid magnet assemblies.

A three-level trigger system is used to select the events for subsequent analysis. The

level-1 trigger is implemented in hardware and uses a subset of the detector information

to reduce the rate to at most 75 kHz. This is followed by two software-based trigger levels

that together reduce the event rate to a maximum of 400 Hz.

3 Data and Monte Carlo samples

The analysis is performed using pp collision data collected in 2011 corresponding to an

integrated luminosity of 4.7±0.2 fb−1 [26, 27]. With the increasing instantaneous luminosity

of the LHC, the average number of simultaneous pp interactions per beam crossing (pile-

up) at the beginning of a given fill of the LHC increased from about 6 to 17 during the

2011 data-taking period. The 2011 data pile-up conditions are included in the Monte

Carlo simulation.

The main background contributions to a resonant signal in the tt̄ channel consist of SM

tt̄ production and multijet events from gluon and non-top-quark production. Fully hadronic

SM tt̄ production is simulated using the MC@NLO v4.01 generator [28, 29] with CT10

parton distribution functions (PDFs) [30] and assuming a top-quark mass of 172.5 GeV.

Final-state parton showers are simulated and hadronised using the Herwig v6.5 [31] pro-

gram in association with the Jimmy underlying event model [32]. A tt̄ production cross

section of 167 pb is used, calculated at approximate next-to-next-to-leading order (NNLO)

in QCD using the Hathor v1.2 Monte Carlo program [33]. This prediction employs the

MSTW2008 NNLO PDF sets [34].

The other background contributions, dominated by multijet events arising from the

production of light quarks and gluons, but also including smaller background contributions

such as W+jets production and any remaining contributions from tt̄ events where one of

the top quarks decays semileptonically (lepton+jet events), are estimated from data in

signal-depleted control regions. These are referred to as the multijet background in the

3ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse

(x, y) plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of

the polar angle θ as η = − ln tan(θ/2). Distances in (η, φ) space are given as ∆R =
√

(∆φ)2 + (∆η)2.
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following. Cross-checks of these background estimates are performed using Pythia [35]

MC dijet samples.

Simulated signal samples for the pp→ Z ′ → tt̄ process are produced using the Pythia

v6.421 MC generator with MSTW2008 PDFs [34]. KK gluon final states are generated

with the Madgraph v4.4.51 [21] MC generator with CTEQ6L1 PDFs [36] and using

the Pythia MC to model the parton shower and hadronization. These are calculated with

leading-order matrix elements. Possible interference effects between the tt̄ resonances and

the SM tt̄ continuum are not taken into account.

The generated events are passed through a full simulation of the ATLAS detector [37]

based on Geant4 [38] and then processed with the same reconstruction algorithms used

for the pp collision data events.

4 Event selection and physics object reconstruction

The events for this analysis are selected with triggers matched to efficiently identify colli-

sions that meet the subsequent selection requirements. The trigger for the HEPTopTagger

selection uses the logical OR of two triggers based on jets defined using the anti-kt algo-

rithm with a distance parameter R = 0.4. The first one requires the transverse energy

(ET) of at least one jet to satisfy ET > 100 GeV and the scalar sum of all jets to satisfy∑
ET > 350 GeV (> 400 GeV for later data-taking periods). The second trigger requires at

least five jets with ET > 30 GeV. The combined single-jet and
∑
ET trigger is useful as it

does not rely on the precise topology of the tt̄ decay, which may change due to the splitting

and merging of jets, but relies mainly on the total energy deposited in the calorimeter.

The high-jet-multiplicity trigger is used to increase the efficiency at low tt̄ invariant mass

(mtt̄) where the top-quark decay products are often reconstructed individually at trigger

level. The trigger for the Top Template Tagger selection requires an event to have at least

one anti-kt jet with a distance parameter R = 1.0 and ET > 240 GeV.

The events for both tagger selections are required to have a primary vertex with at

least five tracks with pT > 0.4 GeV. In the case of multiple vertex candidates the primary

vertex is defined as the one with the largest
∑
p2

T of the tracks associated with it.

The analysis uses various jet-finder algorithms and distance parameters to recon-

struct top-quark candidates and to suppress background. These jets are formed from

topologically-related calorimeter energy deposits (‘topoclusters’) [39, 40] using the Fast-

Jet software [41, 42]. The topoclusters are calibrated using the local cluster weighting

method (LCW [43]).

Events for the HEPTopTagger selection are required to contain at least two fat jets

with pT > 200 GeV and |η| < 2.5. Each of these fat jets is subjected to the HEPTopTagger

algorithm (explained in detail in the following section), which either rejects the jet as

being incompatible with a hadronic top-quark decay or reconstructs a top-quark candidate

four-momentum. To ensure high reconstruction efficiency, only top-quark candidates with

pT > 200 GeV are considered in the following.
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Events for the Top Template Tagger selection are required to have at least two jets

reconstructed with the anti-kt algorithm with a distance parameter of R = 1.0, with one

jet with pT > 500 GeV and |η| < 2.0, and a second jet with pT > 450 GeV and |η| < 2.0.

In both selections, the leading and next-to-leading jets are required to satisfy one of the

top-quark tagging algorithms. The tt̄ invariant mass is constructed from the four-momenta

of these two top-quark candidates.

To further suppress background events in which multiple light-quark and/or gluon jets

satisfy the kinematic requirements, a neural-network-based b-tagging algorithm is used [44].

This algorithm uses information on the impact parameter, the secondary vertex, and the

decay topology as its input.

Candidate b-quark jets are defined using the anti-kt algorithm with a distance param-

eter R = 0.4, with each jet calibrated to the energy scale of hadronic jets [40]. These b-jets

must satisfy the requirements pT > 25 GeV and |η| < 2.5. In addition, more than 75% of

the transverse momentum of the tracks associated with the jet must be carried by tracks

with pT > 0.5 GeV originating from the primary vertex. In the HEPTopTagger (Top Tem-

plate Tagger) selection, the b-quark candidates must lie within ∆R = 1.4 (1.0) of a fat jet

axis such that each tagged top-quark jet is associated with a unique b-quark tagged jet.

The b-tagging efficiency for b-jets from decays of high-pT top quarks ranges from 50% to

70%, decreasing with increasing jet pT because of the increasing collimation of the charged

particles in the jet. With the same algorithm, about 3.5% (7%) of light-quark and gluon

jets are mistagged as b-jets at pT = 200 GeV (pT = 1 TeV).

Additional data quality criteria are applied, rejecting events that contain anti-kt R =

0.4 jets that are identified as likely resulting from instrumental failure or non-collision

background (e.g. cosmic rays, beam gas and beam halo) [40].

The selected event samples are made complementary to samples used in searches for tt̄

resonances in the lepton+jet and dilepton channels by rejecting events that contain at least

one isolated electron (with pT > 25 GeV) or muon candidate (with pT > 20 GeV) [45].

5 The HEPTopTagger algorithm

The HEPTopTagger method is designed to reconstruct hadronically decaying top quarks

that are sufficiently boosted for their decay products to lie inside a single fat jet. The

performance of the HEPTopTagger has been studied extensively using ATLAS pp collision

data and simulated events [46].

The HEPTopTagger method operates on a fat jet that has been constructed using the

C/A jet algorithm. The same algorithm is employed to re-cluster the fat jet constituents

into subjets. Previous studies [47] have shown that, compared to the kt and SISCone [48]

jet finders, the C/A algorithm provides the best signal efficiency and background rejection

in the presence of underlying event activity for top-quark taggers like the HEPTopTagger.

In the following the term “top-quark candidate” refers to the object resulting from the

HEPTopTagger procedure.
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The main steps of the method are described in the following; for a detailed description

see ref. [11]. In a first phase, the input fat jet is split into subjets by undoing the last

C/A clustering steps. This procedure is repeated until all subjet masses are below 50 GeV.

These subjets form the basis of the substructure analysis. All combinations of three subjets

(“triplets” in the following) are tested for compatibility with a hadronic top-quark decay

using the following procedure. First, contributions from the underlying event and pile-up

are removed in a filtering step: The C/A algorithm is re-run on the topoclusters of the

triplet subjets with a distance parameter equal to half of the smallest pair-wise distance

between the triplet subjets (but at most 0.3), and only the resulting five most energetic

subjets are kept; the remaining activity is discarded. More than three subjets are poten-

tially retained to account for possible QCD radiation in order to improve the reconstruction

of the top-quark decay.

The constituents of those five subjets are then re-clustered exclusively [42, 49] into

three subjets again using the C/A algorithm. The reconstructed energy of the subjets is

calibrated to the energy of the incoming hadron jet using a simulation of the calorimeter

response to particle jets [40]. The three sub-jets are then tested for compatibility with

being products of a t → Wb → q′q̄b decay, using invariant mass ratios. If the mass ratio

requirements are met, the top-quark candidate four-momentum is obtained by summing

the four-momenta of the subjets. The invariant mass mt of the top-quark candidate is

required to lie in the range from 140 to 210 GeV, otherwise this triplet is discarded. If a

top-quark candidate is found in more than one triplet, only the one with its mass closest

to the measured top-quark mass [50] of 172.3 GeV is used.

Distributions are shown in figure 1 of the mean reconstructed top-quark candidate

mass (a) and the reconstructed tt̄ mass averaged over the whole mass spectrum (b) as a

function of the average number of interactions per bunch-crossing for data and simulated

tt̄ events. The events are required to satisfy the HEPTopTagger selection and to have two

top-quark candidates. No systematic shift of the mass with increased pile-up is observed

within the statistical uncertainties.

The reconstructed tt̄ mass predicted by the MC simulations for various Z ′ and

KK gluon masses is shown in figure 2.

The total selection efficiency including both the HEPTopTagger and b-tagging require-

ments is given in table 1 for various Z ′ boson and KK gluon masses, in events where

the top quarks decay hadronically. The efficiency is dominated by the top-tagging and

b-tagging efficiencies, which vary as a function of the top- and bottom-quark momenta and

are limited from above by

ε2
b-tag, max · ε2

top-tag, max ≈ 10%, (5.1)

where εb-tag, max is the maximum b-tagging efficiency of 80% and εtop-tag, max is the max-

imum top-tagging efficiency of 40% for hadronically-decaying top quarks. The efficiency

drops for higher masses because of the decreasing b-tagging efficiency.
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Figure 1. Distributions of (a) mean HEPTopTagger top-quark candidate mass and (b) mean

reconstructed tt̄ mass as a function of the average number of interactions per bunch-crossing, 〈µ〉,
for data and simulated tt̄ events with the full selection applied. Only statistical uncertainties are

shown.
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Figure 2. Distributions of the reconstructed tt̄ mass predicted by MC simulations for (a) Z ′ boson

and (b) KK gluon benchmark models with various mass values for the HEPTopTagger analysis with

the full selection applied. For each model, σ(pp→ Z ′/KK gluon)×BR(Z ′/KK gluon→ tt̄) is fixed

to 1 pb and an integrated luminosity of 4.7 fb−1 is assumed.
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Model Total Efficiency (%)

HEPTopTagger Template Tagger

Z ′ (0.5 TeV) 0.03± 0.01 —

Z ′ (0.8 TeV) 2.96± 0.08 —

Z ′ (1.0 TeV) 4.76± 0.09 0.48± 0.05

Z ′ (1.3 TeV) 5.67± 0.11 6.37± 0.13

Z ′ (1.6 TeV) 5.40± 0.10 8.13± 0.16

Z ′ (2.0 TeV) 4.44± 0.10 6.26± 0.13

gKK (0.7 TeV) 1.70± 0.13 —

gKK (1.0 TeV) 4.13± 0.21 0.74± 0.10

gKK (1.3 TeV) 5.14± 0.23 5.02± 0.25

gKK (1.6 TeV) 4.72± 0.22 6.43± 0.26

gKK (2.0 TeV) 4.44± 0.22 5.22± 0.21

Table 1. Total efficiency (in %) for selecting Z ′ bosons and KK gluons (gKK) that have decayed to

tt̄ pairs. These are the efficiencies determined by the MC calculations divided by the SM branching

fraction of 46% for both top quarks to decay hadronically. All uncertainties are statistical only.

6 The Top Template Tagger method

The Top Template Tagger method [13, 14] is based on the concept that an infrared-safe

set of observables can be defined that quantify the overlap between the observed energy

flow inside a jet and the four-momenta of the partons arising from a top-quark decay. An

“overlap function” ranging from 0 to 1 is defined that quantifies the agreement in energy

flow between a given top-quark decay hypothesis (a template) and an observed jet. One

then cycles over a large set of templates chosen to cover uniformly the 3-body phase space

for a top-quark decay at a given pT and finds the template that maximises this overlap,

denoted as OV3. A requirement of OV3 > 0.7 is made.

Sets (or “libraries”) of approximately 300,000 templates are generated in steps of top-

quark pT of 100 GeV starting from 450 GeV by calculating the parton-level daughters for a

top quark in its rest frame and then boosting the daughters to the pT of the given library.

Studies of the top-quark jet tagging efficiency using MC data and of light quark/gluon jet

rejection observed in the data were used to determine the size of the pT steps and the min-

imum number of templates for each library that maximise the top-quark tagging efficiency

while retaining high rejection against light quark/gluon jets. For each jet candidate, the

overlap function is defined as

OV3 = max
{τn}

exp

[
−

3∑
i=1

1

2σ2
i

(
Ei −

∑
∆R(topo,i)

<0.2

Etopo

)2
]
, (6.1)

where {τn} is the set of templates defined for the given jet pT, Ei are the parton energies of

the top-quark decay daughters for the given template, Etopo is the energy of a topocluster,

– 9 –
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Figure 3. The OV3 distributions for the leading jets in the 2 TeV Z ′ → tt̄ MC sample, a multijet-

dominated 2011 data sample, and the multijet MC sample. The data and multijet MC distributions

are from the samples prior to making any b-tagging or jet mass requirements on either jet, and so

are dominated by light quark/gluon jets.

and ∆R(topo, i) is the η − φ distance between the ith parton and a given topocluster.

The first sum is over the three partons in the template and the second sum is over all

topoclusters that are within ∆R(topo, i) = 0.2 and that have pT > 2 GeV. The weighting

variable is

σi = Ei/3. (6.2)

The three tunable parameters in the OV3 calculation — the size of the cone used to

match topoclusters with the parton, the minimum pT requirement on the topocluster, and

the weight σi — have been determined from studies of the tagger’s performance judged by

tagging efficiency and background rejection. The overall performance is insensitive to the

specific parameter values chosen. The OV3 distributions for a Z ′ MC sample, a multijet-

dominated 2011 data sample, and the multijet MC sample are shown in figure 3, illustrating

the separation of top-quark jets from the light quark/gluon jets in the large OV3 region.

The jet mass, mj , defined as the invariant mass of the topoclusters added together

as massless four-momenta [51], has been shown to be an effective discriminant between

top-quark jets and light quark/gluon jets, even in the presence of multiple pp interac-

tions [52, 53]. A data-driven pile-up correction scheme for the jet mass is used, which

measures the average mass shift experienced by jets using the flow of energy far from the

jet as a function of the number of multiple interactions in the event [54, 55]. The discrimi-

nation of the pile-up-corrected jet mass between light quark/gluon jets and top-quark jets

is illustrated in figure 4 for the leading and next-to-leading (or recoil) jet in the MC events

that satisfy the Top Template Tagger selection.

The jet mass mj is required to be within ±50 GeV of the top-quark mass.

– 10 –



J
H
E
P
0
1
(
2
0
1
3
)
1
1
6

Leading Jet Mass [GeV]

0 100 200 300 400

A
rb

itr
ar

y 
U

ni
ts

 / 
10

 G
eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
tt

Multijet

ATLAS Simulation

Top Template Tagger

 = 7 TeVs

(a)

Recoil Jet Mass [GeV]

0 100 200 300 400

A
rb

itr
ar

y 
U

ni
ts

 / 
10

 G
eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
tt

Multijet

ATLAS Simulation

Top Template Tagger

 = 7 TeVs

(b)

Figure 4. Pile-up-corrected jet mass distribution in the multijet and tt̄ MC samples for (a) the

leading and (b) recoil jets. In both cases, the jet mass requirement has been applied on the opposing

jet in the event. The distributions are independently normalised to unit area.
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The jet mass and OV3 > 0.7 requirements together have a rejection power of ∼ 10 for

light quark/gluon jets that satisfy the kinematic requirements imposed on the jets, based

on studies of samples dominated by light quark/gluon jets, with an overall MC efficiency

for selecting top-quark jets of ∼ 75%. Although OV3 and mj are found to be correlated for

a given jet, the addition of the jet mass requirement increases the rejection against light

quark/gluon jets after an OV3 requirement by a factor of two. The combination of the OV3

and mj requirements is therefore the core element of the Top Template Tagger.

To verify that the tagger behaviour on top-quark jets is well modelled in the MC

simulations, an auxiliary analysis of the Top Template Tagger sample is performed in

which the mj and OV3 requirements are relaxed on the leading jet. The resulting jet mass

distribution, shown in figure 5(a), illustrates a clear peak from top-quark jets on top of a

large background from light quark/gluon jets. The number of top-quark jets in this sample

is measured by performing a fit to the background and top-quark jet signal, where the

background shape is determined from those events where the b-tag requirement has been

removed from the recoil jet and the top-quark signal shape is obtained from the SM tt̄ MC

simulations. A smooth parameterisation has been used to describe the two distributions

in the fit. The number of top-quark jets that survive the jet mass and OV3 requirements

on the leading jet is determined by subtracting the background in the signal region. This

results in a measured efficiency of the jet mass and OV3 requirement on top-quark jets of

0.81±0.25, which is in agreement with the estimate from the MC simulations of 0.75±0.07

(both statistical and systematic sources of uncertainty are included).

A similar analysis can be performed, interchanging the role of the leading jet and the

recoil jet in the event. This results in the jet mass distribution shown in figure 5(b), and

in a top-quark tagging efficiency for the recoil jet of 0.62± 0.20, to be compared with the

MC prediction of 0.62± 0.05.

The overall efficiency of the Top Template Tagger selection on various signal samples

is summarized in table 1.

7 Background estimates

The background contributions for both tagging analyses are estimated using control regions

defined by loosening the selection requirements for top-quark candidates and for associated

b-tagged jets.

7.1 Background determination for the HEPTopTagger analysis

Six classes of events are created for the HEPTopTagger analysis, as outlined in table 2.

They depend on the number of top-quark candidates and b-tagged jets. Regions Y and Z

contain the events with at least two b-tags, with region Y (Z) additionally containing events

with one (two or more) top-quark candidate(s). Region Z constitutes the signal region.

The contribution of SM tt̄ production to each region is estimated from simulation and

validated with data in region Y as follows: the top-quark candidate mass distribution in

data, shown in figure 6, is fitted with the sum of a tt̄ template and a multijet background

template, to extract the tt̄ background fraction, exploiting the different shapes. The tt̄
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Figure 5. The jet mass distributions for the leading (a) and for the recoil (b) jet when all other

requirements have been made on the sample except the mass and OV3 requirements on the jet being

considered. The fits are described in the text.
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1 top-tag ≥ 2 top-tags

no b-tag U(0.3%) V(2.4%)

1 b-tag W(3.2%) X(24.3%)

≥ 2 b-tags Y(22.5%) Z(80.9%)

Table 2. The classes of events used to calculate the data-driven prediction for multijet background

events in the HEPTopTagger analysis. The numbers in parentheses are the estimated tt̄ purities in

each region, given by the expected number of events arising from SM tt̄ production divided by the

number of observed events in that region.
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Figure 6. The distribution of the HEPTopTagger top-quark jet candidate mass in the sideband

region Y for data, the templates for multijet background and SM tt̄ production and the fitted sum.

template is taken from simulation. The multijet background template is defined as the

data distribution in region W after subtracting the small contribution expected from SM

tt̄ production in that region.

The result is shown in figure 6. The selection of the top-quark candidate closest in

mass to the top-quark mass when multiple top-quark candidates are reconstructed causes

a small bias in the multijet background distribution, as seen in the figure. The ratio of

the fitted tt̄ event yield to the predicted yield is 1.01 ± 0.09, where the uncertainty is

statistical. This ratio is used to correct the normalisation of the SM tt̄ contribution in the

determination of the multijet background in the signal region. The resulting SM tt̄ yield

in signal region Z is estimated to be 770+220
−180 (stat.⊕syst.) events.

The multijet background is estimated by exploiting the fact that the number of b-tags

and the number of top-quark tags are uncorrelated for this background.4 The shape of the

4The HEPTopTagger does not use b-tagging information internally and hence the probability for a

multijet background event to fake a top-quark signal is independent of the probability for it to fake a
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multijet background for a given variable (e.g. mtt̄) is estimated from the weighted average

of the distribution of that variable in regions V and X, normalised by the yields in regions

U and W respectively, and scaled by the event count in region Y:

dnZ
dmtt̄

=

(
1

nU
× dnV

dmtt̄
+

1

nW
× dnX

dmtt̄

)
× nY

2
, (7.1)

in which ni is the number of events in region i after subtracting the expected SM tt̄

background normalised to the observed tt̄ yield. Hence the tt̄ and multijet background

contributions are anti-correlated. The resulting estimate for the multijet background in

the signal region is 130± 70 (stat.⊕syst.) events.

To check that the multijet and SM tt̄ background predictions are consistent with the

data and to illustrate that the HEPTopTagger identifies top-quark jets effectively, figures 7

and 8 show comparisons of predicted and observed distributions in the signal region: of the

fat-jet mass (figure 7(a)), the top-quark candidate mass (figure 7(b)), and the substructure

variables m23/m123 (figure 8(a)) and arctan(m13/m12) (figure 8(b)). In these ratios m123

is the invariant mass of all three subjets and mij is the invariant mass of subjets i and j,

where the subjets have been sorted by pT in descending order. The data are consistent

with the sum of the multijet and SM tt̄ background predictions for all distributions.

7.2 Background determination in the Top Template Tagger analysis

The multijet background for the Top Template Tagger analysis is estimated in a manner

similar to the HEPTopTagger analysis. Various control regions are used in order to reduce

biases resulting from the observed correlations in Top Template Tagger tagging efficiencies

between the recoil and leading jet.

The sample of events in the Top Template Tagger analysis prior to requiring either

top-quark tags or b-quark tags is divided into 16 discrete and non-overlapping subsamples,

as shown in figure 9. The jet mass requirement has been applied to both the leading

and recoil jets in all subsamples. An expected correlation in the masses of the leading

and recoil jets [56] leads to a non-negligible correlation in the top-quark tagging efficiency

for the two jets in dijet events. On the other hand, the b-quark tagging efficiency of the

two jets is uncorrelated. Jets produced from bb̄ pairs would create a small correlation,

but their overall rate is expected to be negligible in the samples used below to calculate

the multijet background.

The rate of multijet background events in the signal region (subsample P) is calculated

with an iterative method that uses the lack of correlation in b-tagging efficiencies between

the leading and recoil jets. In its simple form, a two-dimensional-sideband counting tech-

nique for background estimation requires events to be selected using pairs of uncorrelated

variables. For example, in our subsample grid, the top-tagging state of the leading jet is not

correlated to the b-tagging state of the recoil jet in multijet background events. Therefore,

the ratio of background events in region D to region C should be the same as the ratio of

background events in region B to region A. This relation can be used to predict the back-

ground rate in region D using the observed rates in the other three regions. The predicted

b-quark signal. This is verified using dijet MC samples.
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Figure 7. Signal region distributions of (a) the mass of the leading pT fat jet and (b) the mass

of the leading pT top-quark candidate. Also shown are the prediction for SM tt̄ production, the

multijet background contribution as estimated from data, and a hypothetical Z ′ boson signal.
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Figure 8. Signal region distributions of the top-quark candidate substructure variables m23/m123

(a) and arctan(m13/m12) (b). Also shown are the prediction for SM tt̄ production, the multijet

background contribution as estimated from data, and a hypothetical Z ′ boson signal.
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Figure 9. The 16 subsamples into which the Top Template Tagger data are divided, based on

whether the leading and recoil jets have a b-quark tag, and on whether they satisfy the Top Template

tag requirements of OV3 > 0.7. The jet mass requirement of |mj −mt| < 50 GeV is applied to both

jets for all subsamples. The colour coding (in the online version) reflects the anticipated level of

expected signal from both SM tt̄ production and possible production of tt̄ states through resonant

production: < 0.25% (light green: A,C,E), 0.25−10% (shades of yellow: B, D, F-J, O), and > 10%

(red: K-N).

number of SM tt̄ events in each subsample (which is of order 1% or less for each region

used in the background calculation) is subtracted before this calculation is performed.

A number of the subsamples (regions K, L, M, and N) can contain potential tt̄ con-

tributions from beyond-the-SM processes and therefore cannot be used in this method.

Furthermore, the AJOP grid cannot be used to predict the background rate in region P,

due to the correlation in the top-tagging rates for the leading and recoil jets. An iterative

calculation is performed: background rates in subsamples K and M are determined with

subsamples not potentially contaminated with top-quark jets, and these predicted rates are

then used in a subsequent step to predict the background rate in the Top Template Tagger

signal region:

K ′ = NJ ×
NF

NE
(7.2)

M ′ = NF ×
NO

NC
(7.3)

P ′ = K ′ × M ′

NF
=
NJ ×NO ×NF

NE ×NC
, (7.4)

where the NX in these equations are the observed number of events in subsample X and

K ′, M ′, and P ′ are the predicted multijet background contributions in the associated

subsample.
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Subsamples Predicted Events

(J × F ×O)/(E × C) 51± 3

(J × F ×H ×O)/(E ×D × I) 56± 6

(J × F ×H ×O)/(B × C ×G) 54± 6

(J × F × I ×O)/(A× C ×G) 51± 4

(J × F ×B ×O)/(A× E ×D) 52± 4

Average 53± 3

Table 3. Results of the different predictions for the multijet background rates in the Top Tem-

plate Tagger signal region. The table lists the calculation performed and the corresponding predicted

number of multijet background events. The uncertainties shown are statistical.

The prediction is verified through similar calculations using different combinations of

subsamples, as shown in table 3. The corresponding average of the predictions for the

dijet mass distribution from these calculations is shown in figure 10. The results from the

different calculations are in good agreement with one another, as shown by the envelope of

predictions in figure 10. The averages of the individual predictions as a function of the dijet

mass are used as the estimate of the rate and shape of the multijet background in the signal

region. An independent check of this multijet background estimate is made by using the

observed rate of jets in the events prior to making the Top Template Tagger requirements,

as shown in figure 5, and then using the measured rejection of light quark/gluon jets

to estimate the final background rate. The result, 55 ± 5 (stat.) events, is in excellent

agreement with the background estimate from the iterative calculation.

The SM tt̄ background in the signal region has been modelled using the SM Monte

Carlo calculation. This leads to an expected yield of 59+27
−26(stat.⊕syst.) events.

Figures 11 and 12 show the predicted and observed pT and jet mass distributions in

the Top Template Tagger signal region. There is good agreement between the observed

data and predicted background-only distributions.

8 Systematic uncertainties

The following systematic uncertainties are considered and propagated to the predicted mtt̄

distributions for both analyses. These are presented in order of their relative size, with

the b-tagging efficiency and the jet energy scale being the two largest sources of systematic

uncertainty.

The uncertainty due to the b-tagging efficiency [44, 57, 58] is evaluated by re-weighting

MC events according to uncertainties on the tagging efficiency and mistag rate for b-jets,

c-jets, and light-quark and gluon jets. The b-tagging efficiency has a maximum at pT ∼
100 GeV. The b-tagging efficiency uncertainty in the region pT < 200 GeV is determined

from data using muon-tagged b-jet candidates [44]. An additional systematic uncertainty

that can be as large as 50% for jets with pT > 800 GeV results from limitations in the

understanding of the tracking response in dense tracking environments. This additional

uncertainty is added in quadrature to the uncertainty measured from data for lower pT.
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Figure 10. The data-driven prediction of the tt̄ mass distribution for the multijet background

in the Top Template Tagger signal region. The points are the average prediction and statistical

uncertainties from the five calculations, and the envelope is the range of the predictions in each bin.

For the HEPTopTagger analysis differences in the jet energy scale (JES) between data

and simulation are determined from a comparison of the jet energy measured with the

calorimeter and the energy measured with charged tracks associated with the jet. The

differences vary between 2.3% and 6.8%, depending on the jet distance parameter, jet pT

and η. The differences have been studied independently in a sample of QCD dijet events

in which jets originate mainly from light quarks and gluons, and in a sample enriched in tt̄

events. For the latter sample, a lepton+jet tt̄ selection is made as described in ref. [46] and

a fat jet is required with pT > 200 GeV. According to simulation this sample consists of

40% tt̄ events. The remaining events are characterised by the production of W bosons in

association with light-quark and gluon jets. This sample has a mix of quark flavours similar

to the final sample in the present analysis and also exhibits the same boosted top-quark

decay topology in which the jets are close-by. A similar uncertainty is found for the QCD

dijet and tt̄-enhanced samples; the maximum value is used. The jet energy resolution

(JER) for the HEPTopTagger jets has been measured using the pT asymmetry in dijet

events. The impact of differences between data and simulation is evaluated by worsening

the resolution in simulation such that it corresponds to that measured in data.

The JES uncertainty for the jets used in the Top Template Tagger analysis ranges

between 4% and 5%, depending on the jet pT and η. The JER uncertainty has been

increased by 50% of that predicted by MC simulations to account for differences in the

JER measured in data and the simulations.

The PDF eigenvector approach is applied to determine the sensitivity of the resulting

invariant mass distribution to the PDF uncertainties. The envelope of the CT10 [30],
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Figure 11. Transverse momentum distributions for the leading (a) and recoil (b) jets in the

Top Template Tagger signal region. Shown are the data distribution, the predicted SM tt̄ contri-

bution and the multijet background contributions as estimated from data.
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Figure 12. Jet mass distributions (a) for the leading and (b) recoil jets in the Top Template Tagger

signal region. Shown are the data distribution, the predicted SM tt̄ contribution and the multijet

background contributions as estimated from data.
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MSTW2008 [59] and NNPDF2.0 [60] next-to-leading-order (NLO) PDF sets is used in

this procedure [61]. The uncertainty on the integrated luminosity is 3.9% [26, 27], which

affects the uncertainy on the resonance yield and the SM tt̄ background.

The uncertainty due to higher-order QCD corrections to the SM tt̄ background predic-

tion is assessed by using two alternative samples produced with the MC@NLO generator

in which the renormalisation and factorisation scales have been simultaneously increased

or decreased by a factor of two.

The impact on the shape of the mtt̄ distribution of the choice of models for QCD initial

and final state radiation (ISR/FSR) and for parton showers is evaluated for the tt̄ sample

by comparing two different simulated samples. The differences between the distributions

are symmetrised and taken as the systematic uncertainty. The variations considered are:

• ISR/FSR: AcerMC simulated [62, 63] samples with two different Pythia tunes for

the simulation of ISR/FSR.

• Parton shower model: two Powheg MC [64] simulated samples, one created using

the Herwig parton shower and hadronisation models and the other created with the

Pythia model.

The uncertainty on the mtt̄ distribution due to electroweak virtual corrections is esti-

mated by adding an additional uncertainty on the SM tt̄ differential cross section that is the

size of the expected reduction in the SM tt̄ production cross section as a function of mtt̄ [65].

The SM tt̄ normalisation uncertainty is treated differently in the two analyses due to

the different kinematic reach. In the statistical analysis of the HEPTopTagger results, the

normalisation of the tt̄ contribution is left to be constrained in the limit-setting procedure

within a variation from +100% to −50%. The width of the posterior variation is much

smaller. In the Top Template Tagger analysis the uncertainty on the SM tt̄ rate and the mtt̄

shape uncertainty are estimated for each systematic source. The theoretical uncertainty

on the SM tt̄ contribution is constrained to the 10% uncertainty on the production cross

section, convolved with the uncertainty arising from the virtual electroweak corrections.

The cross-checks described in section 5 and section 6 show that the internal variables

used for the top-quark tagging methods model the data well. In addition, as all uncertain-

ties on the input objects (such as the JES) are fully propagated into the two analyses no

additional uncertainty for the modelling of top-tagging variables is added.

The trigger efficiency in the simulation is found to agree well with data, within the

uncertainty of the jet energy scale, such that no additional trigger efficiency uncertainty

is needed.

The multijet background is estimated in a data-driven procedure that includes sub-

traction of the predicted SM tt̄ contribution as described in section 7. The systematic

uncertainties on the tt̄ contribution are propagated to the multijet estimate. An additional

uncertainty on the multijet background is obtained by comparing the mtt̄ predictions using

the various subsamples as described in section 7.
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9 Results

There are 953 and 123 events observed in the HEPTopTagger and Top Template Tagger

signal regions, respectively. For the HEPTopTagger selection, the SM tt̄ background is

770+220
−180 (stat.⊕syst.) events and the multijet background is 130± 70 (stat.⊕syst.) events.

For the Top Template Tagger selection, the SM tt̄ background is 59+27
−26(stat.⊕syst.) events

and the multijet background is 53± 6 (stat.⊕syst.) events. The predicted SM event rates

are in good agreement with the observation.

The tt̄ mass distributions for the data and the expected backgrounds are shown in

figure 13. The tt̄ mass binning at the lower masses is chosen to correspond approximately

to the tt̄ mass resolution. For illustration, a hypothetical Z ′ boson signal with mass 1 TeV is

shown for the HEPTopTagger tt̄ mass distribution and a hypothetical KK gluon signal with

mass 1.6 TeV is shown for the Top Template Tagger tt̄ mass distribution. No statistically

significant excess over the SM tt̄ expectation plus multijet background is observed at any

mass value.

As no signal is observed in either selection, 95% CL upper limits are set on the produc-

tion cross section times branching ratio to tt̄ final states for each model using a Bayesian

approach [66]. A binned likelihood function based on Poisson distributions for each tt̄

invariant mass bin is used.

The limits are determined for resonance masses ranging from 0.5 to 2.0 TeV for the

Z ′ boson model and 0.7 to 2.0 TeV for the KK gluon model. The systematic uncertain-

ties are treated as nuisance parameters with Gaussian prior distributions reflecting their

uncertainty and are then marginalised to set credibility intervals.

The large uncertainty on the SM tt̄ normalisation in the HEPTopTagger selection by

construction precludes other nuisance parameters that are sensitive to this normalisation

to be strongly constrained. To prevent regions with low mtt̄, where high event yields result

in small statistical uncertainties, constraining regions with high mtt̄, the jet energy scale

uncertainty is treated as being uncorrelated between different bins in jet pT. Studies of the

posterior distributions of the nuisance parameters have been performed to ensure that the

uncertainties arising from the parton shower model and ISR/FSR do not over-constrain

the uncertainties.

To estimate the a priori sensitivity of this search, background-only pseudo-experiments

are randomly drawn from the background prediction. All nuisance parameters are allowed

to vary in a manner consistent with their prior distributions for each pseudo-experiment.

The median of the distribution is chosen to represent the expected limit. The ensemble

of limits is also used to define the 68% and 95% CL envelope of limits as a function of

resonance mass.

The dominant systematic uncertainties in both analyses come from the uncertainties

on b-tagging efficiency, jet energy scale and SM tt̄ normalisation.

Figures 14 and 15 show the HEPTopTagger and Top Template Tagger 95% CL ex-

clusion limits on the cross section times branching ratio for the two models. They are

interpreted as mass limits by comparing the cross-section limits to theoretical cross-section
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Figure 13. Distributions of the tt̄ invariant mass mtt̄. The HEPTopTagger data, the SM tt̄

background prediction, the multijet background prediction and a hypothetical Z ′ signal with mZ′ =

1 TeV are shown in (a). The Top Template Tagger data, the SM tt̄ background prediction, the

multijet background prediction and a hypothetical KK gluon signal with mKKg = 1.6 TeV are

shown in (b). Data points show statistical uncertainties only.

– 25 –



J
H
E
P
0
1
(
2
0
1
3
)
1
1
6

Model Obs. Limit (TeV) Exp. Limit (TeV)

HEPTopTagger

Z ′ 0.70 < mZ′ < 1.00 0.68 < mZ′ < 1.16

1.28 < mZ′ < 1.32

KK gluon 0.70 < mgKK < 1.48 0.70 < mgKK < 1.52

Top Template Tagger

KK gluon 1.02 < mgKK < 1.62 1.08 < mgKK < 1.62

Table 4. Expected (Exp.) and observed (Obs.) exclusion regions on the leptophobic Z ′ boson

mass and on the KK gluon mass in the Randall-Sundrum model.

predictions as a function of mass from specific benchmark models. The expected and

observed mass limits are shown in table 4.

As described in ref. [67], the colour structure of the KK resonance can affect the tagging

efficiency. This effect is small, but the results presented here are valid only for resonances

with the same colour structure as the KK gluon (e.g., the sensitivity for a KK photon with

the same mass and width as a KK gluon will differ by ≈ 10 %).

The data samples for the two analyses are statistically correlated. However, the ex-

pected limits are different for the two analyses and illustrate their complementarity: The

HEPTopTagger selection is able to exclude Z ′ boson resonances over part of the mass

range between 0.70 and 1.32 TeV and KK gluons with masses between 0.70 and 1.48 TeV.

The Top Template Tagger selection is not able to set an exclusion limit on Z ′ boson res-

onances but is able to exclude the wider-width KK gluon resonances for masses between

1.02 and 1.62 TeV.

To combine the limits from these two analyses, the results from the tagger with the

lower expected exclusion limit are selected. The HEPTopTagger selection provides lower

expected limits for Z ′ boson masses up to 1.3 TeV, and for KK gluons with masses between

0.7 and 1.3 TeV. The Top Template Tagger selection provides the lower expected limits for

both Z ′ bosons and KK gluons with masses above 1.4 TeV. These two analyses together

are able to exclude the Z ′ boson model with masses 0.70 < mZ′ < 1.00 TeV and 1.28 <

mZ′ < 1.32 TeV, and KK gluons with masses 0.70 < mgKK < 1.62 TeV, all at 95% CL.

10 Conclusions

A search for massive resonances, characterised by a narrow state such as a Z ′ boson or a

wider object such as a KK gluon, decaying into tt̄ pairs in the fully hadronic final state is

presented. The analysis uses a dataset corresponding to 4.7fb−1, collected with the ATLAS

detector during the 2011 pp run of the LHC at a centre-of-mass energy of 7 TeV. Two top-

quark tagging schemes, the HEPTopTagger and Top Template Tagger methods, are used

to identify and reconstruct top-quark pairs in their hadronic decay mode for boosted top

quarks with transverse momenta between 200 GeV and approximately 1 TeV.

The reconstructed mtt̄ spectra are compared to predictions for SM tt̄ production and

background from massive jets produced through QCD interactions. No evidence for res-
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Figure 14. Expected and observed 95% CL upper limits on the production cross section times

branching fraction σ × BR as a function of (a) the Z ′ boson mass and (b) the KK gluon mass

for the HEPTopTagger selection. The red bands are the model predictions including theoretical

uncertainties. The Z ′ boson leading-order (LO) cross section is multiplied by 1.3 to account for

expected higher-order corrections. The KK gluon LO cross section is used.

– 27 –



J
H
E
P
0
1
(
2
0
1
3
)
1
1
6

Z' Boson Mass [TeV]

1 1.2 1.4 1.6 1.8 2

) 
[p

b]
t t

→
 B

R
(Z

' 
× σ

-210

-110

1

10

210

Obs. 95% CL upper limit

Exp. 95% CL upper limit

 uncertaintyσExp. 1

 uncertaintyσExp. 2

Leptophobic Z' (LOx1.3)

ATLAS Top Template Tagger

 = 7 TeVs

-1 L dt = 4.7 fb∫

(a)

 Mass [TeV]
KK

g

1 1.2 1.4 1.6 1.8 2

) 
[p

b]
t t

→ 
K

K
 B

R
(g

× σ

-110

1

10
Obs. 95% CL upper limit

Exp. 95% CL upper limit

 uncertaintyσExp. 1

 uncertaintyσExp. 2

KK gluon (LO)

ATLAS Top Template Tagger

 = 7 TeVs

-1 L dt = 4.7 fb∫

(b)

Figure 15. Expected and observed 95% CL upper limits on the production cross section times

branching fraction σ × BR as a function of (a) the Z ′ boson mass and (b) the KK gluon mass for

the Top Template Tagger selection. The red bands are the model predictions including theoretical

uncertainties. The Z ′ boson LO cross section is multiplied by 1.3 to account for expected higher

order corrections. The KK gluon LO cross section is used.
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onant tt̄ production is found using either top-quark tagging method. These two anal-

yses together exclude the Z ′ boson model with masses 0.70 < mZ′ < 1.00 TeV and

1.28 < mZ′ < 1.32 TeV, and KK gluons with masses 0.70 < mgKK < 1.62 TeV, all at

95% CL. These results extend the previous ATLAS limits on Z ′ bosons and KK gluons

production that were based on the lepton plus jets final state.
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F. Touchard83, D.R. Tovey139, T. Trefzger174, L. Tremblet30, A. Tricoli30, I.M. Trigger159a,

S. Trincaz-Duvoid78, M.F. Tripiana70, N. Triplett25, W. Trischuk158, B. Trocmé55, C. Troncon89a,
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Arcavata di Rende, Italy
38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science,

Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow,

Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
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aa Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
ab Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United

States of America
ac Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest,

Hungary
ad Also at CERN, Geneva, Switzerland
ae Also at California Institute of Technology, Pasadena CA, United States of America
af Also at Institute of Physics, Jagiellonian University, Krakow, Poland
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