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NOTATIONS

XsYs2 coordinate system

UsV,W displacements in x,y,z directions

CST-element constant strain triangle (membrane) element with
6 DOF

LCCT9-element linearly constrained curvature triangle (bending-)

element with 15 DOF

DOF degree of freedom

Concrete Properties

Eo uniaxial initial tangent modulus
fé uniaxial compressive strength
rfé uniaxial tensile strength
€. strain corresponding to fé
€y ‘ultimate strain in compression
€ty ultimate strain in tension
v Poisson's ratio
8 cracked shear constant (0.0 < 8 < 1.0)

Steel Properties

ES initial tangent modulus

Esh strain-hardening modulus

f yield stress

Yy

o stress in concrete

0 stress in steel

AC area of concrete cross section
As area of steel cross section

A
o= Ki reinforcement ratio
c



1. INTRODUCTION

This investigation covers an intensive study of the application
of the program NOTACS (Nonlinear Time-dependent Analysis of Concrete
Structures) developed by Kabir [1]. This program provides a tool to
trace the quasi-static nonlinear response of reinforced concrete shear
panels, slabs of arbitrary geometry and free form shell-type structures
under sustained Toad conditions. Cracking and time-dependent environ-
mental phenomena such as creep and shrinkage effects are considered.
This program represents one of several which have been developed at the
University of California for the nonlinear analysis of reinforced and
prestressed concrete. This research is under the direction of Professor
A. C. Scordelis.

The first objective of the present study is to check the NOTACS
program on various systems and to investigate the influence of various
convergence criteria on the results obtained. The finite element
method used in NOTACS provides the necessary tool for analytical solu-
tions which can replace much of the empirical testing carried out in
the past. As pointed out in [2], "much of the research on reinforced
concrete structures has been on isolated structural elements (beams,
columns, etc.). More recently it has been recognized that attention
needs to be focused on integrated structural systems. Complex structures
such as multi-cell box girder bridges, dams and prestressed concrete
nuclear containment vessels, whose construction involves large expendi-
tures of governmental and private funds, are examples which must be
studied as total structures. Experimental studies on these structural

systems are very expensive and the empirical approaches of the past are



gradually being replaced by refined analytical methods."

In this report nonlinear analyses are performed for instantaneous
loading only. Examples of nonlinear analyses shall be given and com-
pared with solutions based on other procedures as described in the state-
of-the-art reports [2], [4], [5], and [6]. At the end of the report
recommendations to improve the computer program and suggestions for
further studies are given. In a second report [3], reinforced concrete
hyperbolic shells are analyzed for both instantaneous and sustained

loadings.



2. BRIEF DESCRIPTION OF THE COMPUTER PROGRAM NOTACS

The method of analysis is based on a finite element tangent
stiffness formulation coupled with a time step integration scheme.
Within a time step, an incremental load procedure, with an iterative
approach to solve the equilibrium equations for each load increment,
is adopted to trace the nonlinear behavior. A1l load changes are
considered to occur at the beginning of a time step and the resultant
state of stress is assumed to prevail throughout the time step. The
creep and shrinkage strains are taken as initial strains and are assumed
to occur at the end of each time step. The unbalanced forces at the end
of each iteration or load increment are carried forward to the following
step until a specified convergence is obtained.

Two types of finite elements are implemented in the program: a
flat triangular shell element for reinforced concrete shells and a
boundary spring element. The shell element (Fig. 2.1) is a combination
of a constant strain triangular (CST) membrane element and a linearly
constrained curvature triangular (LCCT9) plate bending element. Thus
the element has only five degrees of freedom at each node. The in-plane
rotation is not considered as a degree of freedom. By constraining the
appropriate degree of freedom, the element may be also used for flat
panel-type or slab-type structures. )

The boundary element is used to limit nodal displacements or rota-
tions to specified values, to compute support reactions, to provide
linear-elastic supports at nodes, and to overcome the problem of the
missing sixth degree of freedom at coplanar shell nodes. The element

is defined by a single directed axis through a specified nodal point



and has an extensional and/or rotational stiffness. Its element stiff-
ness is added directly to the total structural stiffness matrix and
hence has no effect on the size or bandwidth of the stiffness matrix.

The reinforced concrete composite is represented as a layered system
(Fig. 2.1) consisting of concrete and "equivalent smeared" steel Tayers.
Variations of properties through the depth of the member are due to
different materials or levels of deformation. Kirchhoff's assumption
of plane sections remaining plane is adopted to interrelate the displace-
ments at various levels through the section depth and thus reduce each
layer to a two-dimensional problem.

The material behavior of concrete is characterized by a nonlinear
constitutive relationship for the biaxial state of stress. The biaxial
state of stress is accounted for by a family of equivalent uniaxial
stress-strain curves (Fig. 2.2) which depend on the biaxial stress ratio
as suggested by Darwin and Pecknold (see reference in [1]).

Five material properties of concrete must be prescribed for the
construction of these curves: the unjaxial initial tangent modulus Eo’
the uniaxial compressive strength fé, Poisson's ratio v, the tensile
strength f%, and the ultimate strain in tension €4y These values can
be taken either from uniaxial load tests or code recommendations. The
maximum compressive stresses Oic and corresponding strains €ic in the
principal directions i = 1,2 are obtained from the biaxial failure
envelope of Kupfer and Gerstle and equations proposed by Darwin, Pecknold
and Rajagopal (references in [1]).

A very significant property of concrete is its low tensile strength.
Tensile cracking reduces the stiffness of the concrete and is a major

contributor to the nonlinear behavior of reinforced concrete structures.
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Herein a maximum stress criterion is used to determine concrete failure
in tension. Whenever one of the principal stresses exceeds the uniaxial
tensile strength of concrete, a crack is assumed to form perpendicular
to the direction of that stress and the corresponding tangent modulus is
assumed to be zero. Once the concrete is cracked in one direction, the
formation of a new crack is restricted to a direction orthogonal to the
first crack. To account for the tension stiffening effect of the con-
crete between cracks, the unbalanced stresses are released gradually
depending on the strain level as shown in Fig. 2.2. To estimate the
effective shear modulus along the tensile cracks due to the effect of
dowel action and aggregate interlock, a cracked shear constant 8 is
introduced. B can be given a value from 0.0 to 1.0. Usually B is
chosen to be 0.5.

The steel reinforcement is stressed uniaxially. The material is
represented by a bilinear model which may either be elastic-perfectly-
plastic or strain-hardening with a Bauschinger type effect as shown in
Fig. 2.3. |

For concrete, time-dependent effects such as creep and shrinkage
are included. The linear superposition method is used to account for
the effects of stress history on the creep strain calculations. Varia-
tions of creep compliance due to slump of concrete mix, size of members,
relative environmental humidity, and high stress or temperature Tevels
are considered on the basis of available experimental data or code
recommendations. Creep under biaxial state of stress is represented
by the introduction of the creep Poisson's ratio observed in a uniaxial
sustained load test. The computational procedure used [1] requires the

stress state of only the last time step and is thus very efficient in




the sense that it.reduces the computation time and storage considerably.
Shrinkage strains are assumed to be uniform in each element. The values
of creep and shrinkage at each time step can either be read in from
available experimental curves or can be predicted by ACI (American

Concrete Institute) recommendations.



3. EXAMPLE 1 - REINFORCED CONCRETE ROD

This example was chosen to check the program NOTACS on a simple
problem which also can be solved without computer aid and to acquire
some experience in nonlinear analysis. Moreover, the application of
some formulas given in the literature accounting for the tension stif-
fening effect also will be shown.

The structure, its idealization, and the relevant material properties
are presented in Fig. 3.1. Material properties are only needed for tension.
The system is divided into 6 elements, and the element cross sections
consist of one concrete layer and one steel layer.

The problem is first analyzed by hand calculation using an incre-

mental method and a combined incremental iterative method.

3.1 Incremental Method, Hand Calculation

The structure is loaded in increments of 6000 1bs (26.7 KN) (Table
3.1 and Fig. 3.2). At the end of the first increment the concrete is
still uncracked; the tensile stresses are less than 471 psi (325 N/cm?).
For this reason the initial stiffness in the next increment is the same
as before. The stiffness in the third increment is changed because the
tensile stresses exceed the concrete tensile strength. Additional Joads
thereafter can only be carried by the steel reinforcement. The stiffness
remains unchanged for the fourth and fifth steps. At the end of the
fifth increment, the yield stress is reached. The stiffness is zero in
the sixth load increment and displacements become infinite. This method

predicted an ultimate load of

Pu]t = 5 (6000) = 30,000 1bs (133.5 KN)



3.2 Combined Incremental/Iterative Method, Hand Calculation

The first load step is analyzed as before (Fig. 3.2). The equili-
brium of the internal and external forces is satisfied. This is not
true for the next Toad step where the concrete is cracking. The portion
of the load which until now was carried by the concrete is unbalanced.

The unbalanced force (released force) in this step is (Table 3.1):

Punb = 10,452 1bs (46.5 KN)

In the next load step this unbalanced force must be added to the
load increment. This is one way to account for the unbalanced forces.
It should be noted that the calculated deflection for the second load
step is incorrect even though it is possible to get true values for the
additional load increments. Another approach, which is followed here,
is to equilibrate the unbalanced internal forces before going to the
next load step. This implies an additional deflection of u, = 0.03181 in.
(0.81 mm) in the second load step. With a total deflection of u, =
0.03651 in. (0.93 mm), the total load of P, = 12,000 1bs (53.4 KN) can
now be transferred by the steel reinforcement. In the third load step,
an unbalanced force accrues since the stiffness changes within this load
step. The unbalanced force is the difference of the total external load

and the yield force:

Punb = (18,000 - 16,320) 1bs = 1680 1bs (7.5 KN)

This unbalanced force cannot be equilibrated anymore; therefore, this

method predicts an ultimate load of

Pu]t = 2 (6000) = 12,000 1bs (53.4 KN)



10

3.3 Solution with Program NOTACS

The analysis performed in the program corresponds with the combined
incremental/iterative method (curve No. 2 in Fig. 3.2). Some intermediate
results which show the procedure are given in Fig. 3.3. This figure
demonstrates clearly that the set of unbalanced forces can be looked at
as self-equilibrating forces which intermediately help to transmit the
load. In the iterative procedure within a load increment, these forces

have to be put on the structure with negative signs.

3.4 Numerical Experiences

(1) Reinforced concrete is a material with a discontinuous stress-
strain relationship. For such a material an equilibrium jteration is of
particular importance since even with infinitely small load increments
it is not possible to approach the true solution (curve No. 3 in Fig. 3.2).
This is not the case for continuous nonlinear stress-strain relations.

(2) The exact value of the ultimate load cannot be determined.

The true value is greater than the value of the (n-1)th load step and
smaller than the value of the nth step, where n is the load step in which
fajlure occurs. The smaller the increment, the better the approach.

(3) Small increments should also be taken in regions of strong
stiffness alterations; otherwise it is not possible to trace the behavior
(in the transition zone) accurately.

(4) Problems may arise if the crack load Pcr is greater than the

yield load Py (Fig. 3.4) or in other terms if

]
Ft/fy > 0

In this case the method may predict the crack load Pcr as the ultimate
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load and not the lower value Py. This would occur in this example.

For more general prob]éms, the situation is not as bad because some
elements, due to bending stresses, will crack in an earlier stage

(i.e., the theoretical crack load Pcr will not be reached). Nevertheless,
for under-reinforced structures this should be kept in mind and the

results for the ultimate load should be examined critically.

3.5 Tension Stiffening Effect

The following example shows the effect of several tension stiffening
assumptions on the overall behavior of a particular reinforced concrete
structure. It is believed that a more comprehensive literature study
will provide more information to define the important tension stiffening
relation.

In Fig. 3.5 the example taken from [7] is presented. The wall panel
has a thickness of 3.93 in. (0.10 m) and is reinforced in two orthogonal
directions. The reinforcement ratio in both directions is p = 1%4. The

system is stressed only in tension, hence the following data are suffi-

cient:
For concrete: E, = 3800 ksi (26,000 N/mm?)
f% = 380 psi (2.6 N/mm?)
For steel: E, = 30,400 ksi (210,000 N/mm?)
Esh = 0.0
f, = 61,000 psi (420 N/mm?)

Fig. 3.5(c) presents some proposed relations to account for the
contribution of concrete after cracking. Based on these curves the
corresponding stress-strain relations of concrete (i.e., the tension

stiffening curves) are calculated, Fig. 3.5(d). Curve No. 1 represents
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the solution if no contribution of the concrete is taken into account.
Curve No. 2 is proposed in [7]. Curve No. 3 is an arbitrary (1inear)
assumption which, for this particular case, matches the experimental
results remarkably well. Curve No. 4 is calculated from the following

formula proposed by Rostasy [6]:

gcr f!
s,11 t
€ = g 0.50 2 e
s,m 511 s,I1 EsP
where
€ m reduced strain of steel due to the contribution of
’ concrete
€ 11 strain of steel in case of no contribution of concrete
9¢ 11 stress in steel in case of no contribution of concrete
b
OngI as before, at the beginning of cracking

In this way other formulas given in the literature [6,8,9,10] could be

used.
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TARLE 3.1 EXAMPLE A - INCREMENTAL METHOD

INCREMENT DIMENS IONS| 4 2 3 L 5
TOTAL LOAD Lbs 6000 42 000 48000 | 2L0oo0 30000
AREA OF

CROSS SECTIoN) Ap AJL $9.7n, 28,37 48,37 0,272 0212 0,272
STIFFNESS Kp kg lbefin. | 2548838 | 2548838 | 328666 | 328ce6 | 328666
LOAD Picked UP lbg 522¢ AOLS2 ¢ o 0

BY concRETE P

LOAD PickeEd UP lbs T4 A5L8 75L8 43548 4925L8
Ry steeL Pg

STRESS IN CONCRETE psi a2 327 o o] o)

DUE To INCR.LOAD APb

STRESS IN CONCRETE pst 327 65l o] e} 0

DUE To TOTAL LOAD P,

STRESS ™ STEEL Ps? 284S 2845 22059 22059 22059
DUE To INCR. LoAD AR

STRESS N STEEL Pg', 28L5S 5690 2779 Lagos 71867
DUE To ToTAL LOADd Fy

STRAIN DLE 4 0,000098 | 0,000098 | 0000 64| 0,000TcA4| O,000764
INCREMENT OAD AP

STRAIN BUE ™ A4 0,000088 | 0,000436 | 0,000957 | 0,004748 | 0,0024L73
TOTAL LOAD P

DEFLECTION JUE TO in. 000235 | 000235 | 004826 | 004826 | 004826
INCREMENT LOAD AP

DEFLECTION JUE TO in. 0,00235 o.00LMo | 002236 0,04422 | 0,05948
TOTAL LoAd P

LoAd MCREMENT

: AP = 6000 lbs

AREA OF CROSS SECTION,UNCRACKEN: Ar = A+ -i__é Ag
©

AREA OF CROSS SECTION |CRACKED : Ap= Ag

STIFFRESS , BWCRACKED

STFFNESS , CRACKED

Pk - AR
kg = ApBslL




P 3 Ac=4bsq.in.
— &
25 _8* L '\As=0.2‘7$1.in.
L=24" E
-u’ 18 000 P
_2 A2 oco %" 6000
E 6 0004 T % 6ooo
S
28 DAYS
(a) STRUCTURE AND LOADING
Vv ELEMENT CROSS SECTION
9 ?z b 6 8 -:—_ |
) "
N o 1 I I 25
10 W x - —— ] i l
i{ vz=0 N x‘“‘
AL l . . 4
! 8" ' 8" o g" o 4 concRETE LAYER

1 STEEL LAYER
O. . ELERENT NUMRERS

6 CST-ELEMENTS ,3 ROUNDARY ELEMENTS

A4 NODES
Ao DOF

(b) FINITE ELEMENT MESH LAYOUT

AG , CoMPRESS 10N/
) AG ; TENSION
/ Eb / Es
: /A COMPRESSION (/4
A Bt s |
/ :
/ ; i Egh
/ i i
/, f 1
4 I |
' |
| .
Eut ! £ 1 _ €
TENS (ON : ,F' é‘ éuc - éﬁ
44, |
E,= 3330 000 psi (= 2298 kN[em?) Eg = 29 000 000 psi (= 20040 kNICm")
IL = U74 psi (= 325 Nfcnd) Egh=0
£, file, = 0.4k°loo fy= 60000 pSi (= 4. kN[end)

£y = fyle = 2070
() MATERIAL PROPERTIES (TENSION ONLY)

FIG.34 EXAWMPLE 4 - STRUCTURE, INEALISATION ANN MATERIAL PROPERTIES
(A"= Atn. = 25,k mm)
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4. EXAMPLE 2 - REINFORCED ROD SYSTEM

This example was chosen for the same reason as the first one;
therefore, a hand calculation which allows the control of the program
is still feasible. The structure (Fig. 4.1) consists of three rein-

forced concrete rods with stiffness ratios of 1 : 1/2 : 1/3.

4.1 Hand Calculation

First the Toad-deflection (strain) curves of the single bars are
constructed (Fig. 4.2) using the information noted in Table 4.1. They
are characterized mainly by the crack load and the yield load. Crack
load, yield load, and corresponding strains are the same as for Example
1. The same holds for the deflections of bar 1. The values for bars 2
and 3 follow from the stiffness ratios. The load deflection curve of
the total system results from superposition of the single-load deflection
curves. The superposition is performed in Table 4.2 and graphically
displayed in Fig. 4.2. The ultimate load is reached when the deflection

exceeds 0.04966 in.(1.26 mm), hence the ultimate load is

Pu]t = 3 (16,320) = 48,960 1bs (218 KN)

4.2 Solutions with Program NOTACS (Fig. 4.3)

4.2.1 Incremental/Iterative Procedure, Curve No. 2

The load increment is chosen as P = 12,500 1bs (55.6 KN). In
the first step, the system remains uncracked. Within the second step,
all bars turn to the cracked state (i.e., all elements change their
stiffness within this increment). Theoretically, three iterations are

necessary, but numerically, depending on the tolerances, more iterations
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may be required. In the third step, two iterations are required; and,
finally, in the fourth step the system fails.

Since an insight into the action of the unbalanced forces is
important, they are once more represented in Fig. 4.4. There it is
clearly demonstrated that only in the "pathological" areas self-equili-

brating forces are superimposed to "help" the structure carry the load.

4.2.2 Incremental/Iterative Procedure, Curve No. 3

The procedure is the same as in Section 4.2.1 except only one
iteration within each increment is allowed. The result shows quite a
discrepancy from the true solution and emphasizes the importance of the

equilibrium at the end of each load step.

4.2.3 Incremental Procedure, Curve No. 4

Even more dramatically this solution shows the importance of the
equilibrium iteration. A pure incremental method leads to poor and even
unrealistic results. At least the unbalanced forces should be transferred

to the next load step.

4.2.4 Incremental/Iterative Procedure, Curve No. 5

Curve No. 5 is a solution including a tension stiffening effect.
It is assumed that the concrete contributes up to an ultimate strain in
tension of Spy " 0.0005. It follows that a much greater number of itera-

‘tions are required in the second load step.

4.3 Numerical Experiences

(1) Care must be taken so that during any one load increment not
too many elements change their stiffness (e.g. by cracking) otherwise

the required iterations for convergence may last too long.
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(2) Unbalanced forces do not necessarily become smaller by
increasing the number of iterations. Oscillations may occur due to
the discontinuous material law in tension. An equilibrium state may
be nearly reached, however, if in the next iteration new unbalanced
forces are released which have to be transferred to support areas, a
new iteration cycle to attain equilibrium may be initiated.

(3) Unbalanced forces, at the end of the iterations in one load
increment, must be carried over to the next load increment. Residual
unbalanced forces always exist since the state of equilibrium is not a
true one but is one defined by specified tolerances or number of itera-
tions.

(4) It can be observed that unbalanced forces are created not
only in the direction of the load but also perpendicular to it.

(5) The computer program provides two options for the convergence
criteria with respect to the iterations: a displacement convergence
criterion and a force convergence criterion. For both criteria, absolute
values or percentages of already obtained solutions can be set as con-
vergence limits. The computation of several examples, all of which are
not included in this report, has shown that it is not reasonable to
control all values but only the more significant ones. In the case of
the rod system, only the extensional deflections should be controlled,
otherwise according to the differences of great numbers, the iteration
cycle will be unnecessarily prolonged or stopped too early. From an
engineering point of view, the force convergence criterion is preferable
to the deflection criterion, because equilibrium is more nearly satisfied.
But on the other hand, for general structures it is difficult to estimate

the influence of errors in unbalanced nodal forces. Therefore, it is
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recommended that the displacement convergence criterion be specified
and a print out of the unbalanced forces be given to compare them with
the total applied nodal forces.

(6) It is recommended that a linear analysis be performed prior
to the nonlinear analysis. This is especially important for larger
problems. With a linear analysis, the load level where cracking might
start can be estimated and, thus, provides insight regarding where

smaller load increments should be used.
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- CHARACTERISTIC VALUES OF SINGLE BARS

BAR NUMBER 4 2 3

CRACK LOAD (lbs= L.45N) 8670 8670 8670
CORRESPONDING STRAIN (1) 0.000444 0.000444 0.000444
CORRESPONDING DEFLECTION (in=25 limm)| 0.00339 0.00226 0.00443
YIEWD LOAD (lbs = L.L5N) 46320 A6320 A6320
CORRESPONDING STRAIN (4) 0.002069 0.002063 0.002069
CORRESPONDING DEFLECTION (in=25Lmm)| O.0L365 0.03340 0.04655

TABLE L.2 EXAMPLE 2 - SUPERPOSITION OF SINGLE BARS

STEP NUMBER| DEFLECTION u [UNCRACKED STIFFNESS| CRACKED STIFFNESS
(in=25Lmm)|BAR 1 [RAR 2 [BAR 3 | BARA |RARZ |RAR?R

4 <0.00443 X X X

2 looone | X | X

3 ooossa | X X

‘ 2o 0ness X

5 232455 X |ves

6 2o oiees YIELDS | YIELDS

7 >0.0486% YIELDS | YIELDS| YIELDS

X ... LARELS THE STIFFNESS TO RE ADBED (SEE F16.2.2)
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<) MATERIAL PROPERTIES : SAME AS IN EXAMPLE 4 (FIG AA ()

FIG 4.4 EXAMPLE 2 - STRUCTURE , DEALISATION AND MATERIAL PROPERTIES
A= Ain = 25,4 mm)
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EXTERNAL FORCES
EXTERNAL FoRCES AT NODE 7AND 8 : 42500 Lbs (= 55.6 kN)

— - UNRALANCED FORCES

FIG k.l EXAMPLE 2 - UNRALANCED AND EXTERNAL FORCES .
SECOND INCREMENT , FIRST ITERATION
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5. EXAMPLE 3 - REINFORCED CONCRETE BEAM

The beam is a more complicated system to test the program NOTACS.
Since this beam is the test specimen (No. 23100) of current investiga-
tions at the Technical University of Braunschweig [11], numerical and
experimental solutions are available for comparison. The research
project underway in Braunschweig includes numerical and experimental
studies of the behavior under sustained load. Until now (September
1977) no results for creep and shrinkage are available.

The structure and its idealization are shown in Fig. 5.1. Due to
symmetry, the analysis can be performed for half of the two-span beam.
To control the equilibrium of the vertical forces, boundary elements
with a large extensional stiffness are chosen to simulate the supports.
The upper and lower extensional reinforcement are represented by equiva-

lent smeared steel layers. The concrete cross section is divided into

eight layers of equal thickness. The stirrups are not taken into account.

The materal properties given in [11] and those assumed for the
analysis are presented in Fig. 5.2. The test specimens were kept at
20°C and 100% humidity during the first seven days; thereafter they were
stored at the same temperature and 60% humidity.

The following input data can be determined from Fig. 5.2.

EO = 170,000 kp/cm®> = 1668 KN/cm?
f. = 325 kp/cm?= 3.2 KN/cm?
€. 2.7%

Specifications are not given for concrete in tension; therefore, the

tensile strength is calculated on the basis of ACI recommendations, assum-

ing unit weight of concrete (microconcrete) to be 110 pcf (1772 kg/m3):



29

f% = 17 kp/cm®* = 167 N/cm?

In the absence of experimental data, the rest of the properties are

chosen as follows:

€ut © 0.1 (i.e., no tension stiffening effect)
€ic - 4%

v = 0.0

B = 1.0

The properties for the reinforcing steel are:

ES = 20,000 kp/mm?® = 196,000 N/mm?
Esh = 1/100 ES
fy = 59 kp/mm? = 579 N/mm?

5.1 Nonlinear Analysis

First linear analyses were performed with different mesh layouts.
The results varied only slightly. The load increments were chosen as:
2 at 200 kp (1.99 KN)
2 at 100 kp (0.98 KN)
12 at 200 kp (1.99 KN)
7 at 100 kp (0.98 KN)
The increments summed to a total load of 3700 kp (36.3 KN). A maximum
of six iterations were allowed within one load step. The convergence
was controlled by the vertical deflections. A tolerance of 10% (i.e.,
an error of 10% of the increment of the first iteration) led to suffi-
ciently accurate results.
In Table 5.1 and Fig. 5.3 the load-deflection curve for the middle

point is presented. The results compare sufficiently well with those
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given in [11]. The deviation at the beginning of cracking is due to the
assumption of a low tensile strength. Obviously, the concrete as cast
had a higher actual tensile strength. At higher loads the discrepancy
results from the neglected tension stiffening effect. The excellent
agreement of the numerical and experimental Braunschweig solutions [11]
was made possible by their adjustment of the intensity of the tension
stiffening effect. The larger deviations in the vicinity of the ultimate
load follow from the bilinear approximation of the steel material. The
assumed stress-strain model underestimates for high stress levels the
strains up to 30%. Since not all sections of the beam are under such
high stresses, the effect on the load-deflection curve is less severe.
The behavior after the first cracks developed is more or less
linear. This is also demonstrated in the crack patterns (Fig. 5.4).
The main cracks which are responsible for the change of stiffness are
already developed at a load level of P = 600 kp (5.8 KN). Only after
P = 2800 kp (27.4 KN) does the deflection increase nonlinearily because
the reinforcement yields. Fig. 5.5 displays some deflection and bending
moment profiles. It can be noted that the deflections are quite different,

but the moments show little redistribution.
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TARLE 5.4 - EXAMPLE A - LOAD DEFLECTION RELATION

INCREMENT | TOTAL LOAD | NUMBER OF | DEFLECTION & OF | INCREMENT OF
(kp= 9.81N) | (kp=9.84N) | ITERATIONS | NODES 47,48 (mm) | DEFLECTION (mm)
200% 200 2 0.083 0.085
200 Loo 6 (a) 0.303 0.244
A0 O 500 3 0.390 0.087
100 600 4 o.kde 0.406
200 8o0 3 0685 0.483
200 A000 2 0.865 0180
200 4200 2 A.olke 0.4A793
200 4Loo 2 4.227 0.434
200 A600 2 A LOS 0.484
200 1800 2 A.587 0.A73
200 2000 2 ATTe'T 0.480
200 2200 2 A.8LS 0.478
200 2Loo 2 2.425 Q.480
200 2600 2 2.305 0.180
200 2800 2 (b) 2.L86 0.194
200 3000 3 2.852 0.356
400 3400 L 3.686 0.83L
100 3200 4 k679 0.933
400 3300 k() 6.558 A.879
400 3Loo 3} @) 9.047 2.k59
Aoco 3500 2 AA. 7ol 2.687
400 3600 b A5.282 3.078
100 300 2 COMPLTATION STOPPED

(&) FIRST CRACKS MIDSPAN AND AT FIXED) SUPPORT

(b) ToP REINFORCEMENT AT FIXED SUPPORT YIELDS

(c) BOTTOM REINFORCEMENT AT MIDSPAN YIELDS

(d) OUTER CONCRETE LAYER AT MIDSPAN AND AT FIXED SUPPORT EXCEEDS COMPRESSIVE STRENGTH
* DEAD LOAD INCLUDED IN FIRST INCREMENT (VERY Low)
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6. EXAMPLE 4 - REINFORCED CONCRETE SLAB

This system is used to test the program on a two-dimensional
problem. The structure is also being studied in the investigations
underway in Braunschweig [11], where it is intended to study the
behavior under instantaneous and sustained load conditions, numeri-
cally as well as experimentally. The plate (Fig. 6.1) is simply
supported at the four corners and is loaded by a concentrated force
in the center. VThe top and bottom reinforcement extend throughout
the plate in both directions. The information on material properties
in [11] is rather scarce. Reasonable assumptions and code specifica-

tions have been used to determine the material data not given (Fig. 6.2).

Lightweight Concrete:

E0 = 16,400 N/mm? (2380 ksi)
fé = 43 N/mm? (6.23 ksi)
€c = 2.7%
f% = 2 N/mm? (290 psi)
et - 0.12%
fuc 4 €
v = 0.0
B = 0.5
Steel:
ES = 201,000 N/mm? (29,000 ksi)
Esh =0
f = 670 N/mm? (97 ksi)

The finite element idealization is presented in Fig. 6.3. Due to

symmetry, the analysis can be performed on an eighth of the structure.
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Along the symmetry edges, appropriate boundary elements with large

rotational or extensional stiffnesses are used.

6.1 Nonlinear Analysis

The procedure and the choice of the tolerances are the same as for
Example 3. The load is divided into 23 increments (Fig. 6.4 and Table
6.1). At P = 12 KN the maximum number of iterations (6) was needed since
intensive cracking started at that load level. However, it was observed
that the residual unbalanced forces were very small compared to the
total nodal forces, i.e., the solution obtained is sufficiently accurate
from an equilibrium standpoint. For the same reasons as discussed in
Example 3, the load-deflection curve does not match exactly the results
obtained in Braunschweig [11]. First of all, the true tensile strength
is obviously much higher than the assumed one. Also, the tensile stiffen-
ing effect is more significant. One reason for this is the lower rein-
forcement ratio. Again, the discrepancy at higher loads is due to the
coarse approximation of the steel stress-strain relation. However, even
though the true approximated strains differ by more than 100% at stresses
of about 670 N/mm?, the differences in the load deflection curves are not
more than 15%. The ultimate load is reached at about 62 KN for both
solutions. Yielding of steel starts in the middle of the plate at a
load of about 48 KN and propagates thereafter on the center lines to the
edges. The concrete first reaches its compressive strength at the
centers of the edges. This seems reasonable since the concrete in these
areas is stressed mainly uniaxially and thus shows a lower compressive
strength as compared to the middle areas of the plate where it is

stressed biaxially.
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Crack patterns are shown in Fig. 6.5, where it can be seen that
they form almost exclusively on the bottom of the plate. Around the
concentrated external force at the center of the plate, radial as well
as tangential cracking occurs even at a relatively Tow load level.
Near the corner support reactions, the cracks build up much later.

In Fig. 6.6 deflection and moment profiles for P = 40 KN are depicted.
In [11] values are only given for the deflections along line ME,
Fig. 6.6. These values are in excellent agreement with those obtained

by NOTACS.

6.2 Hand Calculation (Control)

The control is demonstrated in Fig. 6.7. Referring to the linear
analysis, the action loads compare sufficiently well with the reaction
forces. A Timit analysis based on yield 1ine theory predicts an ultimate

load of Pu]t = 53 KN, which is less than the actual.
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TARLE 6.4 EXAMPLE 4 - LOAD DEFLECTION RELATION

INCREMENT | ToTAL LOAD | NUMRER OF |DEFLECTION OF | INCREMENT OF
ITERATIONS NODE 28 DEFLECTION
(kN ) Cmen) Crmm)

A L* 2 0.455 0.Lss
4 8 2 0.859 O.Lolk
4 17 6(a) 2.863 2.040
2 AL b 3.LL7 0.578
2 A6 3 L.o27 0.580
2 18 3 L.763 oy36
2 20 2 5.337 [9%y/
4 2L 2 6.L23 4.086
& 28 2 7.549 A.086
4 32 2 8.649 A.A00

L 36 2 .72 A.AO07
4 Lo 2 40.820 A.084
& Ly 2 AA. 343 A.093
2 (WA 2 A2.LS6 0.54L3
2 ) 2 A3.008 0.552
2 50 2 A2.58L 0.576

2 52 2 Al.249 0.63k
2 sk 2 AL.86b 0.6L8
2 56 3 A5.652 0.T86
2 58 3 A.k90 0.838
2 60 2 A7.285 07795

2 62 () ABATL 0.889
2 els 5 23.062 k. 888

(a) FIRST CRACKS

(b) ROTTOM REINFORCEMENT N ELEMENT 36 YIELDS

(c) CONCRETE EXCEEDS C(OMPRESSION STRENGTH (ELEMENTS Y,43),
SPREADING OF YIELDING
¥ BEAD LOAD INCLUDNED IN FIRST INCREMENT (VERY LOW)
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7. RECOMMENDATIONS FOR EXTENSION OF THE PROGRAM AND FOR FURTHER STUDIES

In the following comments some suggestions for possible improvement
and extension of the computer program NOTACS are listed in an arbitrary
sequence.

(1) Implementation of a more powerful equation solver.--The nonlinear

analysis requires the solution of a great number of sets of equations;
therefore, a fast equation solver is extremely important. The subroutine
SYMSOL which is used in the program could be replaced by one of the more
sophisticated subroutines such as OPTSOL developed by Professor G. H.
Powell [12] or SESOL developed by Professor E. L. Wilson [13]. Newer
versions of both subroutines, namely CHOSOP and SORE, respectively, are
currently being developed.

(2) Modification of the finite element.--The shell element in NOTACS is

a combination of a CST and a LCCT9 element. It is widely recognized that
the CST element is too simple to represent the membrane state of stress
whereas the LCCT9 element yields good results.

(3) Implementation of a restart option.--The correct choice of the

number of load steps, time steps, and required iterations and the optimal
choice of the tolerances is not an easy task, even with some previous
experience with the program. Each new problem may require a different
combination to get the best solution. A restart option is thus advan-
tageous because it is then possible to stop the analysis at an intermediate
state without losing the results already obtained.

(4) Revision of the program.--The program should be revised again. As

suggestions, the input should be a bit more systematically organized, the

echo print should be completed, it should be possible to work with



50

~arbitrary dimensions, and the programming language should be standard
(FORTRAN 1V).

(5) Incorporation of geometric nonlinearity.--Geometric nonlinearity

can be an important factor in determining the true nonlinear response
of various shell type structures. As a first step, the external geome-
tric stiffness (P-A effect) could be included.

(6) Modification of stress-strain relation of steel.--The assumed

bilinear stress-strain relation should be exchanged by a trilinear or
multilinear relation.

(7) Modification of stress-strain relation of concrete.--It is ques-

tionable if the biaxial behavior is really worth the effort needed.

The major contributor to the nonlinear behavior of reinforced concrete
structures is the tensile cracking. To answer this question, solutions
obtained by a simple uniaxial elastic-plastic stress-strain relation
should be compared to solutions using the original biaxial stress-strain
relation.

(8) Behavior of reinforced concrete in tension.--Extensive experimental

and numerical studies are necessary to develop a more realistic constitu-
tive model of reinforced concrete in tension. More information is needed
to determine the tensile strength, the tension stiffening curve, and the
cracked shear modulus. References [5], [6], [7], [9], [10], and [14]
might be helpful to this end.

(9) Long time behavior.--The numerical analysis of time dependent and

environmental effects is at the very beginning. For creep and shrinkage
more sophisticated models have to be investigated.

(10) Prestressing.--Prestressing may be incorporated in this program as

shown in [15] for one-dimensional beam and frame problems.
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(11) Application of the present program on structural systems.--Further
studies may be carried out for various problems to study the behavior
under both instantaneous and sustained loads, e.g., flat slabs, skew

slabs, and slabs with discontinuous supports.
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