UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
MusicSoar: Soar as an Architecture for Music Cognition

Permalink
https://escholarship.org/uc/item/4fm943t2

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Authors
Scarborough, Don L.
Manolios, Peter
Jones, Jacqueline A.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4fm943t2
https://escholarship.org
http://www.cdlib.org/

MusicSoar: Soar as an Architecture for Music Cognition

Don L. Scarborough, Peter Manolios and Jacqueline A. Jones

Department of Psychology and Department of Computer and Information Science
Brooklyn College of the City University of New York
Brooklyn, NY 11210
dosbc@cunyvm.bitnet, pete@sci.brooklyn.cuny.edu, jajbc@cunyvm.bitnet

Abstract

Newell (1990) argued that the time is ripe for unified
theories of cognition that encompass the full scope of
cognitive phenomena. Newell and his colleagues
(Newell, 1990; Laird, Newell & Rosenbloom, 1987)
have proposed Soar as a candidate theory, We are
exploring the application of Soar to the domain of
music cognition. MusicSoar is a theory of the cognitive
processes in music perception. An important feature of
MusicSoar is that it attempts to satisfy the real-time
constraints of music perception within the Soar
framework. If MusicSoar is a plausible model of music
cognition, then it indicates that much of a listener’s
ability is based on a kind of memory-based reasoning
involving pattern recognition and fast retrieval of infor-
mation from memory: Soar’s problem-solving methods
of creating subgoals are too slow for routine percep-
tion, but they are involved in creating the knowledge in
long-term memory that then can meet the processing
demands of music in real time.

The Soar Architecture

This section is a brief introduction to Soar (Version 5)
and is to a great extent based on Newell (1990). Soar is
a goal-directed problem-solving cognitive architecture
that is built on a parallel production system. Soar dis-
plays many of the characteristics of human cognition,
and the temporal characteristics of Soar’s cognitive
behavior are consistent with much of what is known
about human cognition.

Goals

A central premise of the Soar theory is that cognition is
based on goal-directed problem solving. Soar’s prob-
lem solving occurs within a context that has four
predefined attributes or slots: agoal, a problem space, a
state, and an operator. Goal-directed cognition begins
with the selection of a goal followed by selection of a
problem space which delimits the sets of states and of
operators that will be considered. Next, a state is
selected to represent the current state of the problem.
Finally, an operator is selected to change the current

1104

state to reach the goal state. The Soar architecture can
select a value for one of these context slots on each
decision cycle.

Decisions about context slot values occur automat-
ically within the Soar architecture if available
knowledge is sufficient to guide the decision. Other-
wise, an impasse occurs and the Soar architecture
creates a subgoal which is a new context with the goal
of resolving the impasse. This subgoal context then
requires selection of a problem space, a state and one
or more operators in order to resolve the impasse.
Further impasses may occur within this subgoal, lead-
ing in turn to additional subgoals.

The initial top-level context is unique and is general-
ly initialized with a predefined goal, problem space and
state. Once the top context is initialized, an operator is
selected to perform some task. Typically, Soar cannot
implement this operator directly which causes an im-
passe, leading to the creation of a subgoal, as described
above, to implement the desired operation.

Long term and working memories

Long term memory consists of productions that contain
conditions and actions. If all of the conditions of a
production match working memory elements, then the
actions of that production fire, adding new information
to working memory. Soar differs from conventional
production languages, such as OPSS, in many impor-
tant respects. For example, there is no conflict resolu-
tion; all productions that match fire in parallel, adding
new and possibly conflicting information to working
memory simultaneously. These additions to working
memory may make it possible for new productions to
fire. This process is called the elaboration phase of the
decision cycle, and it continues until quiescence, when
no new productions are triggered by information in
working memory. The elaboration phase allows Soar
access to all available, relevant knowledge for its
decision making. At quiescence, Soar tries to select a
value for a context slot. The elaboration phase followed
by selection of a context-slot value is the decision cycle.

Working memory holds all the information about
currently selected values for context slots. In addition,
as long-term memory productions fire, they add to


mailto:pete@sci.brooklyn.cuny.edu

working memory new information consisting of
proposed values for context slots, preferences for pre-
viously proposed values, and augmentations of infor-
mation already in working memory. All information in
working memory is stored in a network that is linked to
context slot values. If the value of a context slot changes,
then all information linked to the old slot value is
discarded. For example, when a subgoal resolves the
impasse that created it, the subgoal context is deleted
from working memory along with all information linked
to that subgoal. Hence working memory is highly
dynamic, allowing elements to disappear when no
longer needed.

All1/O is mediated by the top context state. That is,
in the Soar theory, perceptual input about the current
state of the environment enters the top context state
and this information can then be used by Soar in its
decision making. Also, motor systems can access output
commands that are placed in this top state.

Chunking

All learning in Soar occurs through chunking. When
Soar finds a solution to an impasse, it creates a chunk,
which is a new production that represents the solution
to the impasse. The left-hand side of the new produc-
tion contains the information in working memory that
was available when the problem arose and that was used
in finding the solution to the problem. The actions of
the new production are the results of the problem
solving. This production is added to long-term memory,
and when Soar finds itself in a similar situation in the
future, this production will fire and resolve the prob-
lem, thus eliminating the need to solve the problem

again.
Mapping Soar to Human Cognition

Newell (1990) argues that the minimum functional
neural circuit in the human brain takes about 10 ms to
operate. Such a neural circuit can perform a function
such as the memory access required to match the left-
hand side of a production in long-term memory to
conditions in working memory. This matching and
firing of productions occurs in parallel in the elabora-
tion phase of the decision cycle. The entire elaboration
phase along with the subsequent decision phase takes
place automatically in about 100 ms. The implementa-
tion of an operator will usually need a sequence of these
decision cycles such that even the simplest cognitive
tasks will require times on the order of about a sec.

MusicSoar

As noted above, cognition is based on goal-directed
problem solving in the Soar theory. To apply Soar to
music cognition, we must view listening to music as a
form of problem solving. What problem confronts a

1105

person listening to music? It seems likely that any intel-
ligent system should attempt to anticipate future events.
In MusicSoar, we assume, following Narmour (1991),
that the problem in listening to music is to anticipate
what is to come, based on music that has already been
heard. A listener’s knowledge of a specific piece and its
style, along with general musical knowledge, provide a
basis for expectations of what is to come. If these expec-
tations are accurate and match newly heard events, they
become the basis for generating more expectations. On
the other hand, expectations may not match what is
heard. In our approach, this generates a subgoal to
learn new expectations so that, if the same or similar
music is heard again, the listener will be better able to
anticipate the events that occur.

Listening to Music in MusicSoar

In MusicSoar, as musical events occur, they enter the
top state. Musical "problem solving" begins in this top
context with the selection of a listen-to-music operator.
This immediately leads to a subgoal of implementing
this operator, and, within this subgoal, MusicSoar
creates a new state called music-working-memory. It is
within this subgoal that MusicSoar listens to the music
input and anticipates what will follow. Thus, MusicSoar
has two primary states. The top state functions as a
passive preattentive sensory input buffer like an "echoic
memory,” while the music-working-memory represents
characteristics of the input that have been attended as
well as expectations of what is to come.

Top State Input

Input notes appear in the top state state and disappear
after some length of time. We assume that the repre-
sentation of musical input in this top state is not in terms
of waveforms, but rather is a representation of the
output of earlier auditory perceptual preprocessing
stages. Thus, in MusicSoar, each note in the top state is
represented by its pitch and duration, as well as infor-
mation about its temporal offset from the prior event.
Input to the top state is handled by a Lisp function that
reads a file containing symbolic representations of
musical events. The input function creates an event
attribute or augmentation linked to the top state for
each new musical event. The value of an event augmen-
tation is information about the event’s temporal offset
fromthe previous event as well as information about the
pitch and duration of each note in the event. Currently,
MusicSoar deals only with music containing a single
voice, such as the melody of a folk song without accom-
paniment.

Music-Working-Memory

Once an intention of listening to music has been
selected in the top context (as represented by the choice
of the "listen-to-music" operator), MusicSoar creates a



listen-to-music subgoal. This subgoal then persists
throughout the piece of music. The problem space in
this subgoal represents MusicSoar's knowledge of
music. The state associated with this first subgoal is
called music-working-memory and contains informa-
tion about top-state musical events that have been at-
tended and processed. The initial representation of
top-state events in music-working-memory e¢ncodes
only some of the simple relational properties such as
whether the most recent note is higher, lower or the
same in pitch as the previous note, as well as whether
the offset of the newest event is the same or longer or
shorter than the previous offset. More complex encod-
ings within music-working-memory, such as informa-
tion about specific pitch intervals, depend upon addi-
tional processing. It is also within music-working-
memory that anticipations arise. There are only two
operators that can be selected within this listen-to-
music subgoal context: attend, and leam-expectation. If
anew event occurs in the top state and no operator has
been selected, then the attend operator is proposed.
Once the attend operator is selected, it is implemented
by productions that copy part or all of the musical event
information from the top state into the music-working-
memory. The productions that implement the attend
operator can operate without additional subgoals in a
single decision cycle. Additional productions compare
the attended event to expectations and, if it matches,
the new event is added to a linked list of previously
heard events in music-working-memory. Because the
attend operator is implemented by productions that fire
without requiring decisions about context slots, the
attend operator requires a single decision cycle of
about 100 ms. Thus, when music conforms to expecta-
tions, the attend operator can follow along at about 10
events per second. On the other hand, the learn-expec-
tation operator is proposed whenever an attended
event does not match expectations. This operator leads
to a subgoal to learn new expectations that match what
actually happened.

Expectations

Musical expectations in MusicSoar are stored in its
long-term production memory. The left-hand sides of
these productions specify particular patterns of events
in music-working-memory, while the right-hand sides
represent expectations of what should follow the occur-
rence of these patterns. If the left-hand side of a
production matches the previously heard events in
music-working-memory, the production fires and adds
its expectation to working memory. Generating expec-
tations in this way involves no decision making and thus
can occur quickly. Newell (1990) has argued that
retrieving information from memory (e.g., matching the
conditions of a production to working memory ele-
ments) requires about 10 ms. Initially, MusicSoar has

1106

only a few default expectations, such as to expect that
the next event will have the same properties, €.g. pitch,
and offset, as the previous event. As MusicSoar ex-
periences different musical patterns, it learns new
productions that are added to long-term production
memory.

Learning

Subgoals in Soar arise when it is unclear what to do next,
and they result in decisions about what to do. Upon
resolving a subgoal, Soar can learn new productions or
chunks that storc information about how the problem
was resolved. The next time that problem arises, the
resolution of the problem can be retrieved from long-
tcrm production memory without requiring problem
solving again. Thus, after experience with a particular
problem, Soar can subsequently solve the problem
using a form of memory-based reasoning in which the
old solution is retrieved from memory rather than solv-
ing the problem again from scratch. MusicSoar’s expec-
tations arise from learning in the learn-expectation
subgoal.

The way in which the learn-expectation subgoal is
instantiated depends upon the type of expectation mis-
match that occurred and the subgoal problem space
that is selected, e.g., metric, rhythmic, melodic, etc. For
example, if a new event occurs at a time that is incon-
sistent with metric expectations, this requires
reinterpreting the meter of the music; however, an
unexpected event that occurs at a time that is consistent
with metric expectations requires learning a rhythmic
expectation. Problem solving within the learn-expecta-
tion subgoal can occur in several ways. For example, if
a note occurs later than expected, MusicSoar can try
look-ahead search to see if the expected note appears
to lead, in terms of offset, duration and pitch, to the new
note. In this case, the expected note may bridge the gap
from the previous events to the event just heard. Alter-
natively, additional musical analysis may reveal new
features of the music that has been heard, allowing
other productions in long-term memory to fire, and
these productions may propose the correct expecta-
tion. For example, MusicSoar might look back at pre-
viously heard events in working memory to see if some
parallel sequence of events has occurred. Finally, the
learn-expectation subgoal might use data chunking
(Rosenbloom, Laird & Newell, 1987) to learn to expect
the new event based on the immediately preceding
events. In data chunking, some of the previously heard
events are learned as a cue that will, in the future,
trigger recall of the newly heard event in a sort of paired
associate learning. That is, some of the previous events
in music-working-memory become the pattern for the
left- hand side of a new production that will trigger a
new expectation. This lets MusicSoar memorize



specific songs. Although MusicSoar can learn expecta-
tions corresponding to specific pieces, this is not suffi-
cient. People not only acquire specific knowledge about
particular pieces of music, but they also acquirc more
general schematic knowledge that guides expectations
when listening to new pieces of music (Narmour, 1991),
For example, experience with Western tonal music
leads people to expect particular melodic, harmonic
and rhythmic progressions. Thus, a general problem for
MusicSoar is to induce schematic musical knowledge
and expectations from experience with specific pieces.

The representation of musical input has important
effects on learning. People generally perceive events
(visual, auditory, tactile, etc.) in terms of the relational
properties of the event; e.g., they perceive relative
luminance differences in vision rather than absolute
luminance levels. In music, the salient perceptual
properties involve relative pitch and time differences.
To reflect this, the top state representation of musical
events is encoded in terms of the pitch and duration of
each event relative to previous events. Because Music-
Soar learns expectations in terms of these relational
properties, this learning will generalize to situations
that preserve these relations. Thus, if MusicSoar learns
to expect the next note in an arpeggio, this learning will
apply to any arpeggio in the same mode (e.g. major or
minor) regardless of the key. Thus, learning based on
such relational information will generalize directly to
transpositions in pitch and time. However, one issue
that we have not yet resolved in the data chunking
mechanism described above is how much information
about previous events should be included in the left-
hand side of new productions. Making the left-hand
side too specific will prevent the new productions from
generalizing to any other situation.

As just indicated, MusicSoar’s ability to generalize
is influenced by the representation of the music in
music-working-memory. A key question for any induc-
tive learning is what knowledge and learning biases
exist before the learning actually begins (Dieterich,
1990). For example, we have assumed that human lis-
teners have some understanding of pitch relations
without any training. That is, if two sounds differ in
frequency, listeners hear the higher frequency as higher
in pitch. More complex characterizations of pitch, such
as octave relations and perception of consonance may
be learned early in life based on auditory stimuli in
general (e.g. Terhardt 1991), and thus may be available
almost from the very first musical experience. Some
primitive temporal knowledge, such as the ability to
hear differences in durations, also seems almost cer-
tainly innate or at least acquired at a very early age.
These considerations determine the design of Music-
Soar. We have assumed that, without prior experience,
MusicSoar can determine the contour of a melody, i.e.,

the pattern of ups and downs in pitch. However, we
assume that more specific knowledge of pitch relations
requires learning about particular intervals. Further
assumptions are that MusicSoar can perceive equality
of time intervals, and time ratios of two to one and three
to one (corresponding to duple and triple meters in
music, respectively).

One interesting problem is that Soar has no explicit
forgetting mechanism. That is, once a new production
is learned, it is never forgotten. However, later learning
will create productions that may interfere with older
learning. That is, Soar can demonstrate retroactive
interference wherein a new production may encode a
new and different expectation for a pattern that is
similar to the left-hand side patterns of already learned
productions. When that pattern occurs, both produc-
tions may fire and generate different expectations. One
general problem in MusicSoar is how to handle such
expectation conflicts.

Knowledge Search

A listener can have both specific and schematic
knowledge that is relevant to a particular listening ex-
perience. Given this, hearing a particular event se-
quence may trigger many expectations, some of which
may conflict. We have considered and rejected two
possibilities for handling such conflicts. First, we might
let all expectations be added in parallel to working
memory without differentiation. However, this is unac-
ceptable, because if listeners know a particular song,
they have specific expectations about what should come
next, and they generally will not wander off the track,
even though fragments and aspects of the song may
have occurred in other previously heard pieces of
music. For example, given familiarity with Beethoven’s
Fifth Symphony, there is no ambiguity about what fol-
lows "dit-dit-dit-dah." Thus, we cannot just let all pos-
sible expectations based on prior experience have equal
status. A second possibility is to use different problem
spaces for different pieces of music, e.g. a listen-to-
Mozart’s-40th and a listen-to-Beethoven’s-fifth prob-
lem space. The learning that occurred within a problem
space would be available only within that problem
space. But this also cannot be the right solution, be-
cause it is clear that, while listening to Beethoven’s
Fifth, we do not cut ourselves off from all other musical
knowledge. Separate problem spaces would also
prevent generalization. What was learned for one piece
would be available only in the problem space for that
piece. With radically different types of music like In-
dian ragas and Western tonal music, the expectations
and thus the problem spaces are likely quite different,
but, given a particular genre or style of music, it seems
probable that particular picces of music within that
style are heard within a problem space that is common
to that style.

1107



If a listener wants to follow along with Beethoven’s
Fifth, it must be possible to select quickly the ap-
propriate specific expectations from a much larger set
of expectations drawn from general musical
knowledge. We are exploring two ways to limit choices
in MusicSoar. First, working memory can contain
specific elements that can control which expectations
are activated, Thus, if music-working-memory contains
the information that we are listening to Beethoven’s
Fifth, then previously learned productions for
Beethoven’s Fifth can be activated, but not, say,
productions specific to Mozart's 40th symphony, be-
cause information about the identity of the piece would
be included in the left-hand side of the expectation
productions for Becthoven’s Fifth. This is similar to the
idea of setting up different problem spaces for different
pieces but is less restrictive. A second related approach
is to have production memory contain productions that
express preferences for particular expectations. That is,
when listening to Beethoven’s Fifth, all productions
that match a musical fragment may fire, resulting in a
rich flood of expectations. However, other productions
may also fire that express preferences for those expec-
tations that are linked to MusicSoar’s goals. Thus, if the
goalis to follow along with Beethoven’s Fifth, preferen-
ces for expectations specific to Beethoven’s Fifth would
be activated, keeping MusicSoar’s expectations on
track.

Temporal Constraints on Processing

Newell has argued that if the human brain implements
a Soar-like architecture, a decision to select a value for
a context slot (i.e. goal, problem space, state or
operator) must take a decision cycle of approximately
100 ms (Newell, 1990). Music unfolds at rates that are
not controlled by the listener, and the listener must
cope with events as they occur. Thus, we can ask
whether MusicSoar, when limited by a 100 ms decision
cycle, can meet the real-time demands that are imposed
by music. The attend operator in MusicSoar can be
selected and implemented in a single decision cycle.
This means that MusicSoar can attend to up to 10 events
per second if the attend operator is selected repeatedly
and without interruption. However, the attend
operator for the next input event will be selected only
if the current expectations match the most recently
attended event. If the generation and selection of ex-
pectations were to also require selecting and im-
plementing operators at a rate limited by a 100 ms
decision cycle, MusicSoar would only be able to keep
up with the slowest music. Thus, expectations must
generally arise based on recognition of patterns in
music-working-memory that match the left-hand-side
of expectation generating productions already avail-
able in long-term production memory. As noted above,
Newell (1990) argues that it is plausible to assume a

memory access time of about 10 ms for production
matching. In addition, preferences that select among
various expectations must act on music-working-
memory directly and cannot require decisions about
goals, problem spaces, states or operators. Theytoo can
be implemented as quickly as they can be retrieved
from production memory.

On the other hand, if expectations do not match the
music, MusicSoar enters a learn-expectation subgoal
which requires several decision cycles. Given that
MusicSoar may be unable to complete this subgoal
processing in time to attend to the next event, what
happens? One possibility is that the next input event
generates an interrupt, forcing MusicSoar to select a
new attend operator over any currently selected
operator. This would mean that MusicSoar would lose
any current "thinking" about the last event. Another
possibility is that MusicSoar might continue to think on
the basis of the previously attended top state events. But
if this occurs, MusicSoar may fall behind, perhaps by
several events, which can cause MusicSoar to miss
notes, and lead to incomplete processing and repre-
sentation of the music. Then when MusicSoar com-
pletes its thinking and is ready to attend again, what
should it attend to?

The temporal processing constraints in MusicSoar
may also suggest why one can hear the same piece of
music many times and continue to hear new things. A
listener may not perceive all aspects of a complex musi-
cal event. In MusicSoar, this means that the repre-
sentation of an event in the top state may be com-
prehensive, but the attend operator may encode only
some of the top state information into working memory.
The subset of information that is encoded will then
determine the expectations that follow. If a different
subset of information is encoded upon later rehearing,
then a different set of expectations will arise. Another
source of variability in MusicSoar can arise in the learn-
ing process. A new event may simultaneously mismatch
expectations in several ways, e.g. metric, melodic, har-
monic, etc., various musical characteristics which are
perceived somewhat independently (Palmer & Krum-
hansl, 1987). MusicSoar breaks the problem down and
tries to learn expectations for these characteristics,
each of which is handled within a different subgoal
problem space. Because each subgoal usually requires
several decision cycles of about 100 ms each, only rarely
is there sufficient time to deal with all the charac-
teristics. In a single hearing, MusicSoar can learn only
some of the characteristics of the music, and later
rehearings then provide opportunities for additional
learning. This account suggests why, when a piece is
partially learned, a person may be able to imagine
hearing it by following the sequence of expectations
that are generated. However, any attempt to sing it out

1108



loud would be embarrassing as the expectations do not
completely specify all the characteristics required for
performance.

Hierarchical structure of music

Lerdahl & Jackendoff (1983) argue that perception of
music involves creating a subjective hierarchical struc-
ture involving meter, rhythm, grouping, tonal move-
ment, etc. Such structures arise in MusicSoar from
augmentations added to attended events in the listen-
to-music subgoal. The productions that create these
augmentations are learned in meter-analysis, grouping-
analysis, and tonal-analysis subgoals that arise within
the learn-expectation subgoal. The ability of MusicSoar
to create such structures depends heavily on past ex-
perience, for there is insufficient time for extensive
analysis of the music in subgoals. Rather, such struc-
tures must generally arise directly from previously
learned productions that match the information in
working memory.

Composition

One interesting property of the MusicSoar approach is
that this system could, with few changes, compose
music. That is, because MusicSoar is based on expecta-
tions, all that is required is to initialize music-working-
memory with a musical fragment. This fragment would
then trigger expectations, and these expectations would
not be compared to actual inputs but would simply
become new values in music-working-memory which
are then used to control the generation of still more
expectations. The quality of the composition repre-
sented by this chain of expectations would be governed
by the quality of the learned expectations. However,
this perspective brings another point into focus: When
there are conflicting expectations, the system must
show some indeterminacy. That is, given a set of con-
flicting expectations, the same one should not be
selected on every run or else we have a system that can
compose only a few pieces. It is likely that the same
indeterminacy should also be true of listening: The
same song may be re-heard in different ways.

Summary

There has been relatively little work on building
processing theories of music. Soar provides a challeng-
ing and exciting framework for such explorations, and,
to our knowledge, it has not previously been applied to
music cognition. Soar poses several interesting con-
straints in its application to music cognition. One is that
music cognition must be viewed as a problem solving
activity. Intuitively, we think it is reasonable to view the
problem in music cognition as one of anticipation. A
second significant constraint on the application of Soar
to music cognition is that Newell has linked the time
that is required for a decision cycle in Soar to brain

processes that require about 100 ms. This temporal
constraint imposes important limitations on how the
theory can be applied to a domain such as music and
makes it possible to evaluate the Soar theory and its
instantiation in MusicSoar in ways that are rarely true
of cognitive theories. We think that the Soar framework
may generate new insights and questions into the
problems that are posed for cognitive theories for
domains such as music. MusicSoar is an attempt in this
direction.

References

Dieterich, T. G. 1990. Machine Learning. Annual
Review of Computer Science 4:255-306. Palo Alto, CA:
Annual Reviews Inc.

Laird, J., Newell, A., & Rosenbloom, P. 1987. SOAR:
An Architecture for General Intelligence. Artificial In-
telligence 33:1-64.

Lerdahl F., & Jackendoff, R. 1983.4 Generative Theory
of Tonal Music. Cambridge, MA: MIT Press.

Narmour, Eugene. 1991. The Top-down and Bottom-
up Systems of Musical Implication: Building on
Meyer’s Theory of Emotional Syntax. Music Perception
9:1-26.

Newell, Allen. 1990. Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Palmer, C., & Krumhansl, C. 1987. Independent Tem-
poral and Pitch Structures in Perception of Musical
Phrases. Journal of Experimental Psychology: Human
Perception and Performance 13:116-126.

Rosenbloom, P., Laird, J., & Newell, A. 1987.
Knowledge Level Learning in Soar. In Proceedings of
AAAI-87: Sixth National Conference on Artificial Intel-
ligence. Los Altos, CA: Morgan Kaufmann. pp. 499-
504.

Terhardt, E. 1991. Music Perception and Sensory In-
formation Acquisition: Relationships and Low-level
Analogies. Music Perception 8:217-240.

1109



	cogsci_1992_1104-1109



