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A premutation (PM) expansion (55–200 CGG) in the fragile X mental retardation gene 1 (FMR1)

causes elevated mRNA and reduced FMR1 protein (FMRP). Young PM carriers can develop

characteristic physical features and mild cognitive disabilities. In addition, individuals with PM,

particularly male carriers, are at high risk to develop Fragile X-associated tremor/ataxia syndrome

(FXTAS) with aging. Human post-mortem FXTAS brains show extensive white matter disease in

the cerebellum and the presence of intranuclear inclusions throughout the brain, although their

etiological significance is unknown. In the current work, expression levels of the metabotropic

glutamate (Glu) receptor mGluR5 and the Glu transporter EAAT1, examined by RT-PCR and WB

analyses, were found to be reduced in the post-mortem cerebellum of PM carriers with FXTAS

compared to age matched controls, with higher CGG repeat number having greater reductions in

both proteins. These data suggests a dysregulation of Glu signaling in PM carriers, which would

likely contribute to the development and severity of FXTAS.

Keywords

FMR1; FMRP; premutation; Fragile X Tremor/Ataxia Syndrome; FXTAS; Glu transporters;
EAAT1; EAAT2; mGluR5

2. Introduction

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late onset neurodegenerative

disorder. Tremor and ataxia accompanied by noticeable cognitive problems are usually the

first clinical presentation of FXTAS. Progressive neuropathological involvement is

manifested with signs of parkinsonism, psychiatric disturbances such as depression and

anxiety with some patients developing dementia and severe disability (Leehey and

Hagerman 2012). Carriers with the Fragile X Mental Retardation 1 (FMR1) gene expansion

(55–200 CGG repeats, premutation, PM) in the 5’ UTR of the promoter are at risk of

developing FXTAS (Hagerman and Hagerman 2001, Hagerman et al. 2008, Hagerman et al.

2001). The penetrance of the PM phenotype and manifestation of FXTAS is more severe in

men than in women especially those individuals with higher than 70 CGG repeat alleles

(Leehey et al. 2008). In the United States alone it has been estimated that at least 1 in 130–

250 females and 1 in 260–800 males are PM carriers (reviewed in (Tassone et al. 2012)) and

at least 40% of male PM carriers over age 50 (Jacquemont et al. 2004) and 8 % of female

PM carriers over age 40 (Coffee et al. 2009) will develop FXTAS.

The FMR1 protein, FMRP, is an RNA binding protein that functions as a translational

repressor modulating the expression of important proteins involved in the formation of

dendritic spine morphology, pruning of synaptic contacts and overall synapse maturation

(Irwin et al. 2000, Bagni et al. 2012). The inefficient translation of FMRP in PM carriers,

particularly in those carrying an allele in the upper premutation range, can therefore have a

direct impact on overall synaptic connectivity, plasticity and brain function (Sidorov et al.

2013). Excessive transcription and accumulation of FMR1 mRNA leads to toxicity (Tassone

et al. 2004b) and to sequestration of CGG binding proteins including DGCR8, a key player

in miRNA biogenesis (Sellier et al. 2013) and Sam 68, a regulator of alternative mRNA

splicing (Sellier et al. 2010). In FXTAS, the formation of ubiquitin positive intranuclear
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inclusions in a subset of neurons and astrocytes, along with white matter disease, are thought

to contribute to neurodegeneration (Greco et al. 2002, Tassone et al. 2004a, Greco et al.

2006, Garcia-Arocena et al. 2010). However, the cellular mechanisms determining the onset

and progression of FXTAS in PM carriers are not presently understood,

Glutamate (Glu) transport is a mechanism necessary for reestablishing basal levels of

synaptic activity after neuronal stimulation by removal of Glu from the perisynaptic cleft.

The transporters are coupled to subunits of the Na+-K+ ATPase pump requiring the ionic

flux of Na+ and K+ currents, a Ca2+ dependent mechanism, for the uptake of Glu into cells

against its concentration gradient (Rose et al 2009). Clearance of Glu prevents a potential

constitutive firing of Glu binding receptors and formation of free radicals (Danbolt 2001).

Disruption of this mechanism can lead to overstimulation of Glu receptors, resulting in

excitotoxicity (Nakagawa and Kaneko 2013).

The family of excitatory amino acid transporters includes 5 different subtypes also known as

solute carrier family 1 members, namely EAAC1/EAAT3 (Kanai and Hediger 1992),

EAAT1/SLC1a3/GLAST (Storck et al. 1992, Tanaka 1993b, Tanaka 1993a), EAAT2/

SLC1a2/GLT1 (Pines et al. 1992), EAAT4 (Fairman et al. 1995) and EAAT5 (Arriza et al.

1997). Glu transporters are primarily localized in glial cells although their expression has

also been detected in neurons. EAAT1 and EAAT2 are the principal means by which Glu is

recycled in the central nervous system and it is estimated that EAAT2 clears over 90% of

Glu alone (Danbolt 2001); however, in the cerebellum, EAAT1 is the main Glu transporter

(Danbolt et al. 1998, Rose et al. 2009). Immunoblotting of young rat cerebellar extracts

showed that GLAST (the orthologue of EAAT1) is at least 6 times more abundant than

GLT1 (the orthologue of EAAT2) (Danbolt et al. 1998, Lehre and Danbolt 1998). In

addition, comparison between rat cerebellar and forebrain membranes, and astrocytic

cultures, demonstrated greater GLAST expression in the cerebellum and astrocytes, whereas

GLT1 expression was more pronounced in forebrain (Rose et al. 2009). GLAST distribution

within the cerebellum has been mainly observed in Bergmann glia cells for both mice and

primates (Williams et al. 2005). Consistently, immunohistochemical staining for GLAST in

P2 rat cerebellar cortex shows prominent expression in the Bergman glia and granule cell

layer (Rose et al. 2009). Bergmann glia and the expression of GLAST in these cells are

crucial for proper signaling of the surrounding synapses, namely the parallel fiber-Purkinje

cell synapses. Parallel fibers are axons of granule cells establishing synapses with the

Purkinje cell dendritic arborization (Lopez-Bayghen et al. 2007). During synaptic activity

the parallel fiber-Purkinje cell synapses utilize Glu as a neurotransmitter affecting synaptic

transmission between Glu receptors and transporters expressed in the surrounding Bergmann

glia and astroglia cells (Lopez-Bayghen et al. 2007). Thus, optimal Glu transporter

expression, and especially GLAST protein expression in Bergmann glia cells in the

cerebellum, is critical for modulation of synaptic plasticity.

Recent evidence points to abnormalities in glutamatergic signaling in the fmr1 CGG knock-

in (KI) mouse model of PM (PreCGG) (Cao et al. 2012) and in the iPSC derived human PM

neurons from human fibroblast (Liu et al. 2012). Alterations in Glu uptake kinetics and

augmented group I metabotropic Glu receptors (Gp1 mGluRs: mGluR1 and mGluR5)

activity observed in preCGG neurons suggests that a defect in Glu transport and signaling in
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astrocytes could also contribute to PM pathology (Cao et al. 2012), and is consistent with

results from a more recent study indicating that astrocytic cultures from frontal cortex of

preCGG mice have altered asynchronous Ca2+ oscillations and glutamatergic responses

associated with modest reductions of both GLT1 and GLAST expression (Cao et al. 2013).

Moreover, these changes have been also observed in aged mice, which show 25–30%

reduction in the expression of GLT1 and GLAST in preCGG mice compared to aged

matched wild type mice (Cao et al. 2013). Thus, neurons (Cao et al. 2012) and astrocytes

(Cao et al. 2013) cultured from preCGG mice show significant sensitivity to Glu-triggered

Ca2+ signals that is primarily attributed to mGluR5 hyperactivity.

In fragile X syndrome (FXS), a related FMR1 associated disorder and the most common

cause of inherited early onset intellectual impairment, the FMR1 CGG repeat expansion

exceeds ≥200 CGG repeats (termed a full mutation), which leads methylation of the FMR1

promoter resulting in little to no expression of FMRP (Pieretti et al. 1991, Bagni et al. 2012,

De Rubeis et al. 2012). During the past decade, it has become apparent that the dysregulated

activation of the mGluR5, a translational target of FMRP, is a major contributing factor to

FXS neuronal network dysfunction, and could explain both the psychiatric and neurological

deficits observed in FXS patients (Bear et al. 2004, Auerbach and Bear 2010, Bear 2005,

Osterweil et al. 2012). These findings prompted us to investigate whether similar

abnormalities would be observed in the PM brain of patients affected by FXTAS as lower

FMRP expression can also be observed in some PM. Here we report results from decreased

cerebellar expression of astrocytic Glu transporters EAAT1 and of the mGluR5 in 16 human

PM cases, all of whom developed FXTAS during life, compared to 8 age matched controls

providing additional evidence of CGG-dependent glutamatergic dysregulation in PM and

FXTAS.

3. Methods

3a. FXTAS stages

FXTAS stages are based on the degree of clinical involvement of tremor and/or gait ataxia,

and are defined as follows: Stage 0 is considered asymptomatic, with no evidence of either

tremor or ataxia; Stage 1 involves subtle or questionable tremor and/or balance problems;

Stage 2 presents with clear intentional tremor and/or balance problems, with little or no

compromise of activities of daily living (ADL); Stage 3 involves moderate tremor and/or

balance problems with significant interference in ADLs; Stage 4 describes severe tremor

and/or balance problems necessitating the use of a cane or walker; Stage 5 requires the use

of a wheelchair on a daily basis. Symptoms progress in severity of tremor and ataxia such

that, in stage 6, patients are bedridden (Bacalman et al. 2006). FXTAS progression also

includes brain atrophy and white matter disease with gradual loss of cognitive function.

Most individuals who die of FXTAS were at FXTAS stage 6.

3b. Brain tissue samples

Frozen post-mortem human cerebellum tissue from 16 PM cases (mean age 78, range= 64–

108 CGG repeats; mean= 87) were obtained from the MIND Institute Brain Repository at

the University of California at Davis in Sacramento, CA. All of the 16 PM cases were
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diagnosed with FXTAS at the time they were seen clinically and were bedridden at the time

they died (stage 6). Post-mortem tissue from 8 age matched typical developing (TD)

controls (mean age 67, range: 21–42 CGG repeats; mean= 30) were obtained frozen from

the Harvard Brain Tissue Resource Center at McLean Hospital in Belmont, MA. (n= 1);

from the Brain and Tissue Bank for Developmental Disorders of the National Institute of

Child Health and Human Development at the University of Maryland in Baltimore, MD (n=

2); and from the Miami Brain Endowment Bank at the University of Miami at Florida (n=

5).

3c. CGG repeat sizing

CGG repeat sizing was determined by Polymerase Chain Reaction (PCR) and Southern blot

(SB) analysis as previously described (Tassone et al. 2008, Filipovic-Sadic et al. 2010,

Fernandez-Carvajal et al. 2009). Genomic DNA was obtained from peripheral blood and

brain regions using a Qiagen DNA isolation kit following standard procedures (Qiagen,

Valencia, CA). When necessary, a dounce homogenizer was used to promote dissolution of

lysates, which were then spun at 13,000 rpm for 10 minutes twice, and DNA was

resuspended in TE buffer.

3d. Gene expression assay

Total RNA from cerebellum tissue was isolated using standard procedures (Trizol; Life

Technologies, Carlsbad, CA). mRNA expression levels in the cerebellum was quantified by

Real Time quantitative Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) using

Taqman gene expression assays (Assay on demand, Applied Biosystems, Foster City, CA).

Probes included EAAT2 (Hs01102415), EAAT1 (HS00904818_m1), GRM1 or mGLUR1

(HS00168250_m1), and GRM5 or mGLUR5 (HS00168275_m1) probes; as well as a custom

designed probes for FMR1 (5' 6 FAM -

TGATGAAGTTGAGGTGTATTCCAGAGCAAATGA - 3' TAMRA) and β-glucuronidase

(GUS) (5' 6 FAM - TGAACAGTCACCGACGAGAGTGCTGG - 3' TAMRA) (Tassone et

al. 2000). The β-GUS gene was used for normalization.

3e. Protein extraction and Western blot (WB) analysis

Frozen cerebellum tissue preserved at −80 °C from 16 PM carriers (CGG ranging from 64 to

108 repeats) and 8 age matched controls (CGG ranging from 21 to 42 repeats) was grounded

in liquid nitrogen and resuspended in 1× RIPA buffer (Cell Signaling, Beverly, MS)

complemented with complete ULTRA protease inhibitor tablets (Roche Applied Science,

Indianapolis, IN) and AEBSF (Sigma-Aldrich, Saint Louis, MO). The lysates were kept on

ice until homogenized by sonication using 15 seconds on/off intervals after which, followed

by centrifugation at 18,000 rpm in a Sorvall centrifuge at 4°C. The supernatants containing

the protein extraction were collected and protein concentrations were measured using a BCA

Protein Assay (Thermo Scientific, Rockford, IL). Sample concentrations were adjusted for

SDS-PAGE electrophoresis in Laemmli buffer containing 100mM DTT. The proteins were

separated by SDS-PAGE electrophoresis using Criterion XT pre-cast gels in 1× MOPS

buffer running at a constant current of 25 mA for 30 minutes followed by 40 mA for 4–6

hours and transferred to a PVDF membrane (Millipore, Billerica, MA) in 20% methanol
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Tris/Glycine/SDS buffer at a constant current of 150 mA for 16 hours at 4 °C. Membranes

were blocked in 1× TBST (USB Corporation, Cleveland, OH) with 5% milk and probed

overnight at 4 °C with either mouse anti-FMRP (Chemicon, Temecula, CA, 1:1,000

dilution), mouse anti-GAPDH (Chemicon, Temecula, IL, 1:80,000 dilution), rabbit anti-

EAAT2 (Aviva Systems Biology, San Diego, CA, 1:1,000 dilution), mouse anti-EAAT1

(Novacastra, Leica Microsystems, United Kingdom, 1:2,000 dilution), or mouse anti-

mGluR1/5 (NeuroMab, Davis, CA, 1:500 dilution). The membranes were then washed 3

times, each for 15 minutes in 1× TBST and incubated in a1:5000 diluted goat anti-mouse

(BioRAD Laboratories, Hercules, CA) or goat anti-rabbit (Cell Signaling Technologies,

Inc.) horseradish peroxidase-coupled secondary antibodies for 2 hours at room temperature.

The membranes were then washed and analyzed by chemiluminescence using SuperSignal

West Dura extended duration substrate (Thermo Scientific, Rockford, IL). Band intensities

were measured by densitometry using AlphaView SA software, version 3.2.2.0, from Cell

Biosciences, Inc. WBs were also performed using LICOR (LICOR Biosciences, Lincoln,

NE). Briefly, following transfer, the PVDF membranes were blocked in LICOR blocking

buffer and hybridized overnight at 4 °C with either mouse anti-FMRP (Chemicon,

Temecula, CA, 1:1,000 dilution), mouse anti-GAPDH (Chemicon, Temecula, IL, 1:200,000

dilution), rabbit anti-EAAT2 (Aviva Systems Biology, San Diego, CA, 1:1,000dilution),

mouse anti-EAAT1 (Novacastra, Leica Microsystems, United Kingdom, 1:2,000 dilution),

sheep anti-mGluR5 (R&D Systems, 1:500 dilution), or sheep anti-mGluR1 (R&D Systems,

1:500 dilution). The membranes were washed in 1× TBST followed by 2 hours incubation at

RT with the corresponding IRDye 680RD goat anti-rabbit or IRDye 800CW goat anti mouse

secondary antibodies (LICOR Biosciences, Lincoln, NE). The membranes were then washed

in 1× TBST containing 0.02% SDS. Bands were imaged at 169 µm resolution using the

Odyssey infrared scanner following manufacture recommendations. Mouse protein extracts

were prepared from cerebellum tissue derived from preCGG and WT mice at different

developmental stages following the protocol as described above. WB were performed using

chemiluminescence and analyzed as described above.

3f. Immunohistochemistry

Sections of cerebellum from PM and control subjects were paraffin embedded, thin

sectioned on a microtome and mounted on glass slides. Sections were deparafinized for 15

minutes in SafeClear (Fisher, City, state) and hydrated by sequential 15 minutes rinses in

ethanol (100%, 95%, 70%, 50%) followed by distilled H2O for 5 minutes and 0.1 M PBS

(pH 7.4). Sections were treated for antigen retrieval for 15 min in boiling citrate buffer (10

mM) and cooled to room temperature. Endogenous peroxidase was quenched by treating

sections with 3% H2O2 for 20 minutes after which sections were blocked for one hour in

10% donkey serum, 0.2% gelatin, and 1% Triton X-100 diluted in PBS. Sections were

incubated overnight in either mouse anti-FMRP (Chemicon, Temecula, CA), mouse anti-

EAAT1 (Novacastra, Leica Microsystems, United Kingdom, 1:2,000 dilution), rabbit anti-

EAAT2 (Aviva Systems Biology, San Diego, CA; 1:1,000 dilution), or sheep anti-mGluR5

(R&D, Minneapolis, MN; 1:500 dilution), in incubation buffer (2% donkey serum, 0.04%

gelatin, and 0.2% Triton X-100 diluted in PBS). Sections were rinsed in PBS and incubated

for one hour at room temperature in donkey anti-sheep biotinylated antibody (Jackson, West

Gove, PA; 1:200 dilution) diluted in incubation buffer. Biotinylated antibodies were
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visualized with an ABC Kit (Vector) d in incubation buffer eveloped with DAB. Sections

were then rinsed in distilled H2O for 5 minutes followed by sequential 15 minute rinses in

ethanol (50%, 70%, 95%, 100%), two 15 minute rinses in SafeClear, and coverslipped with

DPX (Sigma, St. Louis, MO). Sections were imaged on an Olympus BX61 and figures

arranged with Photoshop (Adobe Systems Incorporated, v. 7.0).

3g. Statistical analysis

Protein data were normalized for differences between gels as follows: A linear mixed model

including fixed effects for gel and group (TD vs. PM) and a random effect for sample was

fitted to log transformed data. The estimated gel effects from this model were exponentiated

to obtain the geometric mean ratio between each gel and a reference gel, and data from each

gel were divided by the corresponding geometric mean ratio. Protein data were normalized

separately for each protein. Following normalization, data were averaged across replicates.

Protein data were log transformed prior to analysis in order to symmetrize the data. mRNA

data were not log transformed as no skewness was apparent in plots. Differences in protein

expression or mRNA expression between groups were analyzed using two-sample t-tests.

The relationship between protein/mRNA expression and CGG length was analyzed using

linear regression, which examines the incremental change in expression with each additional

CGG repeat. Analyses were conducted using R, version 2.15.2 (R Core Team, 2012).

4. Results

4a. Subjects description

Sixteen PM cases were included in the analysis. Among these individuals, all were

confirmed cases with FXTAS with a FXTAS stage varying between 4 and 6 obtained at the

time they were seen clinically and all were bedridden at the time of death (FXTAS stage 6).

The description of demographic, molecular and clinical information is presented in Table 1.

4b. FMR1 and FMRP expression is altered in the brain of PM carriers

SB analysis and PCR were used to determine the CGG size. Eight cases with no history of

any neurodegenerative disorders were identified as unaffected TD controls and their

genotype confirmed with detection of a CGG repeat allele ranging between 21 and 42 CGG

repeats. Sixteen cases with CGG repeats, which ranged between 64 and 108 CGG repeats,

were confirmed PM carriers (Fig. 1). SB analysis of blood did not detect the presence of

methylated alleles in any of the PM samples analyzed.

We focused our investigation on the cerebellum as this area of the brain is highly affected in

FXTAS and tissue was available for all PM cases and TD controls. FMR1 mRNA

expression in the cerebellum estimated by qRT-PCR showed an increased FMR1 transcript

levels, particularly in the higher CGG range as was reported previously (Garcia-Arocena et

al. 2010, Tassone et al. 2004b) (Fig. 2a). Expression levels assessed by WB analysis in

cerebellar protein lysate extracts obtained from the same tissue blocks used for DNA and

RNA measures showed a significant reduction in FMRP level with increasing number of

CGG repeats, with an estimate 1.7% decrease in FMRP expression for each additional CGG

repeat (p= 0.004 from linear regression analysis) (Fig 2b, c). These results indicate that
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FMRP is less abundant in the cerebellum of PM individuals and more so in those with larger

expanded alleles. These results are consistent with previous observations of lower FMRP

expression in human brain as well as in human peripheral blood leukocytes and

lymphoblastoid cell lines (Tassone et al. 2000, Kenneson et al. 2001, Garcia-Arocena et al.

2010, Tassone et al. 2004b, Allen et al. 2005, Peprah et al. 2010). Importantly, this data also

demonstrate that increased FMR1 mRNA and decreased expression of FMRP levels in the

brain of PM are correlated to the length of the CGG expansion although the correlation is

not as strong as the one observed in peripheral blood (Tassone et al. 2000, Tassone et al.

2004a, Greco et al. 2002, Greco et al. 2006, Garcia-Arocena et al. 2010).

4c. EAAT1 and mGluR5 expression are downregulated in the cerebellum of PM carriers

To investigate whether expression of the main astrocytic Glu transporters EAAT2 and

EAAT1 are affected by reduced FMRP expression, we measured their mRNA levels from

cerebellum derived from the same subject. Our findings indicated that EAAT2 mRNA

expression in PM tended to decrease with increasing CGG repeat numbers, but the

association did not reach statistical significance (p = 0.662 from linear regression analysis)

(data not shown). By contrast, EAAT1 mRNA expression decreased marginally significantly

with increasing length of CGG repeats, with an estimated change of ~0.004 in EAAT1

expression for each additional CGG repeat (p = 0.049 from linear regression analysis) (Fig.

3a). We also measured the expression levels of EAAT2 and EAAT1 Glu transporter proteins

using WB analysis. Although EAAT2 expression was not significantly different between

PM and TD (p = 0.138 from two sample t-test) (data not shown), we observed a significant

lower levels of EAAT1 protein expression that was correlated with the length of the CGG

repeat, with an estimated 1.9% decrease in EAAT1 expression for each additional CGG

repeat (p = 0.002 from linear regression analysis) (Fig. 3b, c). EAAT2 and EAAT1 mRNA

and protein levels were also measured in frontal cortex derived from the majority of the

same subjects (n=15) for which tissue was available, but no statistically significant

difference was observed when compared to TD (n= 3).

Targets of FMRP regulation are mGluR1 and mGluR5, which have been both implicated in

neuronal network impairments associated with FXS (Bear et al. 2004). To investigate

whether altered expression of mGluR proteins might be affected with expanded CGG repeat

in the PM range, the expression of GRM1 and GRM5 mRNA, and of their respective protein

products mGluR1 and mGluR5, were measured in cerebellum. Although qRT-PCR of

GRM1 (data not shown) and GRM5 (Fig. 4a) showed decreased expression levels in most of

the PM cases with increased CGG repeat, differences were not statistically significant

compared to TD (p = 0.455 and 0.115, respectively from two-sample t-tests). However,

using specific antibodies, we detected a significant reduction of mGluR5 protein expression

with increasing number of CGG repeats by WB in PM compared to TD, with an estimated

1.0% decrease in mGluR5 expression for each additional CGG repeat (p = 0.021 from linear

regression analysis) (Fig 4b). No differences in mGluR1 expression were detected by WB

analysis (data not shown). Gene expression of GRM1 and GRM5 mRNA was also measured

in frontal cortex but no differences were detected and protein expression levels were not

measured.
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Using immunohistochemistry (IHC) we also determined the cell distribution of FMRP,

EAAT1 and mGluR5 expression in cerebellar sections from subjects in our study. FMRP

was expressed in the molecular and granule cell layers of the cerebellum, with marked

expression in Purkinje cells. Our qualitative analysis indicates a similar cellular distribution

between TD and PM cases with reduced overall immunoreactivity of the FMRP antibody in

the PM cases as compared to TD (Fig.5a and 5b). IHC analysis of EAAT1 showed

numerous EAAT1 positive cells with an overall reduction in immunoreactivity in the

granule cell layer of PM and lack of immunoreactivity in Purkinje cells for both TD and PM

(Fig.5c and 5d). IHC analysis also showed a similar overall distribution of mGluR5

immunoreactivity between TD and PM subjects (Fig.5e and 5f), suggesting that the

observed detected decreased expression is likely not the results of altered cellular

distributions.

4d. Protein expression levels in the mouse model of premutation (preCGG)

Protein expression levels of GLT1, GLAST and mGluR1/5 were measured in whole

cerebellum extracts of preCGG mice (170 CGG repeats) at different developmental stages

(P0, P14, P21, P35, and at 20, and 52 weeks) (Fig. 6). WB analysis of mGluR1/5 was

performed only in the 52 week-old mice. Differences between WT and preCGG mice did

not reach statistical significance at any of the age analyzed. However, we observed a trend

for lower GLAST in preCGG cerebellum at P21and 20 weeks. The small number of mice

(n=5) and large variability between samples may have precluded us from detecting any

differences.

5. Discussion

In this study, we observed a CGG dependent reciprocal regulation of FMR1 mRNA

(increase) and FMRP (reduction) expression levels in postmortem cerebellum derived from

male PM carriers who had received a clinical diagnosis of FXTAS. We identified a

significant reduction of EAAT1 Glu transporter at both mRNA and protein levels, and of

mGluR5 at protein level, in the cerebellum of FXTAS subjects with larger CGG repeats. In

addition, IHC indicates that the distribution of EAAT1 and mGluR5 proteins in the

cerebellar cortex is similar between PM and TD. Our study shows a reduction of EAAT1

expression in human cerebellar granule cell layer in PM carriers, which could be related to

the downregulation of mGluR5 observed in the same individuals and could indicate a

potential trigger for excessive glutamatergic signaling in the PM as detected in FXS (Bear et

al. 2004). It is possible that downregulation of Glu uptake, retaining higher concentrations of

Glu in the synaptic cleft, results in overstimulation of Glu activity leading to toxicity.

However, it has been observed that mGluRs become rapidly downregulated in response to

overstimulation (Javitt et al. 2011) which might explain the reduced mGluR5 expression

levels we observe in the study. The recent observation of enhanced mGluR mediated long

term depression in hippocampal slides from preCGG mice further support a role of mGluR

mediated synaptic translation in FXTAS (Iliff et al. 2013).

Notably, it was recently reported that Glu uptake is reduced in cortical extracts of the FMR1

KO mice, although this is thought to be mediated by GLT1; Downregulation of mGluR5 and
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GLAST were also observed in these fractions at early but not at later developmental stages

(Higashimori et al. 2013). The preCGG KI mice show rotarod deficits (Van Dam et al.

2005), and subtle but significant increased foot slips on the ladder rung test that could be

analogous to a mild ataxia (Hunsaker et al. 2011), and poor skilled forelimb motor learning

(Diep et al. 2012). However, the preCGG mice do not develop severe ataxia and premature

mortality seen in some FXTAS patients. Because GLAST is the primary Glu transporter

expressed in the cerebellum it is possible that the lack of significantly reduced GLAST

expression in the cerebellum of preCGG KI mice may explain the much milder motor

deficits in the mice compared to FXTAS patients, as well as the lack of tremor activity. In

fact, evidence linking EAAT1 in humans with ataxia includes a cysteine to serine mutation

(C186S) in a transmembrane domain of EAAT1 which has been shown to reduce Glu uptake

and is explicitly linked to episodic ataxia in three human cases carriers of this mutation (de

Vries et al. 2009). Similar studies also link EAAT1 to seizures and vertigo (Jen et al. 2005,

Ueda et al. 2001).

Downregulation of the vesicular glutamate transporters VGLUT and VGAT in preCGG

hippocampal neurons at 21 DIV is associated with abnormal clustered burst (CB) firing

electrical activity as well as abnormal patterns of synchronized calcium oscillations in the

cytosol (Cao et al. 2012). Addition of the type I mGluR activator dihydroxyphenylglycine

(DHPG) or the GABAA antagonist picrotoxin to wild type neurons produces CB firing

electrical activity that mimics those observed in preCGG cultures. Moreover, CB firing

activity can be normalized by pharmacological suppression of type I mGluRs activity with

addition of either 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP), an antagonist

of mGluR5 receptors, or (−)-ethyl (7E)-7-hydroxyimino-1,7a-

dihydrocyclopropa[b]chromene-1a-carboxylate (CPCCOEt), an mGluR1 antagonist.

Moreover, enhancement of postsynaptic GABAA receptor activity with the positive

allosteric modulator allopregnanolone also effectively normalizes CB firing in preCGG

neuronal networks. Collectively these data strongly suggested an altered exitatory-inhibitory

balance of metabotrophic glutamatergic and ionotrophic GABAergic signaling exists in

neuronal networks formed by preCGG mice (Cao et al. 2012). These functional impairments

are directly pertinent to the preCGG pathology, such as altered dendritic morphology in

cultured hippocampal neurons (Chen et al. 2010) and mouse brain (Berman et al. 2012).

More recently, we identified 10% reduction of GLT1 (EAAT2) and GLAST (EAAT1) in

enriched cortical astrocytic cultures from preCGG mice, which is consistent with about 10%

reduction on the Glu uptake in the preCGG cortical cultures. Consistent with astrocyte

cultures in vitro, the cerebral cortex of aged preCGG KI mice also displayed reduced

GLAST (72.3±3.1% of WT) and GLT-1 expression (77.2±17.8% of WT). The reduced Glu

transporters expression / uptake were demonstrated to contribute to the Ca2+ oscillatory

behaviors in the preCGG cortical astrocytes. Direct evidence for mGluR5 impairment has

been reported in preCGG cortical astrocytes (Cao et al. 2013). PreCGG cortical astrocytes

display altered Glu-stimulated Ca2+ response which can be completely blocked by mGluR5

antagonist (Cao et al. 2013). These findings indicated that functional defects in preCGG

astrocytes, especially in Glu signaling, may contribute to the development of neuronal

pathology in FXTAS.
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Similarly, our findings support the hypothesis that Glu transporters and mGluR5 might be

involved in the pathology of FXTAS. These observations may establish a correlate between

mechanisms of dysregulation in neuronal activity between FXS and FXTAS that may be

significant in establishing similar potential avenues for pharmacological treatments for PM

and FXTAS. Current treatments for FXTAS are mostly limited to comorbid symptoms of

the disorder such as depression, anxiety and GI problems as the incessant progression of the

disabling disorder is thus far unavoidable (Leehey and Hagerman 2012). Importantly, a

deficit in dendritic complexity and altered synaptic morphology, well documented in the

fmr1 KO mice has also been observed in preCGG mice (Berman et al. 2012) and in cultured

neurons between 7 and 21 DIV (Chen et al. 2010), which can ultimately affect synaptic

integration and potentially contribute to the neurodevelopmental and cognitive deficits seen

in premutation carriers particular later in life. The use of mGluR5 antagonists currently

under investigation in FXS human clinical trials might therefore be helpful in the treatment

of other fragile X associated disorders such as FXTAS and autism.

In conclusion, our observations of decrease expression of EAAT1 transporter and mGluR5

receptor in human PM cases with FXTAS point toward a defect in Glu signaling in human

PM carriers and suggests that this type of dysregulation may contribute to the pathology and

possibly affect the onset of FXTAS.
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Figure 1.
CGG repeat sizing by gel electrophoresis FMR1 allele CGG sizing of cerebellum samples

from male PM carriers included in this study. C= control female with 30 and 55 CGG

repeats. M= DNA size marker. CGG repeat number is shown for each sample on the top of

the gel.
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Figure 2.
FMR1 mRNA and FMRP expression levels. Scatter plots showing expression of FMR1

mRNA and FMRP as a function of CGG length. Controls cases are depicted with open

circles and PM cases with dark circles. A) Relative FMR1 mRNA expression levels (relative

to b-glucoronidase, y axis) plotted as a function of CGG length (X axis) show higher levels

particularly in PM carriers with larger CGG repeat range. B) FMRP expression levels

determined by WB analysis are plotted as a function of CGG repeat length and show that

FMRP expression in PM carriers is reduced especially in the higher CGG repeat range. C)

Representative Western blot image of FMRP expression in PM cerebellum samples. CGG

repeat size is indicated on the top of the gel.
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Figure 3.
EAAT1 mRNA and protein expression levels. Scatter plots showing EAAT1 mRNA and

protein expression as a function of CGG length. Controls cases are depicted with open

circles and PM cases with dark circles. A) qRT-PCR derived CT values for EAAT1 decrease

with increasing CGG length. B) EAAT1 expression levels (detected by WB using a specific

mouse anti-SLC1A3 (EAAT1) antibody) are reduced in individuals with greater CGG repeat

length. C) Representative Western blot image of EEAT1 expression in PM cerebellum

samples. CGG repeat size is indicated on the top of the gel.
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Figure 4.
GRM5 mRNA and mGluR5 protein expression levels. Scatter plots show mGluR5

expression as a function of CGG length. Controls cases are depicted with open circles and

PM cases with dark circles. A) qRT-PCR derived CT values for GRM5 decrease with

increasing CGG length. B) Statistically significant decreased mGluR5 protein expression

levels are observed by WB in PM cases, particularly in the higher CGG repeat range. C)

Representative Western blot image of mGluR5 expression in PM cerebellum samples. CGG

repeat size is indicated on the top of the gel.
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Figure 5.
Detection of FMRP, EAAT1 and mGluR5 in PM and control cerebellar tissue.

Immunohistochemistry (IHC) shows depletion of FMRP in the PM (B) when compared to

control (A); overall reduced staining in the granule cell layer for EAAT1 in the PM (D)

when compared to control (C) and a similar distribution with reduced immunoreactivity for

mGluR5 in PM (F) compared to control (E). IHC was carried out in 5 cases (2 TD and 3

PM). The IHC experiments showed in this figure are representative of the entire set

analyzed.
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Figure 6.
GLT1 and GLAST expression in the cerebellum of preCGG KI mouse during post-natal

developmental stages. GLT1 and GLAST expression was measured by WB in WT mice and

in preCGG mice with ≥170 CGG repeats. Although a tendency for lower GLT1 and GLAST

expression was observed in the preCGG mice, except at 52 weeks, these differences were

statistically not significantly different than WT.
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