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Explicitly Solvable Cases of One-Dimensional Quantum Chaos
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(Received 22 February 2001; published 9 January 2002)

We identify a set of quantum graphs with unique and precisely defined spectral properties called regu-
lar quantum graphs. Although chaotic in their classical limit with positive topological entropy, regular
quantum graphs are explicitly solvable. The proof is constructive: we present exact, convergent periodic
orbit expansions for individual energy levels, thus obtaining an analytical solution for the spectrum of
regular quantum graphs that is complete, explicit, and exact.

DOI: 10.1103/PhysRevLett.88.044101 PACS numbers: 05.45.Mt, 03.65.Sq
A quantum graph [1–8] is a network of vertices and
bonds with a quantum particle moving along its bonds.
An example of a graph with five vertices and seven bonds
is shown in Fig. 1. The wave function and the energy lev-
els of a quantum particle on a graph are defined by the
corresponding one-dimensional Schrödinger equation. De-
spite the apparent simplicity of the system, quantum graphs
have proven to be a rich source of physical insight. From
the mathematical point of view, the spectral properties of
Schrödinger operators on graphs are highly nontrivial and
have been widely investigated in the mathematical litera-
ture [1–4]. Quantum graphs and networks have also been
used to model various phenomena in different branches of
physics and chemistry for more than 30 years. The most
recent physical development appeared in a series of publi-
cations [5–8], where quantum graphs were studied in the
context of quantum chaos.

It is easy to see that the behavior of a particle on a quan-
tum graph is very complex. Each time the particle encoun-
ters a vertex Vi of the graph, it can scatter with different
probabilities in the forward or backward directions along
any of the bonds emanating from the vertex. A simple
physical analog of this system is a beam of light traveling
along a network of optical fibers. At every joint of the
fibers the light waves scatter in such a way that the total
energy flux is conserved.

As a result of the multiple scattering possibilities at the
vertices, the dynamics of a classical particle on a graph is
very complex and the number of possible periodic orbits
traced by the particle increases exponentially with their
lengths. Consequently the topological entropy of the par-
ticle is positive and, since the phase space of the system is
bounded, the dynamics of the particle is mixing [6]. The
classical chaoticity notwithstanding, it was shown that sev-
eral important spectral characteristics of quantum graphs,
such as the density of states and the spectral staircase, can
be obtained exactly in terms of periodic orbit expansion
series [5–7].

The “wiring” of a quantum graph, i.e., the arrangement
of bonds and vertices, is called the topology of the quan-
tum graph. For any given graph topology there exists a
wide variety of possible quantum graphs. The vertices, for
instance, may be realized as simple hubs that redistribute
0031-9007�02�88(4)�044101(4)$20.00
the quantum flux into various channels, or we may place
d function potentials of various strengths at the vertices,
or there may even be potential functions on the bonds. Be-
cause of this flexibility we anticipate that the topology of a
quantum graph alone does not uniquely specify the graph’s
spectral properties. We conjecture that there are several
different types of quantum graphs, all chaotic in their clas-
sical limit, but each exhibiting unique and precisely defined
spectral characteristics.

We start a rigorous classification of quantum graphs by
defining regular quantum graphs. Although, generically,
their classical limit is chaotic, we show that their spectrum
is explicitly solvable analytically, state by state, via explicit
periodic orbit expansions. This result is backed up by
rigorous mathematical proofs [9] whose basic elements are
presented below. To our knowledge this is the first time
that the spectrum of a quantum chaotic system is obtained
exactly and explicitly. In addition regular quantum graphs
show a spectral gap at small energy spacings and a cutoff
at large spacings. Both the size of the gap and the location
of the cutoff are computed analytically.

Regular quantum graphs are different from a class of
quantum graphs described in the literature [5–7] whose
level spacing distributions, to a good approximation,
exhibit features of the Gaussian orthogonal (unitary)

FIG. 1. A generic (quantum) graph with five vertices and seven
bonds.
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ensemble [10,11]. Thus there are at least two different
types of quantum graphs with distinct spectral properties.

The periodic orbits of graphs are defined as the periodic
connected sequences of bonds Bij . Denoting by k�x� the
local wave number (momentum) of the particle, each bond
contributes

Sij �
Z

Bij

k�x� dx (1)

to the total action of a path traced by the particle. It turns
out that the information contained in the totality of all
the possible classical periodic orbits often allows one to
reconstruct exactly certain quantities of a purely quantum
nature. For example, according to recent results [4–7], the
exact periodic orbit expansion for the density of states can
be written as

r�k� �
X̀
j�1

d�k 2 kj�

� r̄�k� 1
1
p

Re
X
p

Tp

X̀
n�1

An
peinSp�k�. (2)

Here r̄�k� is the average density of states, n is the rep-
etition index, Tp � ≠Sp�k��≠k, and Sp , Ap are, corre-
spondingly, the action and the weight factor of the prime
periodic orbit labeled by p. We assume in what follows
that the system is scaling [12–17]. This means that the
actions of the periodic orbits are proportional to the wave
number,

Sp�k� � S0
pk , (3)

where S0
p , a constant, is the reduced action. In this

case Tp � S0
p and Ap are k-independent constants. We

define the total reduced action S0 of the graph, S0 �
�
R

k�x� dx��k, where the integral is extended over all of
the bonds of the graph. The scaling assumption is not
an artificial restriction. It occurs, for instance, in atomic
physics where scaled spectroscopy is now a common
experimental technique [17]. In addition, scaling quantum
systems of this type are the analogs of certain electro-
magnetic ray-splitting systems, flat metal cavities partially
filled with a dielectric substance such as Teflon [13–15].

The formal description of a quantum graph system pro-
ceeds as follows [5–7]. On a bond Bij connecting the ver-
tices Vi and Vj, the wave function of a quantum particle
is defined by the one-dimensional Schrödinger equation
which may include potentials on the bonds [16]. At every
vertex Vi the wave function satisfies the usual boundary
conditions of continuity and flux conservation. The con-
sistency of the boundary conditions at every vertex of the
graph naturally yields the global quantization conditions
that determine the momentum eigenvalues kn. A simple
and elegant method based on the scattering quantization
approach was presented in [5–7], where the quantization
condition is given in the form
044101-2
det�1 2 S �k�� � 0 . (4)

Here S �k� is the scattering matrix [5], which can be ex-
pressed explicitly in terms of the connectivity matrix [5]
of the graph. It can be shown that the modulus of the com-
plex function (4) is a trigonometric function of the form

cos�S0k 2 pg0� 2 F�k� � 0 , (5)

where

F�k� �
X

i

ai cos�Sik 2 pgi� . (6)

In the scaling case the ai are constants and Si , S0 are
certain combinations of the reduced bond actions. In gen-
eral the functions g0 and gi are bounded and tend to
constant values for k ! `. In the scaling case they are
k-independent constants.

In order to proceed we define regular quantum graphs.
A regular quantum graph fulfils the condition

a �
X

i

jaij , 1 . (7)

It is convenient for the following discussion to assume
a . 0, i.e., we exclude trivial graphs with a � 0. They
are regular quantum graphs whose spectrum can be ob-
tained trivially. For regular quantum graphs, Eq. (5) can
be solved formally for the momentum eigenvalues kn. We
obtain the following implicit solution for the roots of this
quasiperiodic function:

kn �
p

S0
�n 1 m 1 g0�

1
1
S0

Ω
arccos�Fn�, for n 1 m even,
p 2 arccos�Fn�, for n 1 m odd, (8)

where Fn � F�kn� and m [ Z, a fixed integer, is to be
chosen such that k1 is the first non-negative solution of
(5). Because of (7), the boundedness of the trigonomet-
ric functions in (6) and the properties of the arccos func-
tion, the second term of (8) is bounded away from 0 and
p�S0 and assumes only values between u and p�S0 2 u,
where 0 , u � arccos�a��S0 , p�2S0. Thus, for regu-
lar graphs the points

k̂n �
p

S0
�n 1 m 1 g0 1 1�, n � 1, 2, . . . , (9)

are not roots of (4). They serve as separators between root
number n and root number n 1 1. In fact (8) implies even
more: the existence of finite-width “root-free zones” Fn �
�k̂n 2 u, k̂n 1 u� surrounding every separating point k̂n,
where no roots of (4) can be found. Thus, roots of (4) can
only be found in the “root zones” Rn � �k̂n21 1 u, k̂n 2

u�, subsets of the root cells In � �k̂n21, k̂n�. Since S0 is
the largest action in (5) and (6), it can be shown [9] that kn

is the only root in Rn. Therefore, in summary, there is ex-
actly one root kn inside Rn , In, and this root is bounded
044101-2
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away from the separating points k̂n21 and k̂n by a finite
amount u.

The spectral properties of regular graphs discussed
above allow us to draw several important conclusions.
(i) Since there is exactly one root kn of (4) in In, this
proves rigorously that the number of roots of (4) smaller
than k grows like N̄�k� � S0k�p (Weyl’s law). (ii) The
existence of the root-free zones Fn gives rise to a spectral
gap of finite width g � 2u in the nearest neighbor spacing
distribution of regular quantum graphs, i.e., no level
spacings smaller than g are ever found. This, for instance,
precludes the possibility of degenerate eigenvalues.
(iii) The existence of the separating points (9) together
with the root-free zones imply the existence of a spectral
cut at c � 2�p�S0 2 u�, i.e., no level spacings greater
than c are ever found. (iv) The existence of the separating
points (9) and the root-free zones Fn are the key for
obtaining an explicit and exact periodic orbit expansion
for every root of (4).

The properties (ii) and (iii) indicate that the spectral sta-
tistics of regular quantum graphs is not Wignerian. Al-
though in many cases the spectral statistics of classically
chaotic systems is well described by the three universal
random matrix ensembles [10,11,18], the non-Wignerian
spectral statistics of regular quantum graphs is not a contra-
diction to their classical chaoticity. Many quantum systems
are known and are described in the literature (see, e.g.,
[19]) whose classical mechanics is completely chaotic, but
their level spacing statistics deviates substantially from the
expected universal behavior.

Multiplying both sides of (2) by k, integrating from
k̂n21 to k̂n and using the fact that kn and only kn [ In,
we obtain

kn � k̂n 2
p

2S0

2
1
p

Re
X
p

X̀
n�1

An
p

einS0
pk̂n

n

3

Ω
�1 2 e2invp �

µ
ik̂n 2

1
nS0

p

∂
1

ip
S0

e2invp

æ
,

(10)

where vp � pS0
p�S0. Since all the quantities on the

right-hand side of (10) are known, this formula provides
an explicit representation of the roots kn of the spectral
equation (4) in terms of the geometric characteristics of
the graph. To our knowledge, this is the first time that the
energy levels of a chaotic system are expressed explicitly
in terms of a periodic orbit expansion. Previously, explicit
formulas for individual energy levels were known only for
integrable systems. In the context of periodic orbit theory,
the energy levels of integrable systems are given by the
Einstein-Brillouin-Keller (EBK) formula [18]. However,
apart from a few exceptional cases [20], EBK quantization
is only of semiclassical accuracy.
044101-3
For a generic chaotic system the energy levels can only
be obtained indirectly as the singularities of the periodic
orbit expansion of the density of states (Gutzwiller’s for-
mula [18]), an implicit method which, in general, is only
of semiclassical accuracy. Formula (10), on the other
hand, shows that for regular quantum graphs every quan-
tum level can be obtained individually, explicitly, and ex-
actly in terms of classical parameters.

In order to demonstrate that the class of regular quantum
graphs is not empty we present an explicit example: the
one-dimensional step potential shown in Fig. 2(a) [21].
With

U0 � lE (11)

we turn it into a scaling system. Physically this potential
is realized for a rectangular microwave cavity partially
loaded with a dielectric substance [13–15]. The scaling
step potential is equivalent to the scaling three-vertex chain
graph shown in Fig. 2(b), with two bonds L1 � b and
L2 � b�1 2 b�, b �

p
1 2 l. In this case the spectral

equation (4) is given by

sin�Lk� 2 r sin��L1 2 L2�k� � 0 , (12)

where L � L1 1 L2, and r � �1 2 b���1 1 b� is the
reflection coefficient at the vertex V2 between the two
bonds. For a given prime periodic orbit p, such as the
ones shown in Fig. 2, the coefficients Ap in (10) are given
by [16]

Ap � �21�x�p�rs�p��1 2 r2�t�p��2, (13)

FIG. 2. (a) Simple step potential, a basic problem in one-
dimensional quantum mechanics. Also shown are examples of
Newtonian (“N”) and non-Newtonian (“NN”) periodic orbits
used in the periodic orbit expansion of its energy eigenvalues
(see text). (b) Three-vertex chain graph corresponding to the
step potential above.
044101-3
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where s�p� and t�p� are, correspondingly, the number
of reflections off the vertex V2 and transmissions through
it. Since the reflection amplitude at V2 may be positive or
negative depending on whether the particle scatters from
the right or from the left, the factor �21�x� p� is needed to
keep track of how many times it appears with a minus sign.
Moreover x keeps track of how many times the particle
scatters off the walls of the potential, since each scattering
event from the walls gives rise to a minus sign in the wave
function. Using (13) we obtain the explicit form (10) of
the eigenvalues for a quantum particle in the step potential
in terms of classical Newtonian and non-Newtonian [13]
periodic orbits.

In order to illustrate the validity of (10) we computed
k1, k10, and k100 including all Newtonian and non-
Newtonian periodic orbits that experience up to ten scat-
tering events. We chose b � 0.3 (see Fig. 2) and l � 1�2
[see (11)]. We obtain k

�10�
1 � 4.1161, k

�10�
10 � 39.2866,

and k
�10�
100 � 394.9477. This can be compared with the

exact k values given by k1 � 4.107149, k10 � 39.305209,
and k100 � 394.964713. In order to illustrate convergence
to the exact eigenvalues, we also computed k1, k10, and
k100 including all periodic orbits that experience up to
40 scattering events. This amounts to including more than
100 000 periodic orbits and results in k

�40�
1 � 4.105130,

k
�40�
10 � 39.305212, and k

�40�
100 � 394.964555. This result

indicates that the convergence of (10) is not destroyed by
keeping more and longer periodic orbits.

Additional examples of regular graphs are provided by
the scaling “Manhattan potentials.” These potentials are
obvious generalizations of the step potential shown in
Fig. 2(a) to piecewise constant potentials where the poten-
tial heights scale with the energy. Furthermore we checked
explicitly that linear chain graphs with scaling d function
potentials at the vertices provide more examples of regular
quantum graphs. In this case the strengths of the d func-
tion potentials scale linearly with the momentum.

The key physical feature of these one-dimensional quan-
tum systems, which permits the exact periodic orbit ex-
pansion (10) for the eigenvalues, is the rigidity of their
spectra. For integrable systems, spectral rigidity is due to
the “geometrical rigidity” of the periodic orbits, confined
to integrable tori. In the case of quantum graphs, the geo-
metrical structure of the periodic orbits is much more com-
plicated. The complexity of the expansion (10) compared
to the EBK formula reflects the geometrical complexity of
the periodic orbits.
044101-4
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