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BRIEF COMMUNICATION

Identifying candidate structured RNAs in CRISPR operons
Brayon J. Fremina,b and Nikos C. Kyrpidesa,b

aDepartment of Energy, Joint Genome Institute, Berkeley, CA, USA; bEnvironmental Genomics and Systems Biology Division, Lawrence Berkeley 
National Laboratory, Berkeley, CA, USA

ABSTRACT
Noncoding RNAs with secondary structures play important roles in CRISPR-Cas systems. Many of these 
structures likely remain undiscovered. We used a large-scale comparative genomics approach to predict 
156 novel candidate structured RNAs from 36,111 CRISPR-Cas systems. A number of these were found to 
overlap with coding genes, including palindromic candidates that overlapped with a variety of Cas 
genes in type I and III systems. Among these 156 candidates, we identified 46 new models of CRISPR 
direct repeats and 1 tracrRNA. This tracrRNA model occasionally overlapped with predicted cas9 coding 
regions, emphasizing the importance of expanding our search windows for novel structure RNAs in 
coding regions. We also demonstrated that the antirepeat sequence in this tracrRNA model can be used 
to accurately assign thousands of predicted CRISPR arrays to type II-C systems. This study highlights the 
importance of unbiased identification of candidate structured RNAs across CRISPR-Cas systems.
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Introduction

CRISPR-Cas (clustered regularly interspaced short palindro-
mic repeats-CRISPR associated) systems are utilized by bac-
teria and archaea to protect themselves against infectious 
agents. These systems use RNA-guided nucleases to target 
and cut specific sequences of double-stranded DNA [1]. 
Noncoding RNAs play central roles in CRISPR-Cas systems. 
CRISPR RNAs (crRNAs) are noncoding RNAs that are tran-
scribed and processed by enzymes encoded in the CRISPR 
sequence array, which contains direct repeats separated by 
spacers. The crRNAs guide Cas nucleases to their target 
DNA sequences and are found in all known CRISPR-Cas 
systems [2]. Transactivating CRISPR RNAs (tracrRNAs) are 
noncoding RNAs encoded by type II and some type 
V CRISPR-Cas systems that aid in maturation of crRNAs 
and DNA cleavage by CRISPR-Cas9 [3,4]. Short complemen-
tarity untranslated RNAs (scoutRNAs) are recently discovered 
noncoding RNAs that assemble with Cas12c/d and crRNA to 
function as a DNA-targeting complex [5]. Thus, discovery of 
additional noncoding RNAs associated with CRISPR-Cas sys-
tems will likely be important for understanding the mechan-
isms and adaptation of CRISPR-Cas systems.

All of these noncoding RNAs associated with CRISPRs 
have been shown or predicted to form secondary structures 
[5,6]. Currently, there are 64 families of direct repeats and one 
family of tracrRNAs in Rfam [7]. More diversity exists within 
crRNAs and tracrRNAs that existing models do not capture. It 
is likely that other noncoding RNAs exist that play essential 
roles in CRISPR-Cas systems that have yet to be discovered, 
and these noncoding RNAs may also form secondary struc-
tures [5]. Additionally, there likely exists substantial diversity 

in structures within crRNAs and tracrRNAs that have yet to 
be identified. Building additional models would be beneficial 
both to characterize the structures as well as better search for 
them in genomes. There is also precedence for regulatory 
RNAs being embedded in bacterial coding regions [8–10]. 
Because most of the focus is on intergenic regions, regulatory 
RNAs that overlap genes tend to be overlooked. However, this 
is an important consideration from a genetic engineering 
perspective; perhaps upon codon optimization of a Cas gene, 
for example, the structure and function of an essential over-
lapping noncoding RNA is disrupted. This perspective moti-
vated us to predict candidate structured RNAs and include 
coding regions in our analyses. Though comparative geno-
mics approaches have yet to be applied to Cas operons and 
CRISPRs at large-scale, it has previously been a useful 
approach to predict candidate structured RNAs in micro-
biomes [11–13].

In this work, we used a comparative genomics approach to 
predict candidate structured RNAs across 15,144 Cas operons, 
21,141 associated CRISPRs, and 20,967 orphan Cas operons 
from diverse ecosystems. This approach involved clustering 
conserved regions within CRISPRs and Cas operons, predict-
ing possible structures, and assessing possible structures for 
evidence of covariation, which would indicate evolutionary 
constraint to preserve the structure. Overall, our pipeline 
predicted 156 novel candidate structured RNAs, including 1 
tracrRNA. Of these 156 candidate structured RNAs, 99 over-
lapped coding regions, 46 were novel direct repeats,and 11 
were in intergenic regions. In addition to substantially 
expanding upon the diversity of known RNA structures, this 
approach predicted palindromic candidates overlapping Cas 
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genes and novel candidates in intergenic regions across 
diverse CRISPR-Cas systems. Additionally, we showed that 
the antirepeat region of our novel tracrRNA model can be 
used to accurately assign 4,661 CRISPR arrays to type II-C 
systems based on homology between the array repeats and 
tracrRNA antirepeats.

Results

CRISPRCasTyper [14] was used to predict CRISPRs and Cas 
operons in ~25 million contigs (>3kb) from 29,521 publicly 
available and published metagenomics assemblies in IMG/M 
[15–38]. We identified 15,144 Cas operons associated with 
21,141 nearby CRISPR arrays and an additional 20,967 
orphan Cas operons, which were all used to predict candidate 
structured RNAs. To avoid false positives, we did not consider 
isolated CRISPR arrays or putative Cas operons in these 
analyses.

The first step for predicting candidate structured RNAs 
was to identify conserved regions along these Cas operons 
and CRISPRs. Conserved regions were identified using all 
versus all BLASTn [39], querying all Cas operons and asso-
ciated CRISPR arrays against themselves (Fig. 1A). We filtered 
these blast results to exclude 100% identity matches, hits that 
span less than 30 bases in length, and hits with bit scores 
below 20. We set these filters because we ultimately wanted to 

align homologous regions that contained nucleotide differ-
ences to assess covariation. We clustered homologous regions 
into 11,546 clusters using overcluster2 with default settings. 
The next step was predicting structures. Using CMfinder 
[40,41], we generated motifs for 7,173 of these clusters. 
Using RNAphylo, a tool using phylogenetic models to score 
alignments, we found that 1,741 clusters contained motifs 
with an RNAphylo p score of 10 or greater. Additionally, we 
found that 717 of these contained at least one significant 
covarying base using R-scape [42]. Using cmsearch [40], we 
determined which of these alignments significantly (E value <  
1 × 10−6) hit at least three regions near Cas operons and 
associated CRISPRs. We removed duplicates that hit any of 
the same regions as another candidate structured RNA, select-
ing the longest candidate. This resulted in a set of 159 candi-
date structured RNAs. Three of these 159 candidate structures 
were CRISPR direct repeats already found in Rfam [7]. In fact, 
Rfam contains 64 models of CRISPR direct repeats and 34 of 
these were identified in the 36,111 CRISPR-Cas systems we 
searched. 31 of these models did not meet the stringent 
phylogenetic and covariation thresholds we set, suggesting 
a high false negative rate using our approach.

Using this comparative genomics approach resulted in 
a finalized set of 156 novel candidate structured RNAs. 
These 156 novel structural RNAs were identified in 6,509 
instances from 36,111 systems searched (Fig. 1A, File S1, 

Figure 1. Prediction of candidate structured RNAs.
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File S2). The average length was 62 bases (range 32 to 109 
bases) (Table S1, Fig. 1B). We taxonomically classified 150 
candidates to Bacteria and 6 to Archaea. Furthermore, 91 
candidates were identified in Proteobacteria, 26 in 
Firmicutes, and 12 in Bacteroidetes (Table S1). These candi-
dates also belonged to a diversity of subtypes. For example, we 
identified 34, 3, 15, 1, 4, and 2 candidates in I-C, II-A, III-A, 
IV-A1, V-A, and VI-B1 systems, respectively (Table S1). We 
binned these candidates into four categories: candidates that 
overlapped coding regions, candidates that modelled CRISPR 
direct repeats, candidates found exclusively in other intergenic 
regions, and candidates likely to be tracrRNAs (Table S1, 
Fig. 1B). Below we highlight interesting candidate structured 
RNAs for each of these categories.

Upon first inspecting candidates that overlapped coding 
regions, we identified palindromic candidate structured RNAs 
that overlapped cas genes. CRISPRCas_133 was a palindromic 
candidate structured RNA identified in 15 CRISPR-Cas type 
I-B systems that overlapped cas6 near the end of the gene 
(typically overlapping the stop codon). It was predominately 

classified to Bacteroidetes and was found twice in the human 
digestive system, five times in freshwater, and four times in 
endoliths (Fig. 2, Table S1). CRISPRCas_135 was found in 6 
CRISPR-Cas type I-F systems and overlapped cas3. It was 
predominately classified to Firmicutes and was found in 
diverse ecosystems, including the human digestive system 
and hydrothermal vents. CRISPRCas_94 was found in 13 
CRISPR-Cas type I-B systems and also overlapped cas3. It 
was classified as Firmicutes and found in clay. Three other 
palindromic candidate structured RNAs were also predicted 
to overlap cas3; these candidates also occurred in a similar 
relative position along the gene. CRISPRCas_122 was found 
in 19 CRISPR-Cas type III-B systems and overlapped cas10. It 
was classified as Proteobacteria and has so far only been found 
in bioreactor samples (Fig. 2). Two other palindromic candi-
dates also overlapped cas10 in a similar relative position. In 
addition to these examples, two palindromic candidate struc-
tured RNAs overlapped cas7, both near the middle of the 
gene. One palindromic candidate overlapped cas1 closer to 
the 3’ end of the gene. One palindromic candidate overlapped 

Figure 2. Palindromic candidates overlapping Cas genes.
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cas8 closer to the 5’ end of the gene (Table S1). One palin-
dromic candidate overlapped cas4 closer to the 5’ end of the 
gene. Overall, there seemed to be an intriguing pattern of 
palindromic candidate structured RNAs overlapping a wide 
variety of cas genes.

Of the 156 candidate structured RNAs, 46 (29%) were 
predicted to be direct repeats in CRISPR arrays. These candi-
dates all overlapped CRISPR arrays predicted by 
CRISPRCasTyper, specifically repeat regions, and occurred 
across multiple types of arrays. These repeats were typically 
specific to subtypes of CRISPR-Cas systems. For example, 
CRISPRCas_4 and CRISPR_52 were direct repeats associated 

with I-C and I-G systems, respectively (Fig. 3). CRISPR_148 
was a direct repeat in II-C systems. CRISPR_26 was a direct 
repeat in III-A systems. CRISPRCas_80 was a direct repeat in 
IV-A1 systems, and CRISPRCas_117 was a direct repeat in 
VI-B1 systems (Fig. 3). Rfam currently contains 64 families of 
direct repeats. This work further expands this set to 110 
distinct models.

Upon inspection of predictions found exclusively in inter-
genic regions, we highlight three interesting candidate structured 
RNAs. CRISPRCas_45 was located approximately 400 bases 
upstream of Uma2 family endonucleases found in type 
V-A systems (Fig. 4, Table S1). It was found entirely in the 

Figure 3. CRISPR direct repeat predictions.
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human digestive system in Eubacterium species. CRISPRCas_18 
was a palindromic candidate found both in Proteobacteria and 
Firmicutes and located approximately 300 bases upstream of cas3 
in type I-C systems. It was found in wastewater and bioreactor 
samples. CRISPRCas_50 was also a palindromic candidate and 
was found directly adjacent to CRISPR arrays (typically ~50 
bases away) in type I-G systems. It was located in endoliths 
samples and found both in Proteobacteria and Actinobacteria 
(Fig. 4).

One candidate structured RNA, CRISPRCas_38, was likely 
a novel tracrRNA model (Fig. 5A). CRISPRCas_38 was pre-
dominantly found in Bacteroidetes (578/599 instances) and 
was broadly distributed across ecosystems, located 126 times 
in environmental, 340 times in host-associated, and 133 times 
in engineered ecosystems. It was typically found in the inter-
genic region within 100 bases upstream of cas9 (Fig. 5B). 
However, in 50 of the 599 genomic positions in which it 
was identified, it partially or entirely overlapped the start of 
cas9. One likely explanation is that the start site of cas9 has 
been occasionally misassigned by Prodigal. Nonetheless, this 
suggests that it is important to search for structured RNAs 
even across predicted coding regions. CRISPRCas_38 was 
found 599 times exclusively in type II-C systems. The anti-
repeat region of CRISPRCas_38 was homologous to 760 
unique repeat regions identified by CRISPRCasTyper 
(BLASTn e-value < 0.05). These 760 regions were found in 
4,661 CRISPR arrays. Interestingly, only 439 of these arrays 
were assigned a subtype by CRISPRCasTyper and 424 (97%) 

of those were assigned type II-C (Fig. 5C). For the 15 assigned 
a different subtype, the subtype probabilities assigned by 
CRISPRCasTyper ranged from 0.23 to 0.879. There were 310 
CRISPR arrays with subtype probabilities greater than 0.9, 
and all were assigned to type II-C. Using the antirepeat region 
of this novel tracrRNA model, this suggests we can accurately 
classify thousands of these CRISPR arrays as type II-C based 
on their repeat sequence even if the repeat is not near type II- 
C Cas operons.

Discussion

As evident by the recent discovery of scoutRNAs [5], it is likely 
that other key noncoding RNAs that form secondary structures 
in CRISPR-Cas systems exist but have not been discovered. As 
metagenomics data becomes increasingly more available and 
improved tools are developed to predict CRISPR-Cas systems, 
it becomes possible to mine CRISPR-Cas systems at large-scale 
to predict novel candidate structured RNAs. In this work, we 
used publicly available, published datasets available through 
IMG/MER from diverse microbes and ecosystems and the 
recently developed tool, CRISPRCasTyper, to predict tens of 
thousands of Cas operons and CRISPRs and mine them to 
identify 156 candidate structured RNAs.

There are several limitations to our approach, many of 
which are similar to limitations of previous approaches [11– 
13]. First, very few of these candidates were found in meta-
transcriptomics-associated samples, and we were unable to 

Figure 4. Candidate structured RNAs in intergenic regions.
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quantify expression of these candidate structured RNAs. We 
also did not validate RNA structures experimentally, which 
would involve using methods like SHAPE-Seq or FragSeq 
[43–45]. Certain regions of the predicted candidate structures, 
especially those with less covariation evidence, may not be 
accurately depicted by this analysis. Second, it was difficult to 
accurately calculate a false-positive rate for our analyses. Thus, 
these predictions should be treated as candidates until further 
followup is performed. Third, we expected a high false- 
negative rate in these predictions given the scoring metrics 
and covariation requirements set. For example, we were unli-
kely to predict rare or highly conserved candidates, which 
would be difficult to assess for covariation. For example, 34 
of the 64 direct repeats present in Rfam were identified in the 
CRISPR arrays we searched; however, we only rebuild models 
for 3 of these with our pipeline. There was not enough 
sequence divergence within our set to build models with 
significant covariation for the remaining 31 Rfam structures. 
In fact, most direct repeat models in Rfam do not display 
significant covariation and would not be retained by our 
pipeline. Fourth, we could not assign functions to these 
candidates.

Overall, we provided 156 candidate structured RNAs pre-
dicted from Cas operons and CRISPRs. Though follow up 
work is necessary to validate these candidates, we confidently 

identified 46 new direct repeats and 1 tracrRNA. We show 
that the discovery of this tracrRNA model can be useful to 
improve assignment of CRISPR arrays to type II systems. We 
also propose some especially interesting candidates, including 
palindromic candidate structured RNAs that overlap cas1, 
cas3, cas4, cas6, cas7, cas8, and cas10. Perhaps these candi-
dates play roles in crRNA maturation or regulation of gene 
expression, for example, though more work is needed to 
assign such functions. Nonetheless, if any of these candidates 
play essential roles in these CRISPR-Cas systems, they will 
require consideration upon codon optimization of Cas and 
associated genes and meeting the system requirements from 
a genetic engineering perspective. We anticipate this resource 
will prompt experimental characterization, improve search-
ability of structured RNAs in CRISPR-Cas systems, and may 
have broader implications in adapting diverse CRISPR-Cas 
systems for genetic engineering purposes.

Methods

Data download and processing

All publicly available assembled metagenomic data with asso-
ciated publications in IMG/MER were downloaded. We only 
considered contigs greater than 3 kb for analysis. This resulted 

Figure 5. tracrRNA prediction.
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in 25,658,797 contigs containing a total of 212,328,312,212 bases. 
We predicted Cas operons and CRISPRs along these contigs with 
CRISPRCasTyper version 1.6.1 [14] using default settings. Only 
regions predicted to be Cas operons or CRISPRs associated with 
Cas operons were considered for further analysis. We extended 
these Cas operon and CRISPR regions by 500 bp upstream and 
downstream using BEDTools slop [46] to capture regions between 
Cas operons and CRISPR arrays as well as upstream or down-
stream regions that may be within the operons. These regions 
were merged together with BEDTools merge, and the sequences 
corresponding to these regions were isolated using BEDTools 
getfasta. This resulted in 38,202 regions containing 285,229,248 
bases, which we used to search for candidate structured RNAs.

Predicting candidate structured RNAs

We used BLASTn 2.5.0 +[39] with default settings to identify 
homologous regions within these Cas operons and CRISPRs. 
We retained matches with nucleotide differences, alignment 
lengths of at least 30, and bit scores of at least 20. Regions 
were clustered together using a single-linkage clustering algo-
rithm, overcluster2, with default settings (Weinberg, Z., 
unpublished open-source software, available at http://wein 
berg-overcluster2.sourceforge.io), resulting in 11,546 clusters. 
We extracted sequences for these clusters using BEDTools 
getfasta. These clusters were structurally aligned using 
CMfinder version 0.4.1 [40], resulting in alignments for 
7,173 clusters. We scored motifs using RNAPhylo, requiring 
a p-score of at least 10, filtering to 1,741 clusters. Motifs were 
also scored for significant covariation (E < 0.05) using R-scape 
[42] with default settings, further filtering to 717 clusters. 
Using motifs that passed above thresholds, we performed 
cmsearch [40] of candidate motifs against Cas operons and 
CRISPRs, retaining those models that uniquely and signifi-
cantly (E value < 1 × 10−6) hit at least three unique regions 
across the regions. This ensured that the models were search-
able and unique. Only 159 alignment files were retained from 
these analyses. We performed cmsearch [40] of Rfam 14.7 [7] 
against Cas operons and CRISPRs, considering those that 
meet the GA cut-off. Using BEDTools [46] intersect, we dis-
carded the candidate structured RNAs that overlapped with 
any regions that were also predicted to be structures in Rfam, 
resulting in a total of 156 new candidate structured RNAs. 
RNA structure renderings were drawn using R2R [47]. The 
highlighted covariation in the renderings indicate bases with 
significant covariation predicted by R-scape [42]. 
Additionally, we used R-scape with – fold option to improve 
covariation among these alignments [48]. To determine if the 
candidate structured RNAs were found in coding or noncod-
ing regions, we assessed which RNAs overlapped genes pre-
dicted by Prodigal [49]. We annotated genes using BLASTp to 
the nr database. Taxonomy of each contig was assigned using 
One Codex [50].

Identifying repeats with homology to tracrRNA 
antirepeats

Using BLASTp, we queried all predicted repeats identified 
with CRISPRCasTyper against all the tested Cas operons 

and CRISPRs. We removed significant hits (e value < 0.05) 
to CRISPR arrays (self matches) using BEDTools intersect. 
We then used BEDTools intersect to determine if any candi-
date structured RNAs were identified in regions homologous 
to the direct repeats. The only overlap identified was to the 
candidate structured RNA CRISPRCas_38, which was found 
in regions that were homologous to 760 distinct direct repeat 
sequences that could be traced back to 4,661 CRISPR arrays.
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