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FORUM REVIEW ARTICLE

Metabolomic Profiles of Human Glioma Inform Patient Survival
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Abstract

Aims: Targeting tumor metabolism may improve the outcomes for patients with glioblastoma (GBM). To
further preclinical efforts targeting metabolism in GBM, we tested the hypothesis that brain tumors can be
stratified into distinct metabolic groups with different patient outcomes. Therefore, to determine if tumor
metabolites relate to patient survival, we profiled the metabolomes of human gliomas and correlated metabolic
information with clinical data.
Results: We found that isocitrate dehydrogenase-wildtype (IDHwt) GBMs are metabolically distinguishable
from IDH mutated (IDHmut) astrocytomas and oligodendrogliomas. Survival of patients with IDHmut gliomas
was expectedly more favorable than those with IDHwt GBM, and metabolic signatures can stratify IDHwt
GBMs subtypes with varying prognoses. Patients whose GBMs were enriched in amino acids had improved
survival, while those whose tumors were enriched for nucleotides, redox molecules, and lipid metabolites fared
more poorly. These findings were recapitulated in validation cohorts using both metabolomic and tran-
scriptomic data.
Innovation: Our results suggest the existence of metabolic subtypes of GBM with differing prognoses, and
further support the concept that metabolism may drive the aggressiveness of human gliomas.
Conclusions: Our data show that metabolic signatures of human gliomas can inform patient survival. These
findings may be used clinically to tailor novel metabolically targeted agents for GBM patients with different
metabolic phenotypes. Antioxid. Redox Signal. 39, 942–956.

Keywords: glioma, glioblastoma, metabolomics, IDH, astrocytoma, oligodendroglioma, oxidative stress, 2-
hydroxyglutarate, recurrence
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Introduction

Glioblastoma (GBM) is the most common invasive
primary brain tumor and nearly uniformly fatal, despite

surgical resection and subsequent standard-of-care chemor-
adiation. While therapeutic intervention has initial efficacy,
tumors invariably recur and become resistant to treatment.
Thus, there is an urgent need to identify and target molecular
mediators of this resistance. While the therapy resistance and
aggressiveness of GBM have been explored at genomic and
transcriptomic levels, less is known about the metabolic
mediators of therapy-resistant phenotypes.

Altered metabolism is a hallmark of cancers including
GBM (Hanahan, 2022), and metabolic rewiring is critical for
tumor cells to undergo conversion to aggressive and
treatment-resistant phenotypes. Tumor metabolism is influ-
enced by both cancer cell-intrinsic information (genome,
epigenome, proteome, post-translational modifications) and
cell-extrinsic cues from the tumor microenvironment.

Given that targeting metabolism has a history of success in a
variety of cancers, targeting the metabolic phenotypes of GBM
cells may represent an effective treatment strategy (Scott et al.,
2021). Indeed, early data from several metabolically targeted

therapies for GBM patients have yielded promising outcomes
(Allen et al., 2019; Shenouda et al., 2020).

Understanding the metabolic phenotypes of gliomas could
also provide information about tumor aggressiveness and
patient prognosis. Altered expression of metabolic enzymes
or imaging-defined glucose uptake can inform prognosis in a
variety of cancers, including glioma (Schwarz et al., 2007;
Suchorska et al., 2015; Wang et al., 2017, 2019). Metabolite
levels themselves can distinguish low-grade and high-grade
gliomas, and suggest that GBMs favor anabolic metabolism
and heterotrophy (Chinnaiyan et al., 2012; Prabhu et al.,
2019). This biology was codified in the 2016 WHO classifi-
cation of gliomas, which defined three primary types of adult
infiltrating gliomas (Louis et al., 2016; Tesileanu et al.,
2022).

Gliomas with a mutation in isocitrate dehydrogenase
(IDH) are classified as either IDH mutant astrocytomas
(IDHmut astro) or IDH mutant oligodendrogliomas (IDHmut
oligo). Patients with IDHmut gliomas typically live longer
and respond better to treatment than patients with IDH
wildtype diffuse infiltrating gliomas, which are primarily
glioblastomas (IDHwt GBM). Whether metabolomic profiles
can provide information regarding GBM patient outcome
remains uncertain.

To address this question, we measured the metabolomes of
69 patient gliomas (Fig. 1), and found that tumors robustly
cluster into IDHmut and IDHwt status based on metabolic
profiles. IDHmut gliomas further separate high-grade (grade
4 astrocytoma) from lower grade tumors (grades 2 and 3
astrocytomas and oligodendrogliomas).

Further analyses of IDHwt GBM tumors reveal distinct
metabolic subtypes with different patient survival times. We
found no relation of these subtypes to known survival pre-
dictors, suggesting that metabolism can influence GBM
progression independently of these factors. Taken together,
these findings suggest the existence of discrete metabolic
GBM subtypes and may pave the way for therapies targeting
metabolic pathway activity to improve patient outcomes.

FIG. 1. Summary of
study. Flash-frozen glioma
samples were assessed for
metabolite levels by LC-MS
and grouped based on meta-
bolomic profiles. Matching
metabolomic datasets with
patient information revealed
survival differences among
these groups. Analyses of
archived gene expression
data for related metabolic
genes were then used to val-
idate these findings. LC-MS,
liquid chromatography-mass
spectrometry.

Innovation

We do not understand how metabolites mediate cancer
prognosis and treatment responses. In this article, we
measure tumor metabolite levels in dozens of gliomas to
create one of the largest datasets linking human glioma
metabolite levels to individual patient outcome data. We
find numerous metabolites and metabolic pathways that
correlate with aggressive clinical behavior and confirm
our findings in external datasets. This work suggests the
existence of numerous glioblastoma metabolic subtypes
with different prognoses that could benefit from in-
dividualized treatment strategies.
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Results

Metabolomic profiling distinguishes IDHmut
from IDHwt gliomas

Using the University of Michigan Brain Tumor Bank, we
identified 69 flash-frozen glioma samples with sufficient tissue
for metabolomic analysis. All samples were deemed to contain
‡70% viable tumor content at time of resection after quality
assurance by a clinical neuropathologist (S.V. and S.C.-P.).
Clinical data associated with these tumor samples were then
obtained from the medical record. This cohort (Table 1, Fig. 2
and Supplementary Data S1–S2) contained IDHmut oligo

(29%), IDHmut astro (13%), and IDHwt GBMs (58%), all of
which were molecularly defined (Louis et al., 2021).

Overall median survival, sex ratios, and O6-methylguanine-
DNA methyltransferase (MGMT) promoter methylation sta-
tus of all three groups were as expected with median survival
times of *11 years for IDHmut oligo, 7 years for IDHmut
astro, and 1.6 years for IDHwt GBMs (Eckel-Passow et al.,
2015). This longer survival time for patients with IDHmut
tumors reflects the known slower growth, and improved
treatment responses of IDHmut astro and IDHmut oligo
compared with IDHwt GBMs (Tesileanu et al., 2022).

All patients were treated with some extent of resection (as
opposed to biopsy alone) due to the requirement of sufficient
tissue for banking. Within this cohort, 63% of patients with
IDHmut astro, 67% of patients with IDHmut oligo, and 95%
of those with IDHwt GBMs received both radiation therapy
(RT) and chemotherapy, typically temozolomide (TMZ), at
some point after resection.

We first asked whether metabolomic information from our
tumor samples would be of sufficient quality to discriminate
between known tumor subtypes (i.e., IDHmut astro and IDH-
mut oligo vs. IDHwt GBMs). We extracted polar metabolites
from each tumor sample and performed quantification by liquid
chromatography-mass spectrometry (LC-MS) as described
previously (Lee et al., 2019). With this method, we determined
relative abundances of >200 compounds comprising central
carbon, nucleotide, and amino acid (AA) metabolism.

To visualize whether our high-dimensional metabolite in-
formation was sufficient to group tumor samples based on their
molecular subtype, we performed uniform manifold approxi-
mation and projection (UMAP) analysis. UMAP analysis re-
vealed that IDHwt GBMs tend to separate from IDHmut
gliomas, while IDHmut subsets (astrocytoma and oligoden-
droglioma) are more metabolically similar (Fig. 3A).

When levels of tumor metabolites across all glioma patients
were analyzed by unsupervised hierarchical clustering, two
distinct metabolomic groups were immediately apparent, with
one cluster representing IDHwt GBM, and the other re-
presenting IDHmut astrocytoma and oligodendroglioma
(Fig. 3B and Supplementary Fig. S1). This is consistent with
our UMAP analysis (Fig. 3A). Mutations of IDH, typically at
an arginine residue required for substrate recognition, cause an
accumulation of 2-hydroxyglutarate [2HG (Dang et al., 2009;
Hartmann et al., 2009; Lai et al., 2011; Parsons et al., 2008)].

As expected, the levels of 2HG were 10- to 50-fold higher
in IDHmut tumors than in IDHwt GBMs (Fig. 3C). The role
of 2HG in IDHmut gliomas is well established and supports
our observations of increased 2HG in tumors from IDHmut

Table 1. Patient Characteristics

Total cohort n = 69
IDH mutant oligodendroglioma, n = 20
Age 38.6 – 17.5
Sex Male 55%, female 45%
Extent of resection GTR 50%, NTR 50%
Performance status 1.0 – 0.75
Receipt of radiation 75.0%
Receipt of alkylating

chemotherapy
77.8%

IDH mutant astrocytoma, n = 9
Age 34.0 – 11.8
Sex Male 44%, female 56%
Extent of resection GTR 33.3%, NTR 67.7%
Performance status 1.0 – 1.0
MGMT methylation

status
Methylated 50.0%

Receipt of radiation 85.7%
Receipt of alkylating

chemotherapy
67.7%

IDHwt GBM, n = 40
Age 59.8 – 12.6
Sex Male 64.1%, female 36.9%
Extent of resection GTR or NTR 72.5%, STR 27.5%
Performance status 1.0 – 1.0
MGMT methylation

status
Methylated 37.5%

Receipt of radiation 96.3%
Receipt of alkylating

chemotherapy
97.4%

Resected tumor samples stored in the University of Michigan
Brain Tumor Bank were matched with patient medical records to
determine the indicated information. Age and performance status
are shown as median – interquartile range.

GBM, glioblastoma; IDH, isocitrate dehydrogenase; MGMT, O6-
methylguanine-DNA methyltransferase.
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FIG. 2. Overall survival times for
glioma patients. The Kaplan–Meier
curves of overall survival times for
glioma patients corresponding to tis-
sue samples acquired from the Uni-
versity of Michigan Brain Tumor
Bank with the indicated tumor types
are shown. Patients with unknown
survival times were censored at time
of last follow-up.
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FIG. 3. Metabolomics distinguishes IDHmut from IDHwt gliomas. (A) Metabolite levels of tumors from glioma
patients were measured by LC-MS, and then assessed by UMAP. (B) Metabolite levels were assessed by data reduction with
Binner followed by unsupervised hierarchical clustering. Color scale indicates log-transformed values of data points after
normalization to the median AUC of each compound. (C) Levels of 2HG were determined by measuring LC-MS AUCs
matched to ion fragmentation data. *p < 0.0001, unpaired t test. AUC, area under the curve; UMAP, uniform manifold
approximation and projection.
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glioma patients. Surprisingly, our method identified several
other metabolites, including itaconate, citramalate, and ke-
toleucine, which were elevated to a similar magnitude to 2HG
in IDHmut tumors (Supplementary Fig. S1). These findings
could hint at interesting new biology in IDHmut gliomas, or
they could be mis-called metabolites due to their chemical
similarity to 2HG (e.g., similar fragmentation patterns and
retention times on chromatography).

To discriminate between these possibilities, we processed
our data using Binner (Kachman et al., 2019), which identi-
fied isobaric overlaps of 2HG with citramalate; and itaconate
with ketoleucine. We confirmed similar retention times, and
identical ion transitions for itaconate and ketoleucine (Sup-
plementary Data S3). Citramalate and 2HG had similar re-
tention times and parent ions but different ion transitions
(Supplementary Data S3).

Normalized ion counts are found in Supplementary Data
S1. After this additional processing of LC-MS data, IDHwt
GBMs remained distinct from IDHmut gliomas (Fig. 3B).
Together, these data show that our tumor metabolomic data
are of sufficient quality to discriminate known molecular
subtypes of glioma. With this quality assurance step in hand,
we then used these data to explore novel biology within
IDHmut gliomas and IDHwt GBMs.

To further explore metabolic differences between tumor
types, we found that *50% of detected metabolites differed
in IDHwt GBM compared with IDHmut gliomas (combined
astrocytoma and oligodendroglioma; Supplementary
Fig. S2A). Of note, the pyrimidine breakdown products uracil
and thymine are markedly elevated in IDHwt GBM com-
pared with IDHmut gliomas, perhaps reflective of the in-
creased demand for pyrimidines in IDHmut tumors (Shi et al.,
2022). We also identified a variety of metabolites with
abundance differences with p < 0.05 between IDHmut astro
and IDHmut oligo (Supplementary Fig. S2B).

After surgical resection, gliomas are typically treated with
RT and chemotherapy, which suppress tumor growth by in-
ducing reactive oxygen species and DNA damage. Having
observed different metabolite levels across different types of
gliomas, we asked if metabolites related to the regulation of
oxidative stress could serve as potential biomarkers and/or
therapeutic targets. Therefore, we examined ratios of oxi-
dized and reduced nicotinamide adenine dinucleotide (NAD/
NADH) and glutathione (GSH/GSSG).

Notably, neither NAD/NADH ratios nor GSH/GSSG ratios
differed significantly across tumor types, nor correlated with
patient survival time (Supplementary Fig. S3A–F). We did
observe that cystathionine, an intermediate in the trans-
sulfuration pathway used to generate antioxidants from one-
carbon metabolism, is elevated in IDHmut astro compared
with IDHmut oligo (Supplementary Fig. S2B). It is possible
that the labile nature of these metabolites caused degradation
or oxidation during tissue storage, which obscured some
correlations with patient survival and/or tumor type.

Grade 4 IDHmut astro have a worse prognosis than grade 2
or 3 IDHmut astro, but the prognostic difference between
grade 2 and 3 IDHmut gliomas is uncertain in the era of
molecularly defined tumors (Brat et al., 2020). Notably, grade
4 IDHmut astro clustered together based on their metabo-
lomic profile and were separate from lower grade 2 and 3
tumors, which remained intermixed (Fig. 3B). While IDH-
mut grade 4 astrocytomas had similar levels of 2HG to lower

grade IDH mutant tumors, their levels of asparagine and
several other metabolites were more similar to IDHwt GBMs
than to lower grade IDHmut tumors.

Notably, hierarchical clustering could not discriminate be-
tween grade 2 or grade 3 IDHmut tumors (Fig. 3B) with any of
the 12 different linkage/distance algorithm combinations avail-
able in MetaboAnalyst (Euclidian, Pearson, Minkowski distance
measurements; complete, average, single, Ward linkage meth-
ods). All 12 distance-linkage method combinations available
(not shown) robustly separated grade 4 gliomas from lower
grade (2/3) tumors while failing to separate grade 2 from grade 3.
This suggests that either grade 2 and 3 gliomas cannot be met-
abolically distinguished with our LC-MS methods, or there is a
need for a more robust method to categorize gliomas into grades
2 and 3 than the histological examinations used at present.

We also noted that two IDHwt GBMs clustered with low-
grade IDHmut tumors (Fig. 3B). This clustering was not due
to alternative IDH mutations missed by immunohistochem-
istry, as 2HG levels were similar to other IDHwt GBMs.
Rather, these two tumors had similar levels of succinate,
creatinine, and other metabolites to the IDHmut tumors.

Additional investigation of these two unusual GBM cases
found survival times substantially longer than the 1.5-year me-
dian for GBM, similar to IDHmut gliomas. One patient in their
early fifties survived 4 years beyond diagnosis, and the other
(early twenties, far below median age of 65 years) is still alive
5.5 years after diagnosis at the time of writing. A single IDHmut
grade 4 astrocytoma metabolically clustered with IDHwt GBMs.

Metabolomics-based clustering bins GBM patients
into groups with different prognoses

The data above confirmed that IDHwt GBMs have a met-
abolic phenotype distinct from IDHmut gliomas, and sug-
gested that our data were of sufficient quality to investigate less
understood metabolic pathways in glioma. Outcome for GBM
is dramatically worse than that for IDH mutant tumors. This
poor survival rate may be at least partially due to metabolic
phenotype (Chinnaiyan et al., 2012; Kesarwani et al., 2019;
Scott et al., 2021), and we and others have demonstrated that
targeting metabolism in GBM can improve survival in animal
models and is under investigation in patients (Schoenfeld et al.,
2017; Shenouda et al., 2020; Zhou et al., 2020).

To determine if tumor metabolomic profiles are related to
patient survival in GBM, we questioned if GBMs can be
grouped into different metabolic subtypes with different
survival times in a manner similar to efforts to categorize
GBMs by transcriptomic and DNA methylation patterns
(Ceccarelli et al., 2016; Verhaak et al., 2010).

We first confirmed that our GBM tumor samples reflected
a typical clinical cohort by univariate analysis with known
survival factors. As expected, older age, male sex, poor
performance status, and an unmethylated MGMT promoter
were all associated with inferior survival within this cohort of
GBM patients (Supplementary Table S1), although some
variables did not achieve statistical significance. We then
performed unsupervised hierarchical clustering of metabo-
lites in the 40 tumors from GBM patients.

Our cohort included five recurrent GBMs that did not sep-
arate from primary GBM by unsupervised hierarchical clus-
tering (Fig. 4A). This analysis identified three unique
metabolite-based clusters that stratified GBM tumors into three
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separate groups (Fig. 4A). Inspection of individual metabolites
represented by each metabolite cluster revealed enrichment of
either (1) nucleobases and carbohydrates, (2) AAs, or (3) me-
tabolites associated with oxidative stress regulation and mature
nucleoside/nucleotide species (Nuc/Ox). We then grouped
patients into their three broadest clusters, which varied in
general levels of metabolites represented by Nuc/Ox, AA, and
nucleobase and carbohydrate metabolites (Fig. 4A).

These three putative metabolic subgroups of GBM comprised
of tumors represented by either high levels of metabolites in the

AA cluster (AA high GBM), high levels of metabolites in the
Nuc/Ox cluster (Nuc/Ox high GBM), or high levels of metab-
olites in clusters representing AA and carbohydrate/nucleobase
metabolites (hybrid GBM). Statistical analyses of these meta-
bolites by ANOVA are shown in Supplementary Data S4.
Survival analysis of these three groups had limited statistical
power due to our number of patients but indicated prognostic
differences associated with this grouping method, with Nuc/Ox-
High patients showing the worst survival and the AA group and
Nuc/Ox-Low showing superior survival (Fig. 4B).

FIG. 4. Metabolomics-based clustering bins GBM patients into groups of different prognosis. (A) Levels of me-
tabolites in GBM patients with known survival times were organized by unsupervised hierarchical clustering. *Indicates
recurrent GBM. (B) The Kaplan–Meier curves with survival times for patients in the subtypes identified in (A, C). To
validate findings in (A, B), a second, independent cohort was assessed using different mass spectrometry methods, and then
analyzed by clustering as in (A, D), the Kaplan–Meier curves with survival times for patients in the subtypes identified in
(C). Color scales for both heatmaps indicate log-transformed values of data points after normalization to the median AUC of
each compound. GBM, glioblastoma.
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These differences were not due to receipt of different
treatments, as receipt of RT and TMZ was not different be-
tween groups (Supplementary Fig. S4A, B). These findings
are reminiscent of our previous work, showing that GBMs
with high levels of nucleotides and their derivatives, partic-
ularly purines, are especially resistant to treatment (Zhou
et al., 2020). These data also suggest a potential correlation of
high levels of redox metabolites (in the Nuc/Ox-High GBM
group) with poor GBM patient survival.

We then asked if survival differences among metabolic
subtypes were related to known clinical predictors of GBM
patient survival. Assessment of established predictors of
GBM patient survival (sex, age at diagnosis, MGMT pro-
moter methylation, performance status, and extent of resec-
tion) within each subtype determined a mostly even
distribution of these factors across metabolic groups (Sup-
plementary Fig. S4C–G), with no statistical significance
when groups were assessed by t-test or chi-squared test.

Taken together, these observations indicate that the met-
abolic features of GBM patient tumors might provide infor-
mation regarding patient prognosis that could complement
the information conveyed by conventionally used clinical
information.

To validate our findings that GBMs can cluster into meta-
bolic groups with different prognoses, we assessed a second,
independent dataset (validation cohort) of GBM tumor speci-
mens containing both metabolomic profiles and survival times
(Chinnaiyan et al., 2012; Kesarwani et al., 2019). While me-
tabolomic data from the validation cohort contained largely
different metabolites due to different LC-MS detection meth-
ods, patients in the validation cohort could also be binned into
metabolically defined subtypes with differing prognosis, con-
sistent with our initial cohort of tumors (Fig. 4C). This analysis
was performed with separate metabolomic platforms, and our
validation method (performed at a different site) detected only
*60 compounds in common with our in-house method.

Despite differences in detection methods, we were able to
find that GBMs containing high levels of groups of AAs in
either set had the best prognosis. Consistent with the data
obtained using our method, we identified a subtype charac-
terized by an enrichment of AA-related metabolites at above-
median levels with superior survival (Fig. 4D). Since our
methods utilized different metabolites to discriminate subtypes
in the two different patient sets, we refer to this second AA-
defined subtype as AA2 to avoid implying biological equiva-
lence with the AA subtype in our independent first dataset.

The second subtype within our validation cohort contained
above-median levels of many lipid species and had a sig-
nificantly reduced median survival compared with the AA2-
high subtype. Further statistical analysis identified >140
compounds that differed with p < 0.05 between subtypes
(Supplementary Fig. S2C). The identification of a lipid-high
subtype in this dataset, rather than the Nuc/Ox-related groups
reported in set 1, is likely due to differences in LC-MS
compound detection methods with limited detection of nu-
cleobases that are increased in patients with worse survival.

Association of individual metabolites with GBM patient
survival

Having identified metabolic signatures that correlated with
GBM patient survival, we next explored if similar relation-

ships could be seen with individual metabolites. For each
metabolite in each independent dataset, we determined haz-
ard ratios (Supplementary Fig. S5A, B) and correlation with
survival (Supplementary Fig. S5C, D). While a variety of
metabolites exceeded the 95% confidence interval, no sin-
gular metabolite was reliably associated with survival with a
p-value of <0.05 in both sets. This may be due to sample
quality, different analysis methods across datasets, or the
inherently dynamic nature of metabolite levels.

We then asked if GBM patients with below-median versus
above-median survival were metabolically distinguishable when
the two groups were directly compared. To this end, we used
partial least-squares discriminant analysis (PLS-DA) to identify
metabolic features that could discriminate between above-
median survivors and below-median survivors in a supervised
manner that incorporates survival information (Fig. 5A, B).

In this comparison, we found that levels of purines including
AMP/dGMP and adenine were significantly elevated in pa-
tients with inferior survival, and in these patients a variety of
other purine and pyrimidine metabolites had increased variable
importance in projection (VIP) scores (Fig. 5C). This agrees
both with our metabolic clustering (Fig. 4) and with our pre-
vious data, showing that purines promote therapeutic resistance
in GBM (Zhou et al., 2020). When we assessed our validation
cohort, we found that several diverse lipid and AA species were
different between groups, in agreement with our metabolic
clustering analysis (Fig. 5D). Distinct from these two metab-
olite categories, levels of ascorbate were notably higher in
above-median than in below-median survivors.

Interestingly, redox cofactor ratios did not significantly
differ between tumors from patients with above-median and
below-median survival (Supplementary Fig. S6A, B). This
agrees with our observations that these ratios were similar
across glioma types with different median survival times, and
suggests that ascorbate metabolism may be a more practical
therapeutic target. Indeed, ongoing clinical strategies are
aiming to modulate ascorbate levels and improve outcomes
in GBM patients (Allen et al., 2019; Schoenfeld et al., 2017).

Metabolomic analysis of primary versus recurrent GBM

Surgical resection and standard chemoradiation therapy
improve survival for GBM patients, but this initial efficacy is
limited by the development of treatment resistance. Re-
current, therapy-resistant tumors develop within the high-
dose radiation field, and the ability of recurrent tumors to
resist therapy is in part due to metabolic alterations within the
tumor (Scott et al., 2021). Therefore, we asked if recurrent
GBMs were metabolically distinct from primary GBM.

Receipt of a second craniotomy in GBM patients is rela-
tively infrequent, and therefore our sample size of recurrent
GBM tumors was expectedly smaller (n = 5) than that of
primary tumors (n = 35) and could not achieve an ideal level
of confidence for a variety of assessments such as metabolite
set enrichment. Examination of unsupervised metabolite
clustering data did not identify any clear separation of re-
current from primary GBM (Fig. 4A), nor did supervised
clustering of primary and recurrent GBMs produce any ob-
vious metabolite patterns (not shown).

Primary GBM may therefore be less distinguishable from
recurrent GBM when compared with the starker metabolic
differences observed between IDH wildtype and IDH mutant
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gliomas. For example, despite having undergone cycles of
RT and chemotherapy, ratios of NAD/NADH and GSH/
GSSG were not significantly different in recurrent GBM
compared with primary untreated GBM (Supplementary
Fig. S7A, B). However, after performing PLS-DA on me-
tabolite data, we noted some separation of primary from re-
current GBMs (Fig. 6A).

Moreover, we identified a variety of interesting metabo-
lites with high VIP scores in recurrent GBM (Fig. 6B). These
included a variety of notable purine metabolites that are
known to promote GBM treatment resistance (Shireman
et al., 2021; Zhou et al., 2020). Levels of guanosine, which
may promote glioma stemness, gliomagenesis, and treatment
resistance (Kofuji et al., 2019; Shireman et al., 2021; Wang
et al., 2017; Zhou et al., 2020), were approximately twice as
high in recurrent tumors as in primary GBM (Fig. 6C).

Decreased levels of glutamine and citrate, and increased
levels of the pyrimidine metabolite orotate were also ob-
served in recurrent GBM compared with primary GBM

(Fig. 6C). These may be promising leads to target metabolic
activity in patients with recurrent GBM, and further meta-
bolic and genetic analyses may help experimentally validate
pathway activities and directionality.

Validation of metabolic subtypes by transcriptomic
analysis

Metabolomic analysis of brain tumors is not a standard part
of clinical care, in part due to the logistical challenges of
quickly flash-freezing tumor tissue and the cost of metabo-
lomic analysis. We wanted to understand if our metabolism-
centric approach to understanding GBM patient outcomes
could translate into standard clinical settings where ap-
proaches such as exome sequencing and transcriptomic
analysis are more commonly performed. Metabolites are
linked by the enzymes that catalyze their interconversion, and
the levels of these enzymes are quantified in transcriptomic
analyses such as RNAseq.

FIG. 5. Assessment of individual metabolites in tumors from GBM patients with different outcomes. (A, B) PLS-DA
of independent metabolomics datasets (set 1, experimental; set 2, validation). (C, D) VIP scores for metabolites were
determined in tumors from below-median versus above-median survivors. PLS-DA, partial least-squares discriminant
analysis; VIP, variable importance in projection.
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We questioned if it were possible to validate metabolic
GBM subtypes and their prognostic utility at the transcrip-
tional level. Therefore, we selected the metabolites of each
cluster and performed joint pathway analysis with MetaboA-
nalyst 5.0 (Pang et al., 2021) for each set. This approach
allowed us to identify connections globally across gene-
metabolite networks and predict the genes likely involved in
the metabolic activities of each subtype (Fig. 7A–C, Supple-
mentary Data S5).

We first defined a geneset for each tumor type (Nuc/Ox and
AA) comprised of the genes with at least two connections to
the respective input metabolites. Thus, these sets of genes
were predicted to contribute to tumor metabolic phenotype.
We then interrogated linked expression and outcome data
from the TCGA to determine how these genesets were as-
sociated with GBM patient survival. For each transcriptional
signature, TCGA GBM tumor samples were scored using

single-sample geneset enrichment analysis (ssGSEA) (Mer-
catelli et al., 2020), and then assessed for survival in high-
scoring (>0) versus low-scoring (<0) groups. Similarly, we
performed separate analyses of patient survival in each
metabolite-defined subtype versus the remainder of the cohort.

Comparison of survival curves between metabolite-
defined groups and the corresponding transcriptionally de-
fined groups showed close agreement. While statistical
power was limited, patients in the Nuc/Ox-high subtype ap-
peared to have inferior survival (Fig. 7D), as did those in the
transcriptionally defined Nuc/Ox-high group, although this
did not reach statistical significance (Fig. 7E).

While the metabolically defined AA group trended with a
higher median survival, the transcriptional AA group showed
no significant difference in survival from the rest of the co-
hort (Fig. 7F, G). Patients in the hybrid subtype had inferior
survival (Fig. 7H), consistent with the transcriptionally

FIG. 6. Metabolomic analyses of primary and recurrent GBM. (A) PLS-DA of a GBM cohort of primary and recurrent
tumors. (B) VIP scores for metabolites were determined in primary and recurrent GBM tumors. (C) Volcano plots of
metabolites in primary and recurrent GBMs with p-value versus FC in abundance (recurrent/primary). Red data points
indicate metabolites with p-values <0.05. FC, fold change.
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defined group (Fig. 7I). Collectively, these data suggest that
gene and metabolite levels of oxidative stress and nucleotide-
related metabolites may inform GBM patient prognosis.

Discussion

In this study, we have nominated metabolomic subtypes
for GBM that inform patient prognosis and could lead to new
treatment strategies. IDHwt GBMs are metabolically sepa-
rable from IDHmut gliomas, and within the IDHmut group
of gliomas grade 4 astrocytomas are metabolically distinct
from grade 2 and 3 gliomas. IDHwt GBM and IDHmut
gliomas also differ dramatically by 2HG levels, with IDH-
mut gliomas containing expectedly higher levels than
IDHwt GBMs by up to 50-fold. GBMs can be further sep-
arated into metabolic groups with different survival times
that agree with transcriptional analysis of metabolite-
associated genes. These data indicate that metabolic phe-

notypes of brain tumors may be able to inform patient
outcomes and tumor aggressiveness.

There are several general reasons metabolite levels could
contribute to patient outcome. Metabolites likely regulate
responses to RT and TMZ, which are the predominant
treatments prescribed for GBM. For example, high nucle-
otide levels could provide a readily accessible pool of
substrates for nucleic acid synthesis required for prolifera-
tion, and/or the production of mature nucleosides and nu-
cleotides that mediate radiotherapy resistance (Zhou et al.,
2020).

High levels of carbohydrates might similarly feed anabolic
pathways contributing to tumor aggressiveness (Chinnaiyan
et al., 2012). We also observed that tumors rich in lipids were
linked to worse patient outcomes. This could be explained by
numerous cellular activities for lipids, including membrane
production in proliferating cells, second messenger activity
for proliferative and survival signaling pathways, and

FIG. 7. Transcript validation of GBM metabolic subtypes. (A) Metabolites representing each metabolic GBM subtype
(with subtype defined as the corresponding patient cluster) were used to identify relevant RNA transcripts by metabolite–
gene interactions with high confidence. (B) Network of genes and metabolites from metabolite data produced in (A). Blue
squares represent metabolites; magenta circles represent genes. (C) Genes from (B) with connections to at least two
metabolites were selected for transcriptomic analysis. (D, F, H) The Kaplan–Meier curves with patients from the indicated
metabolic subtypes (Nuc/Ox, AA, and hybrid GBM) versus the remainder of the cohort. (E, G, I) The Kaplan–Meier curves
using archived transcriptomic data with patients from high versus low transcriptomic scores corresponding to the genes
identified for each subtype. AA, amino acid; Nuc/Ox, nucleotide and oxidative stress metabolites.
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oxidation in the mitochondria to produce redox cofactors and
ATP (De Rosa et al., 2012; Lin et al., 2017).

In contrast to carbohydrates, nucleotide species, and lipids,
high levels of AAs were associated with more favorable
outcomes. Notably, synthesis and degradation pathways of
AAs are more diverse, branching about numerous metabolic
pathways. Thus, GBMs with high AA levels might represent
a more globally active network of metabolic pathways
without reserve capacity, and thus may be more easily per-
turbed by therapy.

Alternatively, or in addition, high AA levels might reflect
lower levels of protein synthesis. Both scenarios could in turn
lead to more favorable survival. Our observation that pre-
dicted genes representing the AA subtype did not correlate
with survival (in contrast to metabolite levels) could be ex-
plained by several hypotheses. AA pathways represented by
the indicated metabolites and transcripts might be regulated
post-transcriptionally, in which case transcriptional data
would not represent actual metabolic activity. In addition,
metabolite levels do not necessarily reflect pathway activity;
for example, high AA levels could arise from either increased
production or decreased utilization.

At present, metabolomic analysis of patient tumors is in-
frequently performed in clinical practice. It is costly and
logistically difficult to flash-freeze tumor specimens im-
mediately after resection and analyze these specimens by
mass spectrometry. There is also a lack of standardization
regarding metabolomic detection methods and analysis
across academic and medical centers.

We directly observed this difficulty in the different types of
metabolites detected between our initial and validation co-
horts, which were generated using different platforms.
However, further investigation of the metabolic underpin-
nings of GBM or other cancers might lead to standardized
diagnostic and prognostic methods for metabolite detection
and quantification. Beginning to address these issues would
likely involve immediate flash freezing of tissue after re-
section to prevent ex vivo metabolic activity (e.g., conver-
sions of redox cofactors), and/or infusions with metabolic
tracers such as nonradioactive isotopic glucose to predict
in vivo activity.

The identification of specific biomarkers and direct mea-
surements of their levels in blood or solid tissue are ideal, but
emerging methods in artificial intelligence and metabolic flux
analysis could be used to define metabolic pathway activity
more comprehensively in animal models and humans (Giera
et al., 2022; Patti et al., 2012). Studies employing analysis of
transcriptional or proteomic signatures with patient-matched
metabolomic data could identify molecular profiles that di-
rectly correspond to metabolic subtype. Such a profile could
be used to predict metabolic treatments that are effective
against specific GBM tumor types.

From a therapeutic targeting perspective, numerous met-
abolic inhibitors could be tailored to specific GBM metabolic
groups. Classical examples include gemcitabine and fluoro-
uracil, which suppress nucleotide metabolism and nucleic
acid synthesis (Scott et al., 2021). More recent examples that
we and others are investigating include the FDA-approved
inosine monophosphate dehydrogenase inhibitor known as
mycophenolate mofetil (MMF (Majd et al., 2014)), which is
used to block purine synthesis in autoimmunity and is under
investigation in GBM (NCT04477200).

This may be an especially effective novel therapy in the
Nuc/Ox subgroup, which is high in nucleotides. GBMs in the
AA/AA2 subtypes might be treated with AA-targeted ap-
proaches such as the glutamine antagonist JHU-083, aspar-
aginase, or a methionine-restricted diet (Gao et al., 2019;
Hanaford et al., 2019; Karpel-Massler et al., 2016). Lipid
metabolism can be targeted by etomoxir or statins, and might
be an effective approach against GBMs rich in lipids, which
may encompass the Nuc/Ox-defined GBMs (Kant et al.,
2020).

Our data further suggest that metabolic phenotypes in
patients could mediate resistance to standard therapies.
Radiotherapy, a standard treatment for GBM, causes DNA
damage and oxidative stress. Notably, oxidative stress can be
targeted by pharmacological ascorbate, which has shown
early promise in patients (Allen et al., 2019). It could be
speculated that ascorbate treatment may be most effective in
Nuc/Ox-high GBMs and recurrent GBM, which is likely to
have higher levels of oxidative stress.

While our analyses define subsets of human GBM by
metabolite levels, metabolic pathway activity remains to be
defined across subtypes. This can be accomplished by mea-
suring the accumulation of an isotope tracer (e.g., 13C-
glucose) into downstream intermediates. Stable isotope
tracing is feasible in both preclinical animal models and
cancer patients (Bartman et al., 2021; Faubert et al., 2021),
and could potentially be used in this endeavor.

Finally, determining the molecular mechanisms of these
phenotypic differences, and how they contribute to tumor
progression and therapy resistance, across subtypes in vitro
and in preclinical animal models will be critical to translation
into clinical care. Altogether, these metabolic analyses sug-
gest that gliomas can be grouped into distinct survival groups
by metabolite levels and could lay the groundwork to begin
developing novel therapeutic strategies for glioma patients.

Materials and Methods

Patients, tissue collection and storage

For >10 years, the Neurosurgery Department at the Uni-
versity of Michigan has processed and stored resected brain
tumor samples not needed for clinical use to facilitate future
research endeavors. All samples in this brain tumor bank
undergo quality assurance by a clinical neuropathologist to
estimate viability and tumor content. Due to the need for
banked tissue, patients who only underwent diagnostic bi-
opsy rather than tumor resection are not included in this
analysis. Among the types of tissues collected was flash-
frozen brain tumor tissue appropriate for metabolomic
analysis. Clinical information linked to these samples was
abstracted from the medical record under an IRB-approved
research protocol (HUM00165469).

IDH profiling and tumor type assignment

IDH status and molecular analysis of resected tumors were
determined by the University of Michigan Neuropathology
Unit according to standard clinical practice. IDH mutations
were determined by immunohistochemistry for the R132
mutant of IDH1 and/or PCR (Supplementary Data S2).
IDHmut oligo were defined as tumors having both IDH
mutation and deletions of chromosomal arms 1p and 19q,
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while IDHmut astro were defined as those with the IDH
mutation without chromosomal deletion of 1p and 19q. Adult
diffuse infiltrating gliomas without the IDHmut were clas-
sified as IDHwt GBM.

Sample preparation

Frozen tissue specimens were homogenized in cold
(-80�C) 80% methanol. Soluble metabolite fractions were
separated from insoluble homogenate by centrifugation and
dried by speedvac at volumes normalized to equal tissue
weights. Dried metabolites were then reconstituted in 1:1
methanol:water for LC-MS.

Liquid chromatography-mass spectrometry

Metabolite extracts were analyzed using an Agilent
Technologies Triple Quad 6470 LC-MS/MS system con-
sisting of the 1290 Infinity II LC Flexible Pump (Quaternary
Pump), the 1290 Infinity II Multisampler, the 1290 Infinity II
Multicolumn Thermostat with 6 port valve, and the 6470
triple quad mass spectrometer. Agilent MassHunter Work-
station Software LC/MS Data Acquisition for 6400 Series
Triple Quadrupole MS with Version B.08.02 was used for
compound optimization, calibration, and data acquisition.
Chromatographic separation of compounds is as described
(Zhou et al., 2020).

Data were preprocessed with Agilent MassHunter Work-
station QqQ Quantitative Analysis Software (B0700). For all
compounds, the extracted ion chromatograms and mass
spectra were manually inspected for sample quality and
consistent peak integrations. To validate findings, a second
set of samples from patients of an independent cohort
(Chinnaiyan et al., 2012; Kesarwani et al., 2019) was as-
sessed by mass spectrometry by Metabolon.

Statistical analysis

Descriptive statistics were used to characterize baseline
patient and treatment characteristics. Univariable Cox pro-
portional hazard models were used to estimate the association
between clinical factors (age and year of diagnosis, perfor-
mance status, MGMT methylation status, extent of resection,
and gender) and overall survival. Kendall’s tau for censored
data was used to rank the correlation between metabolites and
overall survival. All analyses, described in detail below, were
performed using MetaboAnalyst 5.0, GraphPad Prism 8.0.0,
and R 4.2.2.

Metabolomic analysis

Unsupervised hierarchical clustering, heat map generation,
and PLS-DA were performed using MetaboAnalyst 5.0 (Pang
et al., 2021). Processed peak intensities were normalized by
the median of all samples, log-transformed (base 10), and
used to generate metabolite-based patient groups by unsu-
pervised hierarchical clustering (Euclidian clustering and
Ward distance). All detected metabolites after LC-MS data
redundancy correction (below) were used to produce the
heatmap representing patient cohort 1, and the 75 metabolites
with the lowest p-values were used to produce the heatmap
representing the independent validation cohort 2.

Metabolic subtypes were defined as the predominant pa-
tient clusters encompassing all GBM samples. Metabolites
representing each subtype were identified from the largest
clusters covering all metabolites detected. Network analysis
was performed on metabolites representing each subtype and
using the joint gene–metabolite interaction network module.
Metabolite–gene associations were retrieved from STITCH
(Kuhn et al., 2008).

Reduction of LC-MS data with Binner

Metabolite features generated from our metabolomics
platform were subjected to Binner quality control analysis
(Kachman et al., 2019). In brief, metabolite features were
binned by retention time, and Pearson’s correlation of in-
tensity values was calculated for each feature bin. Isotopes
were identified by retention time similarity, correlation, and
mass differences. After isotope detection, metabolites in
each bin are clustered by correlation coefficients of signal
intensities.

For each cluster, the highest intensity feature is treated as a
neutral mass and iteratively assigned adducts corresponding
to the most frequent ions (e.g., m+H, m+Na). Calculated
adducts for each metabolite are searched within the bin based
on the m/z of other features in the cluster. Identified adducts
were removed from the dataset.

Transcriptional analysis

HTseq quantified RNAseq counts data for 173 TCGA
GBM samples available in the GDC TCGA Glioblastoma
cohort (https://xenabrowser.net/datapages) were down-
loaded from the UCSC Xena browser (Goldman et al.,
2020). Survival data for these cases were obtained from the
TCGA Clinical Data Resource (Liu et al., 2018). Enrich-
ment scores of each case for specific metabolic genesets
were computed with the ssGSEA function in the corto R
package version 1.1.11 (Mercatelli et al., 2020). We split
cases based on positive or negative enrichment scores for
the genesets and visualized their survival differences using
the Kaplan–Meier method with p-values computed using
the log-rank test.
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AMP¼ adenosine monophosphate
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AUC¼ area under curve
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GalNAc¼N-acetylgalactosamine
GBM¼ glioblastoma
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GSSG¼ oxidized glutathione
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Abbreviations Used (Cont.)

IDH¼ isocitrate dehydrogenase
IDHmut astro¼ IDHmut astrocytoma
IDHmut oligo¼ IDHmut oligodendroglioma

IDHmut¼ IDH-mutant
IDHwt¼ IDH-wildtype

IMP¼ inosine monophosphate
LC-MS¼ liquid chromatography-mass spectrometry
MGMT¼O6-methylguanine-DNA methyltransferase

NAD¼ nicotinamide adenine dinucleotide

NADH¼ reduced nicotinamide adenine dinucleotide
NMN¼ nicotinamide mononucleotide

Nuc/Ox¼ nucleotide and oxidative stress metabolites
PLS-DA¼ partial least-squares discriminant analysis

RT¼ radiation therapy
ssGSEA¼ single-sample geneset enrichment analysis

TMZ¼ temozolomide
UMAP¼ uniform manifold approximation and

projection
VIP¼ variable importance in projection
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