
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Learning Structured Distributions: Power-Law and Low-Rank

Permalink
https://escholarship.org/uc/item/4fp999xq

Author
Falahatgar, Moein

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4fp999xq
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Learning Structured Distributions: Power-Law and Low-Rank

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Machine Learning and Data Science)

by

Moein Falahatgar

Committee in charge:

Professor Alon Orlitsky, Chair
Professor Sanjoy Dasgupta
Professor Tara Javidi
Professor Ndapa Nakashole
Professor Ken Zeger

2019



Copyright

Moein Falahatgar, 2019

All rights reserved.



The dissertation of Moein Falahatgar is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California San Diego

2019

iii



DEDICATION

To my Parents: Azam and Baba.

iv



EPIGRAPH

God has shown me that it is a scientific fact that gratitude reciprocates.

—Matthew McConaughey

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Universal compression of power-law distributions . . . . . . . . . . . 1
1.2 Learning power-law distributions . . . . . . . . . . . . . . . . . . . 2
1.3 Learning low-rank probability matrices . . . . . . . . . . . . . . . 3
1.4 Contextual competitive estimators . . . . . . . . . . . . . . . . . . 4
1.5 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Universal Compression of Power Law Distributions . . . . . . . . . . . . 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Previous results . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Distribution model . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Complementary results . . . . . . . . . . . . . . . . . . . . 15

2.3 Worst-case redundancy . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Small alphabet . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Large alphabets . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Expected redundancy of P≤d . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Sequential compression . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Absolute-discount estimator . . . . . . . . . . . . . . . . . 25

vi



2.6 Expected redundancy of P(zipf(α,k)) . . . . . . . . . . . . . . . . . . 28
2.7 Expected redundancy of power-law envelope classes . . . . . . . . 35
2.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.A Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.B Proof of Lemma 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.C Expected number of distinct elements . . . . . . . . . . . . . . . . 42

Chapter 3 Learning Power-Law Distributions: Absolute Discounting is Optimal . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Optimal distribution learning . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 KL-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3 Minimax . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.4 Adaptive . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.5 Competitive . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Absolute discounting . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Upper bound and classical minimax optimality . . . . . . . . . . . 54
3.6 Lower bounds and adaptivity . . . . . . . . . . . . . . . . . . . . . 55
3.7 Relationship to Good–Turing and competitivity . . . . . . . . . . . 57
3.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8.2 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8.3 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.A Proof of Theorem 29, upper bound . . . . . . . . . . . . . . . . . . 63

3.A.1 Proof of Lemma 35 . . . . . . . . . . . . . . . . . . . . . . 65
3.A.2 Proof of Lemma 36 . . . . . . . . . . . . . . . . . . . . . . 66
3.A.3 Proof of Lemma 37 . . . . . . . . . . . . . . . . . . . . . . 69

3.B Proofs of lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.B.1 Proof of Theorem 30 . . . . . . . . . . . . . . . . . . . . . 72
3.B.2 Proof of Corollary 31 . . . . . . . . . . . . . . . . . . . . . 73
3.B.3 proof of Corollary 32 . . . . . . . . . . . . . . . . . . . . . 75

3.C Proofs of Good–Turing and absolute-discount relationship . . . . . 76
3.C.1 Proof of Lemma 33 . . . . . . . . . . . . . . . . . . . . . . 76
3.C.2 Proof of Theorem 34 . . . . . . . . . . . . . . . . . . . . . 76

3.D Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 4 Learning Low Rank Conditional Probability Matrices . . . . . . . . . . . . 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



4.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.9 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.A Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.A.1 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.A.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.B Proof of Theorem 52 . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.C Proof of Theorem 53 . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.D Proofs of Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 5 Towards Competitive N-gram Smoothing: Contextual Distribution Estimation128
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3 Theoretical Insights . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.1 Basic competitivity . . . . . . . . . . . . . . . . . . . . . . 133
5.3.2 Stronger competitivity . . . . . . . . . . . . . . . . . . . . 135

5.4 Contextual Good-Turing . . . . . . . . . . . . . . . . . . . . . . . 136
5.4.1 From Contextual Good-Turing to Classical Back-off . . . . 137

5.5 Partial Low-Rank N-gram Backoff . . . . . . . . . . . . . . . . . . 139
5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6.1 N-gram language models . . . . . . . . . . . . . . . . . . . . 141
5.6.2 LSTM language models with data noising . . . . . . . . . . 142
5.6.3 Global terrorism target prediction . . . . . . . . . . . . . . 143

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.8 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.A Deferred Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.A.1 Proof of Theorem 64 . . . . . . . . . . . . . . . . . . . . . 145
5.A.2 Proof of Theorem 65 . . . . . . . . . . . . . . . . . . . . . 147
5.A.3 Derivation of Equation (5.10) . . . . . . . . . . . . . . . . 148

5.B Minimax risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.C NPLR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.D Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . 154

5.D.1 Non-temporal data split . . . . . . . . . . . . . . . . . . . . 154
5.D.2 Joint prediction of target and weapon types on GDT . . . . 154

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

viii



LIST OF FIGURES

Figure 2.1: Examples of Zipf law in natural classes. . . . . . . . . . . . . . . . . . . . . 11

Figure 3.1: Risk of absolute discounting in different ranges of k and n for a power-law
with α = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.2: Comparing estimators for power-law variants with power α = 2 and k = 1000. 60
Figure 3.3: (a) power-law behavior of frequency vs rank in terror incidents, (b), and

(c) comparing forecasts of the number of incidents in unobserved cities and
observed ones, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 3.4: Estimating the number of incidents based on previous data for different cities. 62

Figure 4.1: Performance of selected algorithms over synthetic data. . . . . . . . . . . . 108
Figure 4.2: Experiments on real data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.1: Test cross-entropy with training / test periods: (a) dates before / after 2015,
(b) the first 10 months / the last two months of the year, and (c) all dates prior
to a month / that month of the year. . . . . . . . . . . . . . . . . . . . . . 144

Figure 5.2: Test cross entropy for a non-temporal split of (a) the whole data, and (b) a
year’s data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Figure 5.3: Test cross entropy for the joint prediction of target and weapon types when
(a) trained on data prior to 2005 and tested on dates after that, and (b) trained
on the first 10 months of a year and tested on the last two months. . . . . . 155

ix



LIST OF TABLES

Table 4.1: Cross-entropy results for different methods on several small corpora . . . . 109

Table 5.1: Perplexity on PTB - NPLR smoothing surpasses KN and competes with feed-
forward NNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Table 5.2: Effect of smoothing as data noising on validation and test cross-entropy for PTB143

x



ACKNOWLEDGEMENTS

I would like to thank my parents and my brothers, Mohammad and Mostafa, whose

support by no means can be put into words to be described and acknowledged. My family has

continuously supported me during my studies. Acknowledging them here is the simplest I can do

to thank them for all their cheering of every single accomplishment I had in my life.

I was so fortunate to have numerous caring friends. Friendships initiated in my undergrad-

uate studies as well as friendships made after moving to the US and starting my PhD. There is

a long list of friends to whom I am indebted for their genuine friendships and it is not simply

possible to list all here. I would like to show my earnest appreciation to Masoud Behzadi, Navid

Naderi, and Arian Shahnazari for their invaluable support, advice, and care. I would like to

express my sincere thanks to my friends whom I have lived with and shared memorable moments

during the past six years: Erfan Sayyari, Shahab Sarmashghi, Hamid Fard, and Armin Ahmadi.

I would also like to thank Ali Akbari, Borhan Vasli, Hossein Fard, Aref Shiran, and Roham

Razzaghi for all the pleasant moments we had together and specially thank Nasrin Shariati for

her considerate support and care.

At UC San Diego, I was fortunate to have great teachers and mentors. I am thankful to

my PhD committee members: Prof. Sanjoy Dasgupta, Prof. Tara Javidi, Prof. Young-Han Kim,

Prof. Ndapa Nakashole, and Prof. Ken Zeger.

I would like to sincerely thank my colleague and collaborator, Prof. Mesrob Ohannessian

for sharing his wisdom and knowledge with me and teaching me the concepts of true research

through our joyful collaborations. I will be indebted to him for all his support. I also want to

thank my current and previous colleagues: Ashkan Jafarpour, Ananda Theertha Suresh, Jayadev

Acharya, Yi Hao, Vaishakh Ravindrakumar, and Ayush Jain. I could not show how thankful I

am for all the fruitful discussions I had with all my colleagues. I would like to show my special

gratitude to my colleague and friend, Dheeraj Pichapati. For the entire of my PhD years, I was

fortunate to have Dheeraj by my side as my colleague, collaborator, and a friend.

xi



My sincerest acknowledgements will go to Alon. I met him when I took the Information

Theory course in my first quarter at UC San Diego. I immediately fell in love with his teaching.

Joining his research group shortly after, I realized that his research method was as pleasant as his

teaching. Being fortunate to be part of his research group, I was provided the opportunity to meet

many intellectual researchers and get involved in one of the biggest conferences in Information

Theory and Applications, ITA. My appreciation of interacting with Alon goes beyond academic

aspects as I constantly learned from him in every aspect of life. However, the space here cannot

do the justice to show my gratitude of having him as my advisor.

Chapter 2, in part, is a reprint of the material as it appears in 2015 IEEE International

Symposium on Information Theory (ISIT). Falahatgar, Moein, Ashkan Jafarpour, Alon Orlitsky,

Venkatadheeraj Pichapati, and Ananda Theertha Suresh, 2015. The dissertation author was the

primary investigator and author of this paper. This chapter has also been submitted with the same

authors for publication of the material as it may appear in the journal of IEEE Transactions on

Information Theory.

Chapter 3, in full, is a reprint of the material as it appears in Advances in Neural In-

formation Processing Systems. Falahatgar, Moein, Mesrob I. Ohannessian, Alon Orlitsky, and

Venkatadheeraj Pichapati, 2017. The dissertation author was one of the primary investigators and

authors of this paper.

Chapter 4, in full, is a reprint of the material as it appears in Advances in Neural Informa-

tion Processing Systems. Falahatgar, Moein, Mesrob I. Ohannessian, and Alon Orlitsky, 2016.

The dissertation author was one of the primary investigators and authors of this paper.

Chapter 5, in full, has been submitted for the publication of the material as it may

appear in Submitted to Neurips. Falahatgar, Moein, Mesrob I. Ohannessian, Alon Orlitsky, and

Venkatadheeraj Pichapati, 2019. The dissertation author was one of the primary investigators and

authors of this paper.

xii



VITA

2013 B. Sc. in Electrical Engineering, Sharif University of Technology, Iran

2016 M.S. in Electrical Engineering (Communication Theory and Systems),
University of California San Diego

2019 Ph. D. in Electrical Engineering (Machine Learning and Data Science),
University of California San Diego

PUBLICATIONS

Falahatgar, Moein, Alon Orlitsky, Venkatadheeraj Pichapati, and Ananda Theertha Suresh. “Max-
imum selection and ranking under noisy comparisons.” Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 1088-1096. JMLR. org, 2017.

Falahatgar, Moein, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj Pichapati, and Ananda
Theertha Suresh. “Faster algorithms for testing under conditional sampling.” Conference on
Learning Theory, pp. 607-636. 2015.

Falahatgar, Moein, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj Pichapati, and Ananda
Theertha Suresh. “Estimating the number of defectives with group testing.” 2016 IEEE Interna-
tional Symposium on Information Theory (ISIT), pp. 1376-1380. IEEE, 2016.

Falahatgar, Moein, Yi Hao, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh Ravindraku-
mar. “Maxing and ranking with few assumptions.” Advances in Neural Information Processing
Systems, pp. 7060-7070. 2017.

Falahatgar, Moein, Mesrob I. Ohannessian, and Alon Orlitsky. “Near-optimal smoothing of
structured conditional probability matrices.” Advances in Neural Information Processing Systems,
pp. 4860-4868. 2016.

Falahatgar, Moein, Alon Orlitsky, Venkatadheeraj Pichapati, and Ananda Theertha Suresh. “Learn-
ing markov distributions: Does estimation trump compression?.” 2016 IEEE International
Symposium on Information Theory (ISIT), pp. 2689-2693. IEEE, 2016.

Falahatgar, Moein, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj Pichapati, and Ananda
Theertha Suresh. “Universal compression of power-law distributions.” 2015 IEEE International
Symposium on Information Theory (ISIT), pp. 2001-2005. IEEE, 2015.

Falahatgar, Moein, Ayush Jain, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh Ravin-
drakumar. “The limits of maxing, ranking, and preference learning.” International Conference on
Machine Learning, pp. 1426-1435. 2018.

xiii



Falahatgar, Moein, Mesrob I. Ohannessian, Alon Orlitsky, and Venkatadheeraj Pichapati. “The
power of absolute discounting: all-dimensional distribution estimation.” Advances in Neural
Information Processing Systems, pp. 6660-6669. 2017.

Acharya, Jayadev, Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theertha
Suresh. “Maximum selection and sorting with adversarial comparators.” The Journal of Machine
Learning Research 19, no. 1 (2018): 2427-2457.

Falahatgar, Moein, Mesrob I. Ohannessian, Alon Orlitsky, and Venkatadheeraj Pichapati. “To-
wards Competitive N-gram Smoothing.” Submitted to Neurips, 2019.

Falahatgar, Moein, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj Pichapati, and Ananda
Theertha Suresh. “Universal compression of power-law distributions.” In preparation.

xiv



ABSTRACT OF THE DISSERTATION

Learning Structured Distributions: Power-Law and Low-Rank

by

Moein Falahatgar

Doctor of Philosophy in Electrical Engineering (Machine Learning and Data Science)

University of California San Diego, 2019

Professor Alon Orlitsky, Chair

Utilizing the structure of a probabilistic model can significantly increase its compression

efficiency and learning speed. We consider these potential improvements under two naturally-

omnipresent structures.

Power-Law: English words and many other natural phenomena are well-known to follow

a power-law distribution. Yet this ubiquitous structure has never been shown to help compress or

predict these phenomena. It is known that the class of unrestricted distributions over alphabet of

size k and blocks of length n can never be compressed with diminishing per-symbol redundancy,

when k > n. We show that under power-law structure, in expectation we can compress with

diminishing per-symbol redundancy for k growing as large as sub-exponential in n.

xv



For learning a power-law distribution, we rigorously explain the efficacy of the absolute-

discount estimator using less pessimistic notions. We show that (1) it is adaptive to an effective

dimension and (2) it is strongly related to the Good–Turing estimator and inherits its competitive

properties.

Low-Rank: We study learning low-rank conditional probability matrices under expected

KL-risk. This choice accentuates smoothing, the careful handling of low-probability elements.

We define a loss function, determine sample-complexity bound for its global minimizer, and show

that this bound is optimal up to logarithmic terms. We propose an iterative algorithm that extends

classical non-negative matrix factorization to naturally incorporate additive smoothing and prove

that it converges to the stationary points of our loss function.

Power-Law and Low-Rank: We consider learning distributions in the presence of both

low-rank and power-law structures. We study Kneser-Ney smoothing, a successful estimator for

the N-gram language models through the lens of competitive distribution estimation. We first

establish some competitive properties for the contextual probability estimation problem. This

leads to Partial Low Rank, a powerful generalization of Kneser-Ney that we conjecture to have

even stronger competitive properties. Empirically, it significantly improves the performance on

language modeling, even matching the feed-forward neural models, and gives similar gains on

the task of predicting attack types for the Global Terrorism Database.

xvi



Chapter 1

Introduction

Data Compression and Distribution Estimation are two of the most fundamental and

classical problems in Information Theory and Learning Theory. These problems have been widely

studied when many observations are available, and impossibility results were derived for the

few-samples regime.

In this dissertation we exploit structure in the data to better learn and compress it. We

study two important structures: power-law and low-rank. For both problems we derive surprising

results that may help explain why, despite the pessimistic theoretical results to the contrary,

humans can grasp distributions even over very large domains.

1.1 Universal compression of power-law distributions

The fundamental data-compression theorem limits the compression of any source to

its Shannon Entropy, yet in real applications the source distribution is often not known. This

requires Universal Compression algorithms that applies to all distributions and certainly leads to

an increase over entropy known as redundancy. It is well known that when the alphabet size k is

larger than the sample size n, source symbols cannot be compressed with diminishing per-symbol

redundancy [OSZ04].Our hope therefore, has been to exploit the structure of the data to derive

1



efficient data-compression algorithms with vanishing per-symbol redundancy even for the k > n

regime.

One of the most common distribution structures, discovered by linguist George Zipf

in 1935, is power-law distributions, also known as the rich-get-richer phenomenon, or 80−20

rule [Zip13]. It has been observed in the flagship application of Natural Language Processing, as

well as in distributions of species, genera, rainfall, terror incidents, and many more [New05]. In

power-law distribution with power α the i’th largest probability is proportional to 1
iα .

We show that under power-law structure we can compress data sources with diminishing

per-symbol redundancy, even when the alphabet size grows nearly-exponentially in the sample

size, namely, k = 2n1− 1
α . This may explain why humans can grasp English distribution even when

its alphabet size, nearly a million words, is significantly larger than the number of times a person

may have seen the given context.

1.2 Learning power-law distributions

Absolute-discounting has long been used in Natural Language Processing to accurately

estimate the probability of a word in a context [CG99]. But why it works so well was never

properly determined. Classical minimax redundancy results, bound the KL-risk of the whole

k-dimension distribution-simplex in terms of the sample size n [BS04, Pan04]. However, when

the distribution class is only a small part of the simplex, these guarantees are pessimistic. In

this dissertation we analyze the performance of absolute-discounting for a family of distribution

classes defined by the expected number of distinct elements, d, that may appear in n samples. In

fact, d acts as an effective dimension of the data. We show several results:

• For power-law distributions, absolute-discounting is strongly related to the well-known

Good-Turing estimator, therefore, benefiting from its competitive properties. Put differently,

for power-law distributions, absolute-discounting matches the performance of the best
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estimator up to a vanishing additive term. For a power-law distribution with power α, this

additive term is negligible: O(n−
2α−1
2α+1 ), hence absolute-discounting is min-max optimal for

power-law distributions.

• Absolute-discounting adapts to the effective data dimension d. For example, instead of the

minimax bound of k−1
2n in the range n > k, we derive the bound O(d

n ) where d is an upper

bound on the expected number of distinct elements for distributions in the class.

• This bound recovers classical minimax KL-risk rates in all ranges of k and n. For example,

when n > k, d can be at most k, and therefore the minimax rate of k
n for the whole simplex

is recovered.

These results may explain the long-standing mystery of absolute-discounting success in NLP.

1.3 Learning low-rank probability matrices

The problem of estimating a one-dimensional probability distribution from observations

has been widely studied in Information Theory [KOPS15]. However, many applications involve

more complex distributions.

For example, in language modeling it is natural to assume a Markov or N-gram language

model where each word depends on the preceding context. This leads to estimating a transition

probability matrix, P. There are kN−1 rows in P, one for each context, and each row is a probability

distribution over k elements. It can further be argued that because words may depend on the

context through meaning and part of speech, the transition matrix may have low rank.

We therefore study low-rank structure of the data where the transition probability matrix

P despite being a kN−1× k matrix, it is of much lower rank, m. We consider learning low-rank

conditional probability matrices under expected KL-risk. This choice makes smoothing–the

careful handling of low-probability elements, paramount. We design an iterative algorithm that
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extends classical non-negative matrix factorization to naturally incorporate additive smoothing

and prove that it converges to the stationary points of a penalized empirical risk. For a sample size

of n, we bound the expected KL-risk by Õ
(
(k+kN−1)m

n

)
for the global minimizer of the penalized

risk. The KL-risk bound captures the right dependence on the number of parameters, (k+kN−1)m,

instead of kN in the absence of low-rank structure.

This framework generalizes to more sophisticated smoothing techniques, including

absolute-discounting. Our experiments on real-data show that the resulting algorithms improve

over several benchmarks such as the Kneser-Ney estimator.

1.4 Contextual competitive estimators

Recently, the prosperity of the well-celebrated Good-Turing estimator has been justified by

the notion of competitive distribution estimation [OS15]. We extend this notion to the contextual

case, namely, when we have multiple, possibly related distributions to estimate. Similar to

the non-contextual case, we justify the performance a practical estimator, Kneser-Ney, through

competitive notions.

Without assuming any explicit low-rank model assumption, Kneser-Ney estimator per-

forms well even when the data is generated according to a low-rank model. Yet, no clear and

complete understanding of the Kneser-Ney estimator has been suggested. Perhaps this is partly

due to the surge of neural networks and in particular recurrent neural language models, which led

to a significant jump in performance [MKB+10].

Neural language models have since continued to achieve better results [MKS17, YDSC17,

GHT+18, TSN18, DYY+19]. Interestingly, N-gram techniques are still relevant as they usually

run much faster, and, can be used in conjunction with neural models to further improve perfor-

mance [XWL+17]. Moreover, for low-resource languages, non-neural methods or a combination

of neural and non-neural methods are known to achieve the best performance [GML14].
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Motivated by these reasons we investigate the first theoretical handle into N-gram models.

As evidence of this exploration, we report on a powerful generalization of Kneser-Ney backoff

that applies the rank structure only to the rare part of the data, and hence named Partial Low-Rank.

Kneser-Ney corresponds to the rank-1 special case. We show that Partial Low-Rank uniformly

improves over Kneser-Ney on various benchmarks. Also, a nested trigram-level implementation

of this approach meets and slightly exceeds the performance of the best feed-forward neural

models on the Penn Tree Bank data set. Furthermore, it can be trained with a fraction of the time

and space resources required for the neural model.

Part of the novelty of our perspective is to study back-off through the lens of competitive

distribution estimation. This notion was expressed most clearly in the result of [OS15], where

it was used to give a clear justification to the Good-Turing estimator [Goo53], that is intimately

related to Kneser-Ney.

1.5 Dissertation organization

The rest of this dissertation is organized as follows:

• In Chapter 2 we study the universal compression of power-law distribution classes.

• In Chapter 3 we study learning power-law distributions and show the equivalence of Good-

Turing and absolute-discounting estimators for power-law classes that leads to competitive

properties.

• In Chapter 4 we study learning low-rank conditional probability matrices and propose

integrating smoothing with non-negative matrix factorization.

• In Chapter 5 we study competitive distribution estimators for probability matrices. We

propose the Partial Low Rank, a generalization of Kneser-Ney estimator, that performs as

well as feed-forward neural language models.
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Chapter 2

Universal Compression of Power Law

Distributions

2.1 Introduction

2.1.1 Definitions

The fundamental data-compression theorem states that every discrete distribution p can be

compressed to its entropy H(p) def
= ∑ p(x) log 1

p(x) , a compression rate approachable by assigning

each symbol x a codeword of roughly log 1
p(x) bits.

In reality, the underlying distribution is seldom known. For example, in text compression,

we observe only the words, no one tells us their probabilities. In all these cases, it is not clear

how to compress the distributions to their entropy.

The common approach to these cases is universal compression. It assumes that while

the underlying distribution is unknown, it belongs to a known class of possible distributions, for

example, i.i.d. or Markov distributions. Its goal is to derive an encoding that works well for all

distributions in the class.

To move towards formalizing this notion, observe that every reasonable compression
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scheme for a distribution over a discrete set X corresponds to some distribution q over X where

each symbol x ∈ X is assigned a codeword of length roughly log 1
q(x) . Hence the expected number

of bits used to encode the distribution’s output is ∑ p(x) log 1
q(x) , and the penalty over the entropy

minimum is ∑ p(x) log p(x)
q(x) bits.

Let P be a collection of distributions over X . The collection’s expected redundancy, is

the least worst-case increase in the expected number of bits over the entropy, where the worst

case is taken over all distributions in P and the least is minimized over all possible encoders,

R̄(P )
def
= min

q
max
p∈P ∑

x∈X
p(x) log

p(x)
q(x)

.

An even stricter measure of the increased encoding length due to not knowing the distri-

bution is the collection’s worst-case redundancy that considers the worst increase not just over all

distributions, but also over all possible outcomes x,

R̂(P )
def
= min

q
max
p∈P

max
x∈X

log
p(x)
q(x)

.

Clearly,

R̄(P )≤ R̂(P ).

Interestingly, until now, except for some non-natural examples, all analyzed collections had ex-

tremely close expected and worst-case redundancies. One of our contributions is to demonstrate a

practical collection where these redundancies vastly differ, hence achieving different optimization

goals may require different encoding schemes.

By far the most widely studied are the collections of i.i.d. distributions. For every

distribution p, the i.i.d. distribution pn assigns to a length-n string xn def
= (x1,x2, . . . ,xn) probability
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p(xn) = p(x1) · . . . · p(xn). For any collection P of distributions, the length-n i.i.d. collection is

P n def
= {pn : p ∈ P}.

2.1.2 Previous results

Let ∆k denote the collection of all distribution over {1, . . . ,k}, where ∆ was chosen to

represent the simplex. In the first few decades of universal compression, researchers studied

the redundancy of ∆n
k [KT81, Kie78, Dav73, DMPW81, WST95, XB00, SW10, OS04, Ris96,

Cov91, Szp98, SW12]. In particular, [KT81] showed that for k = o(n),

R̂(∆n
k) =

k−1
2

log
n
k
+

k
2

loge+o(k),

and for the complementary regime where n = o(k), [OS04] showed that

R̂(∆n
k) = n log

k
n
− loge+O

(
1
n

)
.

These results show that redundancy grows only logarithmically with the sequence length n when

k = o(n), therefore for long sequences, the per-symbol redundancy diminishes to zero and the

underlying distribution needs not to be known to approach entropy. As is also well known,

expected redundancy is exactly the same as the log loss of sequential prediction, hence these

results also show that prediction can be performed with very small log loss.

However, as intuition suggests, and these equations confirm, redundancy increases sharply

with the alphabet size k. In many, and possibly most, important real-life applications, the alphabet

size is larger than the block length. This is the case for example in applications involving natural

language processing, population estimation, and genetics [CG99]. The redundancy in these cases

is therefore very large, and can be even unbounded for any sequence length n.
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Over the last decade, researchers therefore considered methods that could cope with

compression and prediction of distributions over large alphabets. Two main approaches were

taken.

[OSZ04] separated compression of large-alphabet sequences into compression of their

pattern that indicates the order at which symbols appeared, and dictionary that maps the order

to the symbols. A sequence of papers [OSZ04, Sha06, Sha04, Gar09, OS04, ADO12, ADJ+13]

showed that patterns can be compressed with redundancy sub-linear in block length and most

significantly, is uniformly upper bounded regardless of the alphabet size that can be even infinite.

Note also, that for pattern redundancy, worst-case and expected redundancy are quite close.

The other approach is to use the properties of the distributions in the class. In most

applications it happens that we know a rough behavior of distributions in the class. For example

we know that distributions are monotone or follow an envelope function. A series of works

studied class of monotone distributions [Sha13, AJOS14a]. More closely related to this work

are envelope classes [BGG09, BGO14]. An envelope is a function f : N+→ R≥0. For envelope

function f ,

P≤ f
def
= {p : pi ≤ f (i) for all i≥ 1}

is the collection of distributions where each pi is at most the corresponding envelope bound

f (i). Some canonical examples are the power-law envelopes f (i) = c · i−α, and the exponential

envelopes f (i) = c · e−α·i. Recently, [AJOS14b] showed that

R̂(P≤ f ) = Θ(n1/α).

The restricted-distribution approach has the advantage that it considers the complete sequence

redundancy, not just the pattern. Yet it has the shortcoming that it may not capture relevant

distribution collections. For example, most real distributions are not monotone, words starting

with ‘a’ are not necessarily more likely than those starting with ‘b’. Similarly for say power-law
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envelopes, why should words in the early alphabet have higher upper bound than subsequent

ones? Thus, words do not carry frequency order inherently. To address this issue, we propose a

new class of distributions to capture the unknown inherent order of the symbols. And we show

for the power-law envelop classes, under the new model, we have per-symbol vanishing expected

redundancy for k as large as sub-exponential in the block length n.

2.1.3 Distribution model

We focus on power-law distributions, a ubiquitous class that is also of scientific interest.

Power-law distribution with exponent α is denoted by zipf(α) and is defined as zipf(α)i =
1

Cαiα .

Cα is the normalization factor required by the fact that the total probability should sum to 1, namely

Cα = ∑
∞
i=1

1
iα . We immediately can infer that if α≤ 1 the sum would diverge and thus power-laws

with exponent ≤ 1 cannot be normalized and rarely occur in nature, if ever happen [New05].

Perhaps the most well-known instance of power-laws was shown in [Zip13]. In 1935,

linguist George Kingsley Zipf observed that when English words are sorted according to their

probabilities, namely so that p1 ≥ p2 ≥ . . ., the resulting distribution follows a power law, pi ∼ c
iα

for some constant c and power α.

Started long before Zipf and continued after him, researchers have found a very large num-

ber of distributions such as population ranks of cities [PBS+60], earthquakes’ magnitudes [GR44],

computer files [CB97], the frequency of occurrence of personal names [ZM01], number of ci-

tations papers receive [YVdS65], hits on web pages [AH99], number of species in biological

taxa [WY22] and people’s annual income [Par64] that when sorted follow this Zipf-, or power-law.

Figure 2.1, adapted from [New05] shows Zipf distribution in several natural classes. The plots in

Figure 2.1 are for the cumulative distribution function; however, it is easy to show that if p follows

a power-law with exponent α, the cumulative distribution function also follows a power-law but

with exponent α−1.

Although the reason for power-law behavior has been under question for more than a
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Figure 2.1: (Figure 4 in [New05]) Examples of Zipf law in natural classes. Rank-frequency
plots of some quantities well known to follow a power-law. (a) Numbers of occurrences of
words in the novel ‘Moby Dick’ by Hermann Melville. (b) Frequency of occurrence of family
names in the US in the year 1990 . (c) Numbers of hits on web sites by 60000 users of the
America Online Internet service for the day of 1 December 1997.

century, several explanations for this phenomena have been proposed in [Mit04, New05, Sor06].

In fact, a Google Scholar search for “power-law distribution” returns more than two million

results.

2.1.4 Notation

Let xn def
= x1,x2, ..,xn be a sequence of n symbols from alphabet X of size k. The multiplic-

ity µx of a symbol x∈X is the number of times x appears in xn. Let [k] = {1,2, ...,k} be the indices

of elements in X . The type vector of xn over [k] = {1,2, ...,k}, τk def
= τ(xn) = (µ1,µ2, . . . ,µk) is a

k-tuple of multiplicities in xn. The prevalence of a multiplicity µ, denoted by ϕµ, is the number

of elements appearing µ times in xn. For example, ϕ1 denotes the number of elements which

appeared once in xn. Furthermore, ϕ+ denotes the number of distinct elements in xn.

For a distribution p = (p1, p2, ..., pk) let p(i) be the ith largest probability. Namely, p(1) ≥

p(2) ≥ . . .≥ p(k). Zipf distribution with parameter α and support k is denoted by zipf(α,k),

zipf(α,k)i =
i−α

Ck,α
,
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where Ck,α is the normalization factor. Note that all logarithms in this chapter are in base 2 and

we consider only the case α > 1.

The rest of the chapter is organized as follows. In Section 2.2 we state the summary of

our results. Next, in Section 2.3 we bound the worst-case redundancy for the power-law envelope

class. In Section 2.4 we take a novel approach to analyze the expected redundancy. We introduce

a new class of distributions with bounded expected number of distinct elements and provide upper

and lower bounds on the expected redundancy of this class. In Sections 2.6 and 2.7 we study the

expected redundancy of power-law classes.

2.2 Results

Inspired by the widely-appearing Zipf’s law in numerous incidents, a natural question

therefore is to ask whether this established and commonly trusted empirical observation can be

used to better predict or equivalently compress them, and if so, by how much.

Note that if the alphabet size is not bounded, the redundancy will be infinite and therefore

we limit ourselves to the alphabet of size k and study how redundancy changes as a function of k.

We show that the class of Zipf distributions, namely

P(zipf(α,k)) = {p : p(i) = zipf(α,k)i ∀1≤ i≤ k},

can be compressed with diminishing per-symbol redundancy. In fact we show that much larger

power-law classes can be compressed universally for k > n.

In many applications, the exponent α in Zipf distribution is not exactly revealed, if ever

known. Therefore we define a larger class P(zipf(≥α,k)) which contains all Zipf distributions and
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their permutations with exponent no less than α.

P(zipf(≥α,k)) =
⋃

a≥α

{p : p(i) = zipf(a,k)i ∀1≤ i≤ k}.

Enlarging the collection of distributions to P(zipf(≥α,k)) solves the problem of unknown

exponent; however this modified class is still too restrictive since it is forcing the probabilities to

be exactly a power-law function. In other words, the sorted distribution behaves like a power-law

but it is a perturbed version of that in almost all cases. [BGG09] used the concept of envelope

classes to model this impact. For an envelope f over the alphabet of size k, they define

P≤ f = {p : pi ≤ f (i) ∀1≤ i≤ k}.

Envelope distributions are very appealing as they represent our belief about the distribu-

tion [BGG09]. However the main drawback of the model is that the correspondence between

the probabilities and symbols is assumed to be known, namely that pi ≤ f (i) for the same i. We

relax this requirement and assume only that an upper envelope on the sorted distribution, not the

individual elements, is known. We define

P(≤ f ) = {p : p(i) ≤ f (i) ∀1≤ i≤ k}.

Observe that P(zipf(α,k)) ⊆ P(≤c·i−α) for some constant c, and P(zipf(α,k)) ⊆ P(zipf(≥α,k))

and therefore any lower bound on the redundancy of P(zipf(α,k)) is also a lower bound on the

redundancy of P(zipf(≥α,k)) and P(≤c·i−α).

To establish an upper bound on the expected redundancy of P(≤c·i−α), we follow a more

general approach and define a larger class containing all i.i.d. distributions where the expected
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number of distinct elements in n samples, ϕn
+ is at most d,

P≤d = {p : Ep[ϕ
n
+]≤ d}.

It can be shown that ∀P ∈ {P(zipf(α,k)),P(zipf(≥α,k)),P(≤c·i−α)} and an appropriate d,

P ⊆ P≤d,

hence any upper bound on the redundancy of P≤d is also an upper bound on the redundancy of

P ∈ {P(zipf(α,k)),P(zipf(≥α,k)),P(≤c·i−α)}.

We establish an upper and lower bound on R̄(P≤d) and R̄(P(zipf(α,k))), respectively. We

show that these bounds match up to constants for certain range of k,n, resolving the expected

redundancy for all three power-law classes.

2.2.1 Main results

• [Theorem 1] For k ≥ nα,

R̂(P n
(zipf(α,k)))≥ n log

k
nα

.

Significance: When n� k, the worst-case redundancy even for the smallest class, P(zipf(α,k))

behaves the same as that of general distributions, n log k
n .

• [Theorems 22 and 23] For n < k
α

1.1 and ∀P ∈ {P(zipf(α,k)),P(zipf(≥α,k)),P(≤c·i−α)},

R̄(P n) = Θ

(
n

1
α log

k

n
1
α

)
.

Significance: When k is larger than n, but of the same order, the more practical expected

redundancy of Zipf distributions of order α> 1 is the 1/α power of the expected redundancy

of general distributions. For example, for α = 2 and k = 10n, the redundancy of Zipf

14



distributions is Θ(
√

n logn) compared to Θ(n) for ∆n
k . This sub-linear dependence on

n is valid for the entire range of k ≤ 2n1− 1
α and also implies that unordered power-law

distributions have vanishing per-symbol expected redundancy for this range. This shows a

dichotomy between the worst-case and expected redundancy; making power-law classes

the first natural class for which

– the worst-case and expected redundancy significantly diverge, and

– the worst-case redundancy is same as that of general distributions, while the expected

redundancy differs a lot.

• [Theorem 7] For all k,n,d,

R̄(P n
≤d) = Θ

(
d log

max{k,n}
d

)
.

Interpretation The redundancy of compressing a sequence comes from describing the

type vector. First we declare how many distinct elements are in that sequence using logn

bits. In addition, we need log
(k

d

)
bits to specify which d distinct elements out of k elements

appeared in the sequence. Finally, for the exact number of occurrences of each distinct

element we should use log
(n−1

d−1

)
bits. This results in the redundancy of at most

logn+ log
(

k
d

)
+ log

(
n−1
d−1

)
.

2.2.2 Complementary results

• Redundancy of P(zipf(α,k)) for n≥ k
α

1.1

– [Theorem 20] For n > kα+3, and R ∈ {R̄, R̂}

R(P n
(zipf(α,k))) = Θ(k logk).
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where the constant for the upper bound is 1 and for the lower bound is 0.5.

– [Theorem 21] For k
α

1.1 ≤ n≤ kα+3

k
4
≤ R̄(P n

(zipf(α,k)))≤ R̂(P n
(zipf(α,k)))≤ k logk.

• [Theorem 8] For P≤d we present a low-complexity sequential compression algorithm for

the range k > n that achieves R̄(P≤d).

2.3 Worst-case redundancy

Let p̂(x) def
= maxp∈P p(x) be the maximum probability any distribution in class P assigns

to x. The Shtarkov sum S is

S(P )
def
= ∑

x∈X
p̂(x). (2.1)

It is well known that Shtarkov sum determines the worst-case redundancy [Sht87]. For any class

P

R̂(P ) = logS(P ). (2.2)

2.3.1 Small alphabet

Recall that for k = o(n) the leading term in R̂(∆n
k) is k−1

2 logn. We now give a simple

example showing that un-ordered distribution classes may have much smaller redundancy than

∆n
k . The Shtarkov sum of a class P is upper bounded by the number of distributions in the

class [OS04]. In particular for a distribution p over k symbols and class P(p) containing all

permutations of p, the Shtarkov sum is upper bounded by |P(p)| ≤ k! and therefore ∀n,

R̂(P(p))≤ logk!≤ k logk.
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Clearly for n� k, this bound is smaller than R̂(∆n
k).

2.3.2 Large alphabets

As we saw, for any fixed k, knowledge of the underlying-distribution multiset helps in

universal compression. It is natural to ask if the same applies for the large-alphabet regime when

n� k. Recall that [AJOS14b, BGG09] showed that for power-law envelopes, f (i) = c · i−α, with

infinite support size

R̂(P≤ f ) = Θ(n
1
α ).

We show that if the permutation of the distribution is not known then the worst-case redundancy

is Ω(n)� Θ(n
1
α ), and thus the knowledge of the permutation is essential. In particular, we prove

that even for the case when the class consists of only one power-law distribution, R̂ scales as n.

Theorem 1. For k ≥ n+Ck,α ·nα,

R̂(P n
(≤c·i−α))≥ R̂(P n

(zipf(α,k)))≥ n log
k−n

nαCk,α
.

Proof. Since P(zipf(α,k)) ⊇ P(≤c·i−α), we have

R̂(P n
(≤c·i−α))≥ R̂(P n

(zipf(α,k))).

To lower bound R̂(P n
(zipf(α,k))), Let ϕn

+ be the number of distinct symbols in xn,

S(P n
(zipf(α,k))) = ∑

xn
p̂(xn)

≥ ∑
xn:ϕn

+=n
p̂(xn)

(a)
≥ kn

n

∏
i=1

1
iαCk,α

,

17



where (a) follows as there are kn = k(k−1)(k−2) . . .(k−n+1) sequences with ϕn
+ = n. We

lower bound p̂(xn) for every such sequence. Consider the distribution q ∈ P(zipf(α,k)) given by

q(xi) =
1

iαCk,α
∀1≤ i≤ n. Clearly p̂(xn)≥ q(xn) and thus

≥
(

k−n
nαCk,α

)n

.

Taking the logarithm yields the result.

Thus for small values of n, independent of the underlying distribution the per-symbol

redundancy is log k
nα . Since for n≤ k, R̂(∆n

k) = n log k
n− loge+O(1

n), we have for k≥Ck,α ·nα+n

R̂(P n
(ci−α,k))≤ R̂(∆n

k)≤ O(n log
k
n
).

Together with Theorem 1, for k ≥Ck,α ·nα +n,

Ω(n log
k

nα
)≤ R̂(P n

(ci−α,k))≤ O(n log
k
n
).

2.4 Expected redundancy of P≤d

We start from the most general class defined in Section 2.2 , and upper bound the expected

redundancy of P≤d . We also show a matching lower bound up to constants later in this section.

2.4.1 Upper bound

Using an explicit coding scheme, we upper bound the expected redundancy of P≤d and

we use this upper bound for the expected redundancy of the class P(zipf(α,k)).
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Lemma 2. For all k,n and d,

R̄(P n
≤d)≤ d log

kn
d2 +(2loge+1)d + log(n+1).

Proof. For a sequence xn with multiplicity vector of µk def
= (µ1,µ2, . . . ,µk), let’s assign the proba-

bility

q(xn) =
1

Nϕn
+

·
k

∏
j=1

(µ j

n

)µ j
,

with the normalization factor

Nϕn
+
= n ·

(
k

ϕn
+

)
·
(

n−1
ϕn
+−1

)
.

Before proceeding, we show that q is a valid coding scheme by showing ∑xn∈X n q(xn)≤ 1,

∑
xn∈X n

q(xn) =
n

∑
d′=1

∑
S⊆X :|S|=d′

∑
µk:µi=0 iff i/∈S

∑
xn:µ(xn)=µk

q(xn)

(a)
≤

n

∑
d′=1

∑
S⊆X :|S|=d′

∑
µk:µi=0 iff i/∈S

1
Nd′

(b)
=

n

∑
d′=1

( k
d′
)
·
( n−1

d′−1

)
Nd′

=
n

∑
d′=1

1
n
= 1.

Where (a) holds since for a given µk , the maximum likelihood distribution for all sequences with

same values of µ1,µ2, . . .µk is same, and (b) follows from the fact that the second summation

ranges over
( k

d′
)

values and the third summation ranges over
( n−1

d′−1

)
values.

It follows that for any p ∈ P≤d ,

log
p(xn)

q(xn)
≤ logNϕn

+
+n ·

k

∑
i=1

µi

n
log

pi

µi/n
≤ logNϕn

+
,
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where the last inequality is by non-negativity of KL divergence. Taking expectations of both

sides,

R̄(P n
≤d)≤ E[logNϕn

+
]

≤ logn+E
[

log
(

k
ϕn
+

)
+ log

(
n−1

ϕn
+−1

)]
(a)
≤ logn+E

[
ϕ

n
+ log

(
k

ϕn
+
· 2n

ϕn
+

)
+(2loge)ϕn

+

]
(b)
≤ logn+d log

kn
d2 +(2loge+1)d,

where (a) follows from
(n

d

)
≤
(ne

d

)d and (b) follows from Jensen’s inequality.

2.4.2 Lower bound

We present two lower bounds on R̄(P≤d) in Lemmas 3 and 5. The first one is order-wise

tight for the range k ≤ 10n and the second one is order-wise tight for k > 10n.

Lemma 3. For all k,n and d,

R̄(P n
≤d)≥

(
bdc−1

2

)
log

n
bdc

(1+o(1)).

Proof. Consider the class ∆bdc of all i.i.d. distributions over bdc out of k elements. Any distribu-

tion in this class will result to expected number of distinct elements ≤ d. Hence, ∆n
bdc ⊆ P n

≤d and

R̄(P n
≤d)≥ R̄(∆n

bdc) =
(
bdc−1

2

)
log n
bdc(1+o(1)).

For k ≤ 10n, the leading term in Lemma 2 is of the order of d log n
d and so is the lower

bound in Lemma 3. However, for k > 10n, the order-wise leading term in the upper- and lower-

bound do not match. In Lemma 5 we show another lower-bound, order-wise tight in the leading

term for the range k > 10n. Before that, we state a result from the previous works that we later

use in the proof of Lemma 5.

20



Type redundancy: In next lemma we show that the redundancy of the sequence is same

as the redundancy of the type vector. Therefore we can focus on compressing the type of the

sequence and calculate the expected redundancy of that.

Lemma 4. (Lemma 9 in [AJOS14b]) Lets define τ(P n) = {τ(pn) : p ∈ P}, then

R̄(P n) = R̄(τ(P n)).

Using Lemma 4 we have

R̄(P n) = R̄(τ(P n))

= min
q

max
p∈τ(P n)

∑
τk

p(τk) log
p(τk)

q(τk)

= min
q

max
p∈τ(P n)

[
∑
τk

p(τk) log
1

q(τk)
−H(τk)

]
. (2.3)

For any class of distributions with a bound on the expected number of distinct elements, we can

lower bound the expected redundancy by Equation (2.3). The first term, ∑τk p(τk) log 1
q(τk)

is the

number of necessary bits needed to describe the type vector and is related to the expected number

of distinct elements in a class. Using the same argument we present the following lower bound

on P≤d .

Lemma 5. For all k,n and any class P≤d where bdc> 1,

R̄(P n
≤d)≥ 0.6bdc log

k
bdc
−
√
bdc logbdc− bdc

2
log

n
bdc
− bdc

2
log2πe−O(

bdc
n

).

Proof. For the simplicity of notation let d = bdc in this proof. Consider the class of all uniform

distributions over d elements, denoted by Puni f (d). In this lemma we show a lower bound on

R̄(P n
uni f (d)) and thus on R̄(P n

≤d).

First, we show that the expected number of distinct elements for all distributions in Puni f (d)
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is d′ def
= d

(
1− (1− 1

d )
n),

E[ϕn
+] =

d

∑
i=1

(
1− (1− 1

d
)n
)

= d
(

1− (1− 1
d
)n
)

def
= d′.

To use (2.3) we upper bound the type entropy for the distributions in Puni f (d):

H(τk)≤
d

∑
i=1

H(τi)

(a)
=

d
2

log
(

2πen
1
d
(1− 1

d
)

)
+O(

d
n
)

≤ d
2

log(2πe)+
d
2

log(
n
d
)+O(

d
n
), (2.4)

where (a) is because each τi ∼ Binomial(n, pi) and thus H(τi) =
1
2 log

(
2πenp(1− p))+O(1

n

)
.

Now we have

R̄(P n
uni f (d))

(a)
= R̄(τ(P n

uni f (d)))

(b)
≥ E

[
log
(

k
ϕn
+

)]
−H(τk)

(c)
≥ E[ϕn

+] · logk−E[ϕn
+ logϕ

n
+]−H(τk)

(d)
= d′ logk−E[

(
ϕ

n
+−E[ϕn

+]
)

logϕ
n
+]−d′ ·E[logϕ

n
+]−H(τk)

(e)
≥ d′ logk−

(
E
[
|ϕn

+−E[ϕn
+]|
])

logd−d′ logE[ϕn
+]−H(τk)

( f )
≥ d′ log

k
d′
−
√

d logd−H(τk)

(g)
≥ 0.6d log

k
d
−
√

d logd− d
2

log
n
d
− d

2
log2πe−Ω(

d
n
).

Note that (a) is by Lemma 4 and (b) is by (2.3) and the fact that q(τk)≤ 1
log( k

ϕn
+
)

and H is same for

all distributions in the class. Also (c) is because
( k

ϕn
+

)
≥ ( k

ϕn
+
)ϕn

+ , (d) is by adding and subtracting
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the term E[ϕn
+]E[logϕn

+], (e) is by substituting ϕn
+ by a larger value d, using an always-positive

term |ϕn
+−E[ϕn

+]| instead of (ϕn
+−E[ϕn

+]), and the concavity of the log function. For ( f ) we

need to first calculate Var(ϕn
+). Let X j be the event that symbol j appears in xn,

E[(ϕn
+)

2] = E

( d

∑
j=1

X j

)2


= E

[
d

∑
j=1

X2
j +

d

∑
j=1,l=1, j 6=l

X jXl

]

= dE[X2
j ]+ (d2−d)E[X jXl]

(1)
≤ dE[X j]+ (d2−d)E2[X j],

where (1) is because E[X2
j ] = E[X j] and

E[X jXl] = Pr[X j = 1,Xl = 1]

= Pr[X j = 1]Pr[Xl = 1|X j = 1]

≤ Pr[X j = 1]Pr[Xl = 1]

= E[X j]E[Xl] = E2[X j].

Since E[ϕn
+] = E

[(
∑

d
j=1 X j

)]
= dE[X j],

Var(ϕn
+) = E[(ϕn

+)
2]−E2[ϕn

+]

≤ dE[X j]+d2E2[X j]−dE2[X j]−d2E2[X j]

= d
(
E[X j]−E2[X j]

)
≤ d,
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where the last line of the equations is by E[X j]≤ 1. Also by concavity,

E
[
|ϕn

+−E[ϕn
+]|
]
≤
√
E
[
|ϕn

+−E[ϕn
+]|2

]
=
√

Var(ϕn
+)≤

√
d.

Finally (g) is by (2.4) and 0.6d ≤ d′ ≤ d. Since Puni f (d) ⊆ P≤d , we have the lemma.

Lemma 6. For all k,n and any class P≤d ,

R̄(P n
≤d)≥Ω

(
d log

max{k,n}
d

)
.

Proof. By Lemmas 3 and 5, we have

R̄(P n
≤d)≥max

{
0.6bdc log

k
bdc
−
√
bdc logbdc− bdc

2
log

n
bdc
− bdc

2
log2πe−Ω(

bdc
n

),

(
bdc−1

2

)
log

n
bdc

(1+o(1))

}
.

For k ≥ 10n, the first term in the maximum is ≥Ω(d log k
d ). For n≤ k ≤ 10n, the second term is

≥Ω(d log k
d ) and for k ≤ n, the second term is ≥Ω(d log n

d ), hence the lemma.

Theorem 7. For all k,n and any class P≤d ,

R̄(P n
≤d) = Θ

(
d log

max{k,n}
d

)
.

Proof. Proof follows from Lemmas 2 and 6.

2.5 Sequential compression

While the compression scheme considered so far was to encode the whole block, in

many applications the symbols must be encoded as they arrive, raising the need for a low-
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complexity sequential encoder. In sequential compression we associate with every sequence

xn ∈ X n a probability distribution q(x|xn) over [k] corresponding to the probability of xn+1 = x

after observing xn. Therefore, the probability that a sequential encoder q assigns to xn can be

written as

q(xn) =
n−1

∏
i=1

q(xi|xi−1).

In this section we first introduce absolute-discount estimator and then show that it has diminishing

per-symbol expected redundancy for P≤d when k > n. In fact we show that we can achieve the

order-wise optimal redundancy for the range k > n in a sequential manner.

2.5.1 Absolute-discount estimator

Similar to add-constant estimators, absolute discount modifies the empirical estimator

to assign probability to symbols. It does so by removing some probability from the observed

symbols and assigning it to the unobserved ones. Let µ j be the multiplicity of symbol j ∈ [k]

and ϕi
+ be the number of distinct elements in xi. For a fixed discount value δ, the estimator is

formally defined as

qAD(xi+1 = j|xi) =


µ j−δ

i if µ j > 0
ϕi
+·δ

(k−ϕi
+)i

if µ j = 0

Next we show the performance of the absolute-discount estimator for P≤d . Let

R̄(P ,q) def
= max

p∈P
Exn[log

p(xn)

q(xn)
]
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be the expected redundancy for class P using the estimator q. Note that for absolute-discount

estimator,

qAD(xn) =
n−1

∏
i=0

qAD(xi+1|xi) =
1
n!

1
k

δ

k−1
2δ

k−2
...

(ϕi
+−1)δ

k−ϕi
++1 ∏

j,µ j≥2
(1−δ)(2−δ)...(µ j−1−δ)

=
δϕi

+−1(ϕi
+−1)!

k!/(k−ϕi
+)!

1
n! ∏

j,µ j≥2
(1−δ)(2−δ)...(µ j−1−δ).

Theorem 8. For all k > n,

R̄(P n
≤d,q

AD)≤ d log
k
d
+2d logn+O(d).

Proof.

E
[

log
p(xn)

qAD(xn)

]
= E

[
log

k!/(k−ϕn
+)!

δϕn
+−1(ϕn

+−1)!

]
+E

[
log

p(xn)
1
n! ∏ j,µ j≥2(1−δ)(2−δ)...(µ j−1−δ)

]

For the first term in the right hand side above,

E
[

log
k!/(k−ϕn

+)!
δϕn

+−1(ϕn
+−1)!

]
= E

[
log
(

k
ϕn
+

)
ϕ

n
+(

1
δ
)ϕn

+−1
]

= E
[

log
(

k
ϕn
+

)]
+E

[
logϕ

n
+

]
+E

[
(ϕn

+−1) log
1
δ

]
(a)
≤ d log

k
d
+ logd +(d−1) log

1
δ
,
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where (a) is because of concavity of x logx and logx. For the second term we have

E

[
log

p(xn)
1
n! ∏ j,µ j≥2(1−δ)(2−δ)...(µ j−1−δ)

]
= E

log
∏ j pµ j

j

1
n! ∏ j,µ j≥2

Γ(µ j−δ)
Γ(1−δ)


(b)
≤ E

[
log

(Γ(1−δ))ϕn
+ ∏ j pµ j

j
1
n! ∏ j,µ j≥2(µ j−2)!

]
(c)
≤ E

log
(Γ(1−δ))ϕn

+ ∏ j pµ j
j

en−1

nn+ 1
2

∏ j,µ j≥2(
µ j−2

e )µ j−2


(d)
≤ E

log
(Γ(1−δ))ϕn

+ ∏ j,µ j≥2 pµ j−2
j

eϕn
+−1

n2ϕn
++ 1

2
∏ j,µ j≥2(

µ j−2
n )µ j−2


(e)
= E

log ∏
j,µ j≥2

(
p j

µ j−2
n

)µ j−2


+E
[

ϕ
n
+ log(Γ(1−δ))+(2ϕ

n
++

1
2
) logn

]
( f )
≤ 2d +d log(Γ(1−δ))+(2d +

1
2
) logn.

where (b) is by Γ(µ j− δ) ≥ Γ(µ j−1) = (µ j−2)!, | j : µ j ≥ 2| ≤ ϕn
+ , and Γ(1− δ) > 1. Also,

(c) is by
√

2πmm+ 1
2 e−m ≤ m!≤ emm+ 1

2 e−m, and (e) is by Lemma 9

Lemma 9. log

(
∏ j,µ j≥2

(
p j

µ j−2
n

)µ j−2
)
≤ 2ϕn

+.

Proof.

log ∏
j,µ j≥2

(
p j

µ j−2
n

)µ j−2

= nS ∑
j,µ j≥2

µ j−2
nS

log
p j

µ j−2
nS

+nS log
1
S
,

where S = ∑ j,µ j≥2
µ j−2

n = 1− 2ϕn
+−Φ1

n . Due to concavity of log function the first term right hand

side above is negative and therefore

log ∏
j,µ j≥2

(
p j

µ j−2
n

)µ j−2

≤ n(1−
2ϕn

+−Φ1

n
) log

1

1− 2ϕn
+−Φ1

n

≤ n
2ϕn

+−Φ1

n
≤ 2ϕ

n
+,
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and the Lemma follows.

2.6 Expected redundancy of P(zipf(α,k))

In this section we derive lower bounds on the expected redundancy of P(zipf(α,k)) for

different ranges of k and n and also use the results in Section 2.4 to derive upper bounds on the

expected redundancy.

To show the lower bounds we use a technique introduced in previous works. We re-

introduce Poisson sampling and relate the expected redundancy in two cases when we use normal

sampling and Poisson sampling.

Poisson sampling: In the standard sampling method, where a distribution is sampled

n times, the multiplicities are dependent, for example they add up to n. Hence, calculating

redundancy under this sampling often requires various concentration inequalities, complicating

the proofs. A useful approach to make them independent and hence simplify the analysis is

to sample the distribution n′ times, where n′ is a Poisson random variable with mean n. Often

called as Poisson sampling, this approach has been used in universal compression to simplify the

analysis [ADO12, AJOS14b, YB13, ADJ+13].

Under Poisson sampling, if a distribution p is sampled i.i.d. poi(n) times, then the number

of times symbol x appears is an independent Poisson random variable with mean npx, namely,

Pr(µx = µ) = e−npx(npx)
µ

µ! [MU05]. Henceforth, to distinguish between two cases of normal

sampling and Poisson sampling we specify it with superscripts n and poi(n), respectively.

Lemma 10 lower bounds R̄(P n) by the redundancy in the presence of Poisson sampling.

The proof is given in Appendix 2.A. We later use this lemma in our lower-bound arguments.

Lemma 10. For any class P ,

R̄(P n)≥ 1
2

R̄(P poi(n)).
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Now we lower bound the expected redundancy of class P n
(zipf(α,k)). By Lemmas 4 and 10

we have

R̄
(

P n
(zipf(α,k))

)
≥ 1

2
R̄
(

P poi(n)
(zipf(α,k))

)
=

1
2

R̄
(

τ(P poi(n)
(zipf(α,k)))

)
For notational simplicity we denote τ(P poi(n)

(zipf(α,k))) by Pτ. Therefore it suffices to show a lower

bound on R̄(Pτ). Similar to the decomposition in (2.3),

R̄(Pτ) = min
q

max
p∈Pτ

∑
τk

p(τk) log
p(τk)

q(τk)

= min
q

max
p∈Pτ

[
∑
τk

p(τk) log
1

q(τk)
−∑

τk

p(τk) log
1

p(τk)

]
. (2.5)

Therefore, the goal is to lower bound ∑τk p(τk) log 1
q(τk)

and upper bound ∑τk p(τk) log 1
p(τk)

. For

the first term, we upper bound q(τk) based on the number of distinct elements in the sequence

xpoi(n) in Lemmas 11, 12, and 13. Afterwards we consider the second term which is the entropy

of the type vectors under Poisson sampling and we upper bound it in Lemma 15.

The following two concentration lemmas from [GHP+07, BHBO14] help us to relate the

expected number of distinct elements for class P(zipf(α,k)) in both normal and Poisson sampling.

Lets denote the number of distinct elements in xpoi(n) as ϕ
poi(n)
+ , and dpoi(n) =E[ϕpoi(n)

+ ]. Similarly,

ϕn
+ is the number of distinct elements in xn and d = E[ϕn

+].

Lemma 11. ([BHBO14]) Let v = E[ϕpoi(n)
1 ] be the expected number of elements which appeared

once in xpoi(n), then

Pr[ϕpoi(n)
+ < dpoi(n)−

√
2vs]≤ e−s.

Lemma 12. (Lemma 1 in [GHP+07]) Let E[ϕpoi(n)
2 ] be the expected number of elements which

appeared twice in xpoi(n), then

|dpoi(n)−d|< 2
E[ϕpoi(n)

2 ]

n
.
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Using Lemmas 11 and 12 we bound the number of non-zero elements in τ(xpoi(n)).

Lemma 13. The number of non-zero elements in τ(xpoi(n)) is more than (1−ε)d with probability

> 1− e−
d(ε−2/n)2

2 . Also, the number of non-zero elements in τ(xpoi(n)) is less than (1+ ε)d with

probability > 1− e−
d(ε−2/n)2

2 .

Proof. The number of non-zero elements in τ(xpoi(n)) is equal to the number of distinct elements

in xpoi(n). Let v = E[ϕpoi(n)
1 ], by Lemma 11

Pr[ϕpoi(n)
+ < dpoi(n)(1− ε)]≤ e−

(d poi(n)ε)2
2v

(a)
≤ e−

d poi(n)ε2
2 ,

where (a) is because dpoi(n) > v. Lemma 12 implies dpoi(n)(1− 2
n)< d < dpoi(n)(1+ 2

n). There-

fore,

Pr[ϕpoi(n)
+ < d(1− ε)]≤ Pr[ϕpoi(n)

+ < dpoi(n)
(

1+
2
n

)
(1− ε)]

≤ e−
d(ε− 2

n )
2

2 .

Where the last inequality is by Lemma 13. Proof of the other part is similar and omitted.

Next we lower bound the number of bits we need to express τk based on the number of

non-zero elements in it.

Lemma 14. If the number of non-zero elements in τk is more than z, then

q(τk)≤ 1(k
z

) .
Proof. Consider all the type vectors with the same number of non-zero elements as τk. It is not

hard to see that q should assign same probability to all types with the same profile vector. Number
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of such type vectors for a given number of non-zero elements z is at least
(k

z

)
.

Note that the number of non-zero elements in τk is same as ϕ
poi(n)
+ . Based on Lemmas 13

and 14 we have

∑
τk

p(τk) log
1

q(τk)
≥ ∑

τk:ϕpoi(n)
+ ≥(1−ε)d

p(τk) log
1

q(τk)

≥ ∑
τk:ϕpoi(n)

+ ≥(1−ε)d

p(τk) log
(

k
d(1− ε)

)

≥
(

1− e−
d(ε− 2

n )
2

2

)
log
(

k
d(1− ε)

)
= (1+od(1)) log

(
k
d

)
. (2.6)

where the last line is by choosing ε = d−
1
3 . Here we state a lemma to upper bound the entropy of

type vectors for the distributions in class P(zipf(α,k)). The proof is in Appendix 2.B.

Lemma 15. Let τk be the induced type vector by any distribution in P(zipf(α,k)), then for n < k
α

1.1 ,

H(τk)≤ c1 ·n
1
α + c2 · logn,

for some constants c1,c2 that can be found in Appendix 2.B.

Lemma 16. For n < k
α

1.1 and d = E[ϕn
+] there exist constants c1, and c2 such that

R̄
(

P n
(zipf(α,k))

)
≥
(

1
2
+od(1)

)
· log

(
k
d

)
− c1 ·n

1
α − c2 · logn.

Proof. Proof is by Equations (2.5) and (2.6) and Lemma 15.

Theorem 17 shows that in fact for n < k
α

1.1 the upper and lower bounds match up to

constant factors.
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Theorem 17. For n < k
α

1.1

R̄
(

P n
(zipf(α,k))

)
= Θ

(
n

1
α log

max{k,n}
n

1
α

)
.

Proof. By Lemmas 16 and 28 in Appendix 2.C we have R̄
(

P n
(zipf(α,k))

)
≥Ω

(
n

1
α log max{k,n}

n
1
α

)
.

Since P n
(zipf(α,k)) ⊆ P n

≤d , using Lemma 2 results to R̄
(

P n
(zipf(α,k))

)
≤ O

(
n

1
α log max{k,n}

n
1
α

)
, and

hence the Theorem.

Here we show matching upper and lower bounds on the expected redundancy of P(zipf(α,k))

for n > kα+2 logk. Before stating the theorem, we define the concept of distinguishablity and

state a lemma, both used in the theorem’s proof.

Lemma 18. Let X1 ∼ poi(λ1), X2 ∼ poi(λ2) with λ1 < λ2 and Y = X1−X2. Then,

Pr(Y ≥ 0)≤ exp
(
−(
√

λ1−
√

λ2)
2
)
.

Proof. The proof follows from a standard Chernoff bound.

Definition 19. Let P be a class of distributions over the alphabet X . A subclass S ⊆ P is

ε−distinguishable if there is a mapping f : X n→ S such that for all sequences xn ∈X n generated

by S ∈ S , Pr{ f (xn) 6= S} ≤ ε.

[ADO12] showed that R̄(P )≥maxS (1−ε) log |S |−h(ε), where h(ε) is the binary entropy

function. Now we formally state the Theorem.

Theorem 20. For n≥ 9C2
k,α

α2 k2(k+1)α log k
ε
,

(1− ε) log(k!)≤ R̄
(

P n
(zipf(α,k))

)
≤ log(k!).

Proof. Using the concept of distinguishablity in Definition 19, we show that if n≥ 9C2
k,α

α2 k2(k+

1)α log k
ε

we can pack all distributions of P(zipf(α,k)) in a set S such that it is ε−distinguishable.
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In words, the probability that a sequence generated by a distribution in the class P(zipf(α,k))

misidentified to be generated by another distribution in the class is less than ε. The mapping f we

use to map the sequences to probability distributions (a permutation of a power-law) is a simple

one. We just sort the elements based on their multiplicities and then choose the permutation

corresponding to that (ties are broken arbitrarily). For notational simplicity we denote C−1
k,α by c

in this proof.

Pr{ f (xn) 6= S}
(a)
≤

k⋃
i=1

Pr{µi ≥ µi+1, pi < pi+1}

(b)
≤

k

∑
i=1

exp
(
−(√npi−

√
npi+1)

2)
≤

k

∑
i=1

exp

(
−nc

(
1

iα/2 −
1

(i+1)α/2

)2
)

(c)
≤

k

∑
i=1

exp

−nc

(
α/3 · iα/2−1

iα/2(i+1)α/2

)2


=
k

∑
i=1

exp
(
− ncα2

9i2(i+1)α

)
≤ k · exp

(
− ncα2

9k2(k+1)α

)

where (b) is because of lemma 18, and (c) is because (1+ x)
α

2 − 1 ≥ αx
3 for 0 < x ≤ 1 and

α≥ 1. To have Pr{ f (x) 6= S} ≤ ε, it is sufficient to have n≥ 9
c2α2 k2(k+1)α log k

ε
. Thus, for this

range we have R̄(P(zipf(α,k))) ≥ (1− ε) log |P(zipf(α,k))| = (1− ε) log(k!). Also, R̄(P(zipf(α,k))) ≤

R̂(P(zipf(α,k)))≤ logk! and hence the theorem.

The next theorem bounds the expected redundancy for n≥Ck,α(20k)α.

Theorem 21. For n≥Ck,α(20k)α,

(
1− e−nD( 1

16 ||
1
20 )
)
·D
(

1
8
||1

2

)
loge

2
· k ≤ R̄(P(zipf(α,k)))≤ log(k!)
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Proof. The upper bound is trivial. To show the lower bounds, similar to Theorem 20, we use

distinguishability . Specifically, we construct a subclass of distributions S , such that there exists

a mapping f : X n → S under which Pr{ f (xn) 6= S} ≤ ε. Then we lower bound the expected

redundancy by (1− ε) log |S|.

Consider the distribution P0 =
(

p(1), p(1+ k
2 )
, p(2), p(2+ k

2 )
, ..., p( k

2 )
, p(k)

)
. Recall that p(i)

denotes the i’th largest probability. Now we construct class S with perturbed versions of P0. The

only perturbation allowed is to change the place of two elements in any non-overlapping pairs of

consecutive elements. Namely, the first and second elements can be substituted, same for the third

and fourth elements and so on. If we allow this change for all k
2 non-overlapping consecutive

pairs, there will be 2
k
2 different distributions in the class. By allowing only a certain number

h < k
2 of changes we maintain the property of distinguishability.

Consider any distribution in class S as a binary codeword of length k
2 , where 1 at position

i means the re-ordering of p(i) and p(i+ k
2 )

with respect to P0 which has the all-zero codeword. By

ensuring the minimum Hamming distance of h, we can correct up to h−1
2 errors and therefore

uniquely determine which probability distribution in S generates xn. Using Gilbert-Varshamov

bound, we have |S | ≥ 2
k
2

∑
h−1
j=0 (

k
2
j )

. Choosing h = k
16 , by Chernoff bound we have |S| ≥ e

k
2 D( 1

8 ||
1
2 ),

where D is KL-divergence.

Next we show that the set X is ε−distinguishable. We show the probability of having more

than h−1
2 changes with respect to P0 can be made arbitrarily small. Let Perror be the probability of

re-ordering of p(i) and p(i+ k
2 )

with respect to P0. Let c be C−1
k,α for notational simplicity. Based on
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lemma 18,

Perror ≤ exp

−nc

(
1

i
α

2
− 1

(i+ k
2)

α

2

)2


≤ exp

−nc

 1
k
2

α

2
− 1

k
α

2

2


≤ exp

(
−nc

(2
α

2 −1)2

kα

)

Thus if k < 1
20(cn)

1
α then Perror <

1
20 , and Pr{ f (xn) 6= S}= Pr(having more than k

32 re-orders)<

e−nD( 1
16 ||

1
20 ) by a simple application of Chernoff bound. Together with the definition of the

distinguishability we have R̄(P(zipf(α,k)))≥
(

1− e−nD( 1
16 ||

1
20 )
)
·D(1

8 ||
1
2)

loge
2 · k.

2.7 Expected redundancy of power-law envelope classes

In this section we study the expected redundancy of the classes P(≤c·i−α) and P(zipf(≥α,k)).

Theorem 22. For n < k
α

1.1 ,

R̄(P(≤c·i−α)) = Θ

(
n

1
α log

max{k,n}
n

1
α

)
.

Proof. Since P(zipf(α,k)) ⊆ P(≤c·i−α), we have R̄(P(≤c·i−α))≥ R̄(P(zipf(α,k))). Theorem 17 results

to R̄(P(zipf(α,k))) > Ω(n
1
α log max{k,n}

n
1
α

). Moreover, P(≤c·i−α) ⊆ P≤d for suitable d chosen based

on Lemma 27 in Appendix 2.C. Therefore, we have R̄(P(≤c·i−α))≤ R̄(P≤d)≤ O(n
1
α log max{k,n}

n
1
α

)

and the theorem.

Similarly for the class P(zipf(≥α,k)) we have the following theorem.
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Theorem 23. For n < k
α

1.1 ,

R̄(P(zipf(≥α,k))) = Θ

(
n

1
α log

max{k,n}
n

1
α

)
.

Proof. The proof is similar to the one of Theorem 22 and results from the fact that P(zipf(α,k)) ⊆

P(zipf(≥α,k)) and P(zipf(≥α,k)) ⊆ P≤d with d chosen as the expected number of distinct elements

for P(zipf(α,k)) based on Lemma 28 in Appendix 2.C.
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2.A Proof of Lemma 10

[Lemma 10]For any class P ,

R̄(P n)≥ 1
2

R̄(P poi(n)).

Proof. By definition,

R̄(P poi(n)) = min
q

max
p∈P

Epoi(n)

[
log

ppoi(n)(xn′)

q(xn′)

]
, (2.7)
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where subscript poi(n) indicates that the probabilities are calculated under Poisson sampling.

Similarly, for every n′,

R̄(P n′) = min
q

max
p∈P

E

[
log

p(xn′)

q(xn′)

]
.

Let qn′ denote the distribution that achieves the above minimum. We upper bound the right hand

side of Equation (2.7) by constructing an explicit q. Let

q(xn′) = e−n nn′

n′!
qn′(x

n′).

Clearly q is a distribution as it adds up to 1. Furthermore, since ppoi(n)(xn′) = e−n nn′

n′! p(xn′), we

get

R̄(P poi(n))≤max
p∈P

Epoi(n)

[
log

ppoi(n)(xn′)

q(xn′)

]

= max
p∈P

∞

∑
n′=0

e−n nn′

n′!
E

log
e−n nn′

n′! p(xn′)

e−n nn′

n′! qn′(xn′)


≤

∞

∑
n′=0

e−n nn′

n′!
max
p∈P

E

[
log

p(xn′)

qn′(xn′)

]

=
∞

∑
n′=0

e−n nn′

n′!
R̄(P n′),

where the last equality follows from definition of qn′ . By monotonicity and sub-additivity of

R̄(P n′) (see Lemma 5 in [ADO12]), it follows that

R̄(P n′)≤ R̄(P nd n′
n e)

≤
⌈

n′

n

⌉
R̄(P n)

≤
(

n′

n
+1
)

R̄(P n).
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Substituting the above bound we get

R̄(P poi(n))≤
∞

∑
n′=0

e−n nn′

n′!

(
n′

n
+1
)

R̄(P n)

= 2R̄(P n),

where the last equality follows from the fact that expectation of n′ is n.

2.B Proof of Lemma 15

Recall that if distribution p is sampled i.i.d. poi(n) times, then the number of times symbol

i appears, µi is an independent Poisson random variable with mean λi
def
= npi. First we state a

lemma, bounding the entropy of a Poisson random variable.

Lemma 24. If X ∼ poi(λ) for λ < 1, then

H(X)≤ λ(1− logλ)+ e−λ λ2

1−λ
.
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Proof.

H(X) =−
∞

∑
i=0

pi log pi

=−
∞

∑
i=0

e−λ λi

i!
log

e−λλi

i!

=−
∞

∑
i=0

e−λ λi

i!

(
loge−λ + i logλ− log(i!)

)
= λ

∞

∑
i=0

e−λ λi

i!
− logλ

∞

∑
i=0

ie−λ λi

i!
+

∞

∑
i=0

e−λ λi

i!
log(i!)

(a)
= λ−λ logλ+ e−λ

∞

∑
i=2

λi log(i!)
i!

≤ λ−λ logλ+ e−λ
∞

∑
i=0

λ
i

(b)
= λ(1− logλ)+ e−λ λ2

1−λ

where (a) is because the first two terms in the last summation is zero and for the rest of the terms,

log(i!)< i!. Also (b) follows from the geometric sum for λ < 1.

To bound the type entropy we can write

H(τk) =
k

∑
i=1

H(µi)

=
k

∑
i=1

H(poi(λi))

= ∑
λi<0.7

H(poi(λi))+ ∑
λi≥0.7

H(poi(λi))

(a)
= ∑

λi<0.7

(
λi−λi logλi + e−λi

λ2
i

1−λi

)
+ ∑

λi≥0.7
H(poi(λi))

(b)
≤ ∑

λi<0.7
(3λi−λi logλi)+ ∑

λi≥0.7

1
2

log
(

2πe(λi +
1

12
)

)
(2.8)

where (a) is due to Lemma 24 and (b) is by using Equation (1) in [ALY10] and the fact that

e−x x2

1−x < 2x for x < 0.7.
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Next in Lemmas 25 and 26 we evaluate an upper bound on the two summations in (2.8)

with substituting the exact value of pi for the class P(zipf(α,k)).

Lemma 25. For n < k
α

1.1

∑
λi≥0.7

1
2

log
(

2πe(λi +
1

12
)

)
≤ 1

2
(

1
0.7Ck,α

)
1
α log

(
5.6πeα+1)n

1
α .

Proof.

∑
λi≥0.7

1
2

log
(

2πe(λi +
1

12
)

)
= ∑

λi≥0.7

1
2

log
(

2πeλi +
2πe
12

)
≤ ∑

λi≥0.7

1
2

logλi + ∑
λi≥0.7

(
1+

1
2

log2πe
)

Let d′ be such that λd′ = 0.7, namely d′ =
(

n
0.7Ck,α

) 1
α . For proof simplicity lets assume d′ is an

integer. Considering the first term above,

∑
λi≥0.7

1
2

logλi =
d′

∑
i=1

1
2

log
(

n
Ck,αiα

)

=
d′

2
log

n
Ck,α
− α

2

d′

∑
i=1

log i

=
d′

2
log

n
Ck,α
− α

2
d′ logd′+

α

2
(d′−1) loge.

Therefore,

∑
λi≥0.7

1
2

log
(

2πe(λi +
1

12
)

)
≤ d′

2
log

n
Ck,α
− α

2
d′ logd′+

α

2
(d′−1) loge+d′

(
1+

1
2

log2πe
)
.

By substituting the value of d′ we have the lemma.
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Lemma 26. For n < k
α

1.1

∑
λi<0.7

(3λi−λi logλi)≤

(
32.2α−25.2
10(α−1)2

(
1

0.7Ck,α

) 1
α

)
n

1
α +0.7log

n
0.7Ck,α

.

Proof. In the below calculations “≈” means that the quantities are equal up-to a multiplicative

factor of 1+on(1).

∑
λi<0.7

λi =
k

∑
i=b( 10n

7Ck,α
)

1
α c+1

n
i−α

Ck,α

≈n
∫ k(

10n
7Ck,α

)1/α

i−α

Ck,α
di

≈ n
(α−1)Ck,α

((
10n

7Ck,α

)−(α−1)/α

− k−(α−1)

)

≈ n
(α−1)Ck,α

(
10n

7Ck,α

)−(α−1)/α

=
7

10(α−1)

(
10n

7Ck,α

) 1
α

Let n− def
= ∑λi<0.7 λi. Then,
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∑
λi<0.7

−λi logλi =
k

∑
i=b( 10n

7Ck,α
)

1
α c+1

n
i−α

Ck,α
log(

Ck,αiα

n
)

=n− log(
Ck,α

n
)+

nα

Ck,α

k

∑
i=b( 10n

7Ck,α
)

1
α c+1

i−α log i

≤n− log(
Ck,α

n
)+

nα

Ck,α

∫ k(
10n

7Ck,α

)1/α

−1
i−α log idi

≤n− log(
Ck,α

n
)+

nα

Ck,α

[
x1−α((α−1) logx+1)

(α−1)2

]( 2n
Ck,α

)1/α

k
+

nα

Ck,α

1
α

(
10n

7Ck,α

)−1

log
(

10n
7Ck,α

)
≤n− log(

Ck,α

n
)+

n
Ck,α

1
α−1

(
10n

7Ck,α
)

1−α

α log
10n

7Ck,α
+

nα

Ck,α(α−1)2

(
10n

7Ck,α

) 1
α
−1

+
n

Ck,α

(
10n

7Ck,α

)−1

log
(

10n
7Ck,α

)
≤ 7

10(α−1)

(
10n

7Ck,α

) 1
α

log(
Ck,α

n
)+

7
10(α−1)

(
10n

7Ck,α
)

1
α log

10n
7Ck,α

+
7α

10(α−1)2 (
10n

7Ck,α
)

1
α +

7
10

log
10n

7Ck,α

=
11.2α−4.2
10(α−1)2

(
10n

7Ck,α

) 1
α

+
7

10
log

10n
7Ck,α

2.C Expected number of distinct elements

Lemma 27. For P(≤c·i−α) and for n < k
α

1.1 ,

E[ϕn
+]≤

(
α

α−1

)
c1/αn1/α.
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Proof.

E[ϕn
+] =

k

∑
i=1

E[Iµi>0]

=
k

∑
i=1

1− (1− p(i))
n

≤
k

∑
i=1

1− (1− f (i))n

≤ ∑
i: f (i)≥1/n

1+ ∑
i: f (i)<1/n

1− (1− f (i))n

≤ ∑
i: f (i)≥1/n

1+ ∑
i: f (i)<1/n

n f (i).

Thus we need to bound the number of elements with envelope ≥ 1/n and the sum of envelopes

for elements that are less than 1/n. For P(≤c·i−α), the first term is ≤ (nc)1/α and the second term

is

≤
k

∑
i=(nc)1/α

cni−α ≤ c
α−1

n(nc)
1−α

α

≤ c1/α

α−1
n1/α.

Combining these, we get

E[ϕn
+]≤

(
α

α−1

)
c1/αn1/α.

Lemma 28. For P(zipf(α,k)) and for n < k
α

1.1 ,

2
3
(

1
Ck,α

)1/αn1/α ≤ E[ϕn
+]≤

(
α

α−1

)
(

1
Ck,α

)1/αn1/α.
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Proof.

E[ϕn
+] =

k

∑
i=1

E[Iµi>0]

=
k

∑
i=1

1− (1− p(i))
n

(a)
≥ ∑

i:p(i)≥1/n

1
2
+ ∑

i:p(i)<1/n

np(i)
3

,

where (a) is because for x≥ 1
n , 1− (1− x)n > 0.5 and for x < 1

n , 1− (1− x)n > nx
3 . We need to

lower bound the number of elements having probability ≥ 1/n and the sum of probabilities for

the elements with probability < 1/n. For P(zipf(α,k)), the first term is ( n
Ck,α

)1/α and the second

term is

k

∑
i=( n

Ck,α
)1/α

ni−α

3Ck,α
≥ 1

6
(

n
Ck,α

)1/α.

Combining these two, we get

E[ϕn
+]≥

2
3
(

1
Ck,α

)1/αn1/α.

The proof for other side of the inequality is similar to Lemma 27 and thus omitted.
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Chapter 3

Learning Power-Law Distributions:

Absolute Discounting is Optimal

3.1 Introduction

Many natural problems involve uncertainties about categorical objects. When modeling

language, we reason about words, meanings, and queries. When inferring about mutations, we

manipulate genes, SNPs, and phenotypes.

It is sometimes possible to embed these discrete objects into continuous spaces, which

allows us to use the arsenal of the latest machine learning tools that often (though admittedly not

always) need numerically meaningful data. But why not operate in the discrete space directly?

One of the main obstacles to this is the dilution of data due to the high-dimensional aspect of the

problem, where dimension in this case refers to the number k of categories.

The classical framework of categorical distribution estimation, studied at length by the

information theory community, involves a fixed small k, [BS04]. Add-constant estimators are

sufficient for this purpose. Some of the impetus to understanding the large k regime came from

the neuroscience world, [Pan04]. But this extended the pessimistic worst-case perspective of
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the earlier framework, resulting in guarantees that left a lot to be desired. This is because high-

dimension often also comes with additional structure. In particular, if a distribution produces only

roughly d distinct categories in a sample of size n, then we ought to think of d (and not k) as the

effective dimension of the problem. There are also some ubiquitous structures, like power-law

distributions. Natural language is a flagship example of this, which was observed as early as

by Zipf in [Zip35]. Species and genera, rainfall, terror incidents, to mention just a few all obey

power-laws [SLE+03, CSN09, ADW13].

Are there estimators that mold to both dimension and structure? It turns out we don’t

need to search far. In natural language processing (NLP) it was first discovered that an estimator

proposed by Good and Turing worked very well [Goo53]. Only recently did we start understand-

ing why and how [OSZ03, OD12a, AJOS13a, OS15]. And the best explanation thus far is that it

implicitly competes with the best estimator in a very small neighborhood of the true distribution.

But NLP researchers [NEK94, KN95a, CG99] have long realized that another simpler estimator,

absolute discounting, is equally good. But why and how this is the case was never properly

determined, save some mention in [OD12a] and in [FNT16], where the focus is primarily on

form.

In this chapter, we first show that absolute discounting, defined in Section 3.3, recovers

pessimistic minimax optimality in both the low- and high-dimensional regimes. This is an

immediate consequence of an upper bound that we provide in Section 3.5. We then study lower

bounds with classes defined by the number of distinct categories d and also power-law structure

in Section 3.6. This reveals that absolute discounting in fact adapts to the family of these classes.

We further unravel the relationship of absolute discounting with the Good–Turing estimator,

for power-law distributions. Interestingly, this leads to a further refinement of the estimator’s

performance in terms of competitivity. Lastly, we give some synthetic experiments in Section 3.8

and then explore forecasting global terror incidents on real data [LDMN16], which showcases

very well the “all-dimensional” learning power of absolute discounting. These contributions are
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summarized in more detail in Section 3.4. We start out in Section 3.2 with laying out what we

mean by these notions of optimality.

3.2 Optimal distribution learning

In this section we concretely formulate the optimal distribution learning framework and

take the opportunity to point out related work.

3.2.1 Problem setting

Let p = (p1, p2, . . . , pk) be a distribution over [k] def
= {1,2, . . . ,k} categories. Let [k]∗ be

the set of finite sequences over [k]. An estimator q is a mapping that assigns to every sequence

xn ∈ [k]∗ a distribution q(xn) over [k]. We model p as being the underlying distribution over the

categories. We have access to data consisting of n samples Xn = X1,X2, ...,Xn generated i.i.d.

from p. Intuitively, our goal is to find a choice of q that is guaranteed to be as close as any other

estimator can be to p, in average. We first need to quantify how performance is measured.

General notation: Let (µ j : j = 1, · · · ,k) denote the empirical counts, i.e. the number of

times symbol j appears in Xn and let D be the number of distinct categories appearing in Xn, i.e.

D = ∑ j1{µ j > 0}. We denote by d def
= E[D] its expectation. Let (Φµ : µ = 0, · · · ,n), be the total

number of categories appearing exactly µ times, Φµ
def
= ∑ j1{µ j = µ}. Note that D = ∑µ>0 Φµ.

Also let (Sµ : µ= 0, · · · ,n), be the total probability within each such group, Sµ
def
= ∑ j p j1{µ j = µ}.

Lastly, denote the empirical distribution by q+0
j

def
= µ j/n.

3.2.2 KL-Risk

We adopt the Kullback-Leibler (KL) divergence as a measure of loss between two dis-

tributions. When a distribution p is approximated by another q, the KL divergence is given by
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KL(p||q) def
= ∑

k
j=1 p j log p j

q j
. We can then measure the performance of an estimator q that depends

on data in terms of the KL-risk, the expectation of the divergence with respect to the samples.

We use the following notation to express the KL-risk of q after observing n samples Xn:

rn(p,q) def
= E

Xn∼pn
[KL(p||q(Xn))].

An estimator that is identical to p regardless of the data is unbeatable, since rn(p,q)= 0. Therefore

it is important to model our ignorance of p and gauge the optimality of an estimator q accordingly.

This can be done in various ways. We elaborate the three most relevant such perspectives:

minimax, adaptive, and competitive distribution learning.

3.2.3 Minimax

In the minimax setting, p is only known to belong to some class of distributions P , but

we don’t know which one. We would like to perform well, no matter which distribution it is. To

each q corresponds a distribution p ∈ P (assuming the class is finite or closed) on which q has its

worst performance:

rn(P ,q) def
= max

p∈P
rn(p,q).

The minimax risk is the least worst-case KL-risk achieved by any estimator q,

rn(P )
def
= min

q
rn(P ,q).

The minimax risk depends only on the class P . It is a lower bound: no estimator can beat it

for all p, i.e. it’s not possible that rn(p,q) < rn(P ) for all p ∈ P . An estimator q that satisfies

an upper bound of the form rn(P ,q) = (1+o(1))rn(P ) is said to be minimax optimal “even to

the constant” (an informal but informative expression that we adopt in this chapter). If instead

rn(P ,q) = O(1)rn(P ), we say that q is rate optimal. Near-optimality notions are also possible,
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but we don’t dwell on them. As an aside, note that universal compression is minimax optimality

using cumulative risk. See [FJO+15] for such related work on universal compression for power

laws.

3.2.4 Adaptive

The minimax perspective captures our ignorance of p in a pessimistic fashion. This is

because rn(P ) may be large, but for a specific p ∈ P we may have a much smaller rn(p,q). How

can we go beyond this pessimism? Observe that when a class is smaller, then rn(P ) is smaller.

This is because we’d be maximizing on a smaller set. In the extreme case noted earlier, when P

contains only a single distribution, we have rn(P ) = 0. The adaptive learning setting finds an

intermediate ground where we have a family of distribution classes F = {Ps : s ∈ S} indexed by

a (not necessarily countable) index set S . For each s, we have a corresponding rn(Ps) which is

often much smaller than rn (
⋃

s∈S Ps), and we would like the estimator to achieve the risk bound

corresponding to the smaller class. We say that an estimator q is adaptive to the family F if for

all s ∈ S :

rn(p,q)≤ Os(1) rn(Ps) ∀p ∈ Ps ⇐⇒ rn(Ps,q)≤ Os(1) rn(Ps)

There often is a price to adaptivity, which is a function of the granularity of F and is paid in the

form of varying/large leading constants per class. This framework has been particularly successful

in density estimation with smoothness classes [Tsy09] and has been recently used in the discrete

setting for universal compression [BGO15].
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3.2.5 Competitive

The adaptive perspective can be tightened by demanding that, rather than a multiplicative

constant, the KL-risk tracks the risk up to a vanishingly small additive term:

rn(p,q) = rn(Ps)+ εn(Ps,q) ∀p ∈ Ps.

Ideally, we would like the competitive loss εn(Ps,q) to be negligible compared to the risk of

each class rn(Ps). If εn(Ps,q) = Os(1)rn(Ps) for all s, then we recover adaptivity. And when

εn(Ps,q) = os(1)rn(Ps) for all s∈ S , we have minimax optimality even to the constant within each

class, which is a much stronger form of adaptivity. We then say that the estimator is competitive

with respect to the family F . We may also evaluate the worst-case competitive loss, over S .

This formulation was recently introduced in [OS15] in the context of distribution learning.

This work shows that the celebrated Good–Turing estimator [Goo53], combined with the empirical

estimator, has small worst-case competitive loss over the family of classes defined by any given

distribution and all its permutations. Most importantly, this loss was shown to stay bounded, even

as the dimension increases. This provided a rigorous theoretical explanation for the performance

of the Good–Turing estimator in high-dimensions. A similar framework is also studied for `1-loss

in [VV15].

3.3 Absolute discounting

One of the first things to observe is that the empirical distribution is particularly ill-suited

to handle KL-risk. This is most easily seen by the fact that we’d have infinite blow-up when any

µ j = 0, which will happen with positive probability. Instead, one could resort to an add-constant

estimator, which for a positive β is of the form q+β

j
def
= (µ j +β)/(n+ kβ).

The most widely-studied class of distributions is the one that includes all of them:
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the k−dimensional simplex, ∆k
def
= {(p1, p2, . . . , pk), : ∑

i
pi = 1, pi ≥ 0 ∀i ∈ [k]}. In the low-

dimensional scaling, when n/k→∞ (the “dimension” here being the support size k), the minimax

risk is

rn(∆k) = (1+o(1))
k−1

2n
,

In [BS04], a variant of the add-constant estimator is shown to achieve this risk even to the

constant. Furthermore, any add-constant estimator is rate optimal when k is fixed. But in the very

high-dimensional setting, when k/n→ ∞, [Pan04] showed that the minimax risk behaves as

rn(∆k) = (1+o(1)) log
k
n
,

achieved by an add-constant estimator, but with a constant that depends on the ratio of k and n.

Despite these classical results on minimax optimal estimators, in practice people often use

other estimators that have better empirical performance. This was a long-running mystery in the

language modeling community [CG99], where variants of the Good–Turing estimator were shown

to perform the best [JM85, GS95]. The gap in performance was only understood recently, using

the notion of competitivity [OS15]. In essence, the Good–Turing estimator works well in both

low- and high-dimensional regimes, and in-between. Another estimator, absolute discounting,

unlike add-constant estimators, simply subtracts a positive constant from the empirical counts

and redistributes the subtracted amount to unseen categories. For a discount parameter δ ∈ [0,1),

it is defined as:

q−δ

j
def
=


µ j−δ

n if µ j > 0,

Dδ

n(k−D) if µ j = 0.
(3.1)

Starting with the work of [NEK94], absolute discounting soon supplanted the Good–Turing

estimator, due to both its simplicity and comparable performance. Kneser-Ney smoothing

[KN95a], which uses absolute discounting at its core was long held as the preferred way to train
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N-gram models. Even to this day, the state-of-the-art language models are combined systems

where one usually interpolates between recurrent neural networks and Kneser-Ney smoothing

[JVS+16]. Can this success be explained?

Kneser-Ney is for the most part a principled implementation of the notion of back-off,

which we only touch upon in the conclusion. The use of absolute discounting is critical however,

as performance deteriorates if we back-off with care but use a more QAı̈ve add-constant or even

Katz-style smoothing [Kat87], which switches from the Good–Turing to the empirical distribution

at a fixed frequency point.

It is also important to mention the Bayesian approach of [Teh06a] that performs similarly

to Kneser-Ney, called the Hierarchical Pitman-Yor language model. The hierarchies in this model

reprise the role of back-off, while the two-parameter Poisson-Dirichlet prior proposed by Pitman

and Yor [PY97] results in estimators that are very similar to absolute discounting. The latter

is not a surprise because this prior almost surely generates a power law distribution, which is

intimately related to absolute discounting as we study in this chapter. Though our theory applies

more generally, it can in fact be straightforwardly adapted to give guarantees to estimators built

upon this prior.

3.4 Contributions

We investigate the reason behind the auspicious behavior of the absolute discounting

estimator. We achieve this by demonstrating the adaptivity and competitivity of this estimator for

many relevant families of distribution classes. In summary:

• We analyze the performance of the absolute discounting estimator by upper bounding the

KL-risk for each class in a family of distribution classes defined by the expected number of

distinct categories. [Section 3.5, Theorem 29] This result implies that absolute discounting

achieves classical minimax rate-optimality in both the low- and high-dimensional regimes
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over the whole simplex ∆k, as outlined in Section 3.2.

• We provide a generic lower bound to the minimax risk of classes defined by a single

distribution and all of its permutations. We then show that if the defining distribution is a

truncated (possibly perturbed) power-law, then this lower bound matches the upper bound

of absolute discounting, up to a constant factor. [Section 3.6, Corollaries 31 and 32]

• This implies that absolute discounting is adaptive to the family of classes defined by a

truncated power-law distribution and its permutations. Also, since classes defined by

the expected number of distinct categories necessarily includes a power-law, absolute

discounting is also adaptive to this family. This is a strict refinement of classical minimax

rate-optimality.

• We give an equivalence between the absolute discounting and Good–Turing estimators in

the high-dimensional setting, whenever the distribution is a truncated power-law. This is a

finite-sample guarantee, as compared to the asymptotic version of [OD12a].

As a consequence, absolute-discounting becomes competitive with respect to the family of

classes defined by permutations of power-laws, inheriting Good–Turing’s behavior [OS15].

[Section 3.7, Lemma 33 and Theorem 34]

We corroborate the theoretical results with synthetic experiments that reproduce the

theoretical minimax risk bounds. We also show that the prowess of absolute discounting on real

data is not restricted only to language modeling. In particular, we explore a striking application to

forecasting global terror incidents and show that, unlike naive estimators, absolute discounting

gives accurate predictions simultaneously in all of low-, medium-, and high-activity zones.

[Section 3.8]
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3.5 Upper bound and classical minimax optimality

We now give an upper bound for the risk of the absolute discounting estimator and show

that it recovers classical minimax rates in the low- and high-dimensional regimes. Recall that

d def
= E[D] is the expected number of distinct categories in the samples. The upper bound that we

derive can be written as function of only d, k, and n, and is non-decreasing in d. For a given n

and k, let Pd be the set of all distributions for which E[D]≤ d. The upper bound is thus also a

worst-case bound over Pd .

Theorem 29 (Upper bound). Consider the absolute discounting estimator q = q−δ, defined

in (3.1). Let p be such that E[D] = d. Given a discount 0 < δ < 1, there exists a constant c that

may depend on δ and only δ, such that

rn(p,q)≤


d
n

log
k− d

2
d
2

+ c
d
n

if d ≥ 10loglogk,

d
n

logk+ c
d
n

if d < 10loglogk.

(3.2)

The same bound holds for rn(Pd,q).

We defer the proof the theorem to the supplementary material. Here are the immediate

implications. For the low-dimensional regime n
k → ∞ and the class ∆k, the largest d can be once

n > k is k. The risk of absolute discounting is thus bounded by c(1+o(1)) k
n = O(1) k

n . This is

minimax rate-optimal [BS04]. For the high-dimensional regime k
n → ∞ and the class ∆k, the

largest d can be when k > n is n. The risk of absolute discounting is thus dominated by the first

term, which reduces to (1+o(1)) log k
n . This is the optimal risk for the class ∆k [Pan04], even to

the constant.

Therefore on the two extreme ranges of k and n absolute discounting recovers the best

performance, either as rate-optimal or optimal even to the constant. These results are for the entire

k−dimensional simplex ∆k. Furthermore, for smaller classes, it characterizes the worst-case risk

of the class by the d, the expected number of distinct categories. Is this characterization tight?
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3.6 Lower bounds and adaptivity

In order to lower bound the minimax risk of a given class P , we use a finer granularity

than the Pd classes described in Section 3.5. In particular, let Pp be the permutation class of

distributions consisting of a single distribution p and all of its permutations. Note that the multiset

of probabilities is the same for all distributions in Pp, and since the expected number of distinct

categories only depends on the multiset (d = ∑ j[1− (1− p j)
n]) it follows that Pp ⊂ Pd

1. To find

a good lower bound for Pd , we need a p that is “worst case”. In what follows, we start by giving

a lower bound for Pp, and then specialize it for Pd .

We also assume that an oracle specifies the true probability of all observed categories.

With this side-information, the best estimator has to use the true probabilities for the observed

categories. For the unobserved categories, it needs to redistribute all the missing mass (the

total probability of unobserved categories). Since the multiset of probabilities is fixed and any

permutation of the remaining categories is equally probable, by symmetry there is no advantage in

favoring one over the other. Therefore the best oracle-aided estimator is uniquely specified: exact

probabilities for seen categories and uniform redistribution of the missing mass (S0) over the

unobserved categories. This argument can be proven formally via the maximin trick: substitute

the maximum with a mean against an arbitrary prior over p, at which point the optimal q is the

posterior, and then optimize over priors. It then suffices to use the convexity of p log p
q with

respect to q. We first give the following generic lower bound.

Theorem 30 (Generic lower bound). Let Pp be a permutation class defined by a distribution p

and let γ > 1. Then for k > γd, the minimax risk is bounded by:

rn(Pp)≥
(

1− 1
γ

)( k

∑
j=γd

p j

)
log

k− γd

∑
k
j=γd p j

+ ∑
i=γd

p j log p j (3.3)

1We abuse notation by distinguishing the classes by the letter used, while at the same time using the letters to
denote actual quantities. From the context we understand that d is the expected number of distinct categories for p,
at the given n.
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Equation (3.3) can be used as a starting point for more concrete lower bounds on various

distribution classes. We illustrate this for two cases. First, let us choose p to be a truncated power-

law distribution with power α: p j ∝ j−α, for j = 1, · · · ,k. We always assume α≥ α0 > 1. This

leads to the following lower bound.

Corollary 31. Let P be all permutations of a single power-law distribution with power α

truncated over k categories. Then there exists a constant c > 0 and large enough n0 such that

when n > n0 and k > max{n,1.2
1

α−1 n
1
α},

rn(P )≥ c
d
n

log
k−2d

2d
.

Next, we use a different choice of p for Pp to provide a lower bound whenever d grows

linearly with n. This essentially closes the gap of the previous corollary when α approaches 1.

Corollary 32. Let ρ ∈ (1,1.75) and let P be all permutations of a single uniform distribution

over a subset k′ = n
ρ

out of k categories. Then d ∼ (1−e−ρ)n/ρ and there exists a constant c > 0

and large enough n0 such that when n > n0 and k > n5,

rn(P )≥ c
d
n

log
k−1.2d

d
.

We defer the proofs of the theorem and its corollaries to the supplementary material. The

upper bound of Theorem 29 and the lower bounds of Corollaries 31 and 32 are within constant

factors of each other. The immediate consequence is that absolute discounting is adaptive with

respect to the families of classes of the Corollaries. Furthermore, over the family of classes

Pd where we can write d as n
1
α for some α > 1 or d ∝ n, we can select a distribution from the

Corollaries among each class and use the corresponding lower bound to match the upper bound

of Theorem 29 up to a constant factor. Therefore absolute discounting is adaptive to this family

of classes.
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Intuitively, adaptivity to these classes establishes optimality in the intermediate range

between low- and high-dimensional settings in a distribution-dependent fashion and governed by

the expected number of distinct categories d, which we may regard as the effective dimension of

the problem.

3.7 Relationship to Good–Turing and competitivity

We now establish a relationship between the absolute discounting and Good–Turing

estimators and refine the adaptivity results of the previous section into competitivity results.

When [OS15] introduced the notion of competitive optimality, they showed that a variation

of the Good–Turing estimator is worst-case competitive with respect to the family of distribution

classes defined by any given probability distribution and its permutations. In light of the results

of Sections 3.5 and 3.6, it is natural to ask whether absolute discounting enjoys the same kind

of competitive properties. Not only that, but it was observed empirically by [NEK94] and

shown theoretically in [OD12a] that asymptotically Good–Turing behaves exactly like absolute

discounting, when the underlying distribution is a (possibly perturbed) power-law. We therefore

choose this family of classes to prove competitivity for. We first make the aforementioned

equivalence concrete by establishing a finite sample version. We use the following idealized

version of the Good–Turing estimator [Goo53]:

qGTj
def
=


µ j+1

n
E[Φµ j+1]

E[Φµ j ]
if µ j > 0,

E[Φ1]
n(k−D) if µ j = 0.

(3.4)

Lemma 33. Let p be a power law with power α truncated over k categories. Then for k >

max{n,n
1

α−1}, we have the equivalence:

qGTj =
µ j− 1

α

n

(
1+O

(
n−

1
2

3
2α+1

))
∼

µ j− 1
α

n
∀ µ j ∈

{
1, · · · ,n

1
2α+1

}
.
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An interesting outcome of the equivalence of Lemma 33 is that it suggests a choice of the

discount δ in terms of the power, 1/α. To give a data-driven version of 1/α, we will use a robust

version of the ratio Φ1/D proposed in [OD12a, BBO17], which is a strongly consistent estimator

when k = ∞.

Theorem 34. Let P be all permutations of a truncated power law p with power α. Let q be the

absolute discounting estimator with δ = min
{

max{Φ1,1}
D ,δmax

}
, for a suitable choice of δmax.

Then for k > max{n,n
1

α−1}, the competitive loss is

εn(Pp,q) = O
(

n−
2α−1
2α+1

)
.

The implications are as follows. For the union of all such classes above a given α, we

find that we beat the n−1/3 rate of the worst-case competitive loss obtained for the estimator

in [OS15].

Theorem 34 and the bounds of Sections 3.5 and 3.6, together imply that absolute discount-

ing is not only worst-case competitive, but also class-by-class competitive with respect to the

power-law permutation family. In other words, it in fact achieves minimax optimality even to the

constant.

One of the advantages of absolute discounting is that it gradually transitions between

values that are close to the empirical distribution for abundant categories (since µ then dominates

the discount δ), to a behavior that imitates the Good–Turing estimator for rare categories (as

established by Lemma 33). In contrast, the estimator proposed in [OS15], and its antecedents

starting from [Kat87], have to carefully choose a threshold where they switch abruptly from one

estimator to the other.

58



3.8 Experiments

We now illustrate the theory with some experimental results. Our purpose is to (1) validate

the functional form of the risk as given by our lower and upper bounds and (2) compare absolute

discounting on both synthetic and real data to estimators that have various optimality guarantees.

In all synthetic experiments, we use 500 Monte Carlo iterations. Also, we set the discount value

based on data, δ = min{max(Φ1,1)
D ,0.9}. This is as suggested in Section 3.7, assuming δmax = 0.9

is sufficient.
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Figure 3.1: Risk of absolute discounting in different ranges of k and n for a power-law with
α = 2.

3.8.1 Validation

For our first goal, we consider absolute discounting in isolation. Figure 3.1(a) shows the

decay of KL-risk with the number of samples n for a power-law distribution. The dependence

of the risk on the number of categories k is captured in Figures 3.1(b) (linear x-axis) and 4.1(c)

(logarithmic x-axis). Note the linear growth when k is small and the logarithmic growth when k is

large. For the last plot we give 95% confidence intervals for the simulations, by performing 100

restarts.
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3.8.2 Synthetic data

For our second goal, we start with synthetic data. In Figure 3.2, we pit absolute discounting

against a number of distributions related to power-laws. The estimators used for our comparisons

are: empirical q+0(x) = µx
n , add-beta q+β(x) = µx+βµx

N , and its two variants:

• Braess and Sauer, qBS [BS04] q+β with β0 = 0.5, β1 = 1, and βi = 0.75 ∀i≥ 2

• Paninski, qPan [Pan04] q+β with βi =
n
k log k

n ∀i,

absolute discounting, q−δ, described in 3.1, Good–Turing + empirical qGT in [OS15], and an

oracle-aided estimator where Sµ is known.

In Figures 3.2(a) and 3.2(b), samples are generated according to a power-law distribution

with power α = 2 over k = 1,000 categories. However, the underlying distribution in Figure 3.2(c)

is a piece-wise power-law. It consists of three equal-length pieces, with powers 1.3, 2, and 1.5.

Paninski’s estimator is not shown in Figures 3.2(b) and 3.2(c) since it is not well-defined in this

range (it is designed for the case k > n only). Unsurprisingly, absolute discounting dominates

these experiments. What is more interesting is that it does not seem to need a pure power-

law (similar results hold for other kinds of perturbations, such as mixtures and noise). Also

Good–Turing is a tight second.
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Figure 3.2: Comparing estimators for power-law variants with power α = 2 and k = 1000.
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3.8.3 Real data

One of the chief motivations to investigate absolute discounting is natural language

modeling. But there have been such extensive empirical studies that have verified over and over

the power of absolute discounting (see the classical survey of [CG99]) that we chose to use this

space for something new. We use the START Global terrorism database from the University of

Maryland [LDMN16] and explore how well we can forecast the number of terrorist incidents in

different cities. The data contains the record of more than 50,000 terror incidents between the

years 1992 and 2010, in more than 12,000 different cities around the world. First, we display

in Figure 3.3(a) the frequency of incidents across the entire dataset versus the activity rank of

the city in log-log scale, showing a striking adherence to a power-law (see [CSN09] for more on

this).

The forecasting problem that we solve is to estimate the number of total incidents in a

subset of the cities over the coming year, using the current year’s data from all cities. In order to

emulate the various dimension regimes, we look at three subsets: (1) low-activity cities with no

incidents in the current year and less than 20 incidents in the whole data, (2) medium-activity

cities, with some incidents in the current year and less than 20 incidents in the whole data, and (3)

high-activity individual cities with a large number of overall incidents.

The results for (1) are in Figure 3.3(b). The frequency estimator trivially estimates zero.

Braess-Sauer does something meaningful. But absolute discounting and Good–Turing estimators,

indistinguishable from each other, are remarkably on spot. And this, without having observed any

of the cities! This nicely captures the importance of using structure when dimensionality is so high

and data is so scarce. The results for (2) are in Figure 3.3(c). The frequency estimator markedly

overestimates. But now absolute discounting, Good–Turing, and Braess-Sauer, perform similarly.

This is a lower dimensional regime than in (1), but still not adequate for simply using frequencies.

This changes in case (3), illustrated in Figure 3.4. To take advantage of the abundance of data,

in this case at each time point we used the previous 2,000 incidents for learning, and predicted
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the share of each city for the next 2,000 incidents. In fact, incidents are so abundant that we

can simply rely on the previous window’s count. Note how Braess-Sauer over-penalizes such

abundant categories and suffers, whereas absolute discounting and Good–Turing continue to hold

their own, mimicking the performance of the empirical counts. This is a very low-dimensional

regime.

The closeness of the Good–Turing estimator to absolute discounting in all of our exper-

iments validates the equivalence result of Lemma 33. The robustness in various regimes and

the improvement in performance over such minimax optimal estimators as Braess-Sauer’s and

Paninski’s are evidence that absolute discounting truly molds to both the raw dimension and

effective dimension / structure.
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Figure 3.3: (a) power-law behavior of frequency vs rank in terror incidents, (b), and (c) com-
paring forecasts of the number of incidents in unobserved cities and observed ones, respectively.
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Figure 3.4: Estimating the number of incidents based on previous data for different cities.
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3.A Proof of Theorem 29, upper bound

We start with a technical note. Though we presented the framework for a fixed sample

size n, the entirety of the chapter analyzes the “Poissonized” version. In the Poisson sampling

model, the number of samples is in fact N ∼ POI(n), a Poisson random variable with mean n.

This is often the more natural model when data is collected within a fixed time window, in contrast

to until a certain number of samples are collected. Or we can think of Poisson sampling as a

convenience because it makes all counts independent and distributed according to µ j ∼ POI(np j).

It is possible to “de-Poissonize” the results, but we omit this for brevity.

In proof of the theorem, we show a more general upper bound. We upper bound the

instantaneous risk of a class of distributions based on d, E[Φ1], and E[Φ2], the expected number

of distinct categories, categories that appeared once, and twice respectively. Namely, we show for

some constant c,

max
p∈Pd

Exn [KL(p||q(xn))]≤ E[Φ1]

n
log

2k−d
dδ

+
E[Φ1]

n
+

2E[Φ2]

n
log

1
1−δ

+
c ·d

n
.
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Proof.

EXn∼pn [KL(p||q(Xn))]

= EXn∼pn

[
k

∑
j=1

p j log
p j

q j(Xn)

]

= E

[
k

∑
j=1

1
0
j p j log

np j(k−D)

Dδ
+

k

∑
j=1

∞

∑
i=1

1
i
j p j log

np j

i−δ

]

= E

[
k

∑
j=1

1
0
j p j lognp j +1

0
j p j log

(k−D)

Dδ
+

k

∑
j=1

∞

∑
i=1

1
i
j p j log

np j

i−δ

]
(a)
=

1
n

k

∑
j=1

e−λ jλ j logλ j +
1
n

k

∑
j=1

λ jE
[
1

0
j log

k−D
Dδ

]
+

1
n

k

∑
j=1

∞

∑
i=1

λ j log
λ j

i−δ
poi(np j, i)

(b)
=

1
n

k

∑
j=1

λ jE
[
1

0
j log

k−D
Dδ

]
+

1
n

k

∑
j=1

(
λ j logλ j +

∞

∑
i=1

λ j log
1

i−δ
poi(λ j, i)

)
(3.5)

where (a) is by Poisson sampling and replacing λ j
def
= np j, and (b) is by combining the first and

last expressions. Now we state two lemmas that are helpful in bounding each of the two terms

in (3.5).

Lemma 35. For all p ∈ Pd and with the assumption of D > 2, for d > 10loglogk,

E
Xn∼pn

[
1

0
j log

k−D
D

]
≤ e−λ j

(
1+ log

k− d
2

d
2

)

and for d < 10loglogk,

E
Xn∼pn

[
1

0
j log

k−D
D

]
≤ e−λ j logk.

Lemma 36. For x > 0 and for 0 < δ < 1, x logx+∑
∞
i=2 x log 1

i−δ
poi(x, i)< c′ for some constant

c′.

We can write the second part in (3.5) as

1
n

k

∑
j=1

λ j log
1

1−δ
poi(λ j,1)+

1
n

k

∑
j=1

(
λ j logλ j +

∞

∑
i=2

λ j log
1

i−δ
poi(λ j, i)

)
, (3.6)
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and since the second term in (3.6) is negative for all λ j < 1, (3.6) is upper bounded by

1
n

k

∑
j=1

λ
2
je
−λ j log

1
1−δ

+
1
n ∑

λ j≥1

(
λ j logλ j +

∞

∑
i=2

λ j log
1

i−δ
poi(λ j, i)

)
.

Continuing from (3.5), using Lemmas 35, 36 and the definitions of E[Φ1] = ∑
k
j=1 e−λ jλ j and

E[Φ2] = ∑
k
j=1 e−λ j

λ2
j

2 ,

E
Xn∼pn

[KL(p||q(Xn))]≤ E[Φ1]

n

(
log

2k−d
dδ

+1
)
+

2E[Φ2]

n
log

1
1−δ

+
1
n ∑

j:λ j≥1
c′

≤ E[Φ1]

n

(
log

2k−d
dδ

+1
)
+

2E[Φ2]

n
log

1
1−δ

+
c′ ·d

n(1− e−1)
,

where the last line is because d = ∑ j(1− eλ j)≥ ∑λ j≥1(1− eλ j)≥ |{ j : λ j ≥ 1}|(1− e−0.7)

3.A.1 Proof of Lemma 35

Proof. Using Lemma 45,

E
Xn∼pn

[10
j log

k−D
D

] = e−λ jE
[

log
k−D

D

∣∣∣D < d−
√

2vs,µ j = 0
]

Pr(D < d−
√

2vs)

+ e−λ jE
[

log
k−D

D

∣∣∣D > d−
√

2vs,µ j = 0
]

Pr(D > d−
√

2vs)

≤ e−λ j

(
e−s log(k−1)+ log

k−d +
√

2vs
d−
√

2vs

)
.

Choosing s = log logk and assuming D ≥ 2 and d > 10loglogk yield the results. Note that if

µ j = 0, it can change D by at most one and its effect can be ignored. Also when d < 10loglogk

we can use the naive bound of logk, since log k−D
D < logk for D > 1.
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3.A.2 Proof of Lemma 36

Proof. We first assume x > 100 and prove the lemma.

∞

∑
i=2

poi(x, i) log(i−δ) (3.7)

≥
x+x0

∑
i=x−x0

poi(x, i) log(i−δ)

= poi(x,x) log(x−δ)+
x0

∑
a=1

poi(x,x−a) log(x−a−δ)+poi(x,x+a) log(x+a−δ)

≥ poi(x,x) log(x−δ)+
x0

∑
a=1

poi(x,x−a)
[

log(x−a−δ)+ log(x+a−δ)
]

=
x0

∑
a=0

poi(x,x−a)+poi(x,x+a)
2

[
log(x−a−δ)+ log(x+a−δ)

]
+

x0

∑
a=1

poi(x,x−a)−poi(x,x+a)
2

[
log(x−a−δ)+ log( x+a−δ)

]
(3.8)

By Lemma 46,

x0

∑
a=0

poi(x,x−a)+poi(x,x+a) = poi(x,x)+1−Pr(POI(x)> x+ x0)−Pr(POI(x)< x− x0)

≥ 1
e
√

x
+1−2 · ex0−(x+x0) ln(1+ x0

x ),

Also we can lower bound the bracket in (3.8) as

log(x+a−δ)+ log(x−a+δ) = log
(
(x−δ)2−a2)

= log(x2−2xδ+δ
2−a2)

= log
(

x2(1− 2δ

x
+

δ2−a2

x2 )

)
= 2logx+ log(1− 2δ

x
+

δ2−a2

x2 )

≥ 2logx− 4δ

x
− 2(a2−δ2)

x2 .
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Thus for some constant c1 and x0 = x0.8,

x0

∑
a=0

poi(x,x−a)+poi(x,x+a)
2

[
log(x−a−δ)+ log(x+a−δ)

]
≥
(

1+
1

e
√

x
−2ex0−(x+x0) ln(1+ x0

x )
)(

logx− 2δ

x

)
−

x0

∑
a=0

(
poi(x,x−a)+poi(x,x+a)

)(a2

x2

)
= logx− 2δ

x
−2ex0−(x+x0) ln(1+ x0

x )(logx− 2δ

x
)

−
x0

∑
a=0

(
poi(x,x−a)+poi(x,x+a)

)(a2

x2

)
≥ logx− c1

x
. (3.9)

where the last line is due to the following lemma.

Lemma 37. For x0 = x0.8 there exists a constant c1 such that

x0

∑
a=0

[
poi(x,x−a)+poi(x,x+a)

]
(
a2

x2 )≤
c1

x
.

The difference in probabilities of two equidistant points from the mean of a Poisson

distribution is bounded by

poi(x,x+a)−poi(x,x−a) =
e−xxx−a

(x−a)!

[ 1
(1+ a

x )(1+
a−1

x ) . . .(1+ 1−a
x )
−1
]

=
e−xxx−aex−a

(x−a)x−a
√

2π(x−a)

[ 1
(1+ a

x )(1+
a−1

x ) . . .(1+ 1−a
x )
−1
]

=
e−a√

2π(x−a)

[ 1
(1+ a

x )(1+
a−1

x ) . . .(1+ 1−a
x )
−1
]

≈ e−a√
2π(x−a)

4
x
,
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and therefore for x0 = x0.8 and some constant c5,

x0

∑
a=1

poi(x,x−a)−poi(x,x+a)
2

[
log(x−a−δ)+ log(x+a−δ)

]
≥−

x0

∑
a=1

e−a√
2π(x−a)

2
x

log
(
(x−δ)2−a2)

≥−
x0

∑
a=1

e−a√
2π(x−a)

2
x

logx2

≥− ∑
∞
a=1 e−a√

2π(x− x0)

4
x

logx

≥− 4logx

x
√

2π(x− x0)

≥−c5

x
. (3.10)

Selecting c > c1 + c5 leads to the Lemma. It can be shown that the lemma is valid for x < 100 by

plotting the function.

68



3.A.3 Proof of Lemma 37

Proof.
x0

∑
a=0

[
poi(x,x−a)+poi(x,x+a)

]
(
a2

x2 )

≤
x0

∑
a=0

2a2

x2 poi(x,x−a)

=
x0

∑
a=0

2a2

x2
e−xxx−a

(x−a)!
(a)
≤

x0

∑
a=0

2a2

x2

[ e−x+x−axx−a

(x−a)x−a
√

2π(x−a)

]
=

x0

∑
a=0

2a2

x2

[ e−a√
2π(x−a)

(
1+

a
x−a

)x−a ]
=

x0

∑
a=0

2a2

x2

[ e−a√
2π(x−a)

e(x−a) ln(1+ a
x−a )
]

(b)
≤

x0

∑
a=0

2a2

x2

[ e−
a2

4(x−a)√
2π(x−a)

]
,

where (a) is by Stirling’s approximation and (b) is because ln(1+ x)< x− x2

4 for x < 1. We can

decompose the last summation to three different summations as

x0

∑
a=0

2a2

x2

[ e−
a2

4(x−a)√
2π(x−a)

]

=

√
x

∑
a=0

2a2

x2

[ e−
a2

4(x−a)√
2π(x−a)

]
+

√
x lnx

∑
a=
√

x+1

2a2

x2

[ e−
a2

4(x−a)√
2π(x−a)

]
+

x0

∑
a=
√

x lnx

2a2

x2

[ e−
a2

4(x−a)√
2π(x−a)

]
(3.11)
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Now we bound each term in (3.11). For the first term and for some constant c2:

√
x

∑
a=0

2a2

x2

[ e−
a2

4(x−a)√
2π(x−a)

]
≤ 2
√

x
x
x2

1√
2π(x−

√
x)

≤
√

2
π

1
x

1√
1−

√
x

x

≤
√

2
π

1
x
(1+

√
x

2x
)≤ c2

x
.

Also for the middle term in (3.11) and some constant c4:

√
x lnx

∑
a=
√

x+1

2a2

x2

[ e−
a2

4(x−a)√
2π(x−a)

]

≤
√

2
π

1
x2

1√
x−
√

x lnx

√
x lnx

∑
a=
√

x+1

a2e−
a2
4x

≤
√

2
π

1
x2

1√
x−
√

x lnx

∫ √x lnx

√
x

a2e−
a2
4x da

=

√
2
π

1
x2

1√
x−
√

x lnx
2
[
x
√

xe−
1
4 − x
√

xe−
x ln2 x

4x lnx+2
√

π

(
Erf(

lnx
2

)−Erf(
1
2
)

)]
≤
√

2
π

1
x2√x

1√
1−

√
x lnx
x

(4x
3
2 e−

1
4 )

≤ c4

x
.

Similarly for the third term in (3.11) and for some constant c3, we can write

x0

∑
a=
√

x lnx

2a2

x2

[ e−
a2

4(x−a)√
2π(x−a)

]
≤ (x0−

√
x lnx)

2x2
0

x2

[ e−
(
√

x lnx)2
4x√

2π(x− x0)

]
≤
√

2
π

1
x2

x3
0√

x− x0
e−

ln2 x
4

=

√
2
π

1
x2

x3
0√

x− x0

1

x
lnx
4
≤ c3

x
.
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Choosing c1 ≥ c2 + c3 + c4 leads to the lemma.

3.B Proofs of lower bound

In this part we provide the proofs of Theorem 30 as well as Corollaries 31 and 32. In order

to lower bound the minimax risk of a given class P , we can resort to two simplifications. First,

we consider classes at a much a finer granularity than the Pd classes described in Section 3.5. In

particular, let Pp be the permutation class of distributions consisting of a single distribution p

and all of its permutations. Note that the multiset of probabilities is the same for all distributions

in Pp, and since the expected number of distinct categories only depends on the multiset (d =

∑ j[1− (1− p j)
n]) it follows that Pp ⊂ Pd . 2. To find a good lower bound for Pd , we need a p that

is “worst case” among all those who have the same value of d and then use the corresponding

lower bound for Pp. In what follows, we start by giving a lower bound for Pp, and then specialize

it for Pd .

We also assume that an oracle specifies the true probability of all observed categories.

With this side-information, the best estimator has to use the true probabilities for the observed

categories. For the unobserved categories, it needs to redistribute all the missing mass (the

total probability of unobserved categories). Since the multiset of probabilities is fixed and any

permutation of the remaining categories is equally probable, by symmetry there is no advantage in

favoring one over the other. Therefore the best oracle-aided estimator is uniquely specified: exact

probabilities for seen categories and uniform redistribution of the missing mass (S0) over the

unobserved categories. This argument can be proven formally via the maximin trick: substitute

the maximum with a mean against an arbitrary prior over p, at which point the optimal q is the

posterior, and then optimize over priors. It then suffices to use the convexity of p log p
q with

2We abuse notation by distinguishing the classes by the letter used, while at the same time using the letters to
denote actual quantities. From the context we understand that d is the expected number of distinct categories for p,
at the given n.
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respect to q.

3.B.1 Proof of Theorem 30

Proof. Without loss of generality assume that p1 ≥ p2 ≥ p3 ≥ . . .≥ pk. Let γ > 1, we have:

rn(Pp) = min
q

max
p∈Pp

E

[
k

∑
j=1

p j log
p j

q j

]
≥ E

 k

∑
j=D+1

p j log
p j

∑
k
j=D+1 p j

k−D


= E

[
k

∑
j=D+1

p j log
p j(k−D)

n∑
k
j=D+1 p j

∣∣∣∣∣ D < γd

]
Pr(D < γd)

+E

[
k

∑
j=D+1

p j log
p j(k−D)

∑
k
j=D+1 p j

∣∣∣∣∣ D≥ γd

]
Pr(D≥ γd)

(a)
≥
(

1− 1
γ

) k

∑
j=γd

p j log
p j(k− γd)

∑
k
j=γd p j

where (a) is by the following arguments: By Markov’s inequality we have Pr(D≥ γd)≤ 1
γ
. Also,

∑
k
j=D+1 p j log np j(k−D)

n∑
k
j=D+1 p j

is positive and decreasing in D (in the extreme case, when D = k is zero).

Therefore,

rn(Pp)≥
(

1− 1
γ

)( k

∑
j=γd

p j

)
log

k− γd

∑
k
j=γd p j

+ ∑
i=γd

p j log p j

This completes the proof. For any specific classes of distributions, we can find a lower bound by

calculating d, ∑
k
j=γd p j, and ∑

k
j=γd p j log p j for some γ > 1.

72



3.B.2 Proof of Corollary 31

Proof. To use Theorem 30, we first calculate d, ∑ j>L p j, and ∑ j>L p j log p j and then let L = γd

for γ = 2.

k

∑
j=L+1

p j =
k

∑
j=L+1

c
jα

(a)
≥

∫ k+1

L+1

c
xα

dx

=
c

α−1

[
(L+1)1−α− (k+1)1−α

]
,

where (a) is by integration bound for monotone series. Similarly, we can show:

k

∑
j=L+1

p j ≤
∫ k

L

c
xα

dx =
c

α−1

[
L1−α− k1−α

]
.

For the last summation in the lower bound of Theorem 30 we have:

k

∑
j=L+1

p j log p j

=
k

∑
j=L+1

c
jα

log
c
jα

= c
k

∑
j=L+1

1
jα

log
1
jα

+ logc
k

∑
j=L+1

c
jα

(a)
≥ c

∫ k+1

L+1

1
jα

log
1
jα

d j+ logc
k

∑
j=L+1

p j

(b)
=

c
α

∫ (L+1)−α

(k+1)−α

x−
1
α logx dx+ logc

k

∑
j=L+1

p j

≥ c
α−1

[
x1− 1

α logx
](L+1)−α

(k+1)−α
− c

α−1

∫ (L+1)−α

(k+1)−α

x−
1
α +

c logc
α−1

[
(L+1)1−α− (k+1)1−α

]
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Using Theorem 30, if k > max{n,
(

10
9

1
α−1

)
n

1
α} we have,

rn(P )

≥ c
α−1

(L+1)1−α log
k−2d

c
α−1(L+1)1−α

+(L+1)1−α

[
c

α−1
log(L+1)−α− cα

(α−1)2 +
c logc
α−1

]

≥ c
10(α−1)

(L+1)1−α log
k−2d
(L+1)

+
c

α−1
(L+1)1−α

[
1

10
log(α−1)− α

α−1

]

where (a) is by integration bound for monotone series, and (b) is by change of variable x = 1
jα .

Using Equation (3.3) , choosing L = 2d,

rn(P )≥ 21−αc
α−1

d1−α log
k−2d

2d
+

21−αc
α−1

d1−α

[
log(α−1)− α

α−1

]
,

and since for power-law distributions, d grows proportionally to n
1
α , we can write

rn(P )≥ c1
d
n

log
k−2d

2d
(1−o(1)),

for some constants c1 and c2. To compare this with the upper bound in the proof of Theorem 29,

note that we always have E[Φ1] ≤ d, but for power law distributions both expressions grow

proportionally to n
1
α and furthermore E[Φ1]/d converges to a constant, 1

α
. This shows that the

upper and lower bounds for power-law distributions are tight in the first order term, when k is

large.
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3.B.3 proof of Corollary 32

Proof. To use Theorem 30, we first calculate d, ∑ j>γd p j, and ∑ j>γd p j log p j. For the expected

number of distinct categories,

d =
k′

∑
j=1

1− e−np j = k′(1− e−
n
k′ ) =

1− e−ρ

ρ
n.

For the sum of probabilities of unobserved categories,

∑
j>γd

p j =
k′− γd

k′
= 1− γn(1− e−ρ)

ρk′
= 1− γ(1− e−ρ),

and for the last summation in (3.3),

k

∑
j=γd+1

p j log p j =
k′− γd

k′
log(

1
k′
) =

(
1− γ(1− e−ρ)

)
log
(

ρ

n

)
.

Therefore, by (3.3) we have

rn(P )≥
(

1− 1
γ

)(
1− γ(1− e−ρ)

)
log

k− γd
1− γ(1− e−ρ)

+
(
1− γ(1− e−ρ)

)
log
(

ρ

n

)
,

which can also be written as

rn(P )≥
(

1− 1
γ

)
ρ(1− γ(1− e−ρ))

1− e−ρ

d
n

log
k− γd

d
+
(
1− γ(1− e−ρ)

)
log

1− e−ρ

(1− γ(1− e−ρ))
+

1
γ

(
1− γ(1− e−ρ)

)
log

1− e−ρ

d
.

Choosing γ = 1.2 and having k > n5, the corollary follows for ρ≤ 1.75.
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3.C Proofs of Good–Turing and absolute-discount relation-

ship

3.C.1 Proof of Lemma 33

Proof. For notational simplicity we define C(µ) def
=

c
1
α Γ(µ− 1

α
)

αµ! n
1
α . Using Lemma 43,

E[Φµ+1]

E[Φµ]

(a)
≤ C(µ+1)+O(µ−

1
2 )

C(µ)
(

1−O(µ−1n−
1
α )
)
−O(µ−

1
2 )

≤ C(µ+1)
C(µ)

(
1+O(µ−

1
2C−1(µ+1))

1−O(µ−1n−
1
α )−O(µ−

1
2C−1(µ))

)

≤ C(µ+1)
C(µ)

(
1+O(µ−

1
2C−1(µ+1))+O(µ−1n−

1
α )
)

(b)
≤ C(µ+1)

C(µ)

(
1+O(µ−

1
2+1+ 1

α n
−1
α )
)

(c)
=

µ− 1
α

µ+1

(
1+O(n

−3
2(2α+1) )

)

The inequality in (a) and (b) are by Lemma 43 and (c) is by the fact that µ < n
1

2α+1 .

3.C.2 Proof of Theorem 34

Recall that Sµ denotes the total probability of symbols appearing µ times, and let Ŝµ be

the probability assigned to those symbols by an estimator. Note that, given the samples, we may

think of S and Ŝ as legitimate probability distributions on the set µ = 0,1, · · · ,n. In [OS15], it was

shown that the competitive loss of an estimator over a class defined by a single distribution p and

its permutations can be bounded by:

εn(Pp,q) = rn(p,q)− rn(Pp)≤ E[KL(S||Ŝ)].
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This is well defined, since S and Ŝ only refer to the multiset probabilities, which stays invariant

over all distributions in the class. Using this bound and the equivalence of Lemma 33, we can

proceed with the proof. In the proof, we analyze the absolute-discount estimator with discount

δ = min{max{Φ1,1}
D ,δmax}.

Proof. We have:

KL(S||Ŝ)

=

∞

∑
µ=0

Sµ log
Sµ

Ŝµ

(a)
≤

∞

∑
µ=0

(Sµ− Ŝµ)
2

Ŝµ

=
(S0− Ŝ0)

2

Ŝ0
+

µ0

∑
µ=1

(Sµ− Ŝµ)
2

Ŝµ
+

∞

∑
µ=µ0+1

(Sµ− Ŝµ)
2

Ŝµ

=
(S0− Dδ

n )2

Dδ

n

+

µ0

∑
µ=1

(Sµ−
µ− 1

α

n Φµ +
µ− 1

α

n Φµ− µ−δ

n Φµ)
2

µ−δ

n Φµ
+

∞

∑
µ=µ0+1

(Sµ− µ−δ

n Φµ)
2

µ−δ

n Φµ

(b)
≤

(S0− Dδ

n )2

Dδ

n

+2

µ0

∑
µ=1

(Sµ−
µ− 1

α

n Φµ)
2

µ−δ

n Φµ
+2

µ0

∑
µ=1

(
µ− 1

α

n −
µ−δ

n )2Φ2
µ

µ−δ

n Φµ
+

∞

∑
µ=µ0+1

(Sµ− µ−δ

n Φµ)
2

µ−δ

n Φµ

(3.12)

where (a) is by Lemma 42 and (b) is by (a+ b)2 ≤ 2a2 + 2b2. We choose µ0 = n
1

2α+1 and

show the proof for the case when n
1

2α+1 ≥ 20logn, namely, α ≤ logn
2(log logn+log20) −

1
2 . For

α > logn
2(log logn+log20) −

1
2 , the proof follows the same lines, but by a different choice of µ0. Lem-
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mas 38, 39, 40, and 41 bound each term in Equation (5.1) separately, and hence

E[KL(S||Ŝ)] = O
(

1

n
2α−1
2α+1

)
.

Lemma 38. For a power-law distribution with exponent α > α0 > 1, and the choice of δ =

min{max{Φ1,1}
D ,δmax},

E
[(S0− Dδ

n )2

Dδ

n

]
= O

(
1
n

)
.

Proof. To upper bound the first term of the KL loss in Equation (5.1), namely the loss of

proposed estimator for the missing mass, let A be the event (1− t)E[Φ1]≤ Φ1 ≤ (1+ t)E[Φ1]

and 1−t
1+t

E[Φ1]
d ≤ Φ1

D ≤
1+t
1−t

E[Φ1]
d for some 0 < t < 1,

E
[(S0− Dδ

n )2

Dδ

n

]
= E

[(S0− Dδ

n )2

Dδ

n

∣∣∣ A
]

Pr(A)+E
[(S0− Dδ

n )2

Dδ

n

∣∣∣ Ac
]

Pr(Ac)

(a)
≤ E

[(S0− Dδ

n )2

Dδ

n

∣∣∣ A
]

Pr(A)+4exp
(
− t2E[Φ1]

2(1+ t/3)

)
n2

(b)
≤ E

[2(S0− E[Φ1]
n )2 +2(E[Φ1]

n − Φ1
n )2

Φ1
n

∣∣∣ A
]

Pr(A)+4n2 exp
(
− t2E[Φ1]

2(1+ t/3)

)
(c)
≤

E
[
2(S0− E[Φ1]

n )2 +2(E[Φ1]
n − Φ1

n )2
∣∣∣ A
]

Pr(A)
(1−t)E[Φ1]

n

+4n2 exp
(
− t2E[Φ1]

2(1+ t/3)

)
(d)
≤

2Var(S0)+
2
n2 Var(Φ1)

E[Φ1]
2n

+o
(

1
n

)
(e)
≤

4
n2E[Φ2]+

2
n2E[Φ1]

E[Φ1]
2n

+o
(

1
n

)
= O

(
1
n

)
,

where (b) is by choosing t such that 1+t
1−t

1
α0

< δmax and therefore conditioned on A, δ = Φ1
D . Also,

(c) is by concentration of Φ1 (see Lemma 44), (d) is by choosing t = n−
1

4α , and (e) is because

Var(Φ1)≤ E[Φ1] and Var(S0)≤ 2
n2E[Φ2] (see Lemma 49).
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Lemma 39. For a power-law distribution with exponent α and choice of µ0 = O(n
1

2α+1 ),

E
[ µ0

∑
µ=1

(Sµ−
µ− 1

α

n Φµ)
2

µ−δ

n Φµ

]
= O

(
n

1−2α

2α+1

)

Proof. Using Lemma 33 and (a+b)2 ≤ 2a2 +2b2, we bound the second term in (5.1):

E
[ µ0

∑
µ=1

(Sµ−
µ− 1

α

n Φµ)
2

µ−δ

n Φµ

]

≤ 2E

[ µ0

∑
µ=1

(µ+1
n

E[Φµ+1]
E[Φµ]

ΦµO(n
−3

2(2α+1) ))2

µ−δ

n Φµ

]
+2E

[ µ0

∑
µ=1

(Sµ− µ+1
n

E[Φµ+1]
E[Φµ]

Φµ)
2

µ−δ

n Φµ

]
(3.13)

For the first term in right hand side of Equation (3.13),

E

[ µ0

∑
µ=1

(µ+1
n

E[Φµ+1]
E[Φµ]

ΦµO(n
−3

2(2α+1) ))2

µ−δ

n Φµ

]
≤ n−1− 3

2α+1

µ0

∑
µ=1

(µ+1)2
(
E[Φµ+1]
E[Φµ]

)2
E[Φµ]

µ−δ

≤ 4
1−δmax

n
1
α
−1− 3

2α+1

µ0

∑
µ=1

µ−
1
α

≤ 4
1−δmax

n
1
α
−1− 3

2α+1 µ
1− 1

α

0 = O
(

1
n

)
,

where the last line is by choosing µ0 = n
1

2α+1 . For the second term in Equation 3.13, using

(a+b)2 ≤ 2a2 +2b2 we have,

(
Sµ−

µ+1
n

E[Φµ+1]

E[Φµ]
Φµ

)2

=
[
Sµ−

µ+1
n

E[Φµ+1]+
µ+1

n
E[Φµ+1]−

µ+1
n

E[Φµ+1]

E[Φµ]
Φµ

]2

≤ 2
(

Sµ−
µ+1

n
E[Φµ+1]

)2

+2
(

µ+1
n

E[Φµ+1]

E[Φµ]
Φµ−

µ+1
n

E[Φµ+1]

)2

,
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and therefore:

E

[ µ0

∑
µ=1

(Sµ− µ+1
n

E[Φµ+1]
E[Φµ]

Φµ)
2

µ−δ

n Φµ

]

= E

[ µ0

∑
µ=1

(Sµ− µ+1
n

E[Φµ+1]
E[Φµ]

Φµ)
2

µ−δ

n Φµ

∣∣∣Φµ ≥
E[Φµ]

2

]
Pr
(

Φµ ≥
E[Φµ]

2

)
+

E

[ µ0

∑
µ=1

(Sµ− µ+1
n

E[Φµ+1]
E[Φµ]

Φµ)
2

µ−δ

n Φµ

∣∣∣Φµ <
E[Φµ]

2

]
Pr
(

Φµ <
E[Φµ]

2

)

(a)
≤ E

[ µ0

∑
µ=1

(Sµ− µ+1
n

E[Φµ+1]
E[Φµ]

Φµ)
2

µ−δ

n Φµ

∣∣∣Φµ ≥
E[Φµ]

2

]
Pr
(

Φµ ≥
E[Φµ]

2

)
+n2 exp

(
− 1

6µ0

(
n
µ0

) 1
α

)

≤


µ0

∑
µ=1

E[(Sµ− µ+1
n

E[Φµ+1]

E[Φµ]
Φµ)

2]

µ−δ

2n E[Φµ]

∣∣∣Φµ ≥
E[Φµ]

2

Pr
(

Φµ ≥
E[Φµ]

2

)
+n2 exp

(
− 1

6µ0

(
n
µ0

) 1
α

)

(b)
≤

µ0

∑
µ=1

E
[
2
(

Sµ− µ+1
n E[Φµ+1]

)2
+2
(

µ+1
n

E[Φµ+1]

E[Φµ]
Φµ− µ+1

n E[Φµ+1]
)2 ]

µ−δ

2n E[Φµ]
+n2 exp

(
− 1

6µ0

(
n
µ0

) 1
α

)

≤

µ0

∑
µ=1

2Var(Sµ)+2
(

µ+1
n

E[Φµ+1]
E[Φµ]

)2
Var(Φµ)

µ−δmax
2n E[Φµ]

+n2 exp

(
− 1

6µ0

(
n
µ0

) 1
α

)

(d)
≤

µ0

∑
µ=1

2 (µ+2)2

n2 E[Φµ+2]+2 (µ+1)2

n2
E2[Φµ+1]
E[Φµ]

µ−δmax
2n E[Φµ]

+n2 exp

(
− 1

6µ0

(
n
µ0

) 1
α

)

(e)
≤

µ0

∑
µ=1

3
1−δmax

µ
n
+o
(

1
n

)
( f )
≤ 3

n(1−δmax)

(
µ2

0
2
+2µ0

)
+o
(

1
n

)
= O

(
n

1−2α

2α+1

)
.

Note that (a) follows from Lemma 44, (b) from (x+ y)2 ≤ 2x2 + 2y2, and (c) from E[Sµ] =
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µ+1
n E[Φµ+1] and δ < δmax. Also, (d) results from Var[Φµ]≤ E[Φµ] and Var[Sµ]≤ (µ+2)2

n2 E[Φµ+2]

(see Lemma 49), (e) is by Lemma 43, and ( f ) results from the choice of µ0 = n
1

2α+1 .

Lemma 40. For a power-law distribution with exponent α and the choice of µ0 = n
1

2α+1 ,

E

[ µ0

∑
µ=1

(
µ− 1

α

n −
µ−δ

n

)2

Φ2
µ

µ−δ

n Φµ

]
= O

(
n

1
2α

n

)
.

Proof.

E

[ µ0

∑
µ=1

(
µ− 1

α

n −
µ−δ

n

)2

Φ2
µ

µ−δ

n Φµ

]
≤ 1

n

µ0

∑
µ=1

E
[
( 1

α
−δ)2Φµ

]
µ−δmax

.

Similar to the proof of Lemma 38, let A be the event (1− t)E[Φ1] ≤ Φ1 ≤ (1+ t)E[Φ1] and

1−t
1+t

E[Φ1]
d ≤ Φ1

D ≤
1+t
1−t

E[Φ1]
d for some 0 < t < 1. Thus,

E
[
(

1
α
−δ)2

Φµ

]
= E

[
(

1
α
−δ)2

Φµ

∣∣∣ A
]

Pr(A)+E
[
(

1
α
−δ)2

Φµ

∣∣∣ Ac
]

Pr(Ac)

≤ t2 Pr(A)E
[
Φµ

∣∣∣ A
]
+Pr(Ac)E

[
Φµ

∣∣∣ Ac
]

≤ n−
1

2αE
[
Φµ

]

where the last line is by choosing t = n−
1

4α and using Lemma 50. Hence, we have

E

[ µ0

∑
µ=1

(
µ− 1

α

n −
µ−δ

n

)2

Φ2
µ

µ−δ

n Φµ

]
≤ n−

1
2α

n

µ0

∑
µ=1

E
[
Φµ

]
µ−δmax

= O

(
n

1
2α

n

)
,

where the constant depends on δmax and therefore on α0.
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Lemma 41. For a power-law distribution with exponent α, and µ0 = n
1−2α

2α+1 ,

E

[ ∞

∑
µ=µ0+1

(Sµ− µ−δ

n Φµ)
2

µ−δ

n Φµ

]
= O

(
n

1−2α

2α+1

)

Proof. For the last part in Equation 5.1:

E

[ ∞

∑
µ=µ0+1

(Sµ− µ−δ

n Φµ)
2

µ−δ

n Φµ

]
≤ E

[ ∞

∑
µ=µ0+1

2(Sµ− µ
nΦµ)

2 +2(δΦµ
n )2

µ−δ

n Φµ

]
.

We bound both terms in the above expression separately. For the second term, we have:

E

[ ∞

∑
µ=µ0+1

(
δΦµ

n )2

µ−δ

n Φµ

]
≤ 1

n

∞

∑
µ=µ0+1

E[Φµ]

µ−δmax
≤

2c
1
α Γ
(
1− 1

α

)
αn

1
µ0

(
n
µ0

) 1
α

+
2

n
√

µ0
= O

(
n−

2α

2α+1

)
,

and for the first part, we have:

∞

∑
µ=µ0+1

(Sµ− µ
nΦµ)

2

µ−δ

n Φµ

(a)
≤

∞

∑
µ=µ0+1

∑
x

1
µ
x
(px− µ

n)
2

µ−1
n

≤ 2 ∑
x: npx≥

µ0
2

∞

∑
µ=µ0+1

1
µ
x
(px− µ

n)
2

µ
n

+2 ∑
x: npx<

µ0
2

∞

∑
µ=µ0+1

1
µ
x
(px− µ

n)
2

µ
n

≤ 2 ∑
x: npx≥

µ0
2

∞

∑
µ=1

1
µ
x
(px− µ

n)
2

µ
n

+2 ∑
x: npx<

µ0
2

n
µ0
1
>µ0
x ,
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where (a) follows from (∑n
i=1 ai)

2 ≤ n(∑n
i=1 a2

i ). Taking expectations of both sides:

E

[ ∞

∑
µ=µ0+1

(Sµ− µ
nΦµ)

2

µ−δ

n Φµ

]
(a)
≤ 2

(
2nc
µ0

) 1
α 1

n
E
[(npx)

2−2µnpx +µ2

µ

]
+2 ∑

x: npx<
µ0
2

n
µ0

E[1>µ0
x ]

(b)
≤ 2

(
2nc
µ0

) 1
α 3

n
+2 ∑

x: npx<
µ0
2

n
µ0

E[1>µ0
x ]

(c)
≤
(

2nc
µ0

) 1
α 6

n
+2 ∑

x: npx<
µ0
2

n
µ0

exp
(

µ0−npx−µ0 ln
(

µ0

npx

))

(d)
≤
(

2nc
µ0

) 1
α 6

n
+2 ∑

x: npx<
µ0
2

n
µ0

exp
(

npx−µ0

3

)

(e)
≤
(

2nc
µ0

) 1
α 4

n
+2e−

µ0
6

(
n
µ0

)2

= O(n
1−2α

2α+1 ),

where (a) is by bounding the number of elements with probability greater than µ0/2n, (b) follows

from the fact that E[1
µ ] when µ is a Poisson distribution with mean λ, is bounded by 1

λ
+ 3

λ2 (note that

µ = 0 is excluded). Also, (c) follows from Lemma 46, (d) follows from 3(x−1− x lnx)≤ 1− x

for x > 2, and (e) is by convexity of the exponential term in px and the fact that a convex function

is maximized at the boundaries.

3.D Tools

This section provides a summary of tools used in the proofs throughout the chapter.
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Lemma 42. For two distributions p and q,

KL(p||q) def
= ∑

i

pi log
pi

qi
≤∑

i

(pi−qi)
2

qi

Lemma 43. For a power-law distribution with power α > α0 > 1 and normalization factor c, for

µ≥ 1

E[Φµ]≤
c

1
α Γ
(
µ− 1

α

)
αµ!

n
1
α +

1√
2πµ
≤

c
1
α Γ(1− 1

α
)

µα

(
n
µ

) 1
α

+
1√
2πµ

.

Also, for 1≤ µ < n
1

α+1 , and k > n
1

α−1 ,

E[Φµ]≥
c

1
α Γ
(
µ− 1

α

)
αµ!

n
1
α − 1√

2πµ
.

Proof. For the upper bound on the expected number of elements that appeared µ times:

E[Φµ] = E

[
k

∑
x=1

1
µ
x

]

=

k

∑
x=1

e−npx
(npx)

µ

µ!

=

k

∑
x=1

e−
nc
xα
( nc

xα )µ

µ!

(a)
≤

∫ k

1
e−

nc
xα
( nc

xα )µ

µ!
dx+max

x
{e−

nc
xα
( nc

xα )µ

µ!
}

(b)
=

(nc)
1
α

αµ!

∫ nc

nc
kα

e−yyµ−1− 1
α dy+max

x
{e−

nc
xα
( nc

xα )µ

µ!
}

(c)
≤ (nc)

1
α

αµ!

[
Γ

(
µ− 1

α
,

nc
kα

)
−Γ

(
µ− 1

α
,nc
)]

+
1√
2πµ

=
c

1
α Γ
(
µ− 1

α

)
αµ!

n
1
α +

1√
2πµ

, (3.14)
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where (a) is followed by the integration bound for a uni-modal series, (b) is by changing of

variables nc
xα = y. Also (c) is by the definition of Gamma function and the fact that e−ttµ is

maximized at t = µ followed by Stirling’s approximation. By further simplifying the Gamma

function term:

Γ(µ− 1
α
)

µ!
=

(µ−1− 1
α
)(µ−2− 1

α
) . . .(1− 1

α
)Γ(1− 1

α
)

µ!

=
1
µ

µ−1

∏
j=1

(
1− 1

jα

)
Γ

(
1− 1

α

)

=
1
µ

exp

(
µ−1

∑
j=1

log
(

1− 1
jα

))
Γ

(
1− 1

α

)
(a)
≤ 1

µ
exp

(
− 1

α

µ−1

∑
j=1

1
j

)
Γ

(
1− 1

α

)
(b)
≤ 1

µ
µ−

1
α Γ

(
1− 1

α

)
.

where (a) is by log(1− x)≤−x for 0 < x < 1, and (b) is because ∑
t
j=1

1
j ≥ log(t +1). Similarly
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for the lower bound we have:

E[Φµ] = E

[
k

∑
x=1

1
µ
x

]

=

k

∑
x=1

e−npx
(npx)

µ

µ!

=

k

∑
x=1

e−
nc
xα
( nc

xα )µ

µ!

(a)
≥

∫ k

1
e−

nc
xα
( nc

xα )µ

µ!
dx−max

x
{e−

nc
xα
( nc

xα )µ

µ!
}

(b)
=

(nc)
1
α

αµ!

∫ nc

nc
kα

e−yyµ−1− 1
α dy− 1√

2πµ

(c)
=

(nc)
1
α

αµ!

[
Γ

(
µ− 1

α

)
− γ

(
µ− 1

α
,

nc
kα

)
−Γ

(
µ− 1

α
,nc
)]
− 1√

2πµ

(d)
≥

c
1
α Γ
(
µ− 1

α

)
αµ!

n
1
α

(
1−O

(
µ−1n−

1
α

))
− 1√

2πµ
, (3.15)

By Lemma 48 we have γ
(
µ− 1

α
, nc

k α

)
≤ 1

µ+1− 1
α

(
1+(µ− 1

α
)e−

nc
kα

)
( nc

kα )
µ− 1

α

µ− 1
α

or γ
(
µ− 1

α
, nc

k α

)
=

O(µ−1n−
1
α ) when k > n

1
α−1 . Lemma 47 implies that Γ

(
µ− 1

α
,nc
)
≤ B(nc)µ− 1

α e−nc for some

constant B and for every 1 < µ < n
1

α+1 . This and the recursion Γ(s+ 1, t) = sΓ(s,x)+ xse−x

lead to Γ
(
µ− 1

α
,nc
)
= O(1

n) for 1 ≤ µ < n
1

α+1 and therefore (d). Also, (a) is followed by the

integration bound for a uni-modal series, (b) is by changing of variables nc
xα = y, and (c) is by the

definition of Gamma function and the fact that e−ttµ is maximized at t = µ followed by Stirling’s

approximation.

Lemma 44. For a power-law distribution with power α and µ < n
1

α+1 ,

Pr

[
Φµ <

E[Φµ]

2

]
≤ exp

(
− 1

6µ

(
n
µ

) 1
α

)
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Proof. Φµ = ∑x1
µ
x , and therefore is a sum of independent random variables 1µ

x . By Bernstein’s

inequality

Pr

[∣∣∣Φµ−E[Φµ]
∣∣∣> t

]
≤ 2exp

(
− t2/2

Var(Φµ)+ t/3

)

Substituting E[Φµ] from Lemma 43 and using Var(Φµ) ≤ E[Φµ], for t = E[Φµ]
2 we have the

lemma.

Lemma 45 ( [OD12a]). Let D be the number of distinct categories and d = E[D]. Also let

v = E[Φ1] be the expected number of categories that appeared once. Then,

Pr[D < d−
√

2vs]≤ e−s

Lemma 46. Let X ∼ POI(x), then for x0 > 0, Pr(X ≥ x+ x0) ≤ ex0−(x+x0) ln(1+ x0
x ), and Also

Pr(X ≤ x− x0)≤ ex0−(x+x0) ln(1+ x0
x ).

Proof. Chernoff bound suggests that for every t > 0

Pr(X ≥ a)≤ E[etX ]

et·a ,

and similarly for every t < 0,

Pr(X ≤ a)≤ E[etX ]

et·a .

Moment generating function, E[etX ] for X distributed according to POI(x) is ex(et−1). Therefore,

Pr(X ≥ a)≤ inf
t>0

ex(et−1)

et·a

= inf
t>0

ex(et−1)−t·a

= ea−x−a ln a
x .

Substituting a by x+ x0 leads to the lemma.
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Lemma 47 ( [NP00]). For a > 1, B > 1, and x > B
B−1(a−1), we have

xa−1e−x < |Γ(a,x)|< Bxa−1e−x.

Lemma 48 (Theorem 4.1 in [Neu13]). For a > 0 and x > 0, we have

exp
(
− ax

a+1

)
≤ a

xa γ(a,x)≤ 1
a+1

(1+ae−x).

Lemma 49. For every distribution, µ≥ 1, and in the presence of Poisson sampling,

Var(Φµ)≤ E[Φµ], Var(Sµ)≤
(µ+1)(µ+2)

n2 E[Φµ+2], E[Sµ] =
µ+1

n
E[Φµ+1]

Proof. We use the property of the Poisson sampling that the counts are independent. For the

variance of Φµ we can write:

Var(Φµ) = Var

(
∑

j
1

µ
j

)

= ∑
j

Var(1µ
j)

≤∑
j
E[1µ

j ]

= E[Φµ].
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Also, for the expected value of the sum of probabilities that appeared µ times, we have:

E[Sµ] = E
[
∑

j
p j1

µ
j

]
= ∑

j
p je−np j

(np j)
µ

µ!

=
µ+1

n ∑
j

e−np j
(np j)

µ+1

(µ+1)!

=
µ+1

n ∑
j
E[1µ+1

j ]

=
µ+1

n
E[Φµ+1],

and for their variance, we can write:

Var[Sµ] = Var
[
∑

j
p j1

µ
j

]
= ∑

j
p2

jVar(1µ
j)

= ∑
j

p2
jE[1

µ
j ]

= ∑
j

p2
je
−np j

(np j)
µ

µ!

=
(µ+1)(µ+2)

n2 ∑
j

e−np j
(np j)

µ+2

(µ+2)!

=
(µ+1)(µ+2)

n2 ∑
j
E[1µ+2

j ]

=
(µ+1)(µ+2)

n
E[Φµ+2].

Lemma 50. Let Φ1 be number of categories appeared once. Also let D be the number of distinct
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categories observed and d = E[D], then for 0 < t < 1,

Pr
(∣∣∣Φ1

D
− E[Φ1]

d

∣∣∣> 2t
1− t

)
≤ 4exp

(
− t2E[Φ1]

2(1+ t/3)

)

Proof. Using Lemma 44 we have

Pr
(∣∣∣ Φ1

E[Φ1]
−1
∣∣∣> t

)
= Pr

(∣∣∣Φ1−E[Φ1]
∣∣∣> tE[Φ1]

)
≤ exp

(
− t2E[Φ1]

2(1+ t/3)

)

Similarly for number of distinct elements we have

Pr
(∣∣∣D

d
−1
∣∣∣> t

)
= Pr(|D−d|> td)

(a)
≤ Pr(|D−d|> tE[Φ1])

(b)
≤ exp

(
− t2E[Φ1]

2(1+ t/3)

)

where (a) is because E[Φ1]≤ d and (b) is because Var(D) = E[Φ1]. Hence, with probability at

least 1−4exp
(
− t2E[Φ1]

2(1+t/3)

)
we have 1− t ≤ Φ1

E[Φ1]
≤ 1+ t and 1− t ≤ D

d ≤ 1+ t. With probability

≥ 1−4exp
(
− t2E[Φ1]

2(1+t/3)

)
, 1−t

1+t ≤
Φ1
D

d
E[Φ1]

≤ 1+t
1−t , namely

∣∣∣Φ1
D −

E[Φ1]
d

∣∣∣≤max
(1+t

1−t −1,1− 1−t
1+t

)
=

2t
1−t .
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Chapter 4

Learning Low Rank Conditional

Probability Matrices

4.1 Introduction

One of the fundamental tasks in statistical learning is probability estimation. When the

possible outcomes can be divided into k discrete categories, e.g. types of words or bacterial

species, the task of interest is to use data to estimate the probability masses p1, · · · , pk, where p j is

the probability of observing category j. More often than not, it is not a single distribution that is to

be estimated, but multiple related distributions, e.g. frequencies of words within various contexts

or species in different samples. We can group these into a conditional probability (row-stochastic)

matrix Pi,1, · · · ,Pi,k as i varies over c contexts, and Pi j represents the probability of observing

category j in context i. Learning these distributions individually would cause the data to be

unnecessarily diluted. Instead, the structure of the relationship between the contexts should be

harnessed.

A number of models have been proposed to address this structured learning task. One

of the wildly successful approaches consists of positing that P, despite being a c× k matrix, is
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in fact of much lower rank m. Effectively, this means that there exists a latent context space of

size m� c,k into which the original context maps probabilistically via a c×m stochastic matrix

A, then this latent context in turn determines the outcome via an m× k stochastic matrix B. Since

this structural model means that P factorizes as P = AB, this problem falls within the framework

of low-rank (non-negative) matrix factorization. Many topic models, such as the original work on

probabilistic latent semantic analysis PLSA, also map to this framework. We narrow our attention

here to such low-rank models, but note that more generally these efforts fall under the areas of

structured and transfer learning. Other examples include: manifold learning, multi-task learning,

and hierarchical models.

In natural language modeling, low-rank models are motivated by the inherent semantics

of language: context first maps into meaning which then maps to a new word prediction. An

alternative form of such latent structure, word embeddings derived from recurrent neural networks

(or LSTMs) are the state-of-the-art of current language models, [MKB+11, SPC14, WPM+15].

A first chief motivation for the present work is to establish a theoretical underpinning of the

success of such representations. We restrict the exposition to bigram models. The traditional

definition of the bigram is that language is modeled as a sequence of words generated by a

first order Markov-chain. Therefore the ‘context’ of a new word is simply its preceding word,

and we have c = k. Since the focus here is not the dependencies induced by such memory, but

rather the ramifications of the structural assumptions on P, we take bigrams to model word-pairs

independently sampled by first choosing the contextual word with probability π and then choosing

the second word according to the conditional probability P, thus resulting in a joint distribution

over word-pairs (πiPi j).

What is the natural measure of performance for a probability matrix estimator? Since

ultimately such estimators are used to accurately characterize the likelihood of test data, the

measure of choice used in empirical studies is the perplexity, or alternatively its logarithm,

the cross entropy. For data consisting of n word-pairs, if Ci j is the number of times pair (i, j)
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appears, then the cross entropy of an estimator Q is 1
n ∑i j Ci j log 1

Qi j
. The population quantity that

corresponds to this empirical performance measure is the (row-by-row weighted) KL-divergence

D(P‖Q) = ∑i j πiPi j log Pi j
Qi j

.

Note that this is indeed the expectation of the cross entropy modulo the true entropy, an

additive term that does not depend on Q. This is the natural notion of risk for the learning task,

since we wish to infer the likelihood of future data, and our goal can now be more concretely

stated as using the data to produce an estimator Qn with a ‘small’ value of D(P‖Qn). The choice

of KL-divergence introduces a peculiar but important problem: the necessity to handle small

frequencies appropriately. In particular, using the empirical conditional probability is not viable,

since a zero in Q implies infinite risk. This is the problem of smoothing, which has received a

great amount of attention by the NLP community. Our second salient motivation for the present

work is to propose principled methods of integrating well-established smoothing techniques,

such as add-1
2 and absolute discounting, into the framework of structured probability matrix

estimation.

Our contributions are as follows, we provide:

• A general framework for integrating smoothing and structured probability matrix estimation, as

an alternating-minimization that converges to a stationary point of a penalized empirical risk.

• A sample complexity upper bound of O(km log2(2n+ k)/n) for the expected KL-risk, for the

global minimizer of this penalized empirical risk.

• A lower bound that matches this upper bound up to the logarithmic term, showing near-

optimality.

This chapter is organized as follows. Section 4.2 reviews related work. Section 4.3

states the problem and Section 4.4 highlights our main results. Section 4.5 proposes our central

algorithm and Section 4.6 analyzes its idealized variant. Section 4.7 provides some experiments

and Section 4.8 concludes.
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4.2 Related Work

Latent variable models, and in particular non-negative matrix factorization and topic

models, have been such an active area of research in the past two decades that the space here

cannot possibly do justice to the many remarkable contributions. We list here some of the most

relevant to place our work in context. We start by mentioning the seminal papers [Hof99, LS01]

which proposed the alternating minimization algorithm that forms the basis of the current work.

This has appeared in many forms in the literature, including the multiplicative updates [ZYO13].

Some of the earliest work is reviewed in [PTRV98]. These may be generally interpreted as

discrete analogs to PCA (and even ICA) [BJ04].

An influential Bayesian generative topic model, the Latent Dirichlet Allocation, [BNJ03]

is very closely related to what we propose. In fact, add-half smoothing effectively corresponds to

a Dirichlet(1/2) (Jeffreys) prior. Our exposition differs primarily in adopting a minimax sample

complexity perspective which is often not found in the otherwise elegant Bayesian framework.

Furthermore, exact Bayesian inference remains a challenge and a lot of effort has been expended

lately toward simple iterative algorithms with provable guarantees, e.g. [AAJN13, AGMM15].

Besides, a rich array of efficient smoothing techniques exists for probability vector estima-

tion [AJOS13b, KOPS15, OS15, VV15], of which one could directly avail in the methodology

that is presented here.

A direction that is very related to ours was recently proposed in [HKKV16]. There, the

primary goal is to recover the rows of A and B in `1-risk. This is done at the expense of additional

separation conditions on these rows. This makes the performance measure not easily comparable

to our context, though with the proper weighted combination it is easy to see that the implied

`1-risk result on P is subsumed by our KL-risk result (via Pinsker’s inequality), up to logarithmic

factors, while the reverse isn’t true. Furthermore, the framework of [HKKV16] is restricted

to symmetric joint probability matrices, and uses an SVD-based algorithm that is difficult to
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scale beyond very small latent ranks m. Apart from this recent paper for the `1-risk, sample

complexity bounds for related (not fully latent) models have been proposed for the KL-risk, e.g.

[AWT91]. But these remain partial, and far from optimal. It is also worth noting that information

geometry gives conditions under which KL-risk behaves close to `2-risk [BZ08], thus leading to

a Frobenius-type risk in the matrix case.

Although the core optimization problem itself is not our focus, we note that despite being

a non-convex problem, many instances of matrix factorization admit efficient solutions. Our own

heuristic initialization method is evidence of this. Recent work, in the `2 context, shows that even

simple gradient descent, appropriately initialized, could often provably converge to the global

optimum [BKS15].

Concerning whether such low-rank models are appropriate for language modeling, there

has been evidence that some of the abovementioned word embeddings [MKB+11] can be in-

terpreted as implicit matrix factorization [LG14]. Some of the traditional bigram smoothing

techniques, such as the Kneser-Ney algorithm [KN95b, CG99], are also reminiscent of rank

reduction [HOF11, PSDX13, HOF15].

4.3 Problem Statement

Data Dn consists of n pairs (Xs,Ys), s = 1, · · · ,n, where Xs is a context and Ys is the

corresponding outcome. In the spirit of a bigram language model, we assume that the context

and outcome spaces have the same cardinality, namely k. Thus (Xs,Ys) takes values in [k]2. We

denote the count of pairs (i, j) by Ci j. As a shortcut, we also write the row-sums as Ci = ∑ j Ci j.

We assume the underlying generative model of the data to be i.i.d., where each pair is

drawn by first sampling the context Xs according to a probability distribution π = (πi) over [k]

and then sampling Ys conditionally on Xs according to a k× k conditional probability (stochastic)

matrix P = (Pi j), a non-negative matrix where each row sums to 1. We also assume that P has
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non-negative rank m. We denote the set of all such matrices by Pm. They can all be factorized

(non-uniquely) as P = AB, where both A and B are stochastic matrices in turn, of size k×m and

m× k respectively.

A conditional probability matrix estimator is an algorithm that maps the data into a

stochastic matrix Qn(X1, · · · ,Xn) that well-approximates P, in the absence of any knowledge

about the underlying model. We generally drop the explicit notation showing dependence on the

data, and use instead the implicit n-subscript notation. The performance, or how well any given

stochastic matrix Q approximates P, is measured according to the KL-risk:

R(Q) = ∑
i j

πiPi j log
Pi j

Qi j
(4.1)

Note that this corresponds to an expected loss, with the log-loss L(Q, i, j) = logPi j/Qi j.

Although we do seek out PAC-style (in-probability) bounds for R(Qn), in order to give a concise

definition of optimality, we consider the average-case performance E[R(Qn)]. The expectation

here is with respect to the data. Since the underlying model is completely unknown, we would

like to do well against adversarial choices of π and P, and thus we are interested in a uniform

upper bound of the form:

r(Qn) = max
π,P∈Pm

E[R(Qn)].

The optimal estimator, in the minimax sense, and the minimax risk of the class Pm are thus given

by:

Q?
n = argmin

Qn

r(Qn) = argmin
Qn

max
π,P∈Pm

E[R(Qn)] (4.2)

r?(Pm) = min
Qn

max
π,P∈Pm

E[R(Qn)].

Explicitly obtaining minimax optimal estimators is a daunting task, and instead we would like to

exhibit estimators that compare well.
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Definition 51 (Optimality). If an estimator satisfies E[R(Qn)] ≤ ϕ ·E[R(Q?
n)], ∀π, (called an

oracle inequality), then if ϕ is a constant (of n, k, and m), we say that the estimator is (order)

optimal. If ϕ is not constant, but its growth is negligible with respect to the decay of r?(Pm) with

n or the growth of r?(Pm) with k or m, then we can call the estimator near-optimal. In particular,

we reserve this terminology for a logarithmic gap in growth, that is an estimator is near-optimal

if logϕ/ logr?(Pm)→ 0 asymptotically in any of n, k, or m. Finally, if ϕ does not depend on P we

have strong optimality, and r(Qn)≤ ϕ · r?(Pm). If ϕ does depend on P, we have weak optimality.

As a proxy to the true risk (4.1), we define the empirical risk:

Rn(Q) =
1
n ∑

i j
Ci j log

Pi j

Qi j
(4.3)

The conditional probability matrix that minimizes this empirical risk is the empirical conditional

probability P̂n,i j = Ci j/Ci. Not only is P̂n,i j not optimal, but since there always is a positive

(even if slim) probability that some Ci j = 0 even if Pi j 6= 0, it follows that E[Rn(P̂n)] = ∞. This

shows the importance of smoothing. The simplest benchmark smoothing that we consider is

add-1
2 smoothing P̂

Add- 1
2

i j =
(
Ci j +1/2

)
/(Ci + k/2) , where we give an additional “phantom” half-

sample to each word-pair, to avoid zeros. This simple method has optimal minimax performance

when estimating probability vectors. However, in the present matrix case it is possible to show

that this can be a factor of k/m away from optimal, which is significant (cf. Figure 4.1(a) in

Section 4.7). Of course, since we have not used the low-rank structure of P, we may be tempted

to “smooth by factoring”, by performing a low-rank approximation of P̂n. However, this will

not eliminate the zero problem, since a whole column may be zero. These facts highlight the

importance of principled smoothing. The problem is therefore to construct (possibly weakly)

optimal or near-optimal smoothed estimators.
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4.4 Main Results

In Section 4.5 we introduce the ADD- 1
2 -SMOOTHED LOW-RANK algorithm, which essen-

tially consists of EM-style alternating minimizations, with the addition of smoothing at each

stage. Here we state the main results. The first is a characterization of the implicit risk function

that the algorithm targets.

Theorem 52 (Algorithm). QAdd- 1
2 -LR converges to a stationary point of the penalized empirical

risk

Rn,penalized(W,H) = Rn(Q)+
1

2n ∑
i,`

log
1

Wi`
+

1
2n ∑

`, j
log

1
H` j

, where Q =WH. (4.4)

Conversely, any stationary point of (4.4) is a stable point of ADD- 1
2 -SMOOTHED LOW-

RANK.

The proof of Theorem 52 follows closely that of [LS01]. We now consider the global

minimum of this implicit risk, and give a sample complexity bound. By doing so, we intentionally

decouple the algorithmic and statistical aspects of the problem and focus on the latter.

Theorem 53 (Sample Complexity). Let Qn ∈ Pm achieve the global minimum of Equation 4.4.

Then for all P ∈ Pm such that Pi j >
km
n ∀i, j and n > 3,

E[R(Qn)]≤ c
km
n

log2(2n+ k), with c = 4,300.

We outline the proof in Section 4.6. The basic ingredients are: showing the problem

is near-realizable, a quantization argument to describe the complexity of Pm, and a PAC-style

[Vap98] relative uniform convergence which uses a sub-Poisson concentration for the sums of log

likelihood ratios and uniform variance and scale bounds. Finer analysis based on VC theory may

be possible, but it would need to handle the challenge of the log-loss being possibly unbounded
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and negative. The following result shows that Theorem 53 gives weak near-optimality for n large,

as it is tight up to the logarithmic factor.

Theorem 54 (Lower Bound). For n > k, the minimax rate of Pm satisfies:

r?(Pm)≥ c
km
n
, with c = 0.06.

This is based on the vector case lower bound and providing the oracle with additional

information: instead of only (Xs,Ys) it observes (Xs,Zs,Ys), where Zs is sampled from Xs using A

and Ys is sampled from Zs using B. This effectively allows the oracle to estimate A and B directly.

4.5 Algorithm

Our main algorithm is a direct modification of the classical alternating minimization

algorithm for non-negative matrix factorization [Hof99, LS01]. This classical algorithm (with a

slight variation) can be shown to essentially solve the following mathematical program:

QNNMF(Φ) = argmin
Q=WH

∑
i

∑
j

Φi j log
1

Qi j
.

The analysis is a simple extension of the original analysis of [Hof99, LS01]. By “essentially

solves”, we mean that each of the update steps can be identified as a coordinate descent, reducing

the cost function and ultimately converging as T → ∞ to a stationary (zero gradient) point of

this function. Conversely, all stationary points of the function are stable points of the algorithm.

In particular, since the problem is convex in W and H individually, but not jointly in both, the

algorithm can be thought of as taking exact steps toward minimizing over W (as H is held fixed)

and then minimizing over H (as W is held fixed), whence the alternating-minimization name.

Before we incorporate smoothing, note that there are two ingredients missing from this

algorithm. First, the cost function is the sum of row-by-row KL-divergences, but each row is
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not weighted, as compared to Equation (4.1). If we think of Φi j as P̂i j =Ci j/Ci, then the natural

weight of row i is πi or its proxy Ci/n. For this, the algorithm can easily be patched. Similarly

to the analysis of the original algorithm, one finds that this change essentially minimizes the

weighted KL-risks of the empirical conditional probability matrix, or equivalently the empirical

risk as defined in Equation (4.3):

QLR(C) = argmin
Q=WH

Rn(Q) = argmin
Q=WH

∑
i

Ci

n ∑
j

Ci j

Ci
log

1
Qi j

.

Of course, this is nothing but the maximum likelihood estimator of P under the low-rank constraint.

Just like the empirical conditional probability matrix, it suffers from lack of smoothing. For

instance, if a whole column of C is zero, then so will be the corresponding column of QERM(C).

The first naive attempt at smoothing would be to add-1
2 to C and then apply the algorithm:

QNaive Add- 1
2 -LR(C) = QLR(C+ 1

2)

However, this would result in excessive smoothing, especially when m is small. The intuitive

reason is this: in the extreme case of m = 1 all rows need to be combined, and thus instead of

adding 1
2 to each category, QNaiveadd− 1

2LR would add k/2, leading to the the uniform distribution

overwhelming the original distribution. We may be tempted to mitigate this by adding instead

1/2k, but this doesn’t generalize well to other smoothing methods. A more principled approach

should perform smoothing directly inside the factorization, and this is exactly what we propose

here. Our main algorithm is:

Algorithm: ADD- 1
2 -SMOOTHED LOW-RANK

• Input: k× k matrix (Ci j); Initial W 0 and H0; Number of iterations T

• Iterations: Start at t = 1, increment and repeat while t ≤ T
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– For all i ∈ [k], ` ∈ [m], update W t
i`←W t−1

i` ∑ j
Ci j

(WH)t−1
i j

Ht−1
` j

– For all ` ∈ [m], j ∈ [k], update Ht
` j← Ht−1

` j ∑i
Ci j

(WH)t−1
i j

W t−1
i`

– Add-1/2 to each element of W t and Ht , then normalize each row.

• Output: QAdd- 1
2 -LR(C) =W T HT

The intuition here is that, prior to normalization, the updated W and H can be interpreted as soft

counts. One way to see this is to sum each row i of (pre-normalized) W , which would give Ci.

As for H, the sums of its (pre-normalized) columns reproduce the sums of the columns of C.

Next, we are naturally led to ask: is QAdd- 1
2LR(C) implicitly minimizing a risk, just as QLR(C)

minimizes Rn(Q)? Theorem 52 shows that indeed QAdd- 1
2LR(C) essentially minimizes a penalized

empirical risk.

More interestingly, ADD- 1
2 -SMOOTHED LOW-RANK lends itself to a host of generalizations.

In particular, an important smoothing technique, absolute discounting, is very well suited for

heavy-tailed data such as natural language [CG99, OD12b, BBO17]. We can generalize it to

fractional counts as follows. Let Ci indicate counts in traditional (vector) probability estimation,

and let D be the total number of distinct observed categories, i.e. D = ∑i I{Ci ≥ 1}. Let the

number of fractional distinct categories d be defined as d=∑iCiI{Ci < 1}. We have the following

soft absolute discounting smoothing:

P̂Soft-AD
i (C,α) =


Ci−α

∑C if Ci ≥ 1,

1−α

∑C Ci +
α(D+d)

(k−D−d)∑C(1−Ci) if Ci < 1.

This gives us the following patched algorithm, which we do not place under the lens of

theory currently, but we strongly support it with our experimental results of Section 4.7.

Algorithm: ABSOLUTE-DISCOUNTING-SMOOTHED LOW-RANK

• Input: Specify α ∈ (0,1)
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• Iteration:

– Add-1/2 to each element of W t , then normalize.

– Apply soft absolute discounting to Ht
` j← P̂Soft-AD

j (Ht
`,·,α)

• Output: QAD-LR(C,α) =W T HT

4.6 Analysis

We now outline the proof of the sample complexity upper bound of Theorem 53. Thus for

the remainder of this section we have:

Qn(C) = argmin
Q=WH

Rn(Q)+
1

2n ∑
i,`

log
1

Wi`
+

1
2n ∑

`, j
log

1
H` j

,

that is Qn ∈ Pm achieves the global minimum of Equation 4.4. Since we have a penalized

empirical risk minimization at hand, we can study it within the classical PAC-learning framework.

However, rates of order 1
n are often associated withe the realizable case, where Rn(Qn) is exactly

zero [Vap98]. The following Lemma shows that we are near the realizable regime.

Lemma 55 (Near-realizability). We have

E[Rn(Qn)]≤
k
n
+

km
n

log(2n+ k).

We characterize the complexity of the class Pm by quantizing probabilities, as follows.

Given a positive integer L, define ∆L to be the subset of the appropriate simplex ∆ consisting

of L-empirical distributions (or “types” in information theory): ∆L consists exactly of those

distributions p that can be written as pi = Li/L, where Li are non-negative integers that sum to L.

Definition 56 (Quantization). Given a positive integer L, define the L-quantization operation as

mapping a probability vector p to the closest (in `1-distance) element of ∆L, p̃ = argminq∈∆L
‖p−
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q‖1. For a matrix P ∈ Pm, define an L-quantization for any given factorization choice P = AB as

P̃ = ÃB̃, where each row of Ã is the mL-quantization of the respective row of A and each row of B̃

is the kL-quantization of the respective row of A. Lastly, define Pm,L to be the set of all quantized

probability matrices derived from Pm.

Lemma 57. For a probability vector p over k elements, L-quantization satisfies |pi− p̃i| ≤ 1
L for

all i, and ‖p− p̃‖1 ≤ k
L , and |∆L| ≤

(
(L+k−1)e

k−1

)k−1
.

Proof. Since the distance between two consecutive quantization points in an L-quantization is

1
L , each coordinate in the probability vector p can change by at most 1

L when quantized. For the

same reason, the at most `1-distance between a probability vector and its quantized version is

bounded by k
L . To bound the size of ∆L, we should count the number of probability vectors with

all coordinates in the form Li
L , where Lis are non-negative integers that sum to L. The number of

such vectors is
(L+k−1

k−1

)
and by Stirling’s approximation we have |∆L| ≤

(
(L+k−1)e

k−1

)k−1
.

Lemma 58. The cardinality of Pm,L is bounded by |Pm,L| ≤ (2Le+ e)2km.

Proof. Based on Lemma 57, total number of possible quantized vectors for each row of B is

≤
(
(kL+k−1)e

k−1

)k−1
≤ (2Le+ e)k−1. Similarly, for each row of A, size of the possible quantized

vectors is ≤ (2Le+ e)m−1, hence the Lemma.

Lemma 59 (De-quantization). For a conditional probability matrix Q ∈ Pm, any L−quantization

Q̃ satisfies |Qi j− Q̃i j| ≤ 2
L for all i. Furthermore, if Q > ε per entry and L > 4

ε
, then:

|R(Q)−R(Q̃)| ≤ 4
Lε

and |Rn(Q)−Rn(Q̃)| ≤ 4
Lε

.

Proof. Recall the quantization of probability vectors given by Definition 56. Let Q = AB be

a factorization of Q, and let Q̃ = ÃB̃ be a quantization, row-by-row as described in Definition

56. For rows of A we have LA = mL and for rows of B, we have LB = kL. Now let’s write
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δi j
def
= Ãi j−Ai j and similarly, δ′i j

def
= B̃i j−Bi j. Based on the Lemma 57, we then have

∑
`

δi` ≤
1
L
, ∑

j
δ
′
` j ≤

1
L
,

and the difference of each coordinate in the original matrix and the quantized one is much less

than 1
L , namely

|δi j| ≤
1
L
, |δ′i j| ≤

1
L
.

Moreover, we have

Q̃i j =
m

∑
`=1

Ãi`B̃` j

=
m

∑
`=1

(Ai`+δi`)(B` j +δ
′
` j)

=
m

∑
`=1

Ai`B` j +∑
`

Ai`δ
′
` j +∑

`

δi`B̃` j

(a)
≤ Qi j +∑

`

Ai`
1
L
+∑

`

|δi`|

(b)
≤ Qi j +

1
L
+

1
L
.

where (a) is because δ′` j ≤
1
L and B̃` j ≤ 1, (b) is by A being row stochastic and ∑` δi` ≤ 1

L . Since
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the same derivation holds also by swapping Q and Q̃, we have |Q̃i j−Qi j| ≤ 2
L . We can then write:

R(Q)−R(Q̃) = ∑
i j

πiPi j

[
log

Pi j

Qi j
− log

Pi j

Q̃i j

]
= ∑

i j
πiPi j log

Q̃i j

Qi j

≤∑
i j

πiPi j log
Qi j +

2
L

Qi j

(a)
≤ ∑

i j
πiPi j

2
LQi j

(b)
≤ 2

Lε

where (a) is by log(1+ x)≤ x and (b) is by Qi j ≥ ε. Using the same arguments, we can bound

the difference in the other direction. Namely,

R(Q̃)−R(Q) = ∑
i j

πiPi j

[
log

Pi j

Q̃i j
− log

Pi j

Qi j

]
(a)
≤ ∑

i j
πiPi j log

Qi j

Qi j− 2
L

(b)
≤ ∑

i j
πiPi j

2
LQi j

1− 2
LQi j

(c)
≤∑

i j
πiPi j

4
LQi j

≤ 4
Lε

.

Where (a) is by the fact that Q̃i j ≥ Qi j− 2
L , (b) follows from log 1

1−x ≤
x

1−x , and (c) uses the

fact that x
1−x ≤ 2x for x ≤ 1

2 and also 2
LQi j

< 1
2 , which holds if L > 4

ε
. Lastly, the proof for the

empirical risk follows exactly the same lines.

We now give a PAC-style relative uniform convergence bound on the empirical risk
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[Vap98].

Theorem 60 (Relative uniform convergence). Assume lower-bounded P > δ and choose any

τ> 0. We then have the following uniform bound over all lower-bounded Q̃> ε in Pm,L (Definition

56):

Pr

{
sup

Q̃∈Pm,L,Q̃>ε

R(Q̃)−Rn(Q̃)√
R(Q̃)

> τ

}
≤ e
− nτ2

20log
1
ε
+3τ

√
1
δ

log
1
ε

+2km log(2Le+e)

. (4.5)

The proof of this Theorem consists, for fixed Q̃, of showing a sub-Poisson concentration

of the sum of the log likelihood ratios. This needs care, as a simple Bennett or Bernstein inequality

is not enough, because we need to eventually self-normalize. A critical component is to relate

the variance and scale of the concentration to the KL-risk and its square root, respectively. The

theorem then follows from uniformly bounding the normalized variance and scale over Pm,L and

a union bound.

To put the pieces together, first note that thanks to the fact that the optimum is also a

stable point of the ADD- 1
2 -SMOOTHED LOW-RANK, the add-1

2 nature of the updates implies that

all of the elements of Qn are lower-bounded by 1
2n+k . By Lemma 59 and a proper choice of L

of the order of (2n+ k)2, the quantized version won’t be much smaller. We can thus choose

ε = 1
2n+k in Theorem 60 and use our assumption of δ = km

n log(2n+ k). Using Lemmas 55 and

59 to bound the contribution of the empirical risk, we can then integrate the probability bound of

(4.5) similarly to the realizable case. This gives a bound on the expected risk of the quantized

version of Qn of order km
n log 1

ε
logL or effectively km

n log2(2n+ k). We then complete the proof

by de-quantizing using Lemma 59.

4.7 Experiments

Having expounded the theoretical merit of properly smoothing structured conditional

probability matrices, we give a brief empirical study of its practical impact. We use both synthetic
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and real data. The various methods compared are as follows:

• Add-1
2 , directly on the bigram counts: P̂

Add- 1
2

n,i j = (Ci j +
1
2)/(Ci +

1
2)

• Absolute-discounting, directly on the bigram counts: P̂AD
n (C,α) (see Section 4.5)

• Naive Add-1
2 Low-Rank, smoothing the counts then factorizing: QNaive Add- 1

2 -LR = QLR(C+ 1
2)

• Naive Absolute-Discounting Low-Rank: QNaive AD-LR = QLR(nP̂AD
n (C,α))

• Stupid backoff (SB) of Google, a very simple algorithm proposed in [BPX+07]

• Kneser-Ney (KN), a widely successful algorithm proposed in [KN95b]

• Add-1
2 -Smoothed Low-Rank, our proposed algorithm with provable guarantees: QAdd- 1

2 -LR

• Absolute-Discounting-Smoothed Low-Rank, heuristic generalization of our algorithm: QAD-LR

The synthetic model is determined randomly. π is uniformly sampled from the k-simplex.

The matrix P = AB is generated as follows. The rows of A are uniformly sampled from the

k-simplex. The rows of B are generated in one of two ways: either sampled uniformly from the

simplex or randomly permuted power law distributions, to imitate natural language. The discount

parameter is then fixed to 0.75. Figure 4.1(a) uses uniformly sampled rows of B, and shows that,

despite attempting to harness the low-rank structure of P, not only does Naive Add-1
2 fall short,

but it may even perform worse than Add-1
2 , which is oblivious to structure. Add-1

2-Smoothed

Low-Rank, on the other hand, reaps the benefits of both smoothing and structure.

Figure 4.1(b) expands this setting to compare against other methods. Both of the proposed

algorithms have an edge on all other methods. Note that Kneser-Ney is not expected to perform

well in this regime (rows of B uniformly sampled), because uniformly sampled rows of B do not

behave like natural language. On the other hand, for power law rows, even if k� n, Kneser-

Ney does well, and it is only superseded by Absolute-Discounting-Smoothed Low-Rank. The

consistent good performance of Absolute-Discounting-Smoothed Low-Rank may be explained

by the fact that absolute-discounting seems to enjoy some of the competitive-optimality of

Good-Turing estimation, as recently demonstrated by [OS15]. This is why we chose to illustrate
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the flexibility of our framework by heuristically using absolute-discounting as the smoothing

component.
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Figure 4.1: Performance of selected algorithms over synthetic data.

Before moving on to experiments on real data, we give a short description of the data sets.

All but the first one are readily available through the Python NLTK:

• tartuffe, a French text, train and test size: 9.3k words, vocabulary size: 2.8k words.

• genesis, English version, train and test size: 19k words, vocabulary size: 4.4k words

• brown, shortened Brown corpus, train and test size: 20k words, vocabulary size: 10.5k words

For natural language, using absolute-discounting is imperative, and we restrict ourselves to

Absolute-Discounting-Smoothed Low-Rank. The results of the performance of various algorithms

are listed in Table 4.1. For all these experiments, m = 50 and 200 iterations were performed.

Note that the proposed method has less cross-entropy per word across the board.
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Figure 4.2: Experiments on real data.
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Table 4.1: Cross-entropy results for different methods on several small corpora

Dataset Add-1
2 AD SB KN AD-LR

tartuffe 7.1808 6.268 6.0426 5.7555 5.6923
genesis 7.3039 6.041 5.9058 5.7341 5.6673

brown 8.847 7.9819 7.973 7.7001 7.609

We also illustrate the performance of different algorithms as the training size increases.

Figure 4.2 shows the relative performance of selected algorithms with Stupid Backoff chosen as

the baseline. As Figure 4.2(a) suggests, the amount of improvement in cross-entropy at n = 15k is

around 0.1 nats/word. This improvement is comparable, even more significant, than that reported

in the celebrated work of Chen and Goodman [CG99] for Kneser-Ney over the best algorithms at

the time.

Even though our algorithm is given the rank m as a parameter, the internal dimension

is not revealed, if ever known. Therefore, we could choose the best m using model selection.

Figure 4.2(c) shows one way of doing this, by using a simple cross-validation for the tartuffe data

set. In particular, half of the data was held out as a validation set, and for a range of different

choices for m, the model was trained and its cross-entropy on the validation set was calculated.

The figure shows that there exists a good choice of m� k. A similar behavior is observed for all

data sets. Most interestingly, the ratio of the best m to the vocabulary size corpus is reminiscent

of the choice of internal dimension in [MKB+11].

4.8 Conclusion

Despite the theoretical impetus of our results, the resulting algorithms considerably

improve over several benchmarks. There is more work ahead, however. Many possible theoretical

refinements are in order, such as eliminating the logarithmic term in the sample complexity and

dependence on P (strong optimality).

This framework naturally extends to tensors, such as for higher-order N-gram language
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models. It is also worth bringing back the Markov assumption and understanding how various

mixing conditions influence the sample complexity. A more challenging extension, and one we

suspect may be necessary to truly be competitive with RNNs/LSTMs, is to parallel this contribu-

tion in the context of generative models with long memory. The reason we hope to not only be

competitive with, but in fact surpass, these models is that they do not use distributional properties

of language, such as its quintessentially power-law nature. We expect smoothing methods such as

absolute-discounting, which do account for this, to lead to considerable improvement.
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4.A Algorithms

The following is a slight variant of the original non-negagtive matrix factorization algo-

rithm [LS01].

Algorithm: STOCHASTIC MATRIX FACTORIZATION

• Input:

– Non-negative stochastic k× k matrix Φ

– Initialization k×m matrix W 0 and m× k matrix H0

– Number of iterations T

• Iterations: Start at t = 0, increment and repeat while t < T
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– For all i ∈ [k], ` ∈ [m], update W t
i`←W t−1

i` ∑ j
Φi j

(WH)t−1
i j

Ht−1
` j

– For all ` ∈ [m], j ∈ [k], update Ht
` j← Ht−1

`i ∑i
Φi j

(WH)t−1
i j

W t−1
i`

– Normalize each row of Ht (W t remains normalized)

• Output: QNNMF(Φ) = (WH)T

We patch the algorithm as follows, to account for counts/weights.

Algorithm: LOW-RANK ERM

• Input: Count k× k matrix (Ci j), instead of the stochastic matrix Φ

• Iterations:

– For all i ∈ [k], ` ∈ [m], update W t
i`←W t−1

i` ∑ j
Ci j

(WH)t−1
i j

Ht−1
` j

– For all ` ∈ [m], j ∈ [k], update Ht
` j← Ht−1

`i ∑i
Ci j

(WH)t−1
i j

W t−1
i`

– Normalize each row of W t and Ht

• Output: QLR(C) = (WH)T

4.A.1 Generalizations

The chapter’s main algorithm, ADD- 1
2 -SMOOTHED LOW-RANK, lends itself to a host of

generalization, which we do not place under the lens of theory currently, but which we illustrate

in some of our experimental results in Section 4.7. Here we give more detailed about he

absolute discounting smoothing outlined in the main text. Let Ci indicate counts in traditional

(vector) probability estimation, and let D be the total number of distinct observed categories, i.e.

D = ∑i I{Ci ≥ 1}:

P̂AD
n (C,α) =


Ci−α

n if Ci ≥ 1

αD
n(k−D) if Ci = 0
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The discount parameter is either fixed or learned from data, via cross-validation or closed-

form formulas that relate the discount to power-law type properties of the underlying distribution

[CG99, OD12b]. When C represents a soft count, however, since it may have fractional values

between 0 and α, we cannot outright subtract α. We ought to treat fractional counts in [0,1] more

like unseen symbols when close to 0 and more like seen symbols when close to 1. We suggest the

following soft absolute discounting smoothing. Let the number of fractional distinct symbols ∆

be defined as ∆ = ∑iCiI{Ci < 1}:

P̂Soft-AD
n (C,α) =


Ci−α

n if Ci ≥ 1

1−α

n Ci +
α(D+∆)

n(k−D−∆)(1−Ci) if Ci < 1

Note that for hard counts, when Ci < 1 implies Ci = 0, then ∆ = 0 and this reduces back to

traditional absolute discounting. Otherwise, for fractional soft counts we interpolate between the

behavior for a 1-count and that of a 0-count. It is easy to verify that this gives a valid probability

distribution.

The suggested generalization of ADD- 1
2 -SMOOTHED LOW-RANK is to perform soft absolute

discounting on each raw of H (or W or both, but if the goal is to capture power law behavior, only

H is sufficient), instead of add-1
2 . This gives us the following patched algorithm:

Algorithm: ABSOLUTE-DISCOUNTING-SMOOTHED LOW-RANK

• Input: Specify α ∈ (0,1)

• Iteration:

– Add-1/2 to each element of W t , then normalize.

– Apply soft absolute discounting to Ht
` j← P̂Soft-AD

n (Ht
`,·,α)

• Output: QAD-LR(C,α) = (WH)T
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4.A.2 Initialization

We have thus far stepped over the details of the initialization of the algorithm (the choice

of W0 and H0). The characterization of Theorem 52 shows that we continue to be dealing with a

non-convex optimization task. Multiple random restarts is always a viable option, but can be slow

to latch onto the best region, especially for large values of k. Instead, we propose and implement

a simple heuristic: identify the convex hull of the rows of the empirical conditional probability

matrix P̂. This is motivated by the fact the rows of B span the same subspace as those of P.

Any convex hull algorithm could be used, but performance improves considerably if rows are

incorporated from least to most noisy, by descending values of Ci. Such a smart initialization –

in addition to a few random restarts – performs generally remarkably well, warranting further

investigation.

4.B Proof of Theorem 52

The approach here parallels that of [LS01]. The relevant cost function, which we would

like to show that we are implicitly descending, can be written as:

J(W,H) = ∑
i, j

Ci j

n
log

1
(WH)i j

+
m
2n ∑

i,`

1
m

log
1

Wi`
+

k
2n ∑

`, j

1
k

log
1

H` j
.

Of course, the descent should be such that W and H are row-stochastic matrices. The

simplex-projected gradients can be determined as:

∂J
∂Wi`

∣∣∣
∆

=−∑
j

Ci j

n
H` j

(WH)i j
− 1

2n
1

Wi`
+

(
Ci

n
+

m
2n

)
(4.6)

∂J
∂H` j

∣∣∣
∆

=−∑
i

Ci j

n
Wi`

(WH)i j
− 1

2n
1

H` j
+

(
∑
i, j

Ci j

n
Wi`H` j

(WH)i j
+

k
2n

)
(4.7)

These expressions can be readily obtained by computing the gradients of J and then for

each row of W and H removing its component that is orthogonal to the simplex, i.e. parallel to the
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all-ones vector. The result are the terms in parenthesis, which effectively impose the constraints

on W and H, by preventing each of their rows from leaving the simplex.

Next, we derive the multiplicative update rules for H and W and show that if ∇J = 0,

update rules will not change W and H. Let’s denote W+
i` and H+

` j be the values of Wi` and H` j

after one update. Then,

W+
i` =Wi`−η

W
i Wi`

[
−∑

j

Ci j

n
H` j

(WH)i j
− 1

2n
1

Wi`
+

(
Ci

n
+

m
2n

)]
,

H+
` j = H` j−η

H
` H` j

[
−∑

i

Ci j

n
Wi`

(WH)i j
− 1

2n
1

H` j
+

(
∑
i, j

Ci j

n
Wi`H` j

(WH)i j
+

k
2n

)]
.

Choosing

η
W
i =

1
Ci
n + m

2n

,

η
H
` =

1

∑i, j
Ci j
n

Wi`H` j
(WH)i j

+ k
2n

,

results to the following update rules,

W+
i` =

∑ j Ci j
H` jWi`
(WH)i j

+ 1
2

Ci +
m
2

,

H+
` j =

∑iCi j
Wi`H` j
(WH)i j

+ 1
2

∑i, j Ci j
Wi`H` j
(WH)i j

+ k
2

.

The correspondence between stationarity points of the function and the stable points of

the algorithm are now evident. Moreover, each of these steps is an ‘optimal’ step, similar to a

Newton step for a quadratic function: in the vector case, it would get to the solution in a single

step. The fact that the cost function decreases at every step then follows from standard arguments,

which completes the proof.
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4.C Proof of Theorem 53

The quantization of Definition 56 and the de-quantization Lemma 59 are clearly a coarse

characterization of the complexity of the class Pm, since our choice of L depends on the probability

lower bound ε and thus n and contributes a logarithmic factor in the exponent of the probability

bounds and in the expectation bounds for the risk. A much finer characterization may be obtained

via `1 covering numbers (see, for example, [SAJ04]). On the other hand, quantization gives us a

finite class to work with, so that we can avail ourselves of a simple union bound. We first restate

Theorem 60 more generally for any finite class, as follows.

Theorem 61 (Relative uniform convergence). Let τ > 0. If P is lower bounded by δ > 0, we then

have the following relative uniform convergence of the empirical risk over lower-bounded Q > ε

in any finite class Q :

Pr

{
sup

Q∈Q ,Q>ε

R(Q)−Rn(Q)√
R(Q)

> τ

}
≤ exp

− nτ2

20log 1
ε
+3τ

√
1
δ

log 1
ε

+ log |Q |

 .

Let us now prove this theorem. Let Q > ε be any given lower-bounded conditional

probability matrix. Let KL = ∑i j πPi j log Pi j
Qi j

and define b(x,y) = 1√
KL

log Pxy
Qxy

. Let B = b(X ,Y )

and Bs = b(Xs,Ys). Then the main quantity of interest is:

Sn = E[B]− 1
n

n

∑
s=1

Bs
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We have:

Ψ(λ) := logE
[
eλSn

]
= λE[B]+n logE

[
e−λB/n

]
(4.8)

≤ λE[B]+n
(
E
[
e−λB/n

]
−1
)

(4.9)

= n E
[
e−λB/n +λB/n−1

]
(4.10)

= n ∑
t≥2

(λ/n)t

t!
E[(−B)t ]

Assume πiPi j > δ. For t ≥ 2, we have

E[(−B)t ] = (−1)t
∑
i j

πiPi j logt Pi j

Qi j
(4.11)

≤∑
i j

πiPi j

∣∣∣∣log
Pi j

Qi j

∣∣∣∣t = ∑
i j

[
(πiPi j)

1/t
∣∣∣∣log

Pi j

Qi j

∣∣∣∣]t

(4.12)

≤

[
∑
i j

(
πiPi j

)2/t log2 Pi j

Qi j

]t/2

(4.13)

≤ δ
1−t/2

[
∑
i j

πiPi j log2 Pi j

Qi j

]t/2

= δ
1−t/2E[B2]t/2

Going back, define φ(u) = eu−u−1, c = 1
n

√
1
δ
E[B2], and v = 1

nE[B
2]. We then have:

Ψ(λ)≤ nδ ∑
t≥2

(λ/n)t

t!

(
1
δ
E[B2]

)t/2

(4.14)

= nδφ

(
λ

n

√
1
δ
E[B2]

)
=

v
c2 φ(cλ).

This is of the Poisson form, see for example Theorem 2.9 of the concentration book, and

implies in particular the following Bernstein-type inequality:

Pr{Sn > τ} ≤ exp
[
− τ2

2(v+ cτ/3)

]
(4.15)
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The following result bounds the second moment of the log-loss by its mean.

Lemma 62 (log-Loss Second Moment). Let

vn(Q) =
1
n

∑i, j πiPi j log2 Pi j
Qi j

∑i, j πiPi j log Pi j
Qi j

.

Then if ε≤ e−2 we have that:

max
Q:Q>ε

vn(Q)≤ 10
n

log
1
ε
.

The proof of this result may be found in the following section, along with the proofs of

the near-realizability Lemma 55 and de-quantization Lemma 59.

Using the bound E[B2]< 10log 1
ε

of Lemma 62 in Equation (4.15), we then have:

Pr{Sn > τ} ≤ exp

− nτ2

20log 1
ε
+3τ

√
1
δ

log 1
ε


Theorem 61 then follows by applying a union bound over all lower-bounded Q in P . To

obtain the stated form of Theorem 60, we simply apply to the class Pm,L given by Definition 56

which has cardinality at most (2Le+ e)2km, and use the bound v̄n ≤ 10
n log 1

ε
given by Lemma 62.

Recall that Qn denotes the minimizer of the penalized risk of Equation (4.4). Let Q̃n be a

quantization of Qn. If Qn is lower-bounded by ε, then by the de-quantization Lemma 59 Q̃n is

lower-bounded by ε̃ = ε− 2
L . Let us assume that L > 4

ε
, and thus we have ε̃ > ε/2.

Theorem 60 implies that for any Q̃ in Pm,L, and in particular for Q̃n we have:

Pr

{
R(Q̃n)−Rn(Q̃n)√

R(Q̃n)
≥ τ

}
≤ exp

− nτ2

20log 1
ε
+3τ

√
1
δ

log 1
ε

+2km log(2Le+ e)

 . (4.16)

We now would like to go from this probability bound to an expectation bound. We do so

via the following integration lemma. For this, observe that we can always trivially substitute the
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bound of Equation (4.16) with 1, whenever it is greater than 1.

Lemma 63 (Integration). If X and Y are two random variables, X is non-negative, and for all

τ > 0

Pr
{

X−Y√
X
≥ τ

}
≤min

{
e−

τ2
2v+cτ

+H ,1
}

then for H ≥ 5

E[X ]≤ 4E[Y ]+24vH +6c2H2.

This result is a generalization of the realizable-case integration, where Y is identically 0,

and one recovers faster rates. By applying Lemma 63 to Equation (4.16), we get:

E[R(Q̃n)]≤ 4E[Rn(Q̃n)]+24vH +6c2H2,

with H = 2km log(2Le+ e), v = 10
n log 2

ε
, and c = 3

n

√
1
δ

log 2
ε
.

Next, continuing to assume that L > 4
ε
, we can apply the de-quantization Lemma 59 twice

to bound:

E[R(Qn)]≤ E[R(Q̃n)]+
4
εL

(4.17)

≤ 4E[Rn(Q̃n)]+24vH +6c2H2 +
4
εL

(4.18)

≤ 4
(
E[Rn(Qn)]+

4
εL

)
+

4
εL

+24vH +6c2H2 (4.19)

= 4E[Rn(Qn)]+
20
εL

+24vH +6c2H2

Using the near-realizability Lemma, we know that for any α ∈ (0,1)

E[Rn(Qn)]≤ 2kα+
km
n

log
(

1+ kα

α

)
.
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In particular, choose α = 1/2n:

4E[Rn(Qn)]≤ 4
k
n
+4

km
n

log(2n+ k).

Since the optimal solution Qn is a stable point of the algorithm by Theorem 52, we can

deduce that we can choose ε = 1/(2n+ k) as a lower bound. Also, since k ≥ 2 then for n≥ 3 we

have that ε < e−2 and the choice L = (2n+k)2−1 handily satisfies L > 4
ε

and H ≥ 5, thus all the

assumptions of scale that we have made. Also we can simplify H < 8km log(4n+2k), and using

δ > km
n we get:

24vH ≤ 3840
km
n

log2(4n+2k),

6c2H2 ≤ 432
km
n

log2(4n+2k),

and
20
εL
≤ 11

n
.

Generously combining all these bounds, we obtain:

E[R(Qn)]≤ 4291
km
n

log2(4n+2k).

4.D Proofs of Lemmas

Proof. (Lemma 55, Near-realizability) • Define

f (C)
def
= min

W,H

(
∑
i, j

Ci j

n
log

1
(WH)i j

+
1

2n ∑
i,`

log
1

Wi`
+

1
2n ∑

`, j
log

1
H` j

)
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and let QA(C) = W A(C) ∗HA(C) be the minimizer of f (C). Here we show that the expected

empirical risk for the estimator QA is small, namely,

E[Rn(QA)] = E
[
∑
i, j

Ci j

n
log

Pi j

QA
i j(C)

]
= ∑

i, j
πiPi j logPi j +E

[
∑
i, j

Ci j

n
log

1
QA

i j(C)

]
(4.20)

For notational simplicity we drop the dependence of QA, W A, and HA on C. Since f (C) is a

point-wise minimum of linear functions, it is concave and therefore

E[ f (C)] = E

[
∑
i, j

Ci j

n
log

1
QA

i j
+

1
2n ∑

i,`
log

1
W A

i`
+

1
2n ∑

`, j
log

1
HA
` j

]

≤ f (E[C])

= f (nπP)

= min
W,H ∑

i, j
πiPi j log

1
(WH)i j

+
1

2n ∑
i,`

log
1

Wi`
+

1
2n ∑

`, j
log

1
H` j

.

≤∑
i j

πiPi j log
1

(ÃB̃)i j
+

1
2n ∑

i,`
log

1
Ãi`

+
1

2n ∑
`, j

log
1

B̃` j
.

Let Ãi`
def
= Ai`+δ

1+mδ
and B̃` j

def
=

B` j+δ

1+kδ
, continuing from (4.20),

E[Rn(QA)]≤∑
i, j

πiPi j log
Pi j

∑l

(
Ai`+δ

1+mδ

)(
B` j+δ

1+kδ

) +
1
2n ∑

i,`
log

1
Ãi`

+
1

2n ∑
`, j

log
1

B̃` j
. (4.21)
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For the first expression in the right hand side (4.21), we have

∑
i, j

πiPi j log
Pi j

∑`

(
Ai`+δ

1+mδ

)(
B` j+δ

1+kδ

) = ∑
i, j

πiPi j log
Pi j(1+mδ)(1+ kδ)

∑`Ai`B` j +∑` δ[Ai`+B` j]+∑` δ2

(a)
≤ ∑

i, j
πiPi j log

Pi j(1+mδ)(1+ kδ)

Pi j +δ+δPi j +mδ2

= ∑
i, j

πiPi j log

(
(1+mδ)(1+ kδ)

1+δ

(
Pi j

Pi j +
δ+mδ2

1+δ

))

≤∑
i, j

πiPi j

(
log(1+mδ)+ log(1+ kδ)

)
(b)
≤ (m+ k)δ

≤ 2kδ.

Where (a) is because ∑`Ai` = 1 and Pi j = ∑`Ai`B` j ≤∑`B` j. Also (b) follows from log(1+x)≤

x.

For the second and the third terms in (4.21), we have

1
2n ∑

i,`
log

1
Ãi`

+
1
2n ∑

`, j
log

1
B̃` j
≤ km

2n
log

1+mδ

δ
+

km
2n

log
1+ kδ

δ

≤ km
n

log
1+ kδ

δ
,

and therefore

E[Rn(QA)]≤ 2kδ+
km
n

log
1+ kδ

δ
.

Choosing δ = 1
2n leads to the lemma.

Proof. (Lemma 62, log-Loss Second Moment) • For clarity, we write out the proof for the

vector case, i.e. where p and q are single distributions. In particular, we show that for all k, p and
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q > ε with ε≤ e−2, we have:
∑

k
i=1 p j log2 p j

q j

∑
k
i=1 p j log p j

q j

≤ 10log
1
ε
.

The claim then holds by identifying k with k2, p with πP and q with πQ.

We show that for each term we have the following inequality:

p j log
p j

q j
≥ (p j−q j)+

1
10

p j log2 p j
q j

log 1
ε

, (4.22)

and therefore we can write ∑ j p j log p j
q j
≥ ∑ j(p j− q j)+

1
10

p j log2 p j
q j

log 1
ε

= 1
10log 1

ε

∑ j p j log2 p j
q j

. To

prove (4.22), we consider different cases and prove for each case separately.

If p j > q j and p j−q j ≤
p j
2 , then

p j−q j +
p j log2 p j

q j

10log 1
ε

(a)
≤ (p j−q j)+

2
10log 1

ε

(p j−q j)
2

p j

(b)
≤ (p j−q j)+

(p j−q j)
2

2p j
+ ∑

j=3

(p j−q j)
j

jp j−1
j

(c)
= p j log

p j

q j
,

where (a) follows from log2 p j
q j
= log2 1

1−
p j−q j

p j

and log2(1−x)≤ 2x2 for x≤ 0.5. Also (b) follows

from 5log 1
ε
≥ 2 and (c) from Taylor expansion of log q j

p j
around 1.

Similarly if q j < p j and q j− p j ≤
p j
2 ,

p j−q j +
p j log2 p j

q j

10log 1
ε

(a)
≤ (p j−q j)+

1
10log 1

ε

(q j− p j)
2

p j

(b)
≤ (p j−q j)+

(q j− p j)
2

2p j
+ ∑

j=3

(p j−q j)
j

jp j−1
j

(c)
= p j log

p j

q j
,
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where (a) follows from log2 p j
q j

= log2 1
1+

q j−p j
p j

and log2(1+x)≤ x2 for x≤ 0.5, (b) follows from

the fact that ∑ j=3
(p j−q j)

j

jp j−1
j
≥−1

2
(p j−q j)

2

2p j
and 10log 1

ε
≥ 4 and (c) from Taylor expansion of log q j

p j

around 1.

Now consider the case where q j > p j and q j− p j >
p j
2 . Then,

(p j−q j)+
p j log2 p j

q j

10log 1
ε

(a)
≤ (1− 2

10log 1
ε

)(p j−q j)

Where (a) follows from p j log2 p j
q j

= p j log2 1
1+

q j−p j
p j

and log2(1+x)≤ x. Using Taylor expansion

and the inequality log(1+ x) ≤ 0.9x for x > 0.5, we have |p j log p j
q j
| ≤ 0.9|p j − q j|. Hence,

(p j−q j)(1− 2
10log 1

ε

)≤ p j log p j
q j

if ε < 1
e2 .

Finally, for the case p j > q j and p j−q j >
p j
2 , log p j

q j
≤ log 1

ε
and

(p j−q j)+
p j log2 p j

q j

10log 1
ε

≤ (p j−q j)+
1

10
p j log

p j

q j
.

By Taylor expansion of log q j
p j

and the inequality (p j−q j)
p j
≤ 1

2 ,

p j log
p j

q j
= (p j−q j)

[
1+ ∑

j=1

(p j−q j)
j

( j+1)p j
j

]
≥ 10

9
(p j−q j),

and therefore (p j−q j)+
1

10 p j log p j
q j
≤ p j log p j

q j
. For the final result over the entire matrix of P

and Q, we average the inequality across all i.

Proof. (Lemma 63, Integration) •

Let us write Y = Y+−Y−, where Y+ = Y · 1{Y ≥ 0} and Y− = Y · 1{Y ≤ 0}. First let’s

consider the non-negative part of Y and note that X−Y+√
X
≥ τ is equivalent to X ≥

(√
Y + τ2

4 + τ

2

)2

,

by solving a quadratic equation and eliminating the one of two implied inequalities that gives
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√
X < 0. Because Y+ ≥ Y , X−Y+√

X
> τ implies X−Y√

X
> τ and thus

Pr
{

X−Y+√
X

> τ

}
≤ Pr

{
X−Y√

X
> τ

}
≤ f (τ).

We then have that, for all t > 0:

1− f (τ)≤ Pr

{
X <

(√
Y++ τ2

4 + τ

2

)2
}

(4.23)

≤ Pr

{
X ≤ t or t <

(√
Y++ τ2

4 + τ

2

)2
}

(4.24)

≤ Pr{X ≤ t}+Pr

{
t <
(√

Y++ τ2

4 + τ

2

)2
}

where the second line follows form the fact that the original event implies that one or the other of

the two events hold (if both fail then the original event doesn’t hold), and the second inequality is

a union bound. It follows that for all τ > 0 and t > 0

Pr{X > t} ≤ Pr

{(√
Y++ τ2

4 + τ

2

)2

> t

}
+ f (τ).

In particular, we can choose τ according to t. Let τ2 = at for some a∈ (0,1). Then Y+ > (1−
√

a)t

is equivalent to
(√

Y++ τ2

4 + τ

2

)2

> t, and we can write for all t > 0

Pr{X > t} ≤ Pr
{

Y+
1−
√

a
> t
}
+ f (
√

at). (4.25)

Now write Λ =
∫

∞

0 f (
√

t)dt, use the fact that for a non-negative random variable Z,∫
∞

0 Pr{Z > t}dt = E[Z], and integrate both sides of Equation (4.25), to obtain:

E[X ]≤ 1
1−
√

a
E[Y+]+

Λ

a
.
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Choosing a good trade-off with a = 1
2 and noting that 1− 1√

2
> 1

4 , we get:

E[X ]≤ 4E[Y+]+2Λ. (4.26)

Now consider the non-positive part of Y . Observe that Y− > t implies that X−Y√
X

> X+t√
X
>

√
4t. That last inequality follows from optimizing the middle expression over all X > 0 (or

equivalently completing the square). Thus

Pr{Y− > t} ≤ Pr
{

X−Y√
X

>
√

4t
}
≤ f (
√

4t).

By integrating both sides as before and rearranging, we get:

E[Y−]≤
Λ

4
⇒ 0≤−4E[Y−]+Λ. (4.27)

By combining Equations (4.26) and (4.27), we obtain:

E[X ]≤ 4E[Y ]+3Λ. (4.28)

Lastly, we integrate f . Recall that f is of the form:

f (τ) = min
{

e−
τ2

2v+cτ
+H ,1

}

Perform the change of variable τ =
√

t, and let t0 be the point of switch of f (
√

t) between

1 and the exponential tail. By solving a quadratic equation, we obtain:

t0 =

[√
2vH +

c2H2

4
+

cH
2

]2

≤ 4vH + c2H2,

where for the last expression we have used Jensen’s inequality, 1
2
√

a+ 1
2

√
b≤

√
a+b

2 . It follows
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that: ∫ t0

0
f (
√

t)dt ≤ t0 ≤ 4vH + c2H2.

Now note that g(τ) = τ2

2v+cτ
is convex and g(

√
t0) = 0. We can thus bound it from below

with the tangent line at
√

t0. We have the derivative

g′(τ) =
2τ(2v+ cτ)− cτ2

(2v+ cτ)2 = g(τ)
(

2
τ
− c

τ2 g(τ)
)
.

Recalling that g(
√

t0) = H, we get that:

g(
√

t)−H ≥ H
(

2√
t0
− cH

t0

)
(
√

t−
√

t0).

By using this tangent line bound with f (
√

τ) = e−g(
√

t)+H , we obtain:

∫
∞

t0
f (
√

t)dt ≤
∫

∞

t0
e−H

(
2√
t0
− cH

t0

)
(
√

t−
√

t0)dt

Now apply the change of variable s =
√

t−
√

t0 and note that dt = 2(s+
√

t0)ds we get

∫
∞

t0
f (
√

t)dt ≤ 2
∫

∞

0
(s+
√

t0)e
−H 2

√
t0−cH
t0

sds≤ 2
1+H(2

√
t0− cH)/

√
t0

H2(2
√

t0− cH)2/t0
t0,

where for the last bit we used
∫

∞

0 (x+a)e−bx = 1+ab
b2 .

Note that by using the definition of t0, we have

√
t0

(2
√

t0− cH)
=

1
2
+

1
2

cH/2√
2vH + c2H2/4

∈ [1
2 ,1]

using the lower end in the numerator and the upper in the denominator:

∫
∞

t0
f (
√

t)dt ≤ 2
1+2H

H2 t0.
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This shows that for H > 5, we have
∫

∞

t0 f (
√

t)dt ≤ t0

Adding both contributions to the integral, we obtain:

∫
∞

t0
f (
√

t)≤ 2t0 ≤ 8vH +2c2H2.
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Chapter 5

Towards Competitive N-gram Smoothing:

Contextual Distribution Estimation

5.1 Introduction

Statistical N-gram language models have a long and rich history, and it is hard to give

the literature justice in such a short space. The classical works are covered in the comprehensive

survey [CG99],which empirically studied different smoothing techniques. Smoothing is critical to

learning these models, since so much of the N-gram space remains unobserved. For a long time,

the most successful smoothing technique was the one proposed by Kneser and Ney [KN95b].

This led to several efforts to explain its properties, mainly its use of backoff: reverting to a

simpler model when data is scarce. Some of the best forays in this direction were the Bayesian

perspective described by the hierarchical Pitman-Yor language models in [Teh06b] and, more

pertinent to our work, the more recent developments exploring rank-reduction properties [HOF15,

PSDX13, FOO16]. Despite these, no clear and complete understanding of the joint mechanisms

of smoothing and back-off in Kneser-Ney have been suggested.

Perhaps this is due to the surge of neural networks and in particular recurrent neural

128



language models, which led to a significant jump in performance [MKB+10]. Neural language

models have since continued to achieve increasingly better results [MKS17, YDSC17, GHT+18,

TSN18, DYY+19]. Interestingly, N-gram techniques are still relevant as they usually run much

faster, and, can be used in conjunction with neural models to improve performance even fur-

ther [XWL+17]. Moreover, for low-resource languages, non-neural methods or a combination of

neural and non-neural methods are known to achieve the best performance [GML14].

For these reasons, we were motivated to lead the current effort to get a first theoretical

handle into N-gram models, and in particular the principles behind the practice of back-off.

As evidence of the promise of this exploration, we also report on a powerful generalization

of Kneser-Ney backoff, which is empirically able to compete with neural models, albeit those

limited to feed-forward architectures. It is worth mentioning that the smoothing aspect of N-

gram models, understood primarily as high-dimensional categorical distribution estimation, has

received attention. Part of the novelty of our perspective is to study back-off through the very

same lens, namely that of competitive distribution estimation. This notion was expressed most

clearly in the result of [OS15], where it was used to give a clear justification to the Good-Turing

estimator [Goo53], which is intimately related to Kneser-Ney.

Our contributions are as follows:

• We study this problem as a contextual distribution estimation problem. Apart from the fact

that this means we aim to learn conditional distributions, the objective function and notions

of competitivity have to both be carefully set. We do this in Section 5.3 and show that

competitivity is possible in the contextual setting, and give some evidence for the advantage

that Kneser-Ney has.

• We generalize the Good-Turing estimator to the contextual setting, in Section 5.4. The

idealized expression of this estimator cannot be used directly and needs to be smoothed,

just like in the non-contextual setting. We show that with the proper smoothing, contextual

Good-Turing recovers the Kneser-Ney estimator, when the tails of the distributions are
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power laws and are aligned.

• The idealized Good-Turing formula is much more powerful than the special case of Kneser-

Ney. We conjecture that it could potentially offer competitivity versus oracles that are

aware of intricate relationships between distributions in various contexts. We illustrate this

potential by giving a strict generalization of Kneser-Ney back-off, which we call Partial

Low-Rank, since it applies the rank structure only to the rare part of the data. Kneser-Ney

corresponds to the rank-1 special case.

• In Section 5.6, we show that Partial Low-Rank uniformly improves on Kneser-Ney on

various benchmarks. Furthermore, a nested trigram-level implementation of this approach

meets and slightly exceeds the performance of the feed-forward neural models on the Penn

Tree Bank data set. This advantage is only enhanced by considering that it can be trained

with a fraction of the time and space resources required for the neural model.

We start with some preliminaries in Section 5.2.

5.2 Preliminaries

We describe the problem generally. Let the context space be X and the prediction space

be Y . When finite, identify these spaces with X = [K] and Y = [k] respectively. Data is modeled

as n context/prediction pairs (Xt ,Yt)t=1,··· ,n. How is this data generated? Various scenarios may

be considered. In modeling sequence data, as in the case of language modeling, the ideal context

is usually the whole history. Namely, given an infinite history Xt
def
= (· · · ,Yt−2,Yt−1), there is a

conditional probability of observing the next word Yt . When the history is truncated to N− 1

words, this is called an N-gram model. Other history-to-context mappings Xt
def
= f (· · · ,Yt−2,Yt−1)

may also be considered, such as skip-grams or word embeddings [MCCD13, MSC+13]. If

the data consists of just a single long sequence, such as a text Y1,Y2,Y3, . . . ,Yn of n words, the
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context/prediction pairs that result from partitioning the text are correlated.

We simplify this by assuming that Xt are independently and identically drawn from

some distribution π over X . In this case, independently for each context Xt , we take Yt to be

distributed according to a conditional distribution Pi j
def
= P(Y = j|X = i). Note that for a given i,

pi
def
= (Pi j) j∈[k] is a distribution over Y . The matrix Ci, j = ∑t 1{Xt = i,Yt = j} then summarizes

the data.

Our goal can now be concisely stated as: given (Xt ,Yt)t=1,··· ,n or (Ci, j)i∈X , j∈Y , estimate

(Pi j)i∈X , j∈Y . We judge the performance of an estimator Q that maps data to contextual probabili-

ties, according to a suitably defined statistical risk. The primary goal of contextual probability

estimation is to make accurate predictions, requiring the estimated conditional probability to be

close to its true value on new data.

We consider the underlying risk of an estimator as being the KL-risk, defined as the

averaged per-context Kullback-Leibler divergence

Dπ(P‖Q)
def
= ∑

i
πi ∑

j
Pi j ln

Pi j

Qi j
, (5.1)

which captures relative closeness of estimated and true probabilities, on average. It is the risk

associated with the log-loss and, up to the entropy, is the population cross-entropy of Q. Since Q

is random, guarantees are often given in terms of the expected KL-risk rn(π,P,Q) = E[Dπ(P‖Q)]

or as high-probability or worst-case bounds.

Ideally, we would like to have the best Q possible, an optimal one. In the non-contextual

setting, when K = 1, one measure of optimality is worst-case risk with respect to a class P ,

rn(Q,P ) = maxP∈P rn(π,P,Q). The best possible such risk is known as the minimax risk of the

class, rn(P ) = minQ rn(Q,P ). A minimax optimal Q (either exactly or in rate) is desirable but

pessimistic: minimax optimality does not capture the possibility of the truth being in a smaller

class. The competitive loss with respect to a family F , which contains many such (some small,
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some big) classes, is a more optimistic notion. It is defined as ε(Q,F ) = maxP∈F [rn(Q,P )−

rn(P )]. This is related to the notion of adaptivity in statistics.

Think of a family and an oracle that can determine exactly which P in F we have, and

does the best for it. When an estimator has small ε it means it manages to do as well as this

oracle itself. To see the reason for optimism, say P is nice, with a small rn(P ). The estimator will

achieve this small risk, even if F contains such large classes for which rn(P ) is enormous. If an

estimator has ε that is of the same order as the minimax risk, we call it competitive. It effectively

discovers the true P . We currently have a nascent theory for non-contextual estimators that are

competitive with respect to rich families. These include the works that show that the Good-Turing

estimator combined with the empirical estimator has dimension-free competitivity, [OS15], and

that the absolute discounting estimator competes with oracles aware of the effective alphabet size

of the distribution, [FOOP17]. A similar notion can also be found in [VV15].

In the bigram setting, K = k, Kneser-Ney back-off can be described as follows. For every

context / row of C, perform absolute discounting, defined, for a given α < 1 as:

Qi j = (Ci j−α)/ni, when Ci j > 0, and where ni = ∑ j Ci j,

the overall missing mass discounted through the α has to then be redistributed over unseen

predictions with Ci j = 0. If we perform this redistribution uniformly, then this is row-wise absolute

discounting, equivalent roughly to row-wise Good-Turing [FOOP17]. But instead, Kneser-Ney

backs-off to an alternate distribution, by redistributing the missing mass proportionally to backoff

counts b j = ∑i 1{Ci j > 0}. The variant proposed by Chen-Goodman [CG99] performs a further

absolute discounting on b, and redistributes proportionally to (b j−α)/∑ j′ b j′ , and once again

the missing mass within the b is uniformly distributed over the b j that are zero. Despite being

such a simple estimator, Kneser-Ney backoff, and especially the Chen-Goodman variant held

state-of-the-art performance for a while.
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5.3 Theoretical Insights

We now give a tentative theoretical exploration of the advantage of back-off through the

lens of competitive distribution estimation. Let us first define the contextual competitive loss of

an estimator Q, with respect to a family F of classes. In general F contains classes C , which are

sets containing pairs (π,P). To simplify, we take π to be arbitrary, or equivalently each C is of

the form ∆K×P where P is a class of Ps only. The competitive loss of an estimator is then:

εn(Q,F ) :=max
C∈F

max
(π,P)∈C

[rn(π,P,Q)− rn(P )] , (5.2)

= max
∆K×P∈F

max
π∈∆K

max
P∈P

[rn(π,P,Q)− rn(P )] , (5.3)

where the risk of the estimator Q is its expected KL-risk,

rn(π,P,Q) = E(xn,yn)∼πP
[

∑i πi ∑ j Pi j log Pi j
Qi j

]
, (5.4)

and the minimax risk of the class C = ∆K×P achieved by an optimal estimator QC ,

rn(P )
def
= min

Q
max
π∈∆K

max
P∈P

rn(π,P,Q). (5.5)

The choice of family F is again equivalent to competing with an oracle/genie that can determine

the true (π,P) up to a class C which it belongs to. We are in particular considering oracles that

are uninformed about π, but know that P belongs to some class P allowed by F .

5.3.1 Basic competitivity

Consider an oracle F1 that knows each row of P up to permutation. Is it possible

to compete with it? Intuitively, one ought to be able to, by reducing to the non-contextual

competitive estimator in each context. There are some subtle points to consider, however. One is
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the fact that the number of samples that each context receives is random. More importantly, the

number K of contexts plays a role in how competitive we can be.

Let QGT be the per-context Good-Turing estimator. This analysis also describes absolute-

discounting applied to data from each context separately. Out of n total samples, let ni denote

those that fall in context i. In the non-contextual case, the Good-Turing estimator with n samples

has a competitive loss of O(min{ 1√
n ,

k
n}). Note that it is dimensionless in the high-dimensional

regime. So we intuitively expect the same to hold per context. We formally extend this to the

overall contextual case.

Theorem 64. We have εn(QGT,F1)≤ O
(

min{1,
√

K
n ,

K·k
n }
)

. This implies three distinct regimes:

εn(QGT,F1)≤



O(K·k
n ) n > K · k2

O(
√

K
n ) K < n < K · k2

O(1) n < K

The proof is in the supplements (Appendix 5.A). Theorem 64 thus generalizes non-

contextual results in a data-diluted form: effectively replacing n by n/K. The first case is the

low-dimensional regime. Perhaps the most relevant is the middle high-dimensional regime.

This often holds in the case of bigrams (K = k) and trigrams (K = k2). In this case we recover

the prediction-dimensionless (in k) bound. For large K and k, this loss is negligible compared

to the minimax risk [FOO16], implying true competitivity (for more on minimax risks see

the supplements, Appendix 5.B). Not that in the third (extreme high-dimensional) regime, the

unobserved contexts give no advantage to this oracle, leading to a competitivity that does not

decay but also does not depend on the number of contexts.
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5.3.2 Stronger competitivity

In this chapter, we conjecture that the advantage of back-off is in providing a much

stronger form of competitivity. We use the following intuition. The competitivity of the Good-

Turing estimator shows that the difficulty of the problem is not in estimating the multiset of

probabilities as much as it is in identifying in which permutation they map to the categories, the

only task of the oracle given data. One can think of this as aligning the tail of the distribution.

In the contextual setting, this intuition still persists. But another joins it: tails are often related

across contexts, and since the identities of the categories are shared across contexts, the oracle

then ought to be able to better align within each context too. To make this intuition concrete,

consider the following idealized scenario.

Consider an oracle F2, that knows P has exactly m≤ k non-zero columns, but not which

ones they are. Thus P ∈ F2 are indexed simply by m. This idealizes two aspects of the problem.

First, there is a non-ambiguous tail (the zeros) in each context. And second, all these tails are

clearly correlated across contexts by being aligned. It turns out that the Kneser-Ney back-off

estimator QKN strongly competes with this oracle.

Theorem 65. If n� k then

ε(QKN,F2)≤ O
(

k
n

)
.

Consider the regime where n > k2/K. Usually K ≥ k, think of N-grams, in which case it

would suffice that n > K. It is easy to verify that in this regime the bound of Theorem 65 is strictly

better than that of Theorem 64, and has the distinct benefit of not scaling with the dimension

of contexts. It is also worth mentioning that the proof of this result (supplements, Appendix

5.A) gives the finer class-by-class competitive loss of O(m/n). QKN achieves this without prior

knowledge of m.

We believe this simple case reinforces the idea that tail alignment across contexts is a

fruitful avenue for competitivity in the contextual case, just as tail alignment within contexts was
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a fruitful one in the non-contextual case. Classes that ease the latter alignment, such as power

law decay or small effective support size, enjoy lower competitive loss by QGT. These factors

are invariant under permutations. This suggests that unlike the oracle F1 that permutes within

each context separately, the natural notion of invariance in the contextual case ought to be under

simultaneous permutation across contexts, i.e. permutation of entire columns of P.

5.4 Contextual Good-Turing

Motivated by this theoretical foray, and with the goal of giving a principled underpinning

to Kneser-Ney smoothing and the hope of deriving estimators with more favorable competitive

properties, we revisit the derivation of the original Good-Turing estimator and extend it to the

contextual case.

Good-Turing is based upon an empirical Bayes construction. To parallel it in the contextual

setting, assume the multiset of the columns of P is known and that P is instanced via a uniformly

random permutation of these columns. Let x be some context and y be some prediction, such

that our ultimate goal is to estimate Pxy. The chance that y is any particular j ∈ [k] is a priori

1/k, and thus E[Pxy] = 1/k. But having made some observations, we would like to determine

the conditional expectation of Pxy given that there are n := (ni)i∈[K] samples in each context and

given that y has been observed in each context c := (Ci,y)i∈[K] times1. Starting with the simple

observation that

Pr{c | n, y = j}= ∏
i

(
ni

Ci j

)
PCi j

i j (1−Pi j)
ni−Ci j ,

one can show that

E[Pxy | n,c] =
∑ j ∏i PCi j+1{i=x}

i j (1−Pi j)
ni−Ci j

∑ j ∏i PCi j
i j (1−Pi j)ni−Ci j

≡ cx +1
nx +1

E[Kn+1x,c+1x |n]
E[Kn,c|n]

. (5.6)

1Note that this is not the entire information useful to determine the permutation, just local information that makes
the task tractable.
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Here Kn,c is the number of columns that have exactly the c count pattern. The expectation of

this quantity is column-permutation invariant, thus can be computed from the multiset. The

Good-Turing approach is to use this expression as an estimator, substituting the expectations

with their empirical counterparts (with the shift of nx +1 to nx, since the additional sample is not

available empirically):

P̂xy =
cx +1

nx

Kn,c+1x

Kn,c
. (5.7)

The challenge is that, even in the non-contextual case, these can be highly unreliable, and

one needs to smooth them, such as by combining with the empirical distribution in the abundant

range or by using absolute discounting. In the contextual case, even more smoothing is needed: c

may be observed, but it’s very unlikely that c+1x is, and the estimator degenerates. How can we

remedy this?

5.4.1 From Contextual Good-Turing to Classical Back-off

Back-off is an intuitive notion, but was originally proposed in an ad hoc fashion. We now

show that contextual Good-Turing naturally gives rise to back-off. We start by observing that

if one sums the total probability assigned to all symbols that appear µ times in context x, the

estimator (5.7) gives us back the non-contextual Good-Turing estimate of that probability:

∑
y:c(y),cx(y)=µ

Kn,c(y)P̂xy =
µ+1
nx +1 ∑

y:c(y),cx(y)=µ
Kn+1x,c(y)+1x =

µ+1
nx +1

Knx,µ+1(x)

This shows that (5.7) simply redistributes this mass. This is the main premise of Kneser-Ney

back-off. Does it redistribute it similarly to QKN? In general, no. But we can identify when

exactly it does. We give the following general smoothing strategy, which we can think of as

binning. For a given x, choose an equivalence ∼, compatible with the contextual Good-Turing

estimator, namely that satisfies (1) c∼ c′ implies cx = c′x (fixes x) and (2) if c∼ c′ then cσ ∼ c′σ

for any permutation σ of [K] (invariant under permutations of contexts). We smooth by spreading
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probability within each equivalence bin and counting all equivalent c as being identical:

P̃xy =
Kn+1x,∼c+1x

Kn,∼c
. (5.8)

We can verify that this preserves the mass redistribution property. Let nnz(c) = ∑i 1{ci >

0} count the number of non-zero entries of c. Then the following defines a possible equivalence

class:

c∼ c′⇐⇒

 cx = c′x

nnz(c) = nnz(c′)
(5.9)

In this case we can characterize the redistribution accurately, at least in its idealized form.

Theorem 66. Use the equivalence relation of Equation (5.9) in the smoothed contextual Good-

Turing estimator (5.8), where the counts K are substituted by their idealized expectations. Then:

P̌xy =
µ+1
nx +1

∑ j
(nx+1

µ+1

)
Pµ+1

x j (1−Px j)
nx−µρb j

∑ j
(nx

µ

)
Pµ

x j(1−Px j)nx−µρb j
,

where b = nnz(c) and ρb j = ∑
S⊂[K]\{x} : |S|=b

∏
i∈S

[1− (1−Px j)
ni] ∏

i∈Sc\{x}
(1−Px j)

ni.

We omit the proof of this result, since it’s straightforward manipulations. It is more

important to observe that, apart from ρ, this is exactly the non-contextual Good-Turing expression.

Thus ρ acts as a redistribution coefficient. In general, it does not quite redistribute like Kneser-

Ney: unlike it, ρ depends on the context x. Observe however that only the small values (of the

order of 1/ni) of Px j contribute to ρ. Let us assume that these values are aligned across rows

(do not depend on x), that they have a power law decay of index α, and that the ni are roughly

uniform. We can then show that the effect of ρ is asymptotically approximately given by (see

supplements, Appendix 5.A):

P̌xy ∼
µ+by−α

n+by
. (5.10)
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For the unseen symbols, when µ = 0, this recovers the Chen-Goodman version of Kneser-Ney

smoothing (see Section 5.2, and note that by is negligible with respect to n.)

5.5 Partial Low-Rank N-gram Backoff

It is enlightening that contextual Good-Turing, an empirical Bayes estimator derived from

column-permutation invariance, when properly smoothed, recovers classical forms of back-off

under the kind of tail alignment conditions that make these competitive in the first place. It is then

natural to ask whether contextual Good-Turing’s competitive properties extend further than such

obvious alignment, especially that it is not explicitly aware of it. Indeed, column-permutation

invariance has the potential to capture a much richer family of tail structures: the rank of P, its

sparsity, the dimension of the manifold on which each row of P lies, such as the the embedding

dimension in typical neural embeddings, and many other classical structures, are all invariant

under such permutation.

What is needed to achieve this generality is a more flexible smoothing of the idealized

contextual Good-Turing formula of Equation (5.6). Based on this idea, we now give a direct

generalization of bigram Kneser-Ney smoothing. First, refine the equivalence relation given by

(5.9), and use instead

c∼ c′⇐⇒

 cx = c′x

∀i 1{ci > 0}= 1{c′i > 0}
(5.11)

Two columns are thus considered equivalent if their non-zero patterns align. This is

clearly a coarser binning than maintaining the full identity of c, but is much finer than the

partition induced by (5.9). It is indeed too fine to effectively smooth Kn,c in general. However,

it allows us to create a hierarchy of refinements of which itself is one extreme, and Kneser-Ney

is another, a projection onto a subspace of one dimension. If we allow this subspace to be

of a larger dimension m, then we are equivalently representing the non-zero indicator matrix
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B = (Bi, j)i∈[X ], j∈[k], Bi, j = 1{Ci j > 0} by a rank-m approximation. Since this is not a low-rank

representation of the raw count matrix C, effectively only of its rare component, we dub it partial

low-rank or PLR.

The rank-1 approximation recovers Kneser-Ney backoff, and is easily obtained by col-

lapsing the counts by = ∑i Biy, which are then discounted to create the Chen-Goodman backoff

distribution. A general simultaneous rank-reduction and smoothing was proposed recently by

[FOOP17] based on multiplicative-update non-negative matrix factorization. That is what we

propose to apply to B for the general rank case. For a given partial low-rank m, the full algorithm

is given in Algorithm 1.

Algorithm 1 Partial Low-Rank (PLR)
1: inputs
2: Count matrix C, rank m, discount α, number of iterations T , (optional) initial W0 and H0
3: outputs
4: Distribution matrix QPLR, (optional) intermediate components A, ν, W , and H
5: Perform α absolute discounting on each row of C to obtain:
6: The abundant component A, Ai j = (Ci j−α)/ni
7: The missing mass vector ν, νi = diα/ni, where di = ∑1{Ci j > 0}
8: Generate the indicator matrix B, Bi, j = 1{Ci j > 0}
9: If W0 and H0 are not provided:

10: Initialize the K×m matrix W0 to be uniform 1/m in each row
11: Split B into m random row-blocks, collapse each to obtain the m× k soft-count matrix H̃0
12: Perform α absolute-discounting in each row of H̃0 to obtain H0
13: for t = 1 to T do
14: W̃t ←−

[
(C�Wt−1Ht−1)H

ᵀ
t−1
]
⊗Wt−1

15: Add 1/2 to each row of the soft-count matrix W̃ and normalize each row to obtain Wt
16: H̃t ←−

[
Wᵀ

t (C�WtHt−1)
]
⊗Ht−1

17: Perform α absolute-discounting on each row of the soft-count matrix H̃t to obtain Ht
18: end for
19: return QPLR = A+diag(ν) ·WT HT

Here ⊗ and � denote element-wise multiplication and division. When K = k, the PLR

algorithm applies as-is to perform bigram smoothing. With m = 1, it is identical to Kneser-Ney.

With larger m, it describes a much richer set of tail alignments. One could extend this to N-

grams in two ways, directly by setting K = kN−1, or by nesting like Chen-Goodman’s recursive
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application of back-off, by fixing sub-contexts [CG99]. This general nested back-off N-gram

smoothing algorithm, NPLR, along with other technical details of both algorithms, is presented

in the supplements (Appendix 5.C.) Iterations can be very efficiently implemented using either

sparse matrix manipulations or dictionaries. They run in linear time in n, as only observed

contexts need to be tracked.

5.6 Experiments

In this section, we reinforce the theory and concepts so far with experiments. The goal

is to show both that we can improve traditional smoothing techniques and that we can better

aid neural language models. Toward the first goal, we show improved performance not only in

language modeling, that is predicting the the next word given its history, but also the Global

Terrorism Database, where we predict the target type for the next attack for a given city.

5.6.1 N-gram language models

We perform word-level language modeling on the Penn TreeBank (PTB) data set [Mik12]

using standard splits (929k training tokens, 73k validation tokens, and 82k test tokens.) The

vocabulary size is 10k. We compare different models in terms of their perplexity, the exponentiated

exp(cross-entropy). These express the uncertainty in prediction, therefore, the lower, the better.

We compare the original Kneser-Ney (KN) with the NPLR algorithm (nested version of PLR).

We look at two variants, both of which are 5-gram models: partial low-rank applied either at only

the bigram level PLR (m2 = 30), or at both the trigram and bigram levels (m2 = 18,m3 = 4). At

higher levels, we maintain the KN structure in both cases, i.e. m4 =m5 = 1. We set (α2, · · · ,α5) =

(0.8,0.9,0.9,0.9). We also include three neural models, two 5-grams, one feedforward and one

LSTM, and one 13-gram feedforward, all reported in [CNB17]. Table 5.1 summarizes these

results. We show significant improvement over KN and a modest improvement over the 5-gram
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feedforward model. The gap with the 5-gram LSTM is expected, considering its extensive

weight-sharing, not done here. To the best of our knowledge, no other direct N-gram smoothing

technique, especially none of the attempts to explain and generalize back-off, have reported such

dramatic gains.

Table 5.1: Perplexity on PTB - NPLR smoothing surpasses KN and competes with feedforward
NNs

Method Test Perplexity

5-gram KN 143
5-gram NPLR m2 = 30,m3 = m4 = m5 = 1 131
5-gram NPLR m2 = 18,m3 = 4,m4 = m5 = 1 126
5-gram Feedforward NN [CNB17] 127

13-gram Feedforward NN [CNB17] 125
5-gram LSTM [CNB17] 103

5.6.2 LSTM language models with data noising

Recently, [XWL+17] utilized smoothing techniques as a data noising method for LSTM

language models. Replacing some words in the input data changes the counts of N-grams in

a way that applying an empirical estimator to the noised data is similar to applying N-gram

smoothing techniques to the non-noisy data. In Table 5.2 we show that PLR, if used as a data

noising technique, improves the perplexity of an LSTM language model more than all the other

techniques, even the best noising based on Kneser-Ney. The LSTM setup is the same as the

large-network used in [XWL+17] (2-layer LSTM with 1500 hidden units) and we trained our

models using the same setup as in [XWL+17, ZSV14]. The noising parameter is tuned based on

the validation data and the result is reported for the best noising parameter.
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Table 5.2: Effect of smoothing as data noising on validation and test cross-entropy for PTB

Noise scheme Validation Test

none [XWL+17] 81.6 77.5
unigram [XWL+17] 79.4 76.1
bigram Kneser-Ney [XWL+17] 76.2 73.4
PLR 75.5 72.7

5.6.3 Global terrorism target prediction

Language modeling is the flagship application of smoothing techniques and most of the

new techniques are put to test there. However, the challenge of predicting rarely seen elements

conditioned on some context, is present in a multitude of other natural applications. Even the

power-law structure of language is also present in many natural phenomena. Here we explore one

such alternative application: predicting terror incidents. We use the Global Terrorism Database

(GTD) [ftSoTtTS18], which includes systematic data about more than 180,000 cases of domestic

and international terrorist events from 1970 through 2017 for more than 36,000 cities around the

globe. The task that we consider is to estimate the probability of the next attack in a given city

has a specific target. This is a contextual probability estimation: the context is the city and the

prediction is the target type. There are 114 different target sub-types, such as restaurants, banks,

hotels, and etc.

We predict the type of the next attack in each city based on the prior incidents that

happened in that year and compare four different estimators: row-wise add-half, row-wise

absolute discounting, Kneser-Ney (KN), and PLR. Figures 5.1(b) and 5.1(a) show the benefit of

using data from different cities (different rows of the count matrix) when predicting for the target

type in a particular city. PLR and KN always have significantly better performances in predicting

the next attack’s type than row-wise estimators such as add-half and absolute discounting. Also,

PLR shows an edge over KN in terms of generalization power. In all experiments, PLR is set to

use rank m = 5 and the discount factor α = 0.9, and is run for 100 iterations.
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Lastly, we study how performance changes as the amount of data available for estimation

varies. For this, we base our predictions for a particular year and predict the target type for two

weeks in a month, using all the incidents before that time period in that year. As we move towards

the end of the year, the amount of data available for estimation increases. Figure 5.1(c) shows

how cross-entropy changes for different months in the year 2017. It is clear that the relative gain

of PLR is more in the case when data is not abundant. More experiments are reported in the

supplements (Appendix 5.D.)

5.7 Conclusion

We initiated a first theoretical exploration of N-gram smoothing, through the lens of com-

petitivity, and we discovered powerful new generalizations. We hope this to provide momentum

toward a mature theory and practice of competitive contextual distribution estimation.
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Figure 5.1: Test cross-entropy with training / test periods: (a) dates before / after 2015, (b) the
first 10 months / the last two months of the year, and (c) all dates prior to a month / that month
of the year.
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5.A Deferred Proofs

5.A.1 Proof of Theorem 64

We will need the following lemma.

Lemma 67. Let X ∼ Poi(λ), then, E[ 1√
x+1

]≤ 1√
λ

and E[ 1
X ]≤

1
λ

.

Proof.

E[
1√

X +1
] =

∞

∑
x=0

e−λ λx

x!
1√

x+1

=
∞

∑
x=0

√
x+1
λ

e−λ λx+1

(x+1)!

=
∞

∑
x=0

√
x

λ
e−λ λx

x!

=
E[
√

X ]

λ

≤
√
E[X ]

λ
=

1√
λ

where the last line is by Jensen’s inequality. Proof of the other part is similar and thus omitted.

Theorem 64. First note that if we do not observe any samples from a row, the competitive loss

will be zero as we do same as the oracle.
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Rewriting the competitive loss in (5.4):

ε(QGT,F1)
(a)
≤ max

π
max

P
max
P∈P

[
E(xn,yn)∼πP ∑

i
πi ∑

j
Pi j log

Pi j

QGT
i j ((xn,yn))

−max
π

max
P∈P

E(xn,yn)∼πP ∑
i

πi ∑
j

Pi j log
Pi j

QC
i j((xn,yn))

]
(b)
≤ max

π
max

P
max
P∈P

[
E(xn,yn)∼πP ∑

i
πi ∑

j
Pi j log

Pi j

QGT
i j ((xn,yn))

−max
P∈P

E(xn,yn)∼πP ∑
i

πi ∑
j

Pi j log
Pi j

QC
i j((xn,yn))

]
(c)
= max

π
Exn∼π ∑

i
πi

[
max

Pi
max
pi∈Pi

E(yn|xn)∼pi ∑
j

Pi j log
Pi j

QGT
i j ((xn,yn))

−max
pi∈Pi

E(yn|xn)∼pi ∑
j

Pi j log
Pi j

QC
i j((xn,yn))

]
(d)
≤ max

π
Eni∼π

K

∑
i=1

πi min{ 1
√

ni
,

k
ni
}

(e)
≤ max

π

K

∑
i=1

πiO(min{1, 1
√

nπi
,

k
nπi
})

( f )
≤ O(min{1,

√
K
n
,
K · k

n
})

where (a) is because any estimator gives us an upper bound on the competitive loss, (b) is by

removing maxπ from the second term in the bracket and make the term inside the bracket larger.

Also, (c) follows from the independence of rows’ distributions where Pi indicates the class of

distributions for the ith row induced by P , and pi is ith row distribution. Results of [OS15] yields

(d), (e) is by Lemma 67 and ( f ) follows from concavity of
√

x function. Note that adding O(1)

is because the competitive loss for each row is always less than a constant and this trivial bound

yields a better upper bound for the range n < K.
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5.A.2 Proof of Theorem 65

We show that Kneser-Ney estimator is competitive with respect to this oracle. Consider

the case where n� m. Since the oracle knows there are m columns with non-zero entries, with

enough samples, it gets to identify all those columns. Estimating each row of the transition

probability then becomes an easier task for the oracle in the sense that the effective support size

for each row is m� k. For example, if there is no observation from a particular row, the oracle

will assign unifrom distribution over m non-zero columns, whereas without knowing the fact that

the effective support size is m, one needs to assign uniform distribution over k� m elements. We

show that using Kneser-Ney estimator, the mass we assign to k−m zero columns in each row is

negligible and therefore we can compete with the oracle. To show competitivity we only need

to bound the mass our estimator assigns to the zero columns, since the oracle does not have any

extra knowledge about rest of the elements.

Lemma 68. If an estimator q for a given row assigns an expected mass η to the zero columns,

then

ε(q)≤ O
(

log
1

1−η

)
,

where ε is the contribution of that row to the competitive loss.

Proof. Since the oracle does not have any extra knowledge about the probabilities except that

the support size is m instead of k, we can do as well as the oracle, except for the fact that we are

assigning 1−η mass to the m non-zero columns. Therefore the loss for that particular row will

be O(log 1
1−η

).

Lemma 69 ( [FOOP17]). Let qGT be the Good-Turing estimator applied to estimate the back-off

distribution over k elements using n samples and let E[Φ1] be the expected number of elements

appearing exactly once in the sample set. Then the expected mass assigned to the unobserved

elements in the samples is

η ∝
E[Φ1]

n
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Theorem 65. We first bound the amount of mass the Kneser-Ney estimator assigns to the zero-

columns. The missing mass assigned to unobserved columns is the same as the mass assigned

to the unobserved elements by Good-Turing estimator applied to the vector of the number of

distinct elements seen in each column. By Lemma 69 we can bound the missing mass assigned

by Kneser-Ney by E[Φ1]
n , where E[Φ1] is the expected number of elements appeared once in the

vector of column distinct elements. But E[Φ1] < m trivially. Therefore, using Lemma 68 we

have ε(QKN,F2) ≤ O
(

log 1
1−m

n

)
≤ O

(m
n

)
for every m ≤ k, and the claim follows by choosing

the loosest bound.

5.A.3 Derivation of Equation (5.10)

Recall the expression of the smoothed Good-Turing estimator from Theorem 66, with the

common factors simplified:

P̌xy =
∑ j Pµ+1

x j (1−Px j)
nx−µρb j

∑ j Pµ
x j(1−Px j)nx−µρb j

,

where b = nnz(c) and

ρb j = ∑
S⊂[K]\{x} : |S|=b

∏
i∈S

[1− (1−Px j)
ni] ∏

i∈Sc\{x}
(1−Px j)

ni.

Without ρ, this is the non-contextual Good-Turing estimator. In order to characterize the

effect of ρ, let us make the following simplifying assumption:

• Let ni = m := n/K = for all i.

• Let all Px j (at least at contributing values near 1/m) be approximated by the same p j.

• We have a power-law p j, that is p j ∼ j−1/α.
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Then, we can write:

ρb j = ∑
S⊂[K]\{x} : |S|=b

∏
i∈S

[1− (1−Px j)
ni] ∏

i∈Sc\{x}
(1−Px j)

ni (5.12)

≈ ∑
S⊂[K]\{x} : |S|=b

∏
i∈S

[1− (1− p j)
m] ∏

i∈Sc\{x}
(1− p j)

m (5.13)

=

(
K−1

b

)
[1− (1− p j)

m]b(1− p j)
m(K−1−b) (5.14)

=

(
K−1

b

)
[(1− p j)

−m−1]b(1− p j)
m(K−1) (5.15)

≈
(

K−1
b

)
(mp j)

b(1− p j)
m(K−1)

It follows that:

P̌xy ≈
∑ j pµ+b+1

j (1− p j)
n−µ

∑ j pµ+b
j (1− p j)n−µ

, (5.16)

=
µ+b+1
n+b+1

∑ j
(n+b+1

µ+b+1

)
pµ+b+1

j (1− p j)
n−µ

∑ j
(n+b

µ+b

)
pµ+b

j (1− p j)n−µ
, (5.17)

∼ µ+b−α

n+b
asymptotically, for µ+b > 0.

The last asymptotic expression follows from the typical analysis using regular variation /

power-laws (see, for example, [OD12a] and [BBO17]). Since the b term in the denominator will

be generally negligible compared to n (for power-laws, the overall number of distinct symbols

grows as nα with α ∈ (0,1)), it is clear that whenever µ = 0 and b ≥ 1, the mass is distributed

proportionally to b−α. This doesn’t inform about the b= 0 case, but by redistributing it uniformly

one recovers a single-depth version of Kneser-Ney back-off. More generally, one could iterate

this as is done by Chen-Goodman and as generalized in Section 5.5.
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5.B Minimax risks

To place the competitivity results in context, we also provide some minimax analysis for

the estimation of the conditional probability matrix of size K× k using n samples. The minimax

risk for the class of all distributions with K contexts and prediction space size k is:

rn(∆K,k) = min
Q

max
π,P

E(xn,yn)∼πP

K

∑
i=1

πi

k

∑
j=1

Pi j log
Pi j

Qi j

For the special case of K = 1 this definition will be the same as one-dimensional minimax risk

(see [KOPS15]). The non-contextual minimax risk has been widely studied and fully resolved in

the most general case, namely all i.i.d. distributions. In particular, [BS04] showed that for the

range n� k,

rn(∆1,k) =
k−1

2n
(1+o(1)) ,

and [Pan04] showed that for the range n� k,

rn(∆1,k) = log
k
n
.

A more refined non-contextual minimax risk was defined in [FOOP17], capturing the dependence

of minimax risk based on the number of distinct elements D observed in n samples. For a given n

and k, let Pd be the set of all distributions for which E[D]≤ d. Then for some constant c,

rn(Pd)≤
d
n

log
k− d

2
d
2

+ c · d
n

Using an estimator for each row independently based on the samples observed from that
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particular row upper bounds the minimax risk, namely,

rn(∆K,k)≤max
π

Exn∼π

K

∑
i=1

πi min
Qi

max
Pi

Eyn|xn∼Pi

k

∑
j=1

Pi j log
Pi j

Qi j

≤max
π

Exn∼π

K

∑
i=1

πirni(1,k)

(b)
≤ max

π
Exn∼π

K

∑
i=1

πi

(
di

ni
log

k− di
2

di
2

+ c · di

ni

)
(5.18)

where di is the expected number of distinct elements observed from ni observations of row i,

maximum over all distributions possible for that row. While equation (5.18) is convoluted, it is

insightful in the extreme ranges. In the following examples, we elucidate some of these case.

Example 70. Consider the case where n� K · k, therefore, in each row, there will be enough

samples and di = k. In this case, based on equation (5.18),

rn(∆K,k)≤max
π

Eπ

K

∑
i=1

πic ·
k
ni
≤ O(

K · k
n

)

Theorem 71. For the range n� K ∗ k,

rn(∆K,k)≥Ω

(
K · k

n

)

Proof. We fix π to be uniform, then with high probability each row will have n
K ±

√ n
K samples

and then the proof follows from the non-contextual distribution estimation lower bound.

Based on Theorem 71, in the range where n� K · k, an O((K · k)/n) competitivity gives

optimal rates, whereas O(
√

K/n) competitivity implies an optimal estimator, even to the constant.

Example 72. Consider the case where n� k, namely, the sample size is much smaller than the

alphabet size. Therefore, the worst case in (5.18) happens when all dis are equal to nis and (5.18)
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gives us the upper bound of

rn(∆K,k)≤max
π

Eπ

K

∑
i=1

πi log
k
ni
≤ O

(
log

K · k
n

)

Theorem 73. For the range n� k,

rn(∆K,k)≥Ω(logk)

Proof. If K � n, we don’t get to see most of the rows and since for the unobserved rows the

minimax risk is logk, we have the Theorem. In the other case, where we get to observe most of

the rows, the number of observations from each row is ≤ n� k and the loss in each row will be

Ω(logk), hence the Theorem.

Based on Theorem 73, in the regime where n� k, an O(1) competitivity is acceptable.

5.C NPLR Algorithm

The nested-recursive version NPLR for applying PLR to smooth N-grams is given by

Algorithm 2.

It is worth noting that when all m’s are set to 1, NPLR reduces to the nested version

of Kneser-Ney back-off suggested by Chen and Goodman (see Section 4.1.6 in [CG99]). It is

therefore a strict generalization of that approach.

Further details

Similarly to most local-search algorithms, though its objective function is implicit, mul-

tiplicative updates in both PLR and NPLR can benefit from acceleration and noising. We did

not include these in the pseudocodes in order not to clutter them, but they are easy to describe.
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Algorithm 2 N-gram Partial Low-Rank (NPLR)
1: inputs
2: N-gram count matrix C, number of iterations T
3: Persistently maintain Wz and Hz for all subcontexts z ∈ [k]N−2

4: Partial ranks m2, · · · ,mN , and discounts α2, · · · ,αN predefined
5: outputs
6: Distribution matrix QNPLR

7: for t = 1 to T do
8: for each subcontext z ∈ [k]N−2 do
9: Call PLR on the z-restricted bigram of C:

10: Use mN , αN , and just T = 1 iteration
11: Unless t = 1, initialize with persistent Wz and Hz,
12: Recover the components Az, νz, Wz (create/update persistent copy), and H̃z
13: end for
14: if N > 2 then
15: Call N−1 NPLR with rank mN−1 on the combined (H̃z)z∈[k]N−2 for 1 iteration
16: Recover the distribution matrix (Hz)z∈[k]N−2 (create/update persistent copy)
17: end if
18: end for
19: Append and create A from Az, ν from νz, W from Wz, and H from Hz.
20: return QNPLR = A+diag(ν) ·WH

Acceleration can be achieved by moving further in the direction of the update. As for noising,

we found that a very effective way to do noising is to periodically reset H by random blocking,

just like in the initialization, and then perform several (of the order of the rank) updates of H.

This has the effect of bringing H back towards the previous iteration (since W is fixed), while

potentially pulling it away from local optima or slowing saddle points.

Another subtle comment is that when NPLR calls PLR, it passes through soft counts,

which can take values between 0 and 1. A soft count version of absolute discounting was proposes

in [FOO16], which can then be used as follows:

Âi j =

 (Ci j−α)/ni Ci j ≥ 1

Ci j(1−α)/n Ci j < 1

which means that the total subtracted missing mass is still νi = diα/ni, but where the number of
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distinct elements now also incorporates the fractional counts:

di = ∑1{Ci j ≥ 1}+Ci j1{Ci j < 1}

The only aspect to clarify is that this also requires to modify the indicator matrix B to account for

the fractional counts, as follows (one can easily check that this is equivalent to 1{Ci j>0} when the

counts are whole):

Bi j = (Ci j−niAi j)/α.

Finally, it is worth noting that we can ensemble the learned models by averaging. We find

that blindly averaging a couple of runs with random restarts performs better than choosing the

best by validation.

5.D Additional Experiments

5.D.1 Non-temporal data split

We perform the target type prediction, with the difference that the data split between train

(used in forming the estimator) and test is by a random permutation and split, rather than temporal.

Put differently, we randomly select 83% of the data pairs to be used in forming the estimator and

the rest is used for testing. Figures 5.2(b) and 5.2(a) are equivalent to the ones in Figure 5.1 for

the non-temporal data split case. The results are consistent with the ones in 5.6.

5.D.2 Joint prediction of target and weapon types on GDT

We repeat our experiments on a slightly modified prediction task. Instead of just predicting

the target type for the next attack, we simultaneously predict both the target and weapon types in

each city. Weapon type is a field recorded in the GDT and contains information about the weapon
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Figure 5.2: Test cross entropy for a non-temporal split of (a) the whole data, and (b) a year’s
data.

used in an attack. This joint prediction task has a bigger output space (around 3000).

Figures 5.3(a) and 5.3(b) show the benefit of using data from different cities (different

rows of the count matrix) when predicting the target and weapon types in a particular city.

Similar to the experiments mentioned in Section 5.6, PLR and KN always have significantly better

performances in predicting the next incident’s attack and weapon types than row-wise estimators

such as add-half and absolute discounting.
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Figure 5.3: Test cross entropy for the joint prediction of target and weapon types when (a)
trained on data prior to 2005 and tested on dates after that, and (b) trained on the first 10 months
of a year and tested on the last two months.
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