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1 Introduction

Coherent neutrino scattering on nuclei has been proposed as a probe of electroweak physics
almost 50 years ago [1] but not realized experimentally until recently [2]. Neutrinos with
energies below few tens of MeV are sensitive to the entire charge of an atomic nucleus
resulting in enhancement of the scattering cross sections at low energies. Due to this
enhancement neutrino scattering can be probed with relatively small detectors.

The COHERENT collaboration [3] uses the Spallation Neutron Source at Oak Ridge to
test coherent elastic neutrino-nucleus scattering (CEνNS) on several nuclei. So far, results
from the CsI[Na] and Ar targets have been reported in [2, 4], but Ge and NaI[Tl] targets
are planned for the future. The main goal of the experiment is verifying the N2 dependence
of the cross section on the neutron number, but searching for non-standard interactions is
equally interesting. Several works tackled bounds on different models utilizing CEνNS [5–15]
while [16, 17] concentrated on operator analysis, and [18] provides thorough EFT analysis
of CEνNS and of the relevant nuclear matrix elements.

We examine the implications of the current and future COHERENT results on the set
of precision electroweak data. This is a subset of dimension 6 operators in the Standard
Model (SM) [19, 20] that are particularly well constrained by the LEP data as well as the
measurements of the W -boson mass. Indirectly, because of the radiative corrections, the
top quark and Higgs boson masses are important too because they contribute to the SM
predictions for the relevant processes.

Model-independent operator analysis of possible deviations from the SM is by now
very well established. The best known example are the S and T parameters [21, 22] that
parameterize the neutral gauge boson kinetic mixing terms and violations of the custodial
symmetry, respectively. The set of tightly bounded operators is much larger than just the
two corresponding to the S and T parameters [23, 24] with most constraints still dominated
by the LEP experiments. In recent years, a lot of work has been devoted to operator
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analysis of the SM [25–27], counting of operators [28], and constraints on the operator
coefficients [29–32]. The operator approach is often refereed to as the SM Effective Field
Theory or SMEFT, see [33] and references within.

Computing cross sections for the CEνNS requires evaluating matrix elements of hadronic
currents for the nuclei of interest. The technology of decomposing the currents into
reduced matrix elements of current components with well defined spin and isospin has been
established in the nuclear physics literature [34–36]. The motivation for these developments
was the study of weak interactions in nuclear processes. In CEνNS, the dominant spin-
independent matrix elements are exact due to current conservation, but the sub-dominant
matrix elements need to be computed using various applicable nuclear models. Such
calculations have some degree of uncertainty, but such uncertainties do not play a large role
in our result.

This article is organized as follows. In the next section, we discuss all the ingredients
of our analysis. We first enumerate the subset of precision electroweak observables that can
be probed through CEνNS. We follow with a brief review of nuclear physics methods and
matrix elements that are needed to evaluate the hadronic portion of the neutrino-nucleus
scattering. We then describe the calculation of cross sections and list the experimental
assumptions about the future dataset of COHERENT. In section 3, we illustrate the
bounds on the precision observables that can be obtained with the future full data set and
compare these bounds with the existing bounds obtained from other experiments. Finally,
we conclude in section 4.

2 Setup and calculations

2.1 Operators

We assume that the SM Lagrangian is amended by higher-dimensional operators

L = LSM +
∑
i

aiOi, (2.1)

where the sum over the operators Oi and their coefficients ai is restricted to operators of
interest for CEνNS. We consider operators of dimension six that interfere at tree level with
the SM cross sections for CEνNS. If interference terms are absent then such contributions
are equivalent to single insertions of operators of dimension eight and an analysis restricted
to operators of dimension six may not be self-consistent. We assume flavor conservation
in both the lepton and quark sectors, that is consider operators with the U(3)5 flavor
symmetry, and also assume CP conservation.

The following operators of dimension six appear in our analysis

Oslq = l̄γµl q̄γµq, Otlq = l̄σaγµl q̄σaγµq, Olu = l̄γµl ūγµu, Old = l̄γµl d̄γµd, (2.2)

Oshl = i
(
h†
←→
D µh

)
l̄γµl, Othl = i

(
h†σa

←→
D µh

)
l̄σaγµl, Oshq = i

(
h†
←→
D µh

)
q̄γµq, (2.3)

Othq = i
(
h†σa

←→
D µh

)
q̄σaγµq, Ohu = i

(
h†
←→
D µh

)
ūγµu, Ohd = i

(
h†
←→
D µh

)
d̄γµd, (2.4)

OS =h†σahW a
µνB

µν , OT =
∣∣∣h†Dµh

∣∣∣2 , Otll = 1
2 l̄σ

aγµl l̄σaγµl, (2.5)
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where q, u, d, l, h denote the left-handed quarks, the right-handed up and down quarks, the
left-handed leptons, and the Higgs doublet, respectively. The covariant derivative acts on
the nearest field only, and ←→D µ = Dµ −

←−
Dµ, while σa are the Pauli matrices that act on

the SU(2)L indices. Due to the assumed flavor symmetry, family indices are implicitly
summed over for each type of field. There are four classes of operators listed above. First,
four-fermion operators in (2.2). Second, operators that modify currents when the Higgs
vacuum expectation value (vev) is substituted for h in (2.3) and (2.4). Third, the operators
that correspond to the S and T parameters in (2.5). Fourth, Otll in (2.5) which does
not contribute directly to CEνNS. However, both Otll and Othl contribute to the muon
decay width and therefore affect determination of the Higgs vev from the Fermi coupling.
We do not consider operators with right-handed neutrino currents, should neutrinos have
Dirac masses, because such operators are very poorly constrained by COHERENT. This
is because the neutrino beam in the experiment cannot contain significant fractions of
right-handed neutrinos. The beams are generated from pion and muon decays that is
by the charged currents, which cannot have sizable modifications. Due to the smallness
of the neutrino mass, the probability of a chirality flip between neutrino production and
scattering is negligible as well. This means that processes involving right-handed neutrinos
are doubly suppressed: by the higher dimensional operators at both the production and
detection points.

There are two additional operators of dimension 6 that can be probed by COHERENT.
These are

OνB = l̄ h̃σµννRBµν + H.c. and OνW = l̄σah̃σµννRW
a
µν + H.c., (2.6)

where H.c. denotes the Hermitian conjugate and h̃ = iσ2h∗. A linear combination of
these operators leads to the neutrino magnetic moment corresponding at low energies to
the operator ν̄LσµννRFµν , where Fµν is the electromagnetic field strength. Naturalness
arguments suggest that since the magnetic moment involves fields of different chirality it is
proportional to the neutrino mass unless there is large tuning. The magnetic dipole moment
vanishes for a single Majorana neutrino, but could exist in flavor off-diagonal form. The
neutrinos could have other electromagnetic interactions, for a review see [37] as well as
other non-standard interactions that can be probed in oscillation experiments [38, 39]. The
bounds on the magnetic moment have been studied in [40, 41], so we do not include such
an analysis here. The methods are however completely analogous to those underlined in the
remainder of this section. Let us stress here that the assumption that chirality-changing
operators are additionally suppressed by the Yukawa couplings, and therefore neglected here,
is a restriction on the classes of models that one might constrain. However, large classes of
models satisfy this premise, for example models of minimal flavor violation [42, 43].

2.2 Nuclear matrix elements

We now turn to the evaluation of the scattering cross section. We adopt the notation and
setup in [36]. Schematically, the interaction Hamiltonian is proportional to

H ∝ jleptonic
µ J µhadronic. (2.7)
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The details depend on whether the interaction between the leptonic and hadronic currents
is contact, as is the case of operators in (2.2), is mediated by the Z boson, or is mediated
by the photon. If the interaction is contact then the Hamiltonian is simply the product of
the currents with the appropriate coefficient. If Z mediates the interaction its propagator
can be expanded in inverse powers of m2

Z , and given the small momentum transfer only the
leading term is kept. In case of electromagnetic interactions, which mediate interactions
with the neutrino magnetic moment, the photon propagator needs to be included in the
amplitude for the process.

Irrespectively of the type of interaction under consideration, the Hamiltonian (2.7)
needs to be evaluated between the initial and final states. The leptonic part is evaluated
through standard perturbative methods, while the matrix elements of the hadronic current
need to be evaluated for the nuclei of interest. In the case of CEνNS the initial and final
nuclear states are the same, except for negligible momentum transfer.

The isospin symmetry is broken at only a few percent level by the up-down quark mass
difference and the electromagnetic interaction thus it is useful to decompose the hadronic
current into the eigenstates of isospin. Since we are dealing with elastic scattering and
therefore no charge transfer, the hadronic current can appear in only two isospin states
withMI = 0 and I = 0, 1, where we use the calligraphic font for the isospin and its third
component. Denoting the isospin eigenstates of the current by (Jµ)IMI we have

J hadronic
µ = β

(0)
V (Jµ)00 + β

(1)
V (Jµ)10 + β

(0)
A

(
J5
µ

)
00

+ β
(1)
A

(
J5
µ

)
10
, (2.8)

where we further split the current into the vector and axial pieces and β(0,1)
V,A are numerical

coefficients. Of course, for the electromagnetic current the axial pieces vanish. In terms of
the quark fields, we have

(Jµ)00 = 1
6
{
ūγµu+ d̄γµd

}
,

(
J5
µ

)
00

= 1
2
{
ūγµγ5u+ d̄γµγ5d

}
,

(Jµ)10 = 1
2
{
ūγµu− d̄γµd

}
,

(
J5
µ

)
10

= 1
2
{
ūγµγ5u− d̄γµγ5d

}
.

(2.9)

Three steps are needed to get to the standard forms for the nuclear matrix elements.
One uses the multipole expansion after dividing the currents into their scalar and vector
parts under rotations and the resulting matrix elements are reduced using the Wigner-Eckart
theorem in both the angular momentum and isospin spaces. Let us turn to the multipole
expansion first. The currents are split into the scalar and vector parts: Jµ = (J0, ~J) and
the same for the axial counterpart. We call κ = |~q| the magnitude of the three-momentum
tensor. The four components of the vector current can be expanded into the following
four multipoles

MJMJ ;IMI (κ) =
∫
d3xM

MJ
J (κx) J0 (x)IMI

, J ≥ 0

LJMJ ;IMI (κ) =
∫
d3x

(
i

κ
∇MMJ

J (κx)
)
· ~J (x)IMI

, J ≥ 0

T elJMJ ;IMI (κ) =
∫
d3x

(1
κ
∇×M

MJ
JJ (κx)

)
· ~J (x)IMI

, J ≥ 1

Tmag
JMJ ;IMI

(κ) =
∫
d3x M

MJ
JJ (κx) · ~J (x)IMI

, J ≥ 1

(2.10)
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where MMJ
J and M

MJ
JJ are related to the spherical harmonics and the vector spherical

harmonic, respectively, through the spherical Bessel functions of the first kind, jJ , as follows

M
MJ
J (κx) = jJ (κx)YMJ (Ωx) and MM

JL = jL (κx) YMJ L 1 (Ωx) . (2.11)

The multipoles in (2.10) are called the Coulomb, longitudinal, transverse electric, and trans-
verse magnetic, respectively. All these multipoles have parity (−1)J . Current conservation
implies that the longitudinal matrix elements LJMJ ;IMI are proportional to MJMJ ;IMI

and therefore not independent.
Completely analogous decomposition can be made for the axial current

M5
JMJ ;IMI (κ) =

∫
d3xM

MJ
J (κx) J5

0 (x)IMI
, J ≥ 0

L5
JMJ ;IMI (κ) =

∫
d3x

(
i

κ
∇MMJ

J (κx)
)
· ~J 5 (x)IMI

, J ≥ 0

T el5JMJ ;IMI
(κ) =

∫
d3x

(1
κ
∇×M

MJ
JJ (κx)

)
· ~J 5 (x)IMI

, J ≥ 1

T
mag5
JMJ ;IMI

(κ) =
∫
d3x M

MJ
JJ (κx) · ~J 5 (x)IMI

, J ≥ 1

(2.12)

where the parity of all these multipoles is (−1)J+1.
Since the hadronic currents are isospin eigenstates we can write

〈IfMIf |TIMI |IiMI i〉 = (−1)If−MIf

(
If I Ii
−MIf MI MI i

)
〈If ‖ TI ‖ Ii〉, (2.13)

where T is any tensor that is an eigenstate of the isospin and its third component. Meanwhile,
〈If ‖ TI ‖ Ii〉 denotes the reduced matrix element and the two by three array is the 3j symbol.

The multipole moments have well defined angular momentum quantum numbers, so
one can use the Wigner-Eckart theorem again, leading to reduced matrix elements in both
spin and isospin

〈JfMf ; IfMIf |TJM;IMI |JiMi; IiMI i〉 =

(−1)Jf−Mf

(
If I Ii
−MIf MI MI i

)

× (−1)If−MIf

(
If I Ii
−MIf MI MI i

)
〈Jf ; If ‖ TJ ;I ‖ Ji; Ii〉,

(2.14)

where now 〈Jf ; If ‖ TJ ;I ‖ Ji; Ii〉 denotes the twice reduced matrix element. We do not
introduce different symbols for the twice reduced matrix elements as the quantum numbers
of the operator make it clear which reduction(s) took place.

It is clear that the multipole expansion is in powers of (κR)J , where R is a typical
nucleus radius and κ is the momentum transfer. A good estimate is 1/R = Q ≈ 250 MeV
that is the typical momentum of nucleons in nuclei. Given that for the neutrinos detected
by COHERENT the magnitude of the three-momentum transfer κ is small compared to
Q we can concentrate on the lowest non-vanishing multipoles only. Due to their negative
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Nucleus J T 〈J ;T ‖ L5
1;0 ‖ J ;T 〉 〈J ;T ‖ |L5

1;1 ‖ J ;T 〉
23Na 3

2
1
2 -0.0612 0.197

127I 5
2

21
2 -0.346 0.698

133Cs 7
2

23
2 0.363 -0.878

204T l 2 21 -0.1482 0.0056

Table 1. Longitudinal matrix elements from shell model calculations [18, 44] (Na, I, Cs)
and [45] (T l).

parity, the matrix elements of the axial current with J = 0, and in general with even J ,
vanish in elastic scattering. An analysis of the low-energy limit shows that the leading
matrix elements are those of M0;0, M0;1, L5

1,0, and L5
1,1 [36]. (Of the same order are also

matrix elements of T el51,0 and T el51,1 , but these are related to L5
1,0, and L5

1,1.)
The Coulomb matrix elements are computed easily since they are related to con-

served charges

〈J ;T ‖M0;0 ‖ J ;T 〉 = 1
2
√

4π
A
√

2J + 1
√

2T + 1,

〈J ;T ‖M0;1 ‖ J ;T 〉 = 1√
4π

√
T (T + 1)

√
2J + 1

√
2T + 1,

(2.15)

where A is the atomic number, J spin of the nucleus, and T its isospin. In terms of the
number of neutrons and protons, respectively N and Z, A = N + Z and T = 1

2 |Z −N |.
The matrix elements of L5

1,0 and L5
1,1 vanish for nuclei with no spin since these operators

carry non-zero angular momentum. For nuclei with spin we use results of two different
calculations. The 23Na, 127I, and 133Cs matrix elements in table 1 are adopted from [18, 44],
while the 204T l matrix elements are results by Pirinen and Ydrefors [45]. The values are
listed in table 1. Estimating error bars on these matrix elements is not straightforward. It
is likely safe to assume that such errors are in the 10− 30% range. A comparison between
model computations and experimental values of energy levels and ground state magnetic
moment support this estimate [45]. Numerous works are devoted to computing the matrix
elements relevant for CEνNS, see for example [18, 46–48].

2.3 Cross sections

Computing the cross sections is now straightforward. With the Z propagator truncated to
the momentum-independent part, the interaction Hamiltonian is

H= GF√
2
jleptonic
µ J µhadronic

= G√
2
∑
q=u,d

[ν̄γµ (1−γ5)ν]
[(
f qL+εqL

)
(q̄γµ (1−γ5)q)+

(
f qR+εqR

)
(q̄γµ (1+γ5)q)

]
,

(2.16)

where GF is the Fermi constant. The couplings f qL,qR are the SM couplings, while εqL,qR

are the deviations from the SM values due to the higher-dimensional operators. These
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couplings are
fuL = 1

2 −
2
3 sin2 θW , fdL = −1

2 + 1
3 sin2 θW ,

fuR = −2
3 sin2 θW , fdR = 1

3 sin2 θW ,

(2.17)

where θW is the Weinberg angle. Meanwhile, the ε’s are given by

εuL = −v
2

2

(
aslq + atlq + ashq − athq + fuL∆1 + 2

3∆2

)
,

εdL = −v
2

2

(
aslq − atlq + ashq + athq + fdL∆1 −

1
3∆2

)
,

εuR = −v
2

2

(
alu + ahu + fuR∆1 + 2

3∆2

)
,

εdR = −v
2

2

(
ald + ahd + fdR∆1 −

1
3∆2

)
,

(2.18)

where v is the electroweak vev and GF = 1√
2v2 . The contributions ∆1 and ∆2 are universal

affecting all terms. ∆1 arises from modification of the ν-Z coupling and the additional
contributions to GF , while ∆2 comes from the shift in the value of the Weinberg angle
caused by the operators OS and OT and those that contribute to GF as well [24, 49, 50].
Their values are

∆1 = 2
(
ashl + athl − atll + 1

2aT
)
,

∆2 = tan (2θW )
[
aS + sin (2θW )

2

(
2athl − atll + 1

2aT
)]

.

(2.19)

The differential scattering cross section is given in [36] in terms of the coefficients β(0,1)
V,A

introduced in (2.8) and the reduced matrix elements introduced in section 2.2. In the limit
of vanishing momentum transfer q2

dσ

dE

∣∣∣∣
q2→0

= 4G2
FM

(2J+1)(2T+1)


(

1−ME

2E2
ν

)∣∣∣∣∣β(0)
V 〈J ;T ‖M0;0 ‖ J ;T 〉+ MT√

T (T+1)
β

(1)
V 〈J ;T ‖M0;1 ‖ J ;T 〉

∣∣∣∣∣
2

+
(

1+ME

2E2
ν

)∣∣∣∣∣β(0)
A 〈J ;T ‖L5

1;0 ‖ J ;T 〉+ MT√
T (T+1)

β
(1)
A 〈J ;T ‖L5

1;1 ‖ J ;T 〉
∣∣∣∣∣
2
 ,
(2.20)

where M is the nucleus mass, Eν the energy of the incoming neutrino, and MT = 1
2(Z −

N) the third component of the isospin. Comparing (2.8) and (2.9) with (2.16) it is
straightforward to obtain

β
(0)
V = −2 sin2 θW + 3

(
εuL + εuR + εdL + εdR

)
, β

(0)
A = −εuL + εuR − εdL + εdR,

β
(1)
V = 1− 2 sin2 θW + εuL + εuR − εdL − εdR, β

(1)
A = −1− εuL + εuR + εdL − εdR.

(2.21)
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Nuclear Target Mass [kg] Distance from
source [m]

Recoil threshold
[keVr]

Quenching
factor

CsI[Na] 14 20 6.5 7%
Ge 10 22 5 2%
LAr 35 29 20 25%

NaI[Tl] 2000 22 13 15%

Table 2. Parameters used in the calculation for the four detectors [3, 51]. There is a 10% uncertainty
in neutrino flux aside from the uncertainties listed in the table.

Element Atomic weight Mass percentage
Cs 133 47%
I 127 45%
Na 23 8%

Element Atomic weight Mass percentage
Na 23 6.5%
I 127 35.8%
Tl 204 57.7%

Table 3. Mass percentage of each element in CsI[Na] and NaI[Tl].

It is clear that COHERENT is sensitive to four linear combinations of the coefficients, the
ones appearing above in (2.21). We will come back to this point later on.

2.4 Detectors and the neutrino beam

The COHERENT experiment is going to use four different detectors. So far, results for
only two of these four have been reported [2, 4]. To determine the future sensitivity of the
experiment we assume the detector parameters as in [51]. An energy-averaged detection
efficiency of 50% is assumed for each detector. The elemental composition of the CsI[Na]
and NaI[Tl] detectors is displayed in table 3.

Given the inputs in tables 2 and 3, the total number of events in a detector is calculated as

Nevents = tφ
Mdetector

M

Emax∫
Emin

dEν

Erecoil max∫
Eth

dEλ(Eν) dσ
dE

(Eν , E), (2.22)

where t is the data taking time period and φ is the neutrino flux. In this analysis, we use
the following expression to obtain the product of t and φ: tφ = rNPOT/4πL2 [52], where
r = 0.08 is the number of neutrinos per flavor that are produced for each proton on target,
NPOT = 1.76× 1023 is the number of proton on target for a live time t ∼ 1 year [2] and L is
the distance between the source and the COHERENT detector. Furthermore, λ(Eν) is the
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normalized neutrino spectrum that is the sum of the νe and ν̄µ spectra from the µ+ decays

λνe = 96
m3
µ

E2
ν

(
1− 2Eν

mµ

)
,

λν̄µ = 48
m3
µ

E2
ν

(
1− 4Eν

3mµ

)
,

(2.23)

with the maximum energy of Emax = mµ/2, mµ=105.6MeV, and the mono-energetic νµ’s
from the π+ decay

λνµ = δ

(
Eν −

m2
π −m2

µ

2mπ

)
. (2.24)

The minimum incoming neutrino energy required for detection is determined by the
detector’s threshold energy Eth and the nucleus mass M through the relation Eth =
2E2

min/ (M + 2Emin).

3 Results

We compute the number of events for each of the detectors as a function of the coefficients ai
in (2.1). The number of events in each detector is combined into a χ2 distribution through

χ2
tot =

∑
X

(NX (ai)−NX,exp)2

σ2
X

=

(
NCsI[Na] (ai)−NSM

CsI[Na]

)2

NSM
CsI[Na]×1.17

+

(
NGe (ai)−NSM

Ge

)2

NSM
Ge ×1.12

+

(
NAr (ai)−NSM

Ar

)2

NSM
Ar ×1.35

+

(
NNaI[T l] (ai)−NSM

NaI[T l]

)2

NSM
NaI[T l]×1.25

,

(3.1)

where in the absence of full experimental results we assumed perfect agreement with the
SM. The standard deviations are estimated from the Poisson distribution and additional
uncertainties as

σX =
√
NSM × (1 + quenching factor + 10% neutrino flux uncertainty). (3.2)

The uncertainties of the matrix elements of the longitudinal operators are negligible in the
error budget because the Coulomb matrix elements dominate.

Before we describe the results we want to briefly comment on the energy scales in
the problem. The effective Lagrangian in (2.1) and the corresponding operators (2.2)
through (2.5) are defined at or above the Higgs mass scale. Below the electroweak scale,
the SU(3)× SU(2)× U(1)Y invariant operators are matched into operators invariant under
SU(3)×U(1)em, which are the four fermion-operators in (2.16) which are in turn matched
at the QCD scale to nuclear matrix elements. A complete basis of operators below the
electroweak scale is described in [53] and their one-loop renormalization group evolution
(RGE) equations in [54]. The operators of interest here, which are products of neutrino
current and quark currents, evolve under the RGE proportionately to the electromagnetic
coupling but do not have any contributions from the strong coupling. Thus, the coefficients
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Coefficient Existing bounds [GeV−2] [31] COHERENT experiment [GeV−2]

aslq −1.2× 10−8 < aslq < 3.9× 10−8 |aslq| < 2.2× 10−8

atlq −0.6× 10−9 < atlq < 1.5× 10−8 |atlq| < 3.7× 10−7

ashl −7.0× 10−9 < ashl < 7.5× 10−9 |ashl| < 1.2× 10−7

athl −8.3× 10−9 < athl < 0.4× 10−9 |athl| < 1.3× 10−7

ashq −1.7× 10−8 < ashq < 8.9× 10−9 |ashq| < 2.2× 10−8

athq −8.9× 10−9 < athq < 1.7× 10−8 |athq| < 3.7× 10−7

alu −1.8× 10−8 < alu < 9.2× 10−8 |alu| < 4.7× 10−8

ald −4.8× 10−9 < ald < 1.1× 10−7 |ald| < 4.2× 10−8

ahu −2.5× 10−8 < ahu < 5.7× 10−8 |ahu| < 4.7× 10−8

ahd −1.1× 10−8 < ahd < 1.0× 10−7 |ahd| < 4.2× 10−8

atll −1.2× 10−8 < atll < 0.2× 10−9 |atll| < 3.9× 10−6

aS −8.9× 10−9 < aS < 1.7× 10−9 |aS | < 5.2× 10−8

aT −2.2× 10−8 < aT < 2.6× 10−9 |aT | < 7.8× 10−6

Table 4. Comparison between present limits and the ones obtained from COHERENT at 90% C.L.,
taking one parameter at a time.

change insignificantly between the weak and QCD scales at a few percent level. This estimate
is verified by explicit numerical running of the coefficients using the code implemented in [55].

For the individual coefficients ai in (2.1), a comparison of bounds obtained by a global
fit to low-energy and collider experiments obtained in [31] and those one will be able to
extract from the future COHERENT data is presented in table 4. In the table below as well
as in the figure later in this section we have used the bounds in [31] in the flavor symmetric
case. While none of the individual bounds from COHERENT are obviously more stringent
than the existing ones, two points are apparent. First, when the bounds on a coefficient are
comparable between the two columns in table 4, for example on aslq or alu, combining the
COHERENT data with all the other precision electroweak data will improve the bounds.
Second, the bounds on the individual coefficients are not the whole story. It is the combined
fit to all the coefficients together, or in other words to arbitrary linear combinations of the
coefficients, that is useful in constraining new physics [24, 50]. In the space of n operator
coefficients it is the n-dimensional ellipsoid that encodes the full experimental information.

The plots in figure 1 exemplify the main outcome of this analysis. For some coefficients,
the existing limits are so stringent that CEνNS will not deliver improvements unless the
amount of data is much larger than the projected quantity. However, for certain coefficients a
combined fit that includes the COHERENT data will provide improvements. The advantage
of COHERENT is that it is sensitive to different directions in the space of operators,
compared to other experiments, and it is in these unique directions where there will be
most improvement from the full data set.
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Figure 1. Comparison between the bounds in [31] and future COHERENT bounds projected onto
planes of two coefficients at 90% confidence levels. The COHERENT bounds are the nearly parallel
lines in the plots (blue). The existing bounds are the larger ellipses (red) and the combined bounds
are the inner ellipses (orange). For the plots in the top row the red and orange curves overlap
showing that COHERENT will not improve bounds on the operators in those plots.

4 Conclusions

Experimental observation of CEνNS certainly opened up an interesting new regime for
neutrino physics. We have examined the impact of future COHERENT dataset, consisting
of data from four different detectors, on the body of precision electroweak observables.

A demonstration of the COHERENT experiment’s potential is contained in table 4 and
figure 1. There, we presented future bounds on both the individual coefficients of operators
and select two-dimensional projections of the χ2 function for the 13 operators considered in
this article.

It is clear that the COHERENT results will need to be eventually included in the
complete fit of all precision electroweak data. For some of the operators, the ones with
existing stringent bounds, one cannot expect any improvement. There are some operators,
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however, for which inclusion of the COHERENT dataset will yield tighter bounds. Exactly
how big this improvement will be is impossible to predict exactly since it will depend on
how well the data will agree with the SM. Potential deviations, even if purely statistical in
nature, will affect the full fit.

The COHERENT data is sensitive to four linear combinations of coefficients of operators.
These are listed in (2.21) in terns of parameters ε introduced in (2.18). However, for any
particular nucleus there are two linear combinations of coefficients that enter the cross
section formula in (2.20). Of course, since deviations from the SM are obtained from the
interference terms between higher-dimensional operators and SM processes there is actually
only one linear combination that can be teased out with one measurement. This is true
even with detectors that contain several nuclei. Therefore, with one detector only a single
direction in the space of operators can be bounded by CEνNS. Nevertheless, with several
detectors all four combinations can be bounded independently as variations in nuclear
matrix elements among nuclei pick different admixtures of the four underlying combinations
in (2.21). A potential caveat is that there will be different amounts of data from different
detectors, so not every one of the four combinations will be equally well constrained. If
improving the bounds on the four combinations in (2.21) were a priority one would need to
rethink the balance between the amount of data taken with different detectors to maximize
the potential for obtaining independent constraints.
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