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Abstract 
Early indications of effectiveness in California's forest offset program 

by 
Jared Richard Stapp 

Doctor of Philosophy in Environmental Science, Policy, and Management 

University of California, Berkeley 
Professor Van Butsic, Chair 

 

 
Carbon offsets are widely promoted as a strategy to lower the cost of emission 
reductions and combat climate change. However, there is limited empirical 
evidence suggesting that offsets causally reduce emissions by the amount 
claimed. When sold into a compliance market, offsets will increase net emissions 
if they do not reflect real reductions beyond the baseline scenario. Here I 
introduce California’s U.S. Forest Projects Compliance Offset Protocol and 
consider the role of additionality in this program.  

Chapter 1, "An overview of forest offsets," introduces forest offsets as a policy 
mechanism for combating climate change, focusing in particular on California’s 
U.S. Forest Projects Compliance Offset Protocol as one of the largest programs of 
its kind and Improved Forest Management (IFM) projects as the backbone of 
California’s program. Research completed to date on California’s program is 
reviewed, and challenges associated with measuring the effectiveness of offset 
programs like the California U.S. Forest Projects Compliance Offset Protocol are 
introduced. Literature reviews of modeling and remote sensing techniques used 
in past work are provided and approaches seen in later chapters of this 
dissertation to measure early indications of effectiveness in California’s forest 
offset program are justified.  

Chapter 2, "Assessing participants of California’s U.S. Forest Projects Compliance 
Offset Protocol," creates an original database of information sufficient to assess 
IFM project participants in the program to date, including project characteristics, 
boundaries, and locations. A breakdown of the spatial, demographic, and 
geographic heterogeneity across projects is provided, and potential barriers to 
participation in the program based on characteristics of currently enrolled 
projects are discussed. Results suggest that projects owned by corporate and 
'other' interests were most common; the majority of credits in California's 
program have been allocated to Tribal projects (48.4% of all credits), timber 
investment management organization (TIMO) and real estate investment trust 
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(REIT) projects (23.4% of credits) due in part to their larger size, and family 
landowners are underrepresented in California’s offset program relative to 
private forest owners across the U.S. On average, across ownership classes, 
projects were stocked at carbon levels of 125% of common practice (the average 
standing live carbon of forests within the project's Supersection and Assessment 
Area). 

Chapter 3, "Quantifying historical disturbance rates using remote sensing," uses 
remote sensing to create a unique database of harvest history on project and non-
project regional lands to more comprehensively understand the IFM projects 
enrolled in California’s forest offset program, where historical forest 
management-related disturbance serves as an indication that lands were at risk 
of harvest prior to project commencement. Combining harvest history with the 
project characteristics and locations introduced in Chapter 2 allows us to probe 
additionality of these projects. I find that IFM projects have been primarily 
allocated to forests with relatively low historical disturbance (28% less 
disturbance than regional averages since 1985). TIMO/REIT-owned forestlands 
had the largest discrepancy in annual disturbance rate between Supersections 
(0.43%) and projects (0.17%), followed by corporate-owned forestlands with 0.35% 
annual rate of disturbance on Supersections and 0.14% annual rate of disturbance 
on projects. Tribal lands experienced the lowest annual rates of disturbance for 
both projects and Supersections, with the project rate (0.17%) higher than the 
Supersection rate (0.1%; p <0.001).  

Chapter 4, "Measuring offset policy effectiveness using quasi-experimental 
econometric techniques," I empirically examine the additionality of forest offset 
projects early in California’s offset program by quantifying the impacts of forest 
offset projects on forest disturbance associated with carbon emissions. While the 
additionality of forest offset projects is determined by emission reductions over 
the 100-year project lifespan, optimal management may require early 
management decisions resulting in disturbance to facilitate improved long-term 
forest management, I propose that short-term additionality can serve as an early 
indicator of policy effectiveness. Two novel datasets—project boundary data 
(Chapter 2) and remotely sensed forest disturbance data (Chapter 3)—provide 
sufficient temporal and spatial heterogeneity to apply quasi-experimental 
statistical matching and panel regression techniques to estimate additionality. 
This analysis suggests limited additionality in enrolled projects, as the creation 
of forest offset projects did not significantly lower forest disturbance rates 3 and 
5 years after project implementation relative to similar non-project lands. These 
results indicate that California's forest offset protocol may be contributing to an 
increasingly large carbon debt. 

Results suggest that, to date, California’s offset program has selected IFM 
projects that have experienced relatively low disturbance rates over the past 36 



 

3 

 

years. As such, projects have much higher levels of aboveground carbon stocking 
than the average stocking within their respective Supersections. If these carbon-
rich forests were threatened with harvest, they might be suitable choices for 
offsetting. These findings, however, suggest that many of the areas offset may 
have faced little threat of forest harvest in the absence of California’s offset 
program and are therefore non-additional in the short term. Because California's 
U.S. Forest Projects Compliance Offset Protocol is compliance-based, unless the 
management of offsets changes in the future, the policy may be creating a carbon 
debt and potentially leading to increased carbon in the atmosphere relative to 
other carbon reduction policies and initiatives. Altogether, results indicate 
opportunities to improve California's existing forest offset protocol, particularly 
in its process of establishing initial carbon baselines. This dissertation concludes 
with recommendations stemming from this early evaluation of effectiveness in 
California’s forest offset program.  
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Carbon stocking: The amount of carbon stored in a carbon sink (e.g., the amount 

of carbon sequestered in one acre of a forest).  

Project area: The land located within the boundaries of a forest offset project.  

Supersection: Regional delineations based on similar ecosystem types, equivalent 
to the EPA's Ecoregions Level III designations. Supersections are used by 
CARB to establish whether a project's baseline carbon stocking is above or 
below the average in a similar region. 

Common practice: The average standing live carbon of forests within the project's 
Supersection and Assessment Area. Carbon stocking on proposed project 
areas is compared to the common practice statistic by CARB to calculate 
credits. 

Improved forest management projects: Offset projects that employ conservation-
oriented practices to increase the project land's capacity to sequester 
carbon. 

Additional: Changes in land use due to an additional offset project are motivated 
by the establishment of the project and would not have otherwise existed 
in a business-as-usual scenario. 
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Chapter 1 

Introduction  

1.1 An overview of carbon offsets 
Mitigating greenhouse gas (GHG) emissions and the risks associated with climate 
change are among the most pressing challenges society faces today (IPCC, 2021). 
Central to reaching climate change-related targets is reducing the amount of 
heat-trapping carbon dioxide (CO2; carbon, hereafter) in the atmosphere 
(Griscom et al., 2017; Lewis et al., 2019). Since the 1980s, forests and carbon 
offsets have both been discussed and utilized as tools to aid in mitigating 
catastrophic climate change: forests can serve as carbon sinks, while carbon offset 
programs provide a mechanism to ease the expense or complexity of reducing 
emissions (Brown & Adger 1994; Nature Editorial Board, 2021; Trexler et al.,  
1989; van der Gaast et al., 2016; Van Kooten & Johnston, 2016).  

 

Emissions trading schemes: Cap-and-trade  

While reducing global emissions is paramount, government mandates at the 
national or state level may significantly burden participating entities. Many 
economists and political scientists believe that carbon-pricing schemes represent 
the only realistic path to reaching emissions reduction targets (Stavins, 2011). 
Cap-and-trade programs gained popularity with the establishment of the Kyoto 
Protocol as a mechanism to provide economic incentives to reduce emissions, 
thereby reducing associated costs and facilitating progress toward emission 
reduction targets (Kossoy & Peszko, 2015; United Nations, 1998). Cap-and-trade 
systems set limits on the quantity of emissions that entities are permitted to emit 
over time and establish trading schemes that allow entities to purchase credits to 
account for a portion of their limit without directly reducing their emissions 
immediately.  

Today, roughly 31 cap-and-trade programs have been planned or 
implemented worldwide (World Bank, 2020). The EU established the first large 
emissions trading scheme in 2005, with California following soon after in 2006 
(Assembly Bill 32, or AB 32). New Zealand, Quebec, Ontario, and China represent 
other major global carbon markets. In the EU emissions trading scheme, entities 
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are capped and can subsequently trade leftover allowances to other entities if they 
reduce emissions to a greater degree than required. While the EU scheme does 
not award carbon credits for carbon sinks like forests, the majority of existing 
schemes—including California’s—include forest projects as a cost-effective 
carbon sink and mitigation measure, as forests have absorbed roughly twice as 
much carbon as they have emitted in the last decade by storing atmospheric 
carbon in biomass through photosynthesis (Harris et al., 2021; Ristea and 
Maness, 2009). Therefore, maintaining the carbon stored in Earth’s forests is 
critical to avoiding catastrophic climate change (Goldstein et al., 2020, p. 287).  

 

The role of forests in mitigating climate change 

Forest projects are a direct target of climate commitments—as in the Bonn 
Climate Challenge, the UN Decade of Restoration, and the Trillion Tree 
Initiative—as well as a tool for entities to sponsor in order to meet their own 
climate commitments and requirements in large emissions trading schemes like 
that of California and New Zealand (Manley and Maclaren, 2012), and the pilot 
scheme in China (Zhang, 2015). Focusing on forest offsets within cap-and-trade 
systems creates a mutually beneficial situation in which entities can more easily 
and inexpensively meet their climate commitments while protecting or 
developing an effective carbon sink, contributing to the maintenance of 
biodiversity, and potentially reducing poverty by introducing local economic value 
to ecologically rich areas (Bushnell, 2012).  

Forests, globally, serve as carbon sinks and provide potential low-cost 
options for lowering overall carbon emissions at state, national, and global scales 
(Amano & Sedjo, 2006; Galik et al., 2013). Slowing the pace of deforestation and 
forest degradation is argued to be among the most effective strategies for 
addressing climate change (Agrawal et al., 2014; Bosetti et al., 2011) because 
forests store significantly more carbon than other land use types, such as 
agriculture (Palm et al., 1999). In the US, roughly 310 million ha of forests hold 
roughly 40.9 billion metric tonnes of carbon (FAO and UNEP, 2020). California 
alone is home to 13.4 million ha of forests, roughly one-third of all land in the 
state. These forests are increasingly vulnerable to risks associated with climate 
change and anthropogenic drivers of forest change, raising the concern that these 
important carbon sinks could become carbon sources (FAO, 2015; Cohen et al., 
2016; Poudyal et al., 2016). 

Across global carbon pricing initiatives, forest credits comprised 42% of 
credits issued between 2015 and 2020 (World Bank, 2020). In interviews with 
experts representing major existing emissions trading schemes, Shrestha et al. 
(2021) found that forest offsets were perceived as more cost-effective targets for 
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emissions trading schemes than solutions that may require more intensive 
research and development, such as carbon capture and storage technology, and 
efficient energy. Based on outputs from climate models, greater adoption of land 
use activities as a mechanism to meet global emissions reduction targets may 
reduce the cost of doing so by more than $2 trillion (Bosetti et al., 2011). 

Furthermore, forest carbon offset projects are particularly appealing to 
those purchasing carbon credits, as noted recently by Gifford (2020, p. 294, 
referencing Wang & Corson 2015a; 2015b): “Buyers of forest carbon credits are 
drawn to the intangible benefits that come with the look of ‘saving forests’ or 
investing in sustainable development. Forests offer what Wang and Corson 
(2015a, 2015b) and others call ‘charismatic carbon,’ development interventions 
that bring offset buyers more ‘brand value,’ . . . [f]orest conservation makes for 
good advertising and looks good to shareholders and consumers.” 

 

California’s U.S. Forest Projects Compliance Offset Protocol 

Due to the complexity of passing national-level policies, carbon trading schemes 
and offset programs are increasingly being considered at the sub-federal level, 
where state governments experience greater jurisdictional authority and 
institutional support for legislation that can better meet their own goals to 
address climate change (Houle et al., 2015; Klinsky, 2013). State mandates for 
companies to reduce their emissions and the growing social pressure for 
companies to voluntarily commit to becoming carbon neutral have sparked the 
rapid growth of a carbon offset market in the U.S., wherein businesses and other 
entities utilize carbon offsets to meet emissions reduction targets. California’s 
cap-and-trade program was established as part of the 2006 Global Warming 
Solutions Act (AB 32) and approved through 2030 (ARB, 2017).  

The California Compliance Offset Program began enforcing compliance in 
2012 to reach target emissions reduction goals set by the 2006 AB 32 Scoping 
Plan (CA Legis. Assemb., 2006). In this program, the California Air Resources 
Board (CARB) calculates and allocates a specific number of offset credits to 
qualifying projects that reduce or sequester GHG under CARB-approved 
protocols. Haya (2018; et al., 2020) estimate that for the compliance period 
between 2021 and 2030, offsets will represent more than 50% of the reductions 
attributable to California’s cap-and-trade program. Offset credits are a "tradable 
compliance instrument” that represent verified GHG reductions or removal 
enhancements of one metric ton of [carbon dioxide equivalent] CO2e" and are 
required to be "real, additional, quantifiable, permanent, verifiable, and 
enforceable" (ARB, 2015, §95802.14). To comply with mandatory emission 
reductions, businesses were permitted to purchase these offset credits to 
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substitute a maximum of 8% of their reductions from 2012-to 2020, reducing to 
4% from 2021 to 2025 and 6% from 2026 to 2030. As such, offset protocols and 
related policies influence on what extent these entities need to change their 
business-as-usual processes to reduce emissions directly (Clapp & Meckling, 
2013). 

California’s U.S. Forest Offset Compliance Protocol allows forest offset 
projects to be established anywhere in the U.S. except for Hawaii and parts of 
Alaska. It recognizes four major types of forestry offset projects designed to 
protect or further develop forestland: improved forest management (IFM), land 
reforestation, avoided conversion, and urban forestry. IFM projects employ 
conservation-oriented practices to increase the land's capacity to sequester and 
store carbon, including methods that reduce the risk of tree mortality from fire, 
pests, and drought and thinning regimens that stimulate healthy stands. 
Reforestation projects compensate landowners for reforesting land that 
previously incorporated forest, typically agricultural lands that are no longer 
viable or profitable. Avoided conversion projects prevent conversion of forest 
lands that may be more economically valuable if converted to other land use 
types, such as agriculture or development. Finally, urban forestry projects include 
large-scale tree planting and stewardship initiatives.  

This dissertation focuses on IFM projects, which are the backbone of 
California’s cap-and-trade system: most of the credits (85.5%) allocated by the 
system have been awarded to U.S. Forest offset projects, nearly all of which 
(98.6%) were awarded to IFM projects (ARB, 2021). IFM protocols, which support 
greater sequestration and storage of carbon, can be impactful and cost-effective 
strategies for reducing atmospheric carbon concentration levels (Fargione et al., 
2018; Griscom et al., 2017; Harper et al., 2018; Seddon et al., 2020). To register 
an IFM offset project, landowners must have their land evaluated to assure that 
improvements will occur, commit to the agreement for one hundred years, and 
monitor and report project data throughout its lifetime. The number of offset 
credits awarded to an individual IFM project is determined by comparing overall 
carbon stocking on project land to baseline carbon stocking in the Supersection—
or region—in which the project is located (the ‘common practice statistic,’ 
estimated using data made available by the US Forest Service (USFS) Forest 
Inventory and Analysis (FIA) National Program).  
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Forest offsets effectiveness in climate change mitigation strategies 

For forest offset projects to be effective in reducing emissions, they need to meet 
and maintain several criteria: real; verifiable; enforceable; quantifiable; 
permanent; additional; and exclusive (ARB, 2015, §95802.14; Estrada et al., 2014; 
Richards and Huebner, 2012). 

Real, verifiable, and enforceable. Offset credits must represent a real 
reduction in emissions, and a third-party verification body must periodically 
verify credit issuances to ensure real emissions reductions resulting from offset 
projects. CARB, as the crediting body, has the authority to enforce all criteria. 

Quantifiable. Emissions reductions must be measurable and accounted 
for (e.g., leakage and uncertainty have been accounted for). In addition to being 
quantifiable, all measurement must be accurate: baseline emissions must not be 
overestimated, actual emissions must not be underestimated, and projects must 
not indirectly increase emissions that are not accounted for outside their 
boundaries. Hahn and Richards (2013) call attention to the difficulty of 
accounting for and certifying offset credits, and a task force of professional 
foresters investigating forest carbon offsets concluded that “[o]ffset projects are 
highly variable and depend on numerous assumptions, most of which are 
susceptible to bias and ‘virtually insurmountable’ measurement errors,” 
(Malmsheimer et al., 2011; Oliver, 2013). 

Permanent. Emissions reductions from offset projects must not be 
reversed or compromised by natural or anthropogenic disturbances. The 
permanence of offset projects may be monitored but not ensured, as natural 
drivers such as forest fire or disease may compromise or reverse previously offset 
emissions, resulting in a net larger carbon debt than had the project never existed 
(as another entity may have purchased these offsets rather than reducing their 
own emissions). 

Additional. Land use changes that involve removal of forests must be 
motivated by establishing an offset project and must not have otherwise existed 
in a business-as-usual scenario: “[t]he only activities that count toward the 
creation of carbon offsets are those that are additional, reducing atmospheric CO2 
beyond what would occur in the absence of incentives. Suppose the tree planting 
activity would have been undertaken in the absence of policy to mitigate climate 
change. In that case, the carbon benefits (i.e., offset credits) related to the project 
should not be counted . . . similarly, proponents of forest conservation might lobby 
for carbon offset credits even though forest conservation might occur in any event 
for reasons unrelated to climate change mitigation” (Van Kooten & Johnston, 
2016, p. 8:6.3). 
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Exclusive. Emissions reductions must not be claimed by any other entity 
or claimed more than once: “the selling of multiple environmental services, such 
as carbon offsets and contracts to protect threatened wildlife habitat, in more 
than one market is known as double-dipping (Woodward, 2011),” (Van Kooten & 
Johnston, 2016, p. 8:6.4). 

Given the complexity of meeting and verifying these criteria for each forest 
offset project, concerns have been raised about their effectiveness in successfully 
reducing emissions (Lang et al., 2019; Nature Editorial Board, 2021, Spash, 2010; 
Watt, 2021). Interviewed experts—particularly those representing the EU 
emissions trading scheme, which does not offer forest offsets—have cited several 
major challenges associated with forest offset implementation, including “leakage 
[i.e., harvest simply migrating from regulated to unregulated regions, removing 
reduction advantages from the emissions trading scheme they were intended to 
benefit (Fell & Maniloff, 2018)], permanence, additionality, and monitoring 
design features,” (Shrestha et al., 2021). According to Van Kooten & Johnston 
(2016, p. 8:6.3), “[c]arbon offsets are fraught with problems related to uncertainty 
and corruption, (Helm, 2010; Van Kooten & De Vries, 2013).”  

There is inherent subjectivity in forest offset protocols, particularly in 
assessing additionality and generating baselines (Gillenwater, 2012; Gifford, 
2020; Watt, 2021). A study done by Schmitz (2015) interviewed various 
stakeholders who participated in the development of California’s forest offset 
protocol. She found that various interests were represented at the policymaking 
table, each of whom “lobbied for design elements favorable to their own market 
participation, and frequently debated rival preferences when interests conflicted. 
Yet self-interests were at times subordinated to achieve high technical rigor, 
production of environmental co-benefits, and broad market participation, and 
attributes felt necessary for a strong market commodity” (pp. 2-3). Similarly, 
Gifford 2020 (p. 299; referencing Lovell & MacKenzie, 2011) notes that in this 
new frontier, “leaders in carbon credit valuation and accreditation stepped up to 
meet needs created by the creation of carbon markets themselves. In such 
circumstances, expertise in the field often falls to the organizations who first 
identified and meet market needs.” 

Here, we focus on two challenges: additionality and accurate accounting of 
credits. For IFM projects to be additional, land enrolled in IFM projects should be 
at risk of disturbance or otherwise not managed optimally for carbon 
sequestration; after project establishment, harvest risk should be reduced, or the 
forest managed in a way to sustain or increase carbon stocks: additionality is 
“fundamental to the very definition of an offset,” and to the environmental 
integrity of the program (Gillenwater, 2012:4; Ramseur, 2009). It enables the 
separation of forest sequestration activities, all of which produce a public 
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environmental good, into activities eligible for offset credits (i.e., additional) and 
those that are not" (Ruseva et al., 2017, p. 280).  

Failure to develop protocols that ensure this additionality in IFM projects 
can lead to over-crediting and associated carbon debt (Badgley et al., 2021; 
Ruseva et al., 2017). Despite legal requirements that projects be additional, there 
is little empirical evidence that offsets in this program are accurately credited for 
baselines and additionality (Badgley et al., 2021; Gifford, 2020; Haya, 2019; 
Ruseva et al., 2017). The process by which California’s U.S. Forest Projects 
Compliance Offset Protocol calculates the number of offset credits awarded to 
projects has come under particular scrutiny when considering accurate crediting 
and ensured additionality, as the current credit calculation method allows and 
even incentivizes project applicants to select lands for offsetting that already 
exhibit higher-than-average carbon stocks to earn more credits (Anderson-
Teixeira & Belair, 2022; Badgley et al., 2021). This method of calculating offset 
credits may contribute to non-additionality as project developers are rewarded 
with more credits for offsetting lands that have not been recently or ever 
harvested—and therefore may not be at risk of harvest—in comparison to lands 
with low carbon stocking that may be at greater risk for harvest.  

Confirming and ensuring non-additionality is challenging as business-as-
usual scenarios are not directly observable after a project is allocated credits. 
Theory suggests that this asymmetric information and adverse selection lead to 
significant instances of non-additionality in California’s offset program. From 
Van Kooten & Johnston (2016, p. 8:6.4), “[c]ontracts to create carbon offsets on 
forestlands are costly to negotiate and difficult to enforce because of asymmetric 
information.” (Burke, 2016; Joppa & Pfaff, 2009; Millard-Ball, 2013). 

In theory, when carbon emissions are offset, the offset project should store 
or remove carbon from the atmosphere equal to the emissions of the offset 
purchaser permanently (measured as the duration of the project, often 100 years). 
Where emission reductions are required by law (i.e., a compliance market), if the 
amount of carbon removed by an offset is less than the amount that the offset 
entitles its purchaser to emit, carbon offsetting can lead to higher overall 
emissions, reduced incentives to develop lower-emissions technologies, and 
increased warming (Badgley et al., 2021; Van Kooten & Johnston, 2016). 
Therefore, the effectiveness of offset policies hinges on the offset protocol's ability 
to measure and ensure equivalence, permanence, and additionality. Ensuring 
additionality poses the challenge of asymmetric information, as it relies on the 
assurance of project owners—there are few established methods to verify that an 
emissions reduction would not have occurred in a business-as-usual scenario 
without an incentive (Richards & Huebner, 2012). While forest offsets have great 
potential to contribute to long-term emissions reduction goals, ensuring that 
offset projects meet and maintain all criteria and verifying the quality and 
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quantity of actual emission reductions through offset projects remains 
challenging. 

 

1.2 Methods for evaluating policy effectiveness 
In the following dissertation, the additionality of forest offset projects is examined 
at this early stage in California’s U.S. Forest Projects Compliance Offset Protocol 
by quantifying the impacts of forest offset projects on the rate forest disturbance 
associated with carbon emissions. A comprehensive database of characteristics of 
existing IFM projects was compiled and analyzed, including size, location, 
ownership class, credits received, baseline carbon stocks, and historical forest 
disturbance identified with remote sensing techniques to serve as an indication 
that forestlands were at risk of harvest without the establishment of an offset 
project. Two major challenges existed in developing methods to explore 
additionality in California’s U.S. Forest Projects Compliance Offset Protocol. 
First, there was no complete project characteristics or information database, as 
projects are spread across multiple carbon registries, and data must be manually 
downloaded for each project. Second, additionality relies on assurance from the 
project applicant rather than utilizing any form of measurement or verification—
as such, no history of harvest or other forest disturbance is required to be reported 
as part of a project application. All eligible project data was downloaded, and 
boundary data was converted to shapefiles and processed to equal-area conic 
projection to map projects’ spatial and geographic characteristics. In Chapter 2 of 
this dissertation, this database provides a descriptive overview of IFM projects 
enrolled in California’s offset program.  

Van Kooten (2017, p. 87) argues that "when it comes to the creation of 
carbon offsets, measurement and monitoring issues can be resolved by relying on 
satellite data… although more effort is required in this regard." In order to better 
understand the history of offset lands as a predictor of future harvest risk, remote 
sensing techniques were used to collect a time series of satellite data from the 
Landsat archive via Google Earth Engine (GEE) and a well-established algorithm 
for detecting forest disturbance (LandTrendr) was used to map forest 
disturbances caused by management activity in all projects and respective 
Supersection (regional) lands between 1985 and 2020 (Kennedy et al., 2010; 
2018). With these two unique datasets, I first measure to what extent IFM 
projects exhibit characteristics commonly associated with lower long-term 
management-related forest disturbance. As an indicator of policy effectiveness, I 
then examine whether pre-project disturbance rates on enrolled IFM project 
lands suggest that enrolled forests were at risk of harvest in the absence of offset 
credits by using matching and panel regression modeling.  
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Monitoring forest disturbances using remote sensing 

Remote sensing techniques are central to the analyses within this dissertation, 
as time series of satellite data were utilized to detect and quantify rates of 
historical forest disturbance on project and regional Supersection lands (Chapter 
3). These results were subsequently used to examine the effects of offset project 
commencement on disturbance rates (Chapter 4). Building on many 
advancements in the field of remote sensing, the dataset constructed in Chapter 
3 distinguishes natural disturbances from harvests by using time series 
modeling, omitting disturbances such as wildfires, considering spatial and 
temporal patterns indicative of forest management, and extending the timeframe 
of commonly used forest change datasets, providing sufficient temporal resolution 
to understand harvest risk. The methods used here emerged from extensive 
literature spanning decades that has sought to advance forest change detection 
methods and attribute their causal mechanisms (Zhu, 2017). 

  

Forest change detection methods 

Annually, roughly 30% of all anthropogenic emissions on Earth are absorbed by 
terrestrial ecosystems, primarily by forests (Anderegg et al., 2020; Canadell & 
Raupach, 2008; Friedlingstein et al., 2019; Pan et al., 2011; Pugh et al., 2019). 
The ability of forests to sequester and store carbon makes them critically 
important carbon sinks for regulating ecological systems and mitigating 
catastrophic climate change, which makes monitoring them to avoid the 
emissions that result from deforestation and degradation paramount (Bala et al., 
2007; Bonan, 2008; Canadell et al., 2007; Grassi et al., 2017; Griscom et al., 2017; 
Fargione et al., 2018; Harper et al., 2018; Noon et al., 2022; Van Kooten, 2020). 
For these reasons, understanding where and why forests change is important, 
and satellite remote sensing is increasingly the key technology used for improving 
our understanding of forest change (Frolking et al., 2009; Kennedy et al., 2009; 
Masek et al., 2015; Negrón-Juárez et al., 2014; Pasquarella et al., 2017; Wulder 
et al., 2012).  

Forest degradation is defined in various ways—typically as a reduction of 
biomass, biodiversity, or ecosystem productivity—and there are no standard 
methods for detecting or monitoring degradation (Simula, 2009). For the purpose 
of this work, forest degradation is defined as harvesting, leading to a decline in 
structural complexity and standing biomass of managed forests. Past remote 
sensing studies of forest change have primarily focused on deforestation, i.e., full-
canopy removal. However, many land-use practices and climate change lead to 
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smaller-scale or more gradual changes in forest stands, resulting in forest 
degradation. This can often be the case for forest harvesting activities such as 
partial thinning. Selecting an appropriate methodology and procedure for 
detecting forest disturbance is not a clear or standardized process and ultimately 
depends on characteristics specific to the study area (Lu et al., 2014). Different 
satellite sensors and techniques offer varied temporal availability, resolution, and 
spectral range, such that selecting between sensors and techniques requires a 
tradeoff in one or more of these characteristics as well as associated financial and 
resource costs. For example, Spot 6/7 and Digital Globe offer fine submeter 
resolution but are spectrally limited compared to MODIS, Landsat, and Sentinel-
2, and will increase the computational, financial, and time cost associated with 
analysis. Likewise, variable selection is especially important in remote sensing 
forest degradation analyses and varies based on place-specific variables (Lu et al., 
2014). Many forest change detection algorithms require singular inputs selected 
by the researcher, typically a spectral index calculated using two or more spectral 
bands. Each spectral index is suited to detect different aspects of environmental 
landscapes, which introduces further complication as environmental and forested 
landscapes are not homogenous and exhibit different characteristics. In 
conducting forest disturbance detection or monitoring, researchers need to select 
the most appropriate combination of various satellite sensors, techniques, and 
variables to best suit specific scales and research questions (Zhu et al., 2017).  

Many Landsat Time Series (LTS) methods have been developed to study 
forest cover dynamics and degradation trends and characterize those changes 
using various metrics. LTS methods can be broadly stratified by the type of 
change detected and whether the analysis looks at only past images or images in 
real-time. The three distinct change types commonly used in LTS algorithms 
include seasonal or cyclic, gradual, or abrupt (Verbesselt et al., 2012). They are 
further stratified by whether they are considered ‘offline’—meaning they only use 
historical data to observe time series patterns and detect forest disturbances—or 
‘online monitoring’—those that operate iteratively using new data as it is made 
available to continuously detect degradation (Zhu, 2017). Commonly used 
examples of ‘offline’ algorithms include DBEST (Detecting Breakpoints and 
Estimating Segments in Trend, Jamali et al., 2015), BFAST (Breaks for Additive 
Season and Trend, Verbesselt et al., 2012), and LandTrendr (Landsat-based 
detection of Trends in Disturbance and Recovery, Kennedy et al., 2010). 
Commonly used ‘online monitoring’ methods include CMFDA (Continuous 
Monitoring of Forest Disturbance Algorithm, Zhu, et al., 2012), CCDC 
(Continuous Change Detection and Classification, Zhu & Woodcock, 2014; Zhu et 
al., 2020), and BFAST Monitor (Breaks for Additive Season and Trend Monitor, 
Verbesselt et al., 2012). 
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To identify land use change across the longest time period, Landsat is most 
advantageous primarily because of its extensive archive, as Landsat satellites 
have been continuously taking images of the planet since the 1970s. Other 
commonly used moderate-to-high resolution sensors in land use change analyses 
include MODIS, ASTER, Sentinel-2, and very high resolution (VHR) data such as 
Rapideye and Spot 6/7. One advantage of Landsat data over VHR is that unlike 
VHR, there is no cost to access the former. MODIS provides high temporal 
resolution and acquisition frequency but is much coarser than Landsat and less 
suited for analysis that might have disturbances occurring at the sub-pixel level.  

 

Analysis at scale: big data and cloud computing 

While data-rich time-series analyses like detecting forest disturbance still require 
massive storage and computational resources, Landsat data is more accessible to 
researchers than ever before due to developments in cloud-based tooling (see, e.g., 
Broich et al., 2011;  De Vries et al., 2015; Dutrieux et al., 2015; Potapov et al., 
2012; Verbesselt et al.,  2010; Zhu & Woodcock, 2014; Zhu et al., 2012b; Zhu et 
al., 2015b; Zhu et al., 2016). Previously, the primary barrier to doing time-series 
analyses of forest change using extensive satellite imagery collections has been 
the lack of computational power and ability to store immense amounts of data 
(Hansen & Loveland, 2012). This analysis differs from many past analyses of 
forest change in that it was scaled up to the national (U.S.) level with the support 
of cloud-based tools that host massive amounts of publicly-available satellite 
datasets and provide the computational power needed to process them in real-
time from a browser on a local machine.  

Prior to recent years, analyzing such large amounts of satellite data was 
not feasible for most researchers. In order to do a simple before-after satellite 
image subtraction in order to look for areas of forest change in 2014, one was 
required to search for the individual satellite images that were needed for the 
analysis, submit an order request for them through the USGS data platform, wait 
several days for the order to be approved and prepared, and then download them 
individually from the download link provided in response to the order request. 
Images then needed to be processed, corrected, and potentially converted to 
surface reflectance by manually accessing the associated metadata .txt file 
included with the individual images and inputting those data into a pre-built 
model in ArcMap that would execute the conversion with those inputs. At this 
point, the actual time series analysis could be carried out on the enormous images 
processed. A simple projection or subtraction of two full-size Landsat images, for 
example, could take minutes to hours on university-provided computers, and 
tasks often timed out or failed after hours of waiting. 
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GEE, a powerful tool for studying land change, was utilized to conduct the 
remote sensing analysis that follows in this dissertation. Conducting this type of 
complex analysis with GEE required communication directly with Google 
engineers, as few researchers had successfully utilized GEE at this point in its 
lifetime, and few resources for learning were available. Introduced in 2010, 
“Google Earth Engine is a cloud-based platform that makes it easy to access high-
performance computing resources for processing very large geospatial datasets, 
without having to suffer the IT pains currently surrounding either. Additionally, 
and unlike most supercomputing centers, Earth Engine is also designed to help 
researchers easily disseminate their results to other researchers, policy makers, 
NGOs, field workers, and even the general public. Once an algorithm has been 
developed on Earth Engine, users can produce systematic data products or deploy 
interactive applications backed by Earth Engine's resources, without needing to 
be an expert in application development, web programming or HTML” (Gorelick 
et al., 2017, p. 1).  

GEE is accessible via a browser-based JavaScript API or using Python. 
Scripts for running analyses, and geospatial assets (vectors and rasters), can be 
stored either within the GEE platform or in a Google Cloud Platform storage 
location. In either case, assets can be called into scripts directly from those 
locations. GEE has an extensive data catalog that contains petabytes of data, 
which can also be called directly into scripts within the platform. Computation is 
executed server-side on Google’s servers, such that it is possible to complete 
massively expensive tasks from virtually any computer connected to the internet. 
GEE provides the ability to complete entire analyses without moving and storing 
massive datasets: all parts of analysis occur on the platform until final, tabular 
results are ready for export. There are many options for exporting data from GEE: 
it is possible to export to Google Drive accounts, to Google Cloud Platform 
buckets, or GEE asset folders. All data is technically free to download. Though 
there are small drawbacks to using the platform—for example, exporting very 
large datasets or images can take significant time and often times-out due to 
exceeding provisioned memory—overall, the platform enables researchers 
worldwide to access tools required for advanced remote sensing analysis without 
charge. GEE holds the potential to address many of the limitations of past remote 
sensing techniques, particularly for research at the state, regional, and global 
spatial scales, which use enormous amounts of data. 

 

Modeling policy effectiveness: Theory and methods 

This dissertation explores the effectiveness of forest carbon offsetting in the U.S. 
as part of a compliance-based emissions reduction scheme, focusing on developing 
methods and necessary databases to examine additionality. Modeling policy 
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effectiveness is an emerging discipline, and the methodology is continually 
improving. Recent advancements in modeling policy effectiveness have led, 
ultimately, to the quasi-experimental econometric modeling used in Chapter 4 of 
this dissertation to empirically assess the effectiveness of the U.S. Forest Projects 
Compliance Offset Protocol. A difference-in-difference panel model approach is 
used to estimate the impact of project establishment on forest disturbance rates, 
incorporating matching, fixed effects, linear probability models, and random 
effects logit models in order to effectively isolate policy impacts from other factors 
and control for time-invariant unobservable variables (Bruggeman et al., 2016; 
Imbens & Wooldridge, 2009; Jones & Lewis, 2015; Jones et al., 2017). The 
following section reviews the work that has sought to improve how models 
measure environmental policy effectiveness over the past two decades, leading to 
quasi-experimental econometric modeling. 

 

Land-use change modeling 

Land change science studies the natural and anthropogenic dimensions of land 
systems on Earth (Rounsevell et al., 2012; Turner et al., 2007). An important tool 
for land change science is modeling, which can help to understand the processes, 
causes, and outcomes of observed land-use change patterns or trends (Brown et 
al., 2014; Meyfroidt, 2016). “This understanding can be represented with degrees 
of formality varying from informal conceptual models to formal mathematical or 
computational models. Stochastic aspects of this understanding might be 
included with otherwise deterministic processes to represent uncertainty and 
statistical variability in system behavior” (Brown et al., 2014, p. 17). Modeling 
land-use change is increasingly challenging as factors such as climate change and 
globalization shift the scale at which natural, social, cultural, and economic 
processes interact, allowing for the possibility that distant or global-scale drivers 
may influence local and regional land systems (Verburg et al., 2015; Meyfroidt, 
2016; Meyfroidt et al., 2022). Land systems are an example of complex social-
ecological systems (SES), which are challenging to model because they are 
nonlinear, which produces uncertainty; self-organized, which produces 
emergence; and complex adaptive systems, making modeling policy effectiveness 
difficult (Rindfuss et al., 2004). 

An effective conceptual method for linking observed change with policy 
changes is to develop counterfactuals, where two comparable units are studied, 
one which experienced the policy and one that had not. While counterfactuals 
attempt to compare two units that are as meaningfully similar as possible, such 
methods as with-versus-without frameworks or comparing a precondition of one 
place to the treatment can still be prone to issues such as biases: for example, 
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some policies that aim to protect natural resources might succeed based on the 
site's geography, rather than wholly due to the policy itself. In forest resource 
conservation and management, several variables are important to incorporate 
into models designed to assess policy effectiveness in addition to time series of 
satellite images to control for bias, including landscape and climatic variables 
such as distance to paved roads, precipitation, and elevation, and socioeconomic 
variables such as conversion pressure, landowner affluence, dependence on 
resources, and the ability to access resources. However, these variables are 
challenging to isolate and control for, often unobserved, and not distributed 
homogenously across a study site.   

Previous models for land-use change have relied primarily on either 
aggregate landscape-level data or individual decision-making data at the parcel 
level. Carrión-Flores and Irwin (2004) examine the spatial landscape pattern 
metrics associated with rural-to-urban sprawl and advanced the literature by 
modeling the dispersion and fragmentation patterns of development and 
individual decision-making to explain sprawl at the regional (here, county) scale. 
A spatial sampling method was used to address issues associated with spatial 
autocorrelation, which omits spatially dependent observations to construct an 
independent error structure—methods that are foundational to many future LUC 
modeling studies. 

McConnell et al. (2006) provided an early case study of land-use change 
models: they examined the effects of market forces and zoning regulations on the 
density of subdivision development in a Maryland suburb. They argued that 
restricting their model to a particular location allowed for other factors that 
affected housing markets to be held constant. Irwin and Bockstael (2007) 
questioned the validity of the conclusions made by McConnell et al., discussing 
the challenges of using remotely-sensed datasets for quantifying changes in 
sprawl; primarily, that changes in land cover in low-density areas are not 
necessarily indicative of changes in sprawl. For example, there is little impervious 
cover in comparison to vegetation. This study is important because the Irwin and 
Bockstael (2007) make the empirically-based argument that land cover and land 
use are not necessarily correlated. They show that fragmentation, low-density 
development, and exurban growth are linked, and that previous work employed 
data that were not sufficient or suitable to detect and explain these relationships.  

While early econometric models of land use change were able to control for 
local variables, their findings were constrained to a small geographic area—in the 
case of McConnell et al. (2006), a single county. Lubowski et al. (2008) expanded 
on studies such as McConnell et al. (2006) by examining the effects of markets on 
land use change decision-making in greater scope and depth, on a national scale. 
This study was the first to model competition between major land use 
alternatives. The authors suggested that market-based forces and estimated net 
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returns largely explained historical land use decisions. The developed 
econometric model was based on assumptions that individuals would choose the 
alternative that resulted in the highest one-period return. Decisions were based 
on historical and present-day conditions and did not consider future uncertainties 
such as risks posed by climate change, despite the authors’ mention of the 
important implications of land use change for global climate change. Unlike the 
previous studies discussed here, spatial autocorrelation was not perceived as a 
critical concern and was ultimately left unaddressed because of the computational 
costs of addressing it at the time.  

Early econometric models of competing land use failed to recognize the 
importance of the support of biodiversity as a model output. Polasky et al. (2005) 
developed a combined biological and economic model to explore how land-use 
change affects land suitability for supporting biodiversity and economic returns, 
concluding that conservation objectives can largely be accomplished without 
diminishing the economic output of the land, but land use conversions can 
threaten important habitats needed by certain specifies. Their model was 
somewhat coarse and did not include major economic activities like recreation, 
commercial, or residential land uses, nor did it weight species based on whether 
they were endemic or endangered, but the authors advanced previous work by 
combining biological and economic models and served as a precursor to future 
coupled human and natural models. 

 

Coupled natural and human systems modeling 

The coupled natural and human systems modeling literature documents the 
importance of considering social and spatial heterogeneity in assessments of 
policy effectiveness. In SES, landscape outcomes are an aggregate effect of small-
scale, local actions that affect individual behaviors and actions, usually over 
varied longer time scales. Although simple deterministic models with mild 
nonlinearities generate important insights, they can still insufficiently isolate the 
causal effect of the observed behavior or land use and land cover change. Real-
world systems exhibit nonlinear dynamics and many interacting elements that 
comprise them and unobserved variables that are challenging to account for. This 
complexity brings deep uncertainty that makes policymaking exceedingly 
difficult in practice, whether the policy targets forest or an epidemic.  

Liu et al. (2007) proposed a formal definition of coupled human and natural 
systems (CHANS): “systems in which human and natural components interact” 
(p. 639). They developed a general framework for studying CHANS, which they 
argued requires interdisciplinary thinking and methods, and research designs 
that incorporate spatial and temporal coupling, focusing beyond traditional 
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boundaries, heterogeneity, and indirect effects. Prior research, they argued, had 
focused either 1) on human interactions and neglected the environmental context 
of those interactions; or 2) on pristine environments with few human influences. 
This dichotomy does not serve present-day challenges, as they occur at the 
interface of these two schools.  

Nelson et al. (2009) advanced CHANS by developing a model specifically 
designed to measure the trade-offs between ecosystem services and economic 
activities—the Integrated Valuation of Ecosystem Services and Trade-offs 
(InVEST) model. They compared the findings of economic and ecological models 
by integrating the two sets of variables and examining their trade-offs and found 
that economic activities were capable of supporting or enhancing important 
ecosystem services. Additionally, some observed trade-offs in favor of economic 
growth could be accounted for if payment for the carbon services scheme were 
introduced into their model.  

In 2015, Byrd et al. set out to explore a more complex system of interactions 
in CHANS by integrating climate change projections with land use change 
scenarios to model their combined effects on various ecosystem services in 
California, like soil, water, and habitat. Mastrangelo and Laterra (2015) 
advanced CHANS further by integrating theories about resource frontiers (here, 
agricultural) and “extraregional stakeholders.” The authors also argued that a 
place's environmental and social heterogeneity affect the information that can be 
inferred from modeling the trade-offs between ecosystem services and production: 
stakeholder preferences and access to resources influence all else in the model. 
While Newbold et al. (2015) did not include climate change in their model design, 
their work serves as an early example of regional analysis at scale: they argued 
that other studies had focused on large scale—i.e., regional or global—rates of 
biodiversity loss, but processes largely impact that biodiversity at local scales. 
They were able to explore rates of biodiversity loss at local levels by developing a 
model that incorporated a massive amount of data relevant to individual locales 
encompassing the globe.  

Many past studies have previously focused on the importance of variable 
selection, but equally important is the empirical model chosen to do the analysis 
(Plantinga, 2021; Siegel et al., 2022). In exploring the effects of open space and 
associated protection on the value and density of developed landscapes, Lewis 
(2009) and Lewis et al. (2009) advanced CHANS methodologies by employing a 
random effects framework to account for unobservable spatial heterogeneity that 
might influence development decisions. Chakir and Parent (2009) introduced a 
spatial multinomial probit model for predicting land use change decisions in a 
region of France, using parcel-level rather than aggregate data; allowing for 
spatial dependence among parcels and interdependence among land use change 
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alternatives; and addressing unobservable variables with unstructured 
individual effects and spatially structured components.  

In their work aiming to explore the links and feedback between land use 
and climate change, Mendelsohn and Dinar (2009) suggested that many past 
studies modeling the effects of land use on climate change had used poor quality 
datasets and modeling techniques. The authors recommended improving 
modeling standards, e.g., using computable general equilibrium models for the 
agricultural sector instead of partial equilibrium, and using dynamic rather than 
static forest models. Mann et al. (2014) and Lawler et al. (2014), modeling the 
consequences of land use change on the environment and ecosystem services, also 
recommended using general equilibrium models to balance market dynamics and 
account for aggregate market feedback effects land use change.  

 

Causal inference in land use models 

While coupled models sought to understand the role of ecosystem and economies 
in single models, many policymakers are interested in the causal effects of 
policies. Over the last 20 years, causal inference has grown as a subfield of 
econometrics, even leading to the Nobel Prize being awarded to Guido Imbens, 
Joshua Angrist, and David Card in 2021 in recognition of their contributions of 
natural experiment analysis1. The modeling approach used in this dissertation 
was informed particularly by past studies designed to assess the effectiveness of 
establishing protected areas (PA) in reducing forest degradation, as many 
parallels can be drawn between forest offset projects and protected area 
designations on forestlands (Brandon & Wells, 2009; for recent examples, see 
Shah et al., 2021; Xin et al., 2021). Both aim to increase the social-environmental 
co-benefits and ecosystem services that forests provide by improving forest health 
and reducing the risk of degradation over time. Both require the delineation of a 
boundary around an area, and the forests within are subjected to some type of 
change relative to regulations or practices that may have taken place in the 
absence of project establishment. For PAs designated for conservation purposes, 
this might mean that development or other specific use cases or forest 

 

 

 

 
1 https://www.nobelprize.org/prizes/economic-sciences/2021/popular-information/ 
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management practices are restricted or ended altogether. For IFM forest offset 
projects, management and harvesting practices are altered to reduce potential 
emissions from harvesting, increase above carbon storage and capacity to 
sequester carbon, and reduce vulnerability to risks associated with climate 
change such as wildfire and drought.  

Extensive literature has attempted to measure the effects of protected area 
designation on reducing forest degradation (for a recent review, see Yang et al., 
2021). Assessing protected area effectiveness is challenging for many reasons that 
apply similarly to assessing the effectiveness of offset project establishment, 
particularly because reducing potential forest degradation, deforestation, 
conversion, or the emissions that would have been released in any of these 
scenarios, is not something that can be measured directly (Andam et al., 2008). 
In other words, one cannot quantify something that never happened. PAs are not 
designated randomly and are more likely to be established in remote areas with 
greater land availability and lower acquisition costs, population densities, and 
conversion pressures (Andam et al., 2008; Baldi et al., 2017; Joppa & Pfaff, 2009). 
This can bias effectiveness metrics, especially when comparing a protected area 
to non-protected forest, as PAs established in locations that experience little 
threat of deforestation are less likely to be effective (Nolte et al., 2013). 

 These considerations informed the approach to assessing the effectiveness 
of offset project establishment in this dissertation. Like PAs, forest offset projects 
are more likely to be established in non-random locations: any privately owned 
forest in the continental U.S. can be offset, but specific locations and forest owners 
are more likely to meet the criteria laid out in California’s IFM protocol. If a forest 
parcel is inaccessible by road and far from lumber sawmills, for example, it can 
be assumed that this parcel is less likely to be harvested for timber than a parcel 
exhibiting characteristics more conducive to corporate or large-scale forest 
management. These time-invariant variables such as landscape characteristics 
and spatial relative distances bias effectiveness metrics if not controlled for. A 
combination of pre-regression matching of comparable areas and a fixed effects 
model are suitable to address this limitation of traditional regression techniques. 

The complexity and scale of LUC modeling have changed significantly in 
the past two decades. This dissertation contributes to this evolving literature in 
three primary ways. First, new computing methods are used to develop a novel 
dataset used for land use change modeling. Second, these models are applied to a 
novel and important use case: exploring the impact of forest carbon offset project 
establishment on real, additional sequestration of carbon and resulting emissions 
reductions. Last, remotely sensed forest disturbance data is used as an input to a 
difference-in-difference panel model that incorporates matching, fixed effects 
linear probability models, and random effects logit models in order to effectively 
isolate policy impacts from other factors and control for time-invariant 
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unobservable variables (Bruggeman et al., 2016; Imbens & Wooldridge, 2009; 
Jones & Lewis, 2015; Jones et al., 2017). 
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Chapter 2 

Assessing Participants of 
California’s U.S. Forest 
Projects Compliance Offset 
Protocol 

Abstract 
Here, I describe the creation of an original database of information to assess 
descriptive patterns across 90 IFM projects registered and credited in California’s 
U.S. Forest Projects Compliance Offset Protocol. Data collected include GIS 
(Geographic information system) boundaries and project characteristics such as 
size, location, landowner type, initial above-ground carbon stocking value, and 
the Common Practice statistic used to calculate the project’s baseline. A 
breakdown of the spatial, demographic, and geographic heterogeneity across 
projects is provided, and potential barriers to participation in the program based 
on characteristics of currently enrolled projects are discussed. I find that IFM 
project credits have been allocated primarily to forests with high carbon stocks 
(130% higher baselines than regional averages). Results also suggest that projects 
owned by corporate and 'other' interests were most common; the majority of 
credits in California's program have been allocated to Tribal projects (48.4% of all 
credits) and TIMO/REIT projects (23.4% of credits) due in part to their larger size, 
and family landowners are underrepresented in California’s offset program 
relative to private forest owners across the U.S. On average, across ownership 
classes, projects were stocked at carbon levels of 125% relative to the average 
standing live carbon of forests within the project's Supersection assessment area. 
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2.1 Introduction 
Although forest offsets are a sizable and growing component of climate change 
mitigation strategies, including that of California's cap-and-trade system, no 
comprehensive overview of existing California offset project information has been 
collected and made publicly available. As California's offset protocol represents a 
substantial amount of land and economic resources, it is important to analyze and 
evaluate the state of the program as it develops. Analysis of project location and 
spatial data can provide many insights into the projects that California has and 
has not enrolled in its protocol thus far: it can help researchers and policymakers 
better understand the social and environmental context in which projects are 
currently located; identify patterns such as outliers, hotspots, and drainage; and 
reveal attributes that may be meaningful in assessing additionality, as in the case 
of a steeply sloped, untouched project parcel surrounded with forest loss. To 
conduct any analysis of California’s current portfolio of forest offset projects, 
including remote sensing analysis and econometric models, researchers must 
manually aggregate spatial data and relevant documentation from each 
individual project. CARB provides a map of forest offset project locations2 but 
does not provide any analysis or synthesis of these projects as part of California’s 
larger U.S. Forest Projects Compliance Offset Protocol. Furthermore, CARB does 
not allow spatial boundaries or location data from their project map to be 
downloaded.  

To better understand the characteristics of existing IFM offset projects in 
California’s U.S. Forest Projects Compliance Offset Protocol and comparisons to 
their respective regional Supersections, I compile and analyze spatial data and 
relevant information from each credited project in California’s protocol. I focus 
here on measuring to what extent IFM projects exhibit characteristics—such as 
size, location, ownership class, credits received, and baseline carbon stocks—that 
are commonly associated with lower long-term management-related disturbance. 
Data were compiled for 90 projects where CARB credits have been issued in 30 
states and 43 Supersections for which spatial project boundaries were obtained 

 

 

 

 

2 https://webmaps.arb.ca.gov/ARBOCIssuanceMap/ 



 

22 

 

 

(Table 7). Disparate boundary files for IFM compliance projects were collected, 
combined, cleaned, and harmonized to create the most complete dataset possible 
of CARB-credited IFM project boundaries. Prior to this work, no complete 
California offset project data database, including project characteristics and 
boundaries, had been publicly available, preventing any large-scale analysis of 
enrolled projects.  

This database of project characteristics was utilized to explore spatial, 
demographic, and geographic heterogeneity in enrolled IFM projects. As timber 
patterns and disturbance risks vary by region, heterogeneity was explored across 
geographies by utilizing Supersections, which are sub-state delineations based on 
similar ecosystem types and are equivalent to the Environmental Protection 
Agency’s (EPA) Ecoregions3 Level III designations; the regions range from sub-
state at Level IV to large U.S. regions at Level I (Figure 1). CARB uses 
Supersections to establish whether a project's baseline aboveground carbon 
stocking is above or below the average in a similar region (ARB, 2015; EPA, 2015).  

 

 

 

 
3Omernik & Griffith, 2014; Omernik, 2004 (https://www.epa.gov/eco-research/ecoregions) 
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Figure 1. EPA Ecoregion Levels.  Level I, made up of 12 regions (top left), and Level II made 
up of 25 regions (top right), are the coarsest and included to compare against the dataset used for 
Supersections—Level III, which contains 105 regions (bottom left). Level IV (bottom right) 
consists of 967 ecoregions, considerably finer scale and more specific to local characteristics than 
Levels I, II, or III. Vector data was sourced from the EPA’s website4. 

 

 

 

 
4 https://www.epa.gov/eco-research/ecoregions 
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Because different landowner types may have divergent management goals 
(Ruseva et al., 2017), heterogeneity was also explored across landowner types. 
For example, corporate forest owners typically have predictable forest 
management goals to maximize profit from timber harvest. In contrast, non-
industrial private forest owners (NIPF; Tribal, family, and 'other' owners) may be 
motivated by alternative goals in addition to or instead of financial gain, such as 
ecosystem services (Kelly et al., 2017). Here, projects were grouped into five 
landowner types based on a forest landowner classification stratum developed by 
the USFS (Sass et al., 2020; Table 1). Ownership classes included corporate 
timber interests, families, Native American Tribes, timber investment 
management organizations (TIMO) and real estate investment trusts (REIT), and 
an aggregate group labeled 'other,' which comprises primarily non-governmental 
organizations (NGOs) and land trusts (Hewes et al., 2017). 

 

2.2 Methods 
The study area included the boundaries for each project and the boundaries of the 
43 Supersections in which they are located, the latter of which is used by the 
California U.S. Forest Projects Compliance Offset Protocol to calculate the number 
of credits awarded to each project by comparing carbon stocking between projects 
and their respective Supersections. The Supersection shapefile used was obtained 
from the CARB U.S. Forest Projects website. IFM offset projects were included in 
our database if they met three criteria: (1) they were compliance projects and not 
Early Action (where credits were awarded to entities reducing emissions before 
compliance was required); (2) they were listed on a CARB-designated registry; (3) 
their boundary GIS data was uploaded or otherwise made available. CARB tasks 
much of the oversight of projects to three registries: Verified Carbon Standard 
(now Verra California Offset Project Registry, or VCSOPR), the Climate Action 
Reserve (CAR), and the American Carbon Registry (ACR). Data on individual 
projects were collected from each registry, resulting in a unique, complete dataset 
to enable large-scale analysis of enrolled projects.  

When this data was collected, many projects were listed across the three 
registries that did not satisfy the requirement of boundary file upload and were 
thus excluded from the analysis. Other issues were encountered, such as some 
projects not including a valid GIS boundary file with their listing documents, or 
some projects not being updated from Early Action to Compliance on registry 
tables. Many of these issues were resolved through direct communication with 
the registries. An example correspondence from an employee at CAR on April 12, 
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2017, in response to my request for a list of missing boundary files, exemplifies 
the challenges described:  

“…some of the projects on this list are duplicates of other 
projects. For instance, you have listed CAR408 – Big River / 
Salmon Creek Forests. This project is the same as CAR1100 – Big 
River / Salmon Creek Forests - ARB. There is a specific reason for 
this which is generally that CAR408 was originally registered as 
an “Early Action” project and the project eventually transitioned 
into the compliance program. We keep all of the previous 
documents public on our registry. I would suggest filtering the 
Project Report to only projects that have the “- ARB Compliance” 
suffix as its project type. This should remove any duplicative 
projects. The shapefile requirement is only a component of the 
Compliance program, so no Early Action or Voluntary projects will 
have their shapefiles publicly available." 

Another correspondence from the same day, from Dr. Kerchner, a proposal 
developer at ACR, reads: 

“I did make the files public for ACR210, and I re-uploaded them 
for ACR268 since we had them on hand. I asked the project 
owners for ACR260, ACR273 and ACR287 to upload the files, but 
I assume it’ll take a couple [of] days and it’ll require someone at 
ACR to make them public. ACR 186 and 187 were early action so 
not applicable (they have new project numbers under the 
compliance program). Also ACR209 isn’t going forward. I’ll need 
to look into how to deal with the projects that provided the 
autocad files. We don’t have other files from them at this time." 

Once project boundary files were collected, all available files were 
converted to shapefiles and processed to equal-area conic projection. Geometries 
were checked for validity, and geometrical errors were repaired if present. Three 
primary metrics were calculated for IFM projects and compared across ownership 
classes: mean area, mean number of credits awarded, and mean baseline 
percentage of the common practice statistic (unweighted, weighted by area, and 
weighted by number of credits). These metrics were stratified across five land 
ownership types sourced from the USFS: corporate, TIMO/REIT, Tribal, family, 
and ‘other’ owners (Table 1). 
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Table 1. Forest owner types and definitions. 

Class Description 
Corporate Corporate-owned 
TIMO/REIT Timberland investment management organizations/real estate investment trusts 
Tribal Native American Tribal lands 
Family Individuals, families, trusts, estates, and family partnerships 

Other 
Conservation and natural resource organizations., unincorporated partnerships, and 
associations 

 

ArcGIS Pro software was used to calculate the area for each project in hectares. 
The mean area was calculated for all projects overall as well as for projects 
stratified by each ownership class. All project shapefiles used a projected 
coordinate system rather than a geographic coordinate system: a projected 
coordinate system describes how to draw the vector on a two-dimensional surface, 
while a geographic coordinate system defines where the vector is located on the 
surface of the Earth. A geographic coordinate system, which uses angular units 
like degrees, would result in inaccurate area calculations as ArcGIS, like most 
GIS software, calculates perimeters and areas using a planimetric algorithm. The 
project areas calculated using this method were slightly different from some of 
the areas reported in the project reporting documents, as area calculation 
methodologies varied across projects. The areas calculated here were calculated 
using a single method and equal-area projection and as such provided more 
reliable data points for comparison.  

Credits for each project were scraped directly from CARB credit issuance 
tables, posted each month publicly. Credits issued were cross-referenced with 
credit issuance numbers made available by project registry databases. In the few 
instances where credit numbers between CARB and project registry databases 
did not match, due diligence was completed to account for the discrepancy; if no 
explanation was made available, the greater number of credits was used in our 
database under the assumption that one table simply had not been updated as 
recently. Reversals and notes about credits issued for projects were accounted for 
in our database until analysis began. As with the mean area, mean credits were 
calculated for all projects overall and for projects stratified by each ownership 
class. All project listing documents include an initial aboveground carbon 
stocking estimation and the estimated common practice statistic calculated based 
on an FIA assessment area database. The baseline percentage of common practice 
for each project was calculated by dividing the initial aboveground carbon 
stocking of the project by the generated common practice statistic, then 
multiplying by 100. Baseline percentages of common practice were calculated for 
all projects overall and for projects stratified by each ownership class. Mean 
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baseline percentages were additionally weighted by area across ownership classes 
to account for projects varying drastically by area. Lastly, mean baseline 
percentages were weighted by credits awarded to account for differences in 
assessment areas, forest composition, and the associated average carbon stocking 
attributed to those forest types.  

 

2.3 Results 
The credited projects included in this analysis were highly concentrated in the 
state of California and the Pacific Northwest and the Northeast and throughout 
Appalachia (Figure 1). While not numerous, projects were located in most eligible 
parts of the US, including Alaska, except for the Great Plains, Rocky Mountains, 
and large swaths of the Southwest. The largest projects were found in Northern 
California, Alaska, and Appalachia. The projects that exhibited, on average, the 
highest percentage above common practice was located in Appalachia, the 
Southeast, and the Midwest. Projects were primarily located on forestlands 
owned by three ownership types: 'other,' comprising primarily NGOs (34.4% of 
projects), corporate (23.3% of projects), and TIMO/REIT (18.9% of projects) (Table 
2). While there were fewer Tribal projects (15.6% of projects), they were 
substantially larger than projects owned by other ownership classes: on average, 
they were 46,354 ha, compared to the next largest, TIMO/REIT projects, with an 
average size of 25,250 ha; corporate projects with an average size of 19,316 ha; 
and 'other' projects with an average size of 9,760 ha. Projects on family forestlands 
were less common—only 7.8% of projects—and smaller than other project types, 
with an average size of 2,352 ha. While projects owned by corporate and 'other' 
interests were most common, the majority of credits in California's program have 
been allocated to Tribal projects (48.4% of all credits) and TIMO/REIT projects 
(23.4% of credits) due in part to their larger size. On average, across ownership 
classes, projects were stocked at carbon levels of 125% of common practice, the 
average standing live carbon of forests within the project's Supersection and 
Assessment Area (Table 2). Family-owned forestlands had the highest average 
stocking level above common practice at 145%, followed by Tribal forestlands at 
135%. TIMO/REIT projects had the lowest aboveground carbon stocking at 119% 
of common practice. Carbon levels were over 200% of common practice for some 
individual projects. Kelly & Schmitz (2016) similarly found that average 
percentages above common practice was high: they ranged from 111% among 
corporate and TIMO/REIT-owned lands, to 171% on Tribal lands. 
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Figure 2. Location of offset projects included in analysis. 

Table 2. Size, credits, and baseline percent of common practice by owner type. 

Owner Class All Corporate TIMO/REIT Tribal Family Other 
Number of projects 90 21  17 14 7 31 
Percent of total projects 100% 23.3% 18.9% 15.6% 7.8% 34.4% 

Hectares (ha) 

Mean 19,872 19,316 25,250 46,354 2,352 9,760 
Min 216 621 433 1,817 622 216 
Max 205,071 166,432 113,651 205,071 5,252 46,786 
Sum 1,808,339 405,634 429,258 648,952 16,466 302,552 
% of total 
project ha 

100% 22.5% 23.8% 36% 0.9% 16.8% 

Credits 

Mean 1,519,640 677,527 1,881,612 4,728,192 491,906 674,647 
Min 2,616 4,343 43,666 362,722 125,626 2,616 
Max 15,771,683 1,991,514 6,249,083 15,771,683 1,107,495 3,621,175 
Sum 136,767,579 14,228,076 31,987,401 66,194,690 3,443,342 20,914,070 
% of total 100% 10.4% 23.4% 48.4% 2.5% 15.3% 

Baseline percent 
of common 
practice* 

Mean 125% 121% 119% 135% 145% 122% 
Mean weighted 
by credits 

112% 116% 114% 109% 128% 110% 

Mean weighted 
by ha 

99.9% 70.2% 114% 104% 117% 111% 

Min 30% 30% 100% 100% 100% 63% 
Max 259% 259% 163% 209% 256% 242% 
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2.4 Discussion 
The size and number of IFM projects vary by ownership class, particularly 
concerning Tribal-owned and family-owned projects. Tribal projects are much 
larger than other types of projects, and family-owned projects are much smaller—
the former are nearly 20 times larger than the latter. While families own 61.9% 
of non-governmental forests in the U.S., only 7.8% of projects are owned by 
families—instead, most are owned by ‘Other’ entities like NGOs (34.4%), 
corporate entities (23.3%), and TIMO/REITs (18.9%) (Figure 2). This discrepancy 
raises questions about what factors influence participation in California’s U.S. 
Forest Projects Compliance Offset Protocol. Regardless of the cause of this 
discrepancy, the current distribution of forest offset projects and credits is far 
from representative of forest ownership in the US, particularly for family-owned 
forests—as such, the potential is currently limited for these forests to be offset.  

Participation in California’s forest offset protocol is influenced by various 
institutional and environmental variables that affect the potential economic 
viability of a new project (Ruseva et al., 2017). It is necessary to understand how 
eligibility is established to draw meaningful connections between the forest offset 
projects that are registered, the credits purchased by industries, and the 
landowners who ultimately experience capital gains. Eligibility, according to 
CARB, is determined by guidelines set by the U.S. Forest Projects Compliance 
Offset Protocol (ARB, 2015, pp. 11-25). Knox-Hayes (2012) argues that strong 
coalitions primarily explain California’s success in passing ambitious climate 
change policies. This is evident compared to similar policymaking attempts that 
have failed, such as the 2008 Lieberman–Warner bill—a suite of climate policies 
that would have established a national cap-and-trade system in the US. Schmitz 
and Kelly (2016) suggest that the coalition that had the greatest influence on 
protocol development consisted primarily of land trusts and forest managers, who 
pushed for rules to increase their own ability to participate and benefit from the 
program. As a result of entrenched interests in the policymaking process, 
participation costs are prohibitively high for small forest landowners and favor 
large conservation, tribal, and forest industry lands that experience above-
average stocking levels and the preexisting ability to comply with program rules 
(Kelly & Schmitz, 2016). 

While family-owned or other relatively small forest parcels in the U.S. may 
qualify for registration as an offset project, economic and logistic barriers prevent 
them from proceeding to establish a project. Nonindustrial private forest owners 
with smaller land parcels often report philosophical alignment with management 
activity that stores and sequesters carbon, but these landowners report 
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perceiving significant barriers to entry into voluntary offset markets, including 
high costs, rigorous requirements for reporting, protocol complexity, contract 
length, and associated withdrawal penalties, and low familiarity with California’s 
carbon market even among landowners within the state (Charnley et al., 2010; 
Fletcher et al., 2009; Kelly et al., 2017; Miller et al., 2012). A survey conducted by 
Kelly et al. (2017) of 143 non-participating forest landowners in California showed 
that 61% would hypothetically be motivated to join the program if it allowed them 
to receive revenue without harvesting wood products, and 57% would join if they 
would receive revenue in addition to what they gain for wood products. 

Complex project applications with high overhead costs, including required 
evaluations of proposed projects by third-party carbon registries charging fixed 
prices regardless of project parcel size, impede participation in carbon 
sequestration programs among these smaller landowners, foregoing potentially 
viable avenues to meet emissions reduction targets. As all initial revenue from 
(IFM) offset project establishment is based on the amount that a project is above 
common practice at the time of registration, project establishment may be 
prohibitively expensive for small forest landowners who might currently have 
unmanaged or poorly managed forests below the average baseline. 

 

    

Figure 3. Left: Distribution of private forestland ownership in the U.S. among 
ownership classes. Right: Percentage of IFM projects in this analysis for each ownership class. 
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In addition to introducing additional barriers for smaller landowners, the current 
process for determining credit allocations allows and offers a perverse incentive 
to offset land that exceeds regional carbon stocking averages to obtain the 
greatest number of credits. At present, project baselines are calculated by 
comparing carbon stocking on proposed project land to all land within its 
Supersection, and projects in California’s U.S. Forest Projects Compliance Offset 
Protocol were stocked at carbon levels of 125% of common practice on average. 
Project applicants are incentivized to offset parcels of forest with high carbon 
stockings; however, these parcels often have high carbon stockings because it was 
not possible or profitable to manage them before offsetting them. This general, 
above-below system of allocating credits also favors large conservation, Tribal, 
and corporate forestlands that are more likely to experience above-average 
stocking levels than smaller, family-owned forestlands: these larger lands often 
benefit from approaching or exceeding compliance with protocol guidelines before 
project establishment, above-average stocking levels compared to respective 
regional Supersection lands, and larger issuances of offset credits and economic 
reward. Kelly and Schmitz (2016) found that “[p]articipation is possible at any 
stocking level, however only those with higher stocking than regional average . . 
. earn upfront revenue. According to developers, as few as 5–10% of investigated 
projects are profitable enough to justify development expenses, and those that are 
may still be stymied by onerous program constraints, market uncertainty, and 
opportunity costs (p. 104). 

Comparing initial aboveground carbon stocking within projects to that on 
forests within the project’s respective Supersection assessment is argued to be an 
overly generalized and aggregated region of comparison (Anderson-Teixeira et al., 
2022)—particularly because Supersections are equivalent to the EPA’s 
Ecoregions Level III product, and the protocol could just as simply require that 
comparisons be made using the more specific Level IV Ecoregion dataset (Badgley 
et al., 2021). “…using any form of geographic aggregation risks a specific type of 
ecological fallacy known as the modifiable areal unit problem (Gehlke & Biehl, 
1934). Simple averaging over underlying variations in climate and its 
relationship to carbon storage necessarily introduces opportunities for adverse 
selection,” (Badgley et al., 2021, np.). An analysis of offset project records and 
forest inventory data by Badgley et al. (2021) found that the process of comparing 
projects against coarse Supersection carbon-stocking averages to award initial 
credits has led to over-crediting in 29.4% of the credits analyzed, generating $410 
million in offset credits that are not representative of legitimate emissions 
reductions.  

Together, these analyses suggest that project baselines would be more 
accurately determined if initial aboveground carbon stocking on project lands was 
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compared to forest areas with similar characteristics within Supersections rather 
than all forestlands in the Supersection. Companies like NCX are steadily 
introducing more robust methods for measuring forest carbon and brokering 
purchases directly between landowners and companies who wish to offset their 
emissions to better ensure additionality and reduce the economic barriers for 
forest landowners to participate in offset programs. A large-scale descriptive 
analysis of IFM projects can shed light on barriers to participation in California’s 
U.S. Forest Projects Compliance Offset Protocol and the perverse incentives to 
offset forests that may not be at risk of harvest. Forest harvest history for offset 
projects and their respective Supersections can provide a richer understanding of 
disturbance risk and the potential incentives necessary to mitigate it.   
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Chapter 3 

Quantifying Historical 
Disturbance Rates Using 
Remote Sensing 

Abstract 
As the California U.S. Forest Projects Compliance Offset Protocol does not require 
harvest history to be shared by projects, a remote sensing analysis of projects and 
regional Supersections was conducted to better understand the history of offset 
lands, where historical disturbance may serve as a potential indicator of risk of 
future disturbance. GEE, a cloud-based geospatial processing platform, was 
utilized to collect and compile a time series of satellite data from the Landsat 
archive between 1985 and 2020. LandTrendr, an algorithm designed to detect 
forest disturbance, was then used to map management-related forest disturbance 
on projects and Supersections. The total annual disturbed area and disturbance 
rate over the time series for project areas and Supersections were calculated with 
this data. Results were further explored across landowner types and at the 
coarsest EPA Ecoregion level to explore whether ownership type is associated 
with different baseline disturbance rates. I find that IFM projects have been 
primarily allocated to forests with low historical disturbance relative to regional 
averages (28% less disturbance than regional averages since 1985).  
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3.1 Introduction 
IFM projects promote greater storage of carbon and can significantly reduce 
atmospheric carbon but must meet several criteria to do so, including 
additionality—that is, they must provide carbon sequestration greater than 
would be observed in a business-as-usual scenario (Fargione et al., 2018; Griscom 
et al., 2017; Harper et al., 2018; Seddon et al., 2020). For IFM projects to be 
additional, land enrolled in IFM projects should be at risk of disturbance or 
otherwise not managed optimally for carbon sequestration (Richards & Huebner, 
2012; Tahvonen & Rautiainen, 2017). After project establishment, harvest risk 
should be reduced, or the forest managed in a way to sustain or increase carbon 
stocks.  

To understand harvest risk on project lands within this context, it is useful 
to refer to harvest history as an indicator of future harvest risk, where forest that 
has experienced disturbance in recent years would have been likely to experience 
additional future disturbance had an offset project not been established. While 
harvest history can provide rich information in investigating a project’s 
additionality, only a cursory narrative description of management history from 
the last 10 years is required in project documentation as part of California’s U.S. 
Forest Projects Compliance Offset Protocol. Harvest may occur in rotations that 
last longer than 10 years—as such, 10 years of management history is not 
sufficient to accurately characterize patterns of harvest history and predict future 
harvest risk.  

To visualize additional harvest history, researchers' most commonly used 
dataset is Global Forest Watch (GFW, Hansen et al., 2013). However, this dataset 
only dates back as far as the year 2000 and may not detect forest change trends 
associated with partial timber harvesting or in areas with sparse canopy cover. 
Satellite imagery and the remote sensing techniques utilized in this analysis 
make it possible to visualize harvest history for the last 36 years. This additional 
history provides a lengthier, more detailed, more accurate, and more 
methodologically consistent set of data to identify patterns in harvest history 
than the 10-year narrative descriptions provided in CARB project documentation. 
With this bespoke dataset, it is also possible to customize forest change detection 
methods to detect not only deforestation, as in existing detection methods, but a 
wider variety of harvesting regimes, including those that do not result in total 
canopy loss like partial thinning and selected cuts (Kennedy et al., 2010). 
Altogether, the methods used here for visualizing and detecting harvest history, 
including 36 years of remotely sensed satellite data and forest disturbance 
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detected with a more specific and relevant algorithm, provide a robust dataset to 
help identify patterns in harvest history. 

Here, remote sensing is utilized to quantify and visualize past forest 
harvest based on historical, publicly available satellite imagery that spans 36 
years. Previously, large-scale analysis of satellite imagery requiring the entirety 
of an image archive would have been resource-intensive and too computationally 
expensive to run on a local machine. Advances in the last several years in 
processing speeds and data storage efficiency, as well as increased access to both 
by researchers, have made this type of analysis possible on local machines. Using 
this novel database of remotely sensed satellite data, historical forest disturbance 
rates were calculated within Supersection and project bounds and compared 
directly to one another to evaluate disturbance rates on project lands. Results 
were further explored across landowner types and at the coarsest EPA Ecoregion 
level (Level I) to explore whether ownership type is associated with different 
baseline disturbances on project lands.  

It is important to note that, despite conducting a validation analysis of the 
remote sensing results, and parameterizing the analysis to temporally, spectrally, 
and spatially focus on forest harvesting, it is always possible that non-
management related forest disturbances could be present. Some types of non-
management related forest disturbances are simpler to control for, but others, 
such as pests or drought-related declines in forest health (Allen et al., 2010), are 
more challenging, despite best efforts to do so (Masek et al., 2015). 

 

3.2 Methods 

Data preparation 

The primary dataset used in this remote sensing analysis was the Landsat 
archive, though several data sources were utilized (Table 3). All Landsat 4-5 
Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and 
Landsat 8 Operational Land Imager (OLI) data available as Surface Reflectance 
(SR) High-Level Data from the USGS were used for each of the Landsat footprints 
that overlap the borders of the Supersections, as well as the forest offset projects 
studied. All SR scenes were Level 1 Terrain corrected (L1T) data provided by the 
USGS Earth Resources Observation and Science (EROS) Center. Landsat 8 data 
were processed to SR using the 'L8SR' algorithm, which utilizes Landsat 8-
specific characteristics (Sayler, 2020). Landsat 4-7 data were processed to SR 
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using the Landsat Ecosystem Disturbance Adaptive Processing System 
(LEDAPS) method (Masek et al., 2006, Schmidt et al., 2013; USGS, 2016b). 
CFmask, a version of the Fmask algorithm (Zhu & Woodcock, 2012a; Zhu et al., 
2015) created for implementation in C, was used to mask out bad pixels from each 
image, including clouds cloud shadows, and bodies of water. 

Table 3. Data sources used in remote sensing analysis. 

Description Type Source(s) 

Boundary files for IFM compliance projects Vector 
Verra California Offset Project Registry5 
Climate Action Reserve6 
American Carbon Registry7 

Supersection shapefiles Vector 
ARB US Forest Projects website  
Continental US8 
Alaska9 

Surface Reflectance Tier 1 data and Landsat 
Archive Raster US Geological Survey10 

Bodies of water Raster European Commission's Joint Research Centre 
Global Surface Water Mapping Layers, v1.211 

Burned areas Vector MODIS Burned Area Monthly Global 500m12 
Forest cover Raster Global Forest Watch13 
Roads Vector TIGER: US Census Roads14 

 

LandTrendr analysis 

I created forest disturbance maps indicative of management activities such as 
clearcutting and selective harvest from 1985 to 2020. The analysis for each project 
and Supersection was conducted using Google's Earth Engine platform (Google 

 

 

 

 
5 https://registry.verra.org/ 
6 https://thereserve2.apx.com/myModule/rpt/myrpt.asp?r=111 
7 https://acr2.apx.com/myModule/rpt/myrpt.asp?r=111 
8 https://ww3.arb.ca.gov/cc/capandtrade/protocols/usforest/2015/super.section.shapefiles5.4.15.zip 
9 https://ww3.arb.ca.gov/cc/capandtrade/protocols/usforest/2015/ak.se.sc.supersection.shp.5.4.15.zip 
10 https://www.usgs.gov/core-science-systems/nli/landsat/landsat-data-access 
11 https://global-surface-water.appspot.com/download 
12 https://lpdaac.usgs.gov/products/mcd64a1v006/ 
13 https://data.globalforestwatch.org/ 
14 https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html 
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Developers, 2020) and the LandTrendr algorithm (Gorelick et al., 2017; Kennedy 
et al., 2010; 2018; Table 4; Figure 3). LandTrendr (Landsat-based detection of 
trends in disturbance and recovery) has been used in many forest change analyses 
and was utilized in this work for several reasons. First, LandTrendr is an effective 
tool for analyzing forest harvest-related disturbances across diverse landscapes 
(Kennedy et al., 2018). Second, it is optimized to detect and separate abrupt from 
long-term forest change related to forest management activities like harvesting, 
e.g., clearcutting, selective harvesting, and thinning, by allowing parameter 
customization to identify specific types of forest management (Kennedy et al., 
2010). Lastly, LandTrendr is effective at large-scale analyses in Google's Earth 
Engine platform, which provides the computational power to conduct time series 
at the national scale needed for this analysis (Kennedy et al., 2018). 

For each project and Supersection, the Landsat archive—US Geological 
Survey (USGS) Surface Reflectance Tier 1 data (Masek et al., 2006; Vermote et 
al., 2016)—was accessed via GEE to create annual composite images for each year 
between 1984 and 2020 inclusive. Data from 1984 was ultimately omitted from 
analyses due to the non-uniform availability of imagery. Imagery from all 
available Landsat sensors was considered in creating the composites, including 
Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper + 
(ETM+), and Landsat 8 Operational Land Imager (OLI). The archive was filtered 
for all images that overlapped the bounds of the project or assessed Supersection. 
Images were then filtered to those acquired within a peak growing season time 
range from mid-June to mid-September between 1985 and 2020. A harmonization 
function was deployed to prepare images in the filtered collection for processing 
by correcting for discrepancies across images acquired from Landsat 8 and other 
Landsat sensors (Roy et al., 2016). Clouds, cloud shadows, water, snow/ice, 
primary and secondary roads, water bodies, and fire activity areas were masked 
out. 

Annual medoid composites were made with the processed and filtered 
image collection by selecting the images for each year with spectral values most 
similar to the median spectral values of the series (Kennedy et al., 2018). Areas 
of forest with less than 30% canopy cover were masked out from the composites 
with the following process: first, a baseline forest cover image was generated 
using the GFW Forest cover layer from 2000 as an initial reference point (Hansen 
et al., 2013). The layer was filtered to include only areas with canopy cover greater 
than or equal to 30%. A random sample of points was generated within the 
forested areas, and then the points were then used to sample the Landsat 
composite image I created for the year 2000. A supervised random forest 
classification was conducted to classify forest cover areas in the 1985 composite 
image using the collected training data from 200038. Areas classified in 1985 as 
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non-forest or forest with less than 30% canopy cover were masked out in every 
subsequent annual image of the time series. These steps were done for each 
project and Supersection individually. Annual composite images were clipped to 
project or Supersection extents. The Normalized Burn Ratio (NBR) spectral index 
(Key & Benson, 2006; Miller & Thode, 2007) was used as the input for 
LandTrendr, and was computed as follows: 

 

NBR = 
NIR - SWIR 

(1) 
NIR + SWIR 

 

where NIR is Near Infrared and SWIR is Shortwave Infrared. NBR has been 
utilized in many studies using LandTrendr to detect forest disturbance (Kennedy 
et al., 2012; White et al., 2017) and is an exceptionally reliable metric compared 
to other commonly used indices (Cohen et al., 2017). The LandTrendr algorithm 
was applied, and the magnitude of change was calculated per pixel. For each pixel 
time series, if there was more than one disturbance detected, only the greatest 
magnitude disturbance was ultimately considered. Finally, pixels were clustered 
into minimum mapping units of 10 pixels using a 10-pixel sieve (Kennedy et al., 
2012; Soto-Berelov & Hislop, 2016) to resolve noise (<10 disturbed pixels 
surrounded by non-disturbance) and small, isolated areas of under-threshold 
disturbance (<10 non-disturbed pixels surrounded by disturbance).  

 

    

Figure 4. Remote sensing analysis diagram. 
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Table 4. LandTrendr parameters used in GEE (Modified from GEE, 2020; eMapR15, 
2019; Kennedy et al., 2010). 

Parameter  Type Default Value Description 
segIndex Float N/A N/A Index used (Normalized Burn Ratio), multiplied by 

1,000 
maxSegments Integer N/A 6 Max num of segments to be fitted on the time series 
spikeThreshold  Float 0.9 0.9 Threshold for dampening spikes (1 = no dampening) 
vertexCountOvershoot Integer 3 3 Initial model can overshoot maxSegments by this 

amount 
preventOneYearRecovery Boolean false true Prevent segments that represent one-year recoveries 
recoveryThreshold Float 0.25 0.25 If a segment has a recovery rate faster than 

1/recoveryThreshold (in yrs.), segment is disallowed 
pvalThreshold Float 0.1 0.05 If fitted model p-value exceeds this threshold, model 

is discarded, and another is fitted using the 
Levenberg-Marquardt optimizer 

bestModelProportion Float 1.25 0.75 Takes the model with most vertices that has a p-value 
that is at most this proportion away from the model 
with lowest p-value 

minObservationsNeeded Integer 6 6 Min observations needed to perform output fitting 
treeloss1 Integer N/A 175 ΔsegIndex values for 1-year duration dist. ≤ to this 

threshold will not be included as dist. 
treeloss20 Integer N/A 200 ΔsegIndex values for 20-yr duration dist. ≤ to this 

threshold will not be included as dist. 
preval Integer N/A 400 Value to filter NBR values prior to a dist. Because 

NBR (normalized, -1 to 1) is multiplied by 1,000 in 
the analysis, 400 refers to pre-change vales > 0.4 

mmu Integer N/A 10 The min mapping unit: The min number of 
homogenous neighboring pixels needed to be a dist. 
patch. 

sort String N/A greatest The type of change to identify if there are more than 
one change event in a pixel time series. It can be: 
'greatest', 'least', 'newest', 'oldest', 'fastest', 'slowest’. 

dur Integer N/A 34 Option for filtering change events by duration. 
 

 

 

 

 

 
15 https://github.com/eMapR/LT-GEE 
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Validation of results 

The validation of land use change analyses, despite its importance, is challenging, 
expensive, and oftentimes unvalued (Foody, 2010; Lu et al., 2014; Olofsson et al., 
2014; Vogelmann et al.,  2016). The most significant challenges for validating 
such studies reside in the need for validation data collected over time (Foody, 
2010; Lu et al., 2014; Olofsson et al.,  2013; Vogelmann et al.,  2016; see, e.g., 
Lambert et al., 2013; Rautianinen et al., 2012; Serbin et al., 2013; Steinberg et 
al., 2006). Validation or ‘ground-truthing’ data are typically created by 
researchers by going into the field and assessing the geographic location and 
specific attributes about that place to be used to classify the rest of the image 
according to the similar spectral signature. To validate the LandTrendr analysis 
results, a stratified random sample of 3,114 points was generated based on the 
area proportions of the disturbed/non-disturbed map to manually confirm or 
reject each of the three classes within both Supersection and project lands: (1) 
non-forested areas; (2) forested areas that were not disturbed, and (3) forest areas 
that were disturbed (Olofsson et al., 2014). I then split this number of validation 
points in half, sampling half from project land and half from non-project 
Supersection land. Each point was also assigned a five-year time period from 1985 
to 2020. The classification was manually confirmed or rejected using imagery 
from that five-year period in Google Earth Pro. If imagery was not available, a 
new random point was assigned with the same parameters (Bruggeman et al., 
2016). Each of the three validation classes ultimately had 1,038 total points 
sampled.  

To further validate our results, the total area of pixels that experienced a 
disturbance in the LandTrendr analysis was compared with the total disturbance 
areas reported in the GFW dataset, developed by Hansen et al. (2013). Several 
metrics were calculated and compared because of the temporal and processing 
differences between our study and GFW data (Figure 4). First, the total forest 
disturbances detected in the LandTrendr outputs between 1986 and 2020 were 
calculated at the Supersection level. The same was done for the GFW data for all 
available data at the time of writing, 2000-2020. Because I masked out certain 
types of disturbances that could be present in the GFW dataset, such as wildfires, 
I also applied the same masks to omit them from the GFW data before 
summarizing it at the Supersection level. A second metric was calculated for the 
LandTrendr output dataset that summarized disturbances detected within the 
same period GFW data was available. An important aspect of the LandTrendr 
model used was a parameter that returned only one disturbance event per 
observation. For the second GFW summary, any points that had experienced a 
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disturbance before 2000 in the LandTrendr output were masked out, in order to 
be certain that those areas would not experience a disturbance if only the years 
2000-2020 were isolated. 

    

Figure 5. Validation process diagram. 

 

Comparing disturbance rates between projects and Supersections 

To explore the difference in forest disturbance rates between projects and 
Supersections, disturbance rates were calculated for overall project land and 
overall Supersection land. Disturbance rates were calculated using a random 
sample of the full dataset. The disturbance rate over time was calculated for 35 
time steps, starting with the rate of change from 1985 to 1986 and ending with 
the rate of change from 2019 to 2020. Disturbance rates were calculated using a 
sample of the unmatched data due to the enormous quantity of points in the full 
dataset. Differences were tested for each ownership class and regional 
aggregation of Supersections—EPA Level 1 Ecoregions (Figure 6; Table 8). Using 
this randomly sampled dataset, disturbance rate for all projects was then 
averaged and compared to the average disturbance rate for all Supersections. 
Pairwise Wilcoxon tests were conducted as a non-parametric alternative to paired 
t-tests to evaluate significant differences in disturbance rates between projects 
and Supersections (Hollander et al., 2015). 
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3.3 Results 

LandTrendr analysis validation 

Of the 1038 points sampled from each class to validate the LandTrendr analysis, 
92% of points classified as non-forest were manually confirmed as non-forest; 89% 
of points classified as non-disturbed forest were manually confirmed as non-
disturbed forest, and 86% of points classified as disturbed forest were manually 
confirmed as disturbed forest (Table 5). In the second LandTrendr and GFW 
summaries, Supersections experienced 2,723 km2 and 1,985 km2 of forest 
disturbance, respectively (Table 6). 

 

Table 5. Results of the validation. 

Type Total Points Points Confirmed Percent Confirmed 
Non-Forest 1038 950 92% 
Forest Non-Disturbed 1038 928 89% 
Forest Disturbed 1038 895 86% 

 

Table 6. LandTrendr and GFW summaries and comparison (Haya, 2018). A1: Sum of 
LandTrendr disturbances between 1986 and 2020 (km2); B1: Sum of GFW disturbances (km2) 
applying LandTrendr mask 2000-2020; A2: Sum of LandTrendr disturbances that occurred 2000 
or later (km2); B2: Sum of GFW disturbances with LandTrendr disturbances that occurred 
before 2000 masked, as well as other masks used in LandTrendr pre-processing steps (km2). 

Supersection A1 B1 A2 B2 B1 / A2 B2 / A2 
Adirondacks & Green Mountains 2,725 1,585 892 491 1.78 0.55 
Allegheny & North Cumberland 
Mountains 9,112 4,077 3,037 1,702 1.34 0.56 

Aroostook Hills and Lowlands 1,401 1,409 476 351 2.96 0.74 
Atlantic Coastal Plain & Flatwoods 51,213 38,425 15,227 11,592 2.52 0.76 
Central Interior Broadleaf Forest 
Eastern Low 3,247 2,631 1,081 718 2.43 0.66 

Central Interior Broadleaf Forest 
Ozark Highlands 

6,929 3,848 2,109 1,230 1.82 0.58 

Central Maine & Fundy Coast & 
Ebayment 3,148 1,546 871 583 1.78 0.67 

Central New Mexico 396 215 90 38 2.4 0.42 
Columbia Basin 675 826 206 154 4.01 0.75 
Eastern Broadleaf Forest Cumberland 
Plateau 

5,001 2,868 1,582 1,014 1.81 0.64 

Eastern Cascades 3,746 2,263 967 712 2.34 0.74 
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Florida Coastal Plains Central 
Highlands 2,797 2,481 742 532 3.34 0.72 

Florida Everglades 625 487 145 87 3.36 0.6 
Gulf Coastal Plain 68,222 49,905 21,002 16,411 2.38 0.78 
Laurentian Mixed Forest Green Bay 
Lobe 

1,537 1,162 478 338 2.43 0.71 

Laurentian Mixed Forest MN & 
Ontario Lake Plain 4,181 3,723 1,369 1,017 2.72 0.74 

Laurentian Mixed Forest NLP EUP 6,907 3,303 2,231 1,447 1.48 0.65 
Laurentian Mixed Forest Northern 
Highlands 

1,835 1,770 560 357 3.16 0.64 

Laurentian Mixed Forest Southern 
Superior 

2,371 1,286 719 447 1.79 0.62 

Laurentian Mixed Forest Western 
Superior & Lake 

1,052 1,056 371 230 2.85 0.62 

Lower New England - Northern 
Appalachia 

4,440 2,262 1,467 683 1.54 0.47 

Maine - New Brunswick Foothills 
and Lowlands 3,973 1,566 1,132 704 1.38 0.62 

Modoc Plateau 589 456 125 77 3.63 0.62 
Montana Rocky Mountains 6,250 3,324 1,572 1,076 2.11 0.68 
MS River Delta 3,215 3,007 1,142 885 2.63 0.77 
MW Broadleaf Forest Central Till 
Plains 

177 98 48 12 2.05 0.26 

MW Broadleaf Forest SC Great Lakes 
& Lake Whittles 306 263 92 35 2.88 0.38 

Northern Allegheny Plateau 1,651 901 533 284 1.69 0.53 
Northern Atlantic Coastal Plain 13,465 10,318 4,290 3,198 2.4 0.75 
Northern California Coast 3,059 810 638 420 1.27 0.66 
Northwest Cascades 20,217 5,813 5,044 3,942 1.15 0.78 
Okanogan Highland 8,669 3,589 2,473 1,938 1.45 0.78 
SE Middle Mixed Forest Cumberland 
Plateau & Valley 

6,576 6,204 1,993 1,503 3.11 0.75 

SE Middle Mixed Forest Piedmont 69,638 45,750 21,067 16,275 2.17 0.77 
SE Middle Mixed Forest Western Mid 
Coastal Plains 33,611 23,238 11,457 9,271 2.03 0.81 

Sierra Nevada 4,496 1,568 1,135 628 1.38 0.55 
Southeast And South Central Alaska 4,486 1,091 1,458 230 0.75 0.16 
Southern Allegheny Plateau 3,680 2,262 1,151 688 1.97 0.6 
Southern Cascades 11,033 3,890 2,902 1,934 1.34 0.67 
St Lawrence & Mohawk Valley 426 331 137 73 2.42 0.53 
Western Allegheny Plateau 497 325 151 68 2.15 0.45 
White Mountains 9,586 5,091 2,832 1,938 1.8 0.68 
White Mountains - San Francisco 
Peaks - Mongollon 624 399 110 44 3.63 0.4 

Mean 9,018 5,754 2,723 1,985 2.22 0.62 
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Historical rates of disturbance 

Rates of management-related disturbance were relatively low throughout the 
United States. Overall, about 0.2% of forested pixels in our dataset were 
disturbed each year, likely due to forest harvest. Annual disturbance rates in 
projects were statistically lower overall than in Supersections (on average, 0.16% 
of project land was disturbed each year compared to 0.22% of Supersection land). 
Overall, average disturbance rates across the 35-year time series were lower for 
project land than for Supersection land. This pattern of lower disturbance on 
project land was also observed for almost all individual years of the time series 
(Figures 5-7). Projects experienced less annual disturbance than Supersections 
for 31 of the 35 years included in our analysis.  

There was, however, heterogeneity within individual projects and their 
respective Supersections. Not all projects experienced lower rates of disturbance 
than their Supersections: using pairwise Wilcoxon rank-sum tests to compare 
each project/Supersection pair, 12% of projects (11 of 90) had significantly higher 
rates (p <0.001) (Table 7). In 4 of 8 regions, Great Plains (p < 0.001), Marine West 
Coast Forest (p < 0.001), North American Desert (p = 0.032), and Northwestern 
Forested Mountains (p < 0.001), disturbance rates were statistically higher for all 
Supersections than all project areas within the region. 71% of projects (64 of 90) 
had lower annual rates of disturbance than their respective Supersection, 21% of 
which (19 of 90 projects) had significantly lower annual rates of disturbance than 
their Supersection (p <0.001).  

 

 

Figure 6. Time series showing the annual percentage of total area disturbed on 
projects and Supersections. The annual disturbance is reported between 1986 and 2020.  
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Figure 7. Time series showing the annual percentage of total area disturbed on 
projects and Supersections. The annual disturbance is reported between 1986 and 2020.  
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Table 7. Differences between individual projects and the primary Supersections in 
which they are located for the mean annual percentage of total area disturbed 
between 1986 and 2020. For instances where projects are located across multiple 
Supersections, the Supersection with the majority of project area was used to compare 
disturbance rates. Pairwise Wilcoxon rank-sum tests were used to test for differences in 
disturbance rates. 

Project ha* 
Mean  
Ann.  
% Dist. 

SD Supersection ha* 

Mean  
Ann  
%  
Dist. 

SD p 

ACR173 5 0.14% (0.038) Southern Cascades 505 0.41% (0.064) 0.067* 
ACR182 2 0.27% (0.052) Northern California Coast 289 0.41% (0.064) 0.54 
ACR189 3 0.31% (0.055) Southern Cascades 505 0.41% (0.064) 0.66 
ACR192 3 0.39% (0.062) Atlantic Coastal Plain & Flatwoods 60 0.54% (0.073) 0.027** 
ACR199 109 0.17% (0.041) White Mountains 544 0.35% (0.059) 0.05* 
ACR200 1 0% (0) Northern California Coast 289 0.41% (0.064) 0.2 
ACR202 68 0.07% (0.026) Laurentian Mixed Forest Northern Highlands 69 0.05% (0.022) 0.0093 
ACR210 23 0.01% (0.011) Laurentian Mixed Forest Southern Superior 158 0.12% (0.035) 0.53 
ACR211 147 0.03% (0.018) White Mountains - San Francisco Peaks - 

Mongollan 
149 0.02% (0.014) 1 

ACR237 20 0.97% (0.098) Northern California Coast 289 0.41% (0.064) <0.001*** 
ACR247 64 0.24% (0.048) Adirondacks & Green Mountains 393 0.08% (0.027) 0.43 
ACR248 85 0.19% (0.044) Allegheny & North Cumberland Mountains 926 0.09% (0.03) <0.001*** 
ACR249 47 0.09% (0.03) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.19 
ACR250 93 0.41% (0.064) Northern California Coast 289 0.41% (0.064) 0.91 
ACR251 57 0% (0) MS River Delta 59 0.22% (0.047) NaN 
ACR255 560 0.36% (0.06) Okanogan Highland 465 0.55% (0.074) 0.38 
ACR256 82 0.01% (0.008) Eastern Broadleaf Forest Cumberland Plateau & 

Valley 
69 0.1% (0.032) <0.001*** 

ACR257 5 0.25% (0.05) Gulf Coastal Plain 130 0.59% (0.077) 0.12 
ACR260 44 0.03% (0.017) Northwest Cascades 78 1.06% (0.102) <0.001*** 
ACR262 18 0.42% (0.065) Northern California Coast 289 0.41% (0.064) 0.99 
ACR267 30 0.03% (0.016) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.0032** 
ACR273 446 0.09% (0.03) Eastern Cascades 354 0.51% (0.071) 0.0017** 
ACR274 180 0.37% (0.061) Southern Cascades 505 0.41% (0.064) 0.47 
ACR276 35 0.07% (0.026) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.061* 
ACR279 36 0.06% (0.024) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.029** 
ACR280 93 0.06% (0.025) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.0021** 
ACR281 13 0% (0) Laurentian Mixed Forest Northern Highlands 69 0.05% (0.022) 0.28 
ACR282 14 0.29% (0.054) Northern California Coast 289 0.41% (0.064) 0.16 
ACR284 12 0% (0) Adirondacks & Green Mountains 393 0.08% (0.027) 0.0014** 
ACR288 1 0.63% (0.08) Gulf Coastal Plain 130 0.59% (0.077) 0.74 
ACR289 29 0.68% (0.082) Gulf Coastal Plain 130 0.59% (0.077) 0.022** 
ACR290 8 0.31% (0.056) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.0024** 
ACR291 20 0.08% (0.028) Northern Allegheny Plateau 71 0.04% (0.019) 0.43 
ACR292 4 0.28% (0.053) Northern California Coast 289 0.41% (0.064) 0.41 
ACR293 54 0.01% (0.012) Lower New England - Northern Appalachia 54 0.09% (0.03) 0.62 
ACR296 26 0.47% (0.068) Southern Cascades 505 0.41% (0.064) 0.25 
ACR297 40 0.42% (0.065) SE Middle Mixed Forest Western Mid Coastal 

Plains 
69 0.64% (0.079) 0.98 

ACR298 22 0.56% (0.074) Southern Cascades 505 0.41% (0.064) 0.019** 
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ACR299 25 0.23% (0.048) Laurentian Mixed Forest Western Superior & Lake 
Plains 

51 0.09% (0.029) 1 

ACR300 1 0.95% (0.097) Gulf Coastal Plain 130 0.59% (0.077) 0.26 
ACR301 0 2.14% (0.145) Gulf Coastal Plain 130 0.59% (0.077) 0.0064** 
ACR307 16 0% (0) Gulf Coastal Plain 130 0.59% (0.077) <0.001*** 
ACR324 130 0.09% (0.03) Southeast And South Central Alaska 1,145 0.01% (0.01) <0.001*** 
ACR360 580 0.02% (0.013) Southeast And South Central Alaska 1,145 0.01% (0.01) <0.001*** 
ACR371 21 0.01% (0.011) Lower New England - Northern Appalachia 54 0.09% (0.03) 0.84 
ACR373 23 0.04% (0.021) Laurentian Mixed Forest Northern Highlands 69 0.05% (0.022) 0.27 
ACR377 5 0.19% (0.043) Southern Cascades 505 0.41% (0.064) 0.13 
ACR378 2 0.24% (0.049) Southern Cascades 505 0.41% (0.064) 0.47 
ACR393 8 0% (0) Laurentian Mixed Forest Southern Superior 158 0.12% (0.035) 0.42 
ACR396 3 0% (0) Atlantic Coastal Plain & Flatwoods 60 0.54% (0.073) 0.22 
ACR406 77 0.03% (0.018) Laurentian Mixed Forest Southern Superior 158 0.12% (0.035) 0.28 
ACR412 189 0.01% (0.011) Southeast And South Central Alaska 1,145 0.01% (0.01) <0.001*** 
ACR416 40 0.13% (0.036) Laurentian Mixed Forest MN & Ontario Lake 

Plain 
40 0.11% (0.033) 1 

ACR420 13 0% (0) Southeast And South Central Alaska 1,145 0.01% (0.01) 0.16 
ACR425 12 0.25% (0.049) Southeast And South Central Alaska 1,145 0.01% (0.01) <0.001*** 
ACR427 110 0.16% (0.04) White Mountains 544 0.35% (0.059) 0.013** 
ACR428 6 0.18% (0.043) Southeast And South Central Alaska 1,145 0.01% (0.01) <0.001*** 
ACR437 278 0.14% (0.037) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.26 
ACR439 172 0.02% (0.014) Central Interior Broadleaf Forest Eastern Low 

Plateau 
58 0.06% (0.024) 0.95 

ACR456 20 0.15% (0.039) Southeast And South Central Alaska 1,145 0.01% (0.01) <0.001*** 
ACR458 116 0.08% (0.029) Southeast And South Central Alaska 1,145 0.01% (0.01) <0.001*** 
CAR1006 96 0.38% (0.062) Southern Cascades 505 0.41% (0.064) 0.74 
CAR1013 7 0.19% (0.044) Northern California Coast 289 0.41% (0.064) 0.077* 
CAR1032 19 0.2% (0.045) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.052* 
CAR1041 17 0.48% (0.069) Southern Cascades 505 0.41% (0.064) 0.26 
CAR1046 15 0.44% (0.066) Southern Cascades 505 0.41% (0.064) 0.61 
CAR1062 54 0% (0.007) Central Interior Broadleaf Forest Ozark Highlands 60 0.09% (0.031) 0.76 
CAR1063 25 0.39% (0.063) Maine - New Brunswick Foothills and Lowlands 189 0.42% (0.065) 0.59 
CAR1066 20 0.72% (0.085) Southern Cascades 505 0.41% (0.064) <0.001*** 
CAR1067 2 0% (0) Southern Cascades 505 0.41% (0.064) 0.053* 
CAR1070 31 0.19% (0.044) Southern Cascades 505 0.41% (0.064) <0.001*** 
CAR1086 0 0% (0) SE Middle Mixed Forest Western Mid Coastal 

Plains 
69 0.64% (0.079) 0.59 

CAR1088 208 0.21% (0.046) Adirondacks & Green Mountains 393 0.08% (0.027) 0.97 
CAR1090 19 0.53% (0.073) Southern Cascades 505 0.41% (0.064) 0.061* 
CAR1092 18 0.51% (0.071) Modoc Plateau 122 0.13% (0.036) <0.001*** 
CAR1094 1 0.29% (0.053) Northwest Cascades 78 1.06% (0.102) 0.98 
CAR1095 15 0.14% (0.038) Southern Cascades 505 0.41% (0.064) 0.0025** 
CAR1098 10 0.18% (0.042) Northern California Coast 289 0.41% (0.064) 0.018** 
CAR1099 6 0.43% (0.066) Northern California Coast 289 0.41% (0.064) 0.92 
CAR1100 12 0.69% (0.083) Northern California Coast 289 0.41% (0.064) 0.0046** 
CAR1102 2 0.11% (0.033) Northern California Coast 289 0.41% (0.064) 0.14 
CAR1103 2 0.14% (0.037) Southern Cascades 505 0.41% (0.064) 0.27 
CAR1104 18 0.26% (0.051) Southern Cascades 505 0.41% (0.064) 0.091* 
CAR1113 46 0.91% (0.095) Southern Cascades 505 0.41% (0.064) <0.001*** 
CAR1115 47 0.01% (0.007) Sierra Nevada 78 0.31% (0.055) <0.001*** 
CAR1129 2 0% (0) Adirondacks & Green Mountains 393 0.08% (0.027) 0.17 
CAR1130 4 0.07% (0.026) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.54 
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CAR1134 30 0.15% (0.038) Atlantic Coastal Plain & Flatwoods 60 0.54% (0.073) 0.84 
CAR1139 19 0.11% (0.033) Northern California Coast 289 0.41% (0.064) <0.001*** 
CAR1140 8 0.22% (0.047) Northern California Coast 289 0.41% (0.064) 0.084* 
CAR1141 1 0% (0) Northern California Coast 289 0.41% (0.064) 0.17 
CAR1147 11 0.02% (0.015) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.069* 
CAR1159 3 0.1% (0.031) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.8 
CAR1161 5 0.1% (0.032) Maine - New Brunswick Foothills and Lowlands 189 0.42% (0.065) 0.024** 
CAR1162 1 0% (0) Maine - New Brunswick Foothills and Lowlands 189 0.42% (0.065) 0.24 
CAR1173 11 0.02% (0.015) Eastern Broadleaf Forest Cumberland Plateau & 

Valley 
69 0.1% (0.032) 0.15 

CAR1175 170 0.3% (0.055) Maine - New Brunswick Foothills and Lowlands 189 0.42% (0.065) <0.001*** 
CAR1176 83 0.64% (0.08) Gulf Coastal Plain 130 0.59% (0.077) 0.012** 
CAR1180 6 0.04% (0.021) Northern California Coast 289 0.41% (0.064) 0.0057** 
CAR1183 254 0.23% (0.048) Central New Mexico 72 0.3% (0.055) 1 
CAR1185 44 0.07% (0.026) Southern Allegheny Plateau 64 0.05% (0.023) 0.69 
CAR1186 2 0.23% (0.048) Southern Allegheny Plateau 64 0.05% (0.023) 0.056* 
CAR1187 6 0.84% (0.091) Northern California Coast 289 0.41% (0.064) 0.0026** 
CAR1191 9 0.14% (0.037) Northern California Coast 289 0.41% (0.064) 0.0089** 
CAR1195 14 0.02% (0.013) Florida Everglades 31 0.06% (0.024) 1 
CAR1196 9 0.06% (0.024) Atlantic Coastal Plain & Flatwoods 60 0.54% (0.073) 0.21 
CAR1199 75 0.41% (0.064) SE Middle Mixed Forest Piedmont 64 0.54% (0.073) <0.001*** 
CAR1200 25 0.47% (0.069) Northern Atlantic Coastal Plain 59 0.37% (0.061) 0.46 
CAR1201 1 0.95% (0.097) Adirondacks & Green Mountains 393 0.08% (0.027) 0.001** 
CAR1202 103 0.27% (0.051) Aroostook Hills and Lowlands 191 0.22% (0.047) 0.87 
CAR1203 218 0.38% (0.062) Aroostook Hills and Lowlands 191 0.22% (0.047) <0.001*** 
CAR1204 157 0.26% (0.051) White Mountains 544 0.35% (0.059) 0.051* 
CAR1205 59 0.03% (0.018) Allegheny & North Cumberland Mountains 926 0.09% (0.03) <0.001*** 
CAR1206 24 0.06% (0.025) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.11 
CAR1207 16 1.14% (0.106) SE Middle Mixed Forest Piedmont 64 0.54% (0.073) <0.001*** 
CAR1208 152 0.1% (0.032) Allegheny & North Cumberland Mountains 926 0.09% (0.03) 0.22 
CAR1209 56 0.02% (0.014) Laurentian Mixed Forest Northern Highlands 69 0.05% (0.022) 0.74 
CAR1211 23 0.4% (0.063) SE Middle Mixed Forest Piedmont 64 0.54% (0.073) 0.015** 
CAR1212 6 0.79% (0.088) Gulf Coastal Plain 130 0.59% (0.077) 0.059* 
CAR1213 147 0.2% (0.044) Adirondacks & Green Mountains 393 0.08% (0.027) 0.49 
CAR1215 73 0.21% (0.046) Allegheny & North Cumberland Mountains 926 0.09% (0.03) <0.001*** 
CAR1216 5 0.11% (0.033) Laurentian Mixed Forest Southern Superior 158 0.12% (0.035) 0.02** 
CAR1217 21 0.53% (0.073) Maine - New Brunswick Foothills and Lowlands 189 0.42% (0.065) 0.2 
CAR1293 27 0% (0) Southeast And South Central Alaska 1,145 0.01% (0.01) 0.046** 
CAR1297 40 0.09% (0.03) Montana Rocky Mountains 63 0.23% (0.048) 1 
CAR1313 91 0.37% (0.061) Northern California Coast 289 0.41% (0.064) 0.22 
CAR973 239 0.2% (0.045) Laurentian Mixed Forest NLP EUP 180 0.13% (0.036) 0.013** 
CAR993 15 0.25% (0.05) Southern Cascades 505 0.41% (0.064) 0.081* 
VCSOPR10 30 0% (0) Central Interior Broadleaf Forest Ozark Highlands 60 0.09% (0.031) 0.55 
VCSOPR11 50 0.24% (0.049) Allegheny & North Cumberland Mountains 926 0.09% (0.03) <0.001*** 
VCSOPR12 21 0.3% (0.055) White Mountains 544 0.35% (0.059) 0.14 
VCSOPR13 2 0.16% (0.04) Atlantic Coastal Plain & Flatwoods 60 0.54% (0.073) 0.88 
VCSOPR14 6 0% (0) Adirondacks & Green Mountains 393 0.08% (0.027) 0.026** 
VCSOPR15 55 0.12% (0.034) Northern Allegheny Plateau 71 0.04% (0.019) 0.83 
VCSOPR16 20 0.07% (0.026) Adirondacks & Green Mountains 393 0.08% (0.027) 0.0058** 
VCSOPR5 16 0.75% (0.087) Northwest Cascades 78 1.06% (0.102) <0.001*** 

Note: SD = standard deviation; p = p-value statistic (* p <0.1; ** p <0.05; *** p <0.01); *ha = total 
size of sampled area. 



 

49 

 

 

Comparing mean annual disturbance rates by ownership class for all 
Supersections and all projects in the analysis, disturbance rates were 
significantly higher in Supersections than projects (p <0.001) on TIMO/REIT, 
corporate, and family-owned forestlands. TIMO/REIT-owned forestlands had the 
largest discrepancy in annual disturbance rate between Supersections (0.43%) 
and projects (0.17%). There was also a large difference in annual disturbance 
rates for corporate-owned forestlands between Supersections (0.35%) and projects 
(0.14%). Tribal lands experienced the lowest annual rates of disturbance for both 
projects and Supersections, with the project rate (0.17%) higher than the 
Supersection rate (0.1%; p <0.001). No significant difference was found between 
'other' projects and their respective Supersections. In 4 of 8 regions, Great Plains 
(p <0.001), Marine West Coast Forest (p <0.001), North American Desert (p = 
0.032), and Northwestern Forested Mountains (p <0.001), disturbance rates were 
statistically higher for all Supersections than all project areas within the region 
(Figure 6; Table 8). 
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Figure 8. Mean annual percentage of total area disturbed between 1986 and 2020. For 
each ownership class (top) or region (bottom), p-value statistics result from Wilcoxon rank sum 
tests between projects and Supersection pairs (* p < 0.1; ** p < 0.05; *** p < 0.01). 
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Table 8. Differences between Supersections, all projects, and credited projects (the 
projects used for the primary analysis) for the mean annual percentage of total area 
disturbed between 1986 and 2020. For each ownership class or region, p-values for projects 
compare project disturbance rate to Supersection disturbance rate. 

Ownership Class / 
 Region Area type 

Sample (ha) Mean Annual % Dist. SD p 

All 
Projects 7,497 0.196%*** 0.044 <0.001 
Credited Projects 5,814 0.164%*** 0.041 <0.001 
Supersections 7,497  0.227% 0.048 

 

Owner: Corporate 
Projects 2,224 0.228%*** (0.048) <0.001 
Credited Projects 1,382 0.143%*** (0.038) <0.001 
Supersections 1,814 0.353% (0.059)  

Owner: TIMO/REIT 
Projects 1,687 0.214%*** (0.046) <0.001 
Credited Projects 1,219 0.166%*** (0.041) <0.001 
Supersections 762 0.428% (0.065)  

Owner: Tribal 
Projects 2,290 0.161%*** (0.04) <0.001 
Credited Projects 2,081 0.174%*** (0.042) <0.001 
Supersections 1,824 0.102% (0.032)  

Owner: Family 
Projects 222 0.237%*** (0.049) <0.001 
Credited Projects 129 0.11%*** (0.033) <0.001 
Supersections 2,956 0.18% (0.042)  

Owner: Other 
Projects 1,074 0.17% (0.041) 0.29 
Credited Projects 1,004 0.179% (0.042) 0.12 
Supersections 141 0.15% (0.039)  

Region: Eastern  
Temperate Forests 

Projects 2,498 0.195% (0.044) 0.35 
Credited Projects 1,615 0.12%*** (0.035) <0.001 
Supersections 2,492 0.201% (0.045) 

 

Region: Great Plains 
Projects 254 0.23%*** (0.048) <0.001 
Credited Projects 254 0.23%*** (0.048) <0.001 
Supersections 198 0.001% (0.004) 

 

Region: Marine  
West Coast Forest 

Projects 1,093 0.037%*** (0.019) <0.001 
Credited Projects 884 0.04%*** (0.02) <0.001 
Supersections 1,145 0.011% (0.01) 

 

Region: Mediterranean  
California 

Projects 293 0.419% (0.065) 0.75 
Credited Projects 188 0.328%** (0.057) 0.0047 
Supersections 289 0.41% (0.064) 

 

Region: North  
American Deserts 

Projects 37 0.131%** (0.036) 0.032 
Credited Projects 37 0.131%** (0.036) 0.032 
Supersections 40 0.238% (0.049) 

 

Region: Northern  
Forests 

Projects 1,453 0.176% (0.042) 0.1 
Credited Projects 1,268 0.178% (0.042) 0.2 
Supersections 1,488 0.189% (0.043) 

 

Region: Northwestern  
Forested Mountains 

Projects 1,708 0.292%*** (0.054) <0.001 
Credited Projects 1,422 0.261%*** (0.051) <0.001 
Supersections 1,665 0.467% (0.068) 

 

Region: Temperate  
Sierras 

Projects 147 0.032% (0.018) 0.18 
Credited Projects 147 0.032% (0.018) 0.18 
Supersections 149 0.019% (0.014) 

 

Region: Tropical Wet  
Forests 

Projects 14 0.018% (0.013) 0.24 
Credited Projects 31 0.059% (0.024) - 
Supersections 2,498 0.195% (0.044) 

 



 

52 

 

 

Note: SD = standard deviation; p = p-value statistic calculated from Pairwise Wilcoxon rank-sum tests 
conducted between either all observations across projects and Supersections or credited projects and 
Supersections for the respective owner class or region. (* p <0.1; ** p <0.05; *** p <0.01). 

 

3.4 Discussion 

Discrepancies in harvesting patterns 

Management decisions on private lands depend on several factors: landowners’ 
skills and expertise, the qualities of their land, and how they can manage their 
land to provide maximum economic and other (e.g., social, environmental) returns 
(Ruben et al., 2008). Public policies can influence private management decisions 
by introducing novel incentives as offset programs. Kelly et al. (2017) studied the 
discrepancies between who owns private forests in the U.S. and who participates 
in the U.S. Forest Offsets protocol. They found that NIPF landowners were 
unlikely to offset their forests due to the time and money required to complete the 
project development process. Other NIPF landowners were unaware that the 
option was available to them. “Though most landowners indicated they would not 
likely join the market, we asked what would motivate them to participate—in 
other words, why they might feel compelled to join. Overall, landowners were 
most motivated by the opportunity to receive revenue from their forests, followed 
by improving forest health and reducing greenhouse gases,” (Kelly et al.,  2017, 
p. 889). Van Kooten (2018) found that forest carbon offset projects and forestry-
related jobs that could be supported in tandem to offset projects can result in 
direct income from credits, jobs, healthier forests capable of storing more carbon, 
and other non-market social-environmental benefits. 

There is not much data available about forest management trends on 
Tribal forestlands in the U.S. According to the USFS (2014), only 8% of individual 
and family forest landowners in the U.S. actively manage their forests for timber. 
However, a 2020 congressional amendment to the Tribal Forest Protection Act of 
2004 reports that Native American forestland totals 15,990,000 acres, with 
5,700,000 acres used for commercial forestry and 8,700,000 acres of woodland 
(USC, 2020) lands are not harvested. This means that a little over one-third of 
Tribal forests are actively managed for timber. Harvesting or offsetting Tribal 
forestlands might also be lower because the 2020 amendment to the Tribal Forest 
Protection Act of 2004 1) recognizes the monetary value of Tribal forests and 2) 
allows the Federal Government to collect 10% of all revenue made with Tribal 
forests.  
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TIMO/REIT groups own roughly 20% of all private forestlands in the U.S. 
Gifford (2020, citing Kay, 2017) describes them as “financial investors who used 
the disintegration of the pulp and paper industry as a chance to acquire large 
forestland holdings . . . The primary goal of a TIMO is financial: to achieve 
profitability via diversification of large investment portfolios. “Most conservation 
TIMOs are structured as private equity firms, with 10–15-year ownership 
horizons. Once this period has lapsed, the land will be sold to another buyer” . . . 
This timing structure sets up TIMO forests as strong contenders for carbon offset 
schemes. Once a TIMO has aggressively harvested forest products, other 
timberland investors are not interested in taking over the land, as it would 
require 40– 50 years to regenerate timber value. Therefore, TIMOs have two 
potential buyers for their land: developers or conservation organizations” (pp. 
294-95). This could explain the results reported for TIMO/REIT rates of 
disturbance, where Supersections were found to have experienced more than 
twice as much disturbance as projects. It seems likely that a TIMO/REIT, could, 
for example, aggressively harvest on acquired forestlands and then aggregate the 
areas that were not economically viable to harvest and register them as an offset 
project. In this way, the return on investment for forestlands is maximized: 
acquired forests that are suitable for harvesting are done so aggressively, the 
areas that are not are turned into a profitable offset project, and the depleted 
areas that were harvested can be sold to developers or conservation organizations.  

 

Limitations of results 

The results presented here provide insight into whether or not projects have 
experienced a forest disturbance history indicative of forest harvesting over the 
past 36 years. While this information is useful in assessing the potential future 
risk of harvesting and, therefore, the utility of offsetting the land, it is limited.  

First, the harvesting rates are compared directly to all Supersection 
assessment area forests. For some projects, the detected disturbance rate was 
zero or close to zero, indicating little or no risk of harvesting based on historical 
patterns regardless of comparison to regional rates. However, the disturbance 
rates for all other projects and the associated potential risk of harvesting are 
interpreted relative to the disturbance rates in each project's respective 
Supersection assessment area. This direct comparison approach does not 
effectively isolate policy impacts from other factors or properly control time-
invariant unobservable variables (Bruggeman et al., 2016; Imbens & Wooldridge, 
2009; Jones & Lewis, 2015; Jones et al., 2017). A more robust method for 
comparing disturbance rates would be to compare offset project forestlands to 
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forest areas within the Supersection that are statistically comparable based on 
landscape, climatic, spatial, and economic characteristics and then incorporate 
those variables into a statistical model to better assess the causal mechanisms 
behind disturbance rates. The difference between projects and Supersections that 
we are most interested in isolating is project establishment. Understanding the 
effect of project establishment would result in a more robust and informative 
interpretation of past forest disturbance rates.  

Second, LandTrendr, as all forest change detection methods, has 
limitations (Kennedy et al., 2010; Masek et al., 2015; Zhu et al., 2017). The 
spectral-temporal segmentation results will vary based on the model parameters 
that are input, the spectral index used, and whether or not they are well suited 
for the characteristics of the analysis location (Hislop et al., 2019). Although the 
validation results were quite positive, this study could have been improved by 
collecting ground-truthing data rather than relying on very high resolution data. 
Ideally, ground-truthing data would have been collected on the ground over 
multiple time periods to use in the validation of these results (Foody, 2010; Lu et 
al., 2014; Olofsson et al.,  2013; Vogelmann et al.,  2016; see, e.g., Lambert et al., 
2013; Rautianinen et al., 2012; Serbin et al., 2013; Steinberg et al., 2006). The 
ability to collect validation data (or training samples) on the ground in order to 
improve remote sensing analyses, however, becomes prohibitively costly, time 
consuming, and logistically challenging as the scope of the study is scaled-up. 
Finally, despite conducting a validation analysis, and parameterizing the model 
to focus on forest harvesting temporally, spectrally, and spatially, it is always 
possible that non-management related forest disturbances could be present in 
these results, such as pests or drought-related declines in forest health.  
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Chapter 4 

Measuring Offset Policy 
Effectiveness Using Quasi-
Experimental Econometric 
Techniques  

Abstract 
While credits have been allocated primarily to forests with low historical 
disturbance rates, it is not possible to make conclusions about causality without 
controlling for factors impacting project establishment. To establish causality, 
forest disturbance was observed before and after project establishment, and 
quasi-experimental econometric techniques were used to investigate whether 
forest disturbance is reduced relative to comparable lands after projects are 
established—that is, whether projects show clear signs of additionality. To 
estimate the effect of project commencement on forest disturbance, a difference-
in-difference panel regression was conducted. To isolate the effect of other 
confounding factors, like landscape, climatic and geographical characteristics, 
matching was applied to points on projects and Supersections (regional lands). 
The points resulting from the matching analysis were used as input for panel 
regression models. This analysis in Chapter 4 suggests limited additionality, as 
the establishment of forest offset projects did not significantly lower forest 
disturbance rates 3 and 5 years after project implementation relative to similar, 
regional non-project lands.  
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4.1 Introduction 
To explore additionality in enrolled IFM projects, I focused on two main questions: 
(1) Do pre-project disturbance rates on IFM projects suggest that enrolled forests 
were at a lower risk of harvest than non-enrolled forests even in the absence of 
credits? In Chapter 3, I find that IFM projects have been primarily allocated to 
forests with low historical disturbance relative to regional averages. (2) After 
projects are established, is forest disturbance reduced relative to comparable 
lands—that is, do projects show clear signs of additionality? To estimate the effect 
of project commencement on forest disturbance, a difference-in-difference panel 
regression was conducted. To isolate the effect of other confounding factors, like 
landscape, climatic and geographical characteristics, matching was applied to 
points on projects and Supersections. The points resulting from the matching 
analysis were used as input for the panel regression models. The methods that 
are used in this analysis to assess the effectiveness of IFM forest offset projects 
are borrowed and adapted from econometric analyses and have increasingly been 
used as quasi-experimental approaches for addressing ecological and 
environmental policy research questions such as assessing the effectiveness of 
protected area establishment on reducing forest degradation (Chapter 1). 

For these reasons, assessments of offset projects and associated forest 
change should adhere to the same safeguards that would be optimally designed 
into models that assess protected area effectiveness. Offset project locations 
should not be assumed to be random, and the forests within should not be 
compared to all other forests within the Supersection assessment area as the 
current U.S. Forest Projects Compliance Offset Protocol calls for. These two 
factors have the potential to introduce bias into the analysis. It is possible, for 
example, that an IFM offset project location is selected where it is not 
economically viable for a landowner to harvest timber due to landscape 
characteristics, accessibility, or distance to mills.  

 

4.2 Methods 

Matching 

Matching (Rosenbaum & Rubin, 1983) was used to create a dataset that consists 
of comparable control and treatment observations to minimize selection bias due 
to the nonrandom locations and characteristics of projects (Andam et al., 2008; 
Blackman et al., 2015; Brandt et al.,  2015; Ferraro, 2009; Ferraro et al.,  2013; 
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Ferraro and Hanauer 2014; Ho et al., 2007; Pfaff et al.,  2015; Shah & Baylis, 
2015; Shah et al., 2021; Sims, 2010; Yang et al.,  2021). Matching was done 
between project and non-project points within Supersections, then all data for 
each Supersections was combined. The points resulting from the matching 
analysis were used as input for the panel regression models. To match points 
between project land and non-project Supersection land, I calculated and 
compiled several variables known to be spatial determinants of forest harvesting 
(Table 9), including slope, aspect, elevation, distance to roads, distance to mills, 
and landcover type (Pokharel et al., 2019). The TIGER US Census Roads dataset 
was used to calculate the distance to roads, and the US Wood-Using Mill 
Locations dataset to calculate the distance to mills. A nearest-neighbor matching 
method and a logistic regression method were used to measure distance with the 
MatchIt package in R (Ho et al., 2007). A 0.2 caliper value and a random matching 
order were used (Ho et al., 2007). 

 

Table 9. Data sources used in matching analysis. 

Description Type Source 
Forest cover Raster Chapter 2 
Terrain (slope, aspect, and elevation) Raster ALOS DSM: Global 30m16 
Palmer Drought Severity Index (PDSI)   Raster GRIDMET Drought: CONUS17 
Min & Max temperature Raster TerraClimate18 
US Wood-Using Mill Locations Vector US Forest Service19 
Roads Vector TIGER: US Census Roads20 

 

The matching procedure was done using the full dataset and produced 5,997,312 
data points split equally between project and non-project Supersection points. I 
matched points individually within Supersections and then combined 
Supersection data to create the panel used in the difference-in-differences model. 

 

 

 

 
16 Tadano et al., 2014; 2016; Takaku et al., 2014; 2016;  
17 Abatzoglou, 2013 
18 Abatzoglou et al., 2018 
19 https://www.srs.fs.usda.gov/econ/data/mills/ 
20 US Census Bureau; https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html 
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The balance between matched and non-matched observations was interrogated 
by comparing the standardized mean difference (SMD) between matched and 
unmatched data. The matched dataset was used in a difference-in-differences 
regression framework, and results were modeled for (1) three years before and 
after project designation and (2) five years before and after project designation. 
Standard errors (SE) were clustered at the Supersection level. Two models were 
specified: a fixed effects linear probability model and a random effects logit model 
(Tables 11-15).  

 

Panel models 

The panel models used here required a complete time series for each observation, 
generated in Chapter 3. First, the matched project and Supersection data were 
converted from long to wide format. Forests generally do not recover quickly 
enough to experience competing large-scale harvest events, so it is typical in 
forest change time series analysis to extract only the greatest disturbance for each 
pixel. As such, the LandTrendr segmentation and disturbance detection analysis 
in Chapter 3 was parameterized to extract the greatest magnitude disturbance 
for each pixel and omit all other detected disturbance events. Points were then 
expanded to record every other year of the time series (n = 34) as not having 
experienced a disturbance. For example: if a pixel had a disturbance detection 
year value of 2015, the greatest magnitude disturbance was detected in 2015; all 
other detected disturbance events, if any, were omitted; and the years 1986-2014 
and 2016-2018 were recorded as not having experienced a disturbance. The model 
was estimated: 

 

〖Disturbance〗_it = constant +〖Project〗_i +〖After〗_it +〖Project〗_it * 

〖After〗_it +〖Slope〗_i +〖Elevation〗_i +〖Distroads〗_i +〖Distmill〗_i + 

〖MaxTemp〗_it +〖Mintemp〗_it +〖Drought〗_it +〖Landcover〗_it + p_i + e_it 

Where Disturbance is equal to one if a human-caused disturbance is observed at 
point i in year t and equal to zero otherwise. 〖Project〗_i identifies if a point is 
part of a project (1) or not (0). 〖After〗_it indicates if a time period is before (0) 
or after (1) project commencement. The interaction term 〖Project〗_it *〖After
〗_it identifies observations that are both projects and in time periods after the 
project has commenced versus observations that are either not projects or projects 
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before commencement. The other variables refer to static and time-varying co-
variants that impact forest harvest. The error term can be segregated into a unit-
specific error term p_i and an observation-specific error term e_it.  

Two models were used to estimate this formula. First, a fixed effects linear 
probability model with SEs clustered at the Supersection level was used. In this 
model, all time-invariant variables in the regression equation fall out of the 
estimator. Second, a random effects logit model with SEs clustered at the 
Supersection level was used. Each model has its own advantages: the random 
effects model more accurately reflects the dependent variable's binomial nature, 
while the linear probability model allows for the inclusion of fixed effects. The 
impact of project commencement was estimated at three years and five years pre- 
and post-commencement to isolate policy effects on additionality—i.e., whether 
forest disturbance rates decreased. Both logit and linear probability models were 
conducted in Stata using the xtlogit and xtreg commands.  

 

4.3 Results 

Matching 

The SMD statistics between matched and unmatched points were calculated for 
numeric variables in the matching model at the Supersection level, and the 
standard mean difference was reduced overall, which is a positive indicator of 
matching quality (Stuart, 2010; Figure 10). For each variable used in the 
matching model, the SMD for project and Supersection points is reported, and the 
p-value (p) resulting from Pairwise Wilcoxon rank-sum tests indicates whether a 
significant difference was found between project and Supersection (Table 10). 
After completing the matching process, the annual disturbance rates resulting 
from the analysis in Chapter 3 were recalculated with the matched dataset and 
compared to results from the full dataset. Less difference between annual 
disturbance rates was observed between projects and Supersections in the 
matched dataset, suggesting statistically comparable control and treatment 
observations, i.e., high-quality matches (Figure 8).  
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Table 10. Improved balance between unmatched and matched points.  
 Unmatched Matched 

 Supersect
ion 

Project SMD p Supersect
ion 

Project SMD p 

Elevation (mean) 
572.7 
(514.94) 

698.3 
(623.76) 0.22 <0.001*** 

638.5 
(520.49) 

624.6 
(508.53) 0.027 <0.001*** 

Slope (mean) 8.5 (7.84) 9 (8.21) 0.066 <0.001*** 9.5 (8.31) 9.1 (7.92) 0.047 <0.001*** 

Aspect (mean) 183.2 
(100.64) 

182.9 
(100.24) 

0.003 0.087 182.8 
(101.39) 

180.9 
(99.73) 

0.018 <0.001*** 

Dist. to road 
(mean) 8.7 (17.22) 7.4 (10.41) 0.088 <0.001*** 8.6 (13.87) 8.3 (13.76) 0.025 <0.001*** 

Dist. to mill 
(mean) 

403.3 
(744.61) 

340 
(629.62) 0.092 <0.001*** 

505 
(819.71) 

507.6 
(832.7) 0.003 <0.001*** 

Num. of points 340,449 376,431   83,296 83,296   
Note: Values in parentheses = standard deviations SMD = standard mean deviation; p = p-value statistic 
(* p <0.1; ** p <0.05; *** p <0.  

 

 

 

Figure 9. Mean annual percentage of total area disturbed between 1986-2020. For each 
ownership class rates for unmatched and matched data are compared before and after project 
commencement. 
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Figure 10. Mean annual percentage of total area disturbed five years before and 
after project commencement. For each ownership class, rates for matched data are compared 
between all projects and all Supersections five years before and after project commencement. 
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Figure 11. Comparing improvement between unmatched and matched points. 
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Panel models 

The logit and linear probability models suggest limited additionality in 
California's forest carbon offset program at this early stage. Project establishment 
is associated with increased forest harvest for 'other' projects, and when data is 
pooled across land ownership types (‘all’), project establishment has no significant 
impact for either timeframe (Table 11). Indeed, the only ownership class with a 
significantly negative impact on project establishment is the TIMO/REIT class, 
and the effect, while significant, is small and only statistically significantly 
observable in the five-year post-project commencement timeframe. TIMO/REIT-
owned land demonstrated an increasingly significant impact of project 
commencement on disturbance over time. As an ownership group, the models 
show that TIMO-REIT projects appear to exhibit the most additionality at this 
stage.  

When data is pooled across land ownership types (‘all’), there is no 
statistical impact of project establishment in either the fixed or random effects 
models, three and five years after project commencement (Tables 12-15). Fixed 
effects and random effects models showed different results for three years and 
five years before and after project commencement regarding ownership classes. 
In the fixed effects models, ‘other’ projects showed increased disturbance three 
years after project commencement, while TIMO/REIT-owned projects were the 
only ownership class to show decreased disturbance five years after project 
commencement. In the random effects models, family-owned projects showed 
increased disturbance three years after project commencement, while ‘other’ 
projects were the only ownership class to show increased disturbance five years 
after project commencement. While both the fixed and random effects models are 
useful to consider, I ultimately focus on reporting the results of the fixed effects 
model for pre- and post-commencement coefficients because time-invariant 
variables can be controlled for within fixed effects models, while the underlying 
assumption of random effects models is that there are no relevant omitted 
variables that have relationships with the dependent variable. Due to the 
complexity of this type of analysis (see Chapter 1), fixed effects models were the 
more robust choice because they account for bias produced by time-invariant and 
unobservable variables.  

Random effects models are included here as the model output shows the 
relationship between time-invariant variables that drop out of the fixed effects 
models—like slope, elevation, and aspect—and the dependent variable, whether 
or not project disturbance decreased after project establishment. In the random 
effects three-year model (Table 12), PDSI was positive for corporate projects and 
negative for TIMO/REIT, Tribal, and family-owned projects. Max temp was 
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positive for all projects, as well as corporate-owned projects specifically and 
negative for Tribal projects. Min temp was positive for corporate projects. In the 
random effects five-year model (Table 13), PDSI was negative for TIMO/REIT and 
family-owned projects. Max temp was not significant for any projects, and min 
temp was negative for TIMO/REIT-owned projects. For the fixed effects three-
years model (Table 14), PDSI was negative for all projects and TIMO/REIT (the 
latter consistent with the random effects three-year model). Max temp was 
positive for Tribal projects (in opposition to its negative impact on Tribal projects 
in the random effects model). Min temp was negative for all, corporate, and 
Tribal-owned projects, but positive for ‘other’ projects. For the fixed effects five 
year model (Table 15), neither PDSI nor max temp had a significant effect. Min 
temp was negative for corporate-owned projects. 

  

Table 11. Coefficients for the impact of projects on forest harvests from fixed effects 
linear probability model on the matched dataset. Coefficients can be interpreted as the 
percentage point change in the likelihood of forest harvest after establishing the offset project. 
Models are run for periods of three and five years before and after project establishment. Full 
regression coefficients are available in Tables 12-15 (Note: Standard error displayed in 
parentheses. p = p-value statistic for |z| (* p <0.1; ** p <0.05; *** p <0.01). 

 All Corporate TIMO/REIT Tribal Family Other 

Three Year Impact 
0.00038 0.000636 -0.00115* 0.000461 0.00398 0.00118** 
(-0.00056) (-0.00098) (-0.00062) (-0.00075) (-0.00286) (-0.00055) 

Five Year Impact 
0.000278 0.000251 -0.00101** 0.000932 0.00156 0.000772 
(-0.00054) (-0.00064) (-0.00038) (-0.00093) (-0.0005) (-0.0005) 

 

Table 12. Random effects model coefficients for three years before and after project 
commencement. Coefficients resulted from difference-in-difference analysis for three years 
before and after project commencement, stratified by owner type. Six-year dummy variables and 
twelve landcover dummy variables are not displayed. 

Variable All Corporate TIMO/REIT Tribal Family Other 
After 
project 
commenc. 

0.0000155 0.000464 -0.000976* -0.00214*** -0.0000444 0.000801 
(-0.000402) (-0.000377) (-0.0005) (-0.000261) (-0.00065) (-0.000718) 

Type: 
project 

-0.000615* -0.000881*** -0.00137*** -0.0000302 -0.000843* -0.0000904 
(-0.000318) (-0.000273) (-0.000445) (-0.000175) (-0.000445) (-0.000595) 

After 
project 
commenc. x 
type: 
project 

0.000152 0.000266 -0.000841 0.00025 0.00137** 0.00051 
(-0.000422) (-0.00036) (-0.000585) (-0.000234) (-0.000566) (-0.000778) 

Elevation -0.000000597 0.000000126 0.00000116 -0.000000212 -0.000000273 -0.00000107 
(-0.000000379) (-0.000000343) (-0.00000113) (-0.000000312) (-0.000000626) (-0.00000115) 

Slope -0.0000134 0.0000108 -0.000124*** -0.00001 -0.0000148 -0.0000663* 
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(-0.0000153) (-0.0000129) (-0.0000283) (-0.00000865) (-0.0000211) (-0.0000365) 
Aspect 0.0000011 0.00000165* 0.00000215 -0.000000885 -0.00000111 -0.00000127 

(-0.00000104) (-0.00000088) (-0.00000142) (-0.000000597) (-0.00000127) (-0.0000019) 
Distance to 
road 

0 0.000586*** 0.000406** -0.0000628 0.00102*** 0.00143*** 
(0) (-0.000134) (-0.000199) (-0.0000652) (-0.000251) (-0.000271) 

Distance to 
mill 

-0.000514** -0.0000787 -0.00069** -0.00169*** 0.00101*** -0.000351 
(-0.000216) (-0.000165) (-0.000306) (-0.000217) (-0.000285) (-0.000345) 

PDSI -0.00000054 0.00000176*** -0.00000221*** -0.00000164*** -0.00000203** -0.000000501 
(-0.000000466) (-0.000000437) (-0.000000841) (-0.000000298) (-0.000000792) (-0.000000843) 

Max temp 0.0000277*** 0.0000271*** 0.0000212 -0.0000237*** 0.0000106* 0.00000912 
(-0.00000627) (-0.00000594) (-0.0000171) (-0.00000416) (-0.0000064) (-0.0000146) 

Min temp -0.00000693 0.0000563*** -0.00000235 -0.000000512 -0.00000789 -0.0000194 
(-0.00000967) (-0.00000998) (-0.0000286) (-0.00000595) (-0.0000152) (-0.0000213) 

Constant 0 -0.00404 -0.000932 0.0156*** 0 0 
(0) (-0.00986) (-0.0105) (-0.00249) (0) (0) 

Obs. 229044 447732 164625 393662 96203 44231 
Num. IDs 33284 64211 24026 58157 13761 6434 

Note: Standard errors in parentheses; PDSI = Palmer Drought Severity Index; * p <0.1; ** p 
<0.05; *** p <0.01. 

 

Table 13. Random effects model coefficients for five years before and after project 
commencement. Coefficients resulted from difference-in-difference analysis for five years 
before and after project commencement, stratified by owner type. Ten-year dummy variables 
and twelve landcover dummy variables are not displayed. 

Variable All Corporate TIMO/REIT Tribal Family Other 
After 
project 
commenc. 

-0.260 -0.0896 0.0291 -1.056*** -1.208 0.154 
(0.220) (0.161) (0.136) (0.357) (1.163) (0.333) 

Type: 
project 

-0.570* -0.583 -0.632** -0.111 -1.098 0.343 
(0.291) (0.481) (0.249) (0.0940) (1.045) (0.716) 

After 
project 
commenc. x 
type: 
project 

0.359 0.200 -0.320* 0.366* 2.135* 1.062*** 
(0.256) (0.462) (0.189) (0.214) (1.166) (0.271) 

Elevation -0.000292 -0.000214 0.000690 0.000132 2.16e-05 -0.000622 
(0.000244) (0.000396) (0.000774) (0.000502) (0.000296) (0.00151) 

Slope 0.00413 0.00288 -0.0358 -0.00595 -0.00324 -0.0642 
(0.0100) (0.0112) (0.0239) (0.00646) (0.0256) (0.0474) 

Aspect 5.39e-05 0.000130 0.000558 -0.000439 -0.000811 -0.00125 
(0.000495) (0.000509) (0.000551) (0.000388) (0.00130) (0.00110) 

Distance to 
road 

0.0155** 0.00134 -0.00499 0.00816 0.0693 0.0765*** 
(0.00651) (0.0142) (0.00707) (0.0391) (0.0735) (0.0150) 

Distance to 
mill 

-0.272* -0.119 0.419*** -1.708*** 0.601*** -0.323* 
(0.144) (0.177) (0.124) (0.661) (0.206) (0.180) 

PDSI -8.42e-05 0.000574* -0.000920** -0.000302 -0.000449** 0.000311 
(0.000325) (0.000330) (0.000399) (0.000431) (0.000223) (0.000682) 

Max temp 0.00929 0.00298 0.00893 0.00840 0.00406 -0.00789 
(0.00659) (0.00468) (0.0138) (0.0298) (0.00330) (0.0113) 
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Min temp -0.0143 0.00862 -0.0327** -0.0438 -0.00213 0.000403 
(0.0109) (0.00710) (0.0166) (0.0535) (0.0139) (0.0381) 

Constant -10.32*** -11.29*** -5.358 -4.063 -12.41** -6.274 
(2.014) (2.474) (4.603) (6.216) (5.033) (12.41) 

Obs. 229,298 256,964 115,031 308,214 42,419 31,460 
Num. IDs 32,933 36,957 17,008 44,083 6,217 4,887 

Note: Standard errors in parentheses; PDSI = Palmer Drought Severity Index; * p <0.1; ** p 
<0.05; *** p <0.01. 

 

Table 14. Fixed effects model coefficients for three years before and after project 
commencement. Coefficients resulted from difference-in-difference analysis for five years 
before and after project commencement, stratified by owner type. Six year dummy variables are 
not displayed. 

Variable All Corporate TIMO/REIT Tribal Family Other 
After project 
commenc. 

-0.000773 -0.00169 7.34e-05 -0.000906 -0.00348 0.000476 
(0.000675) (0.00111) (0.000638) (0.000511) (0.00327) (0.00147) 

After project 
commenc. x 
type: project 

0.000380 0.000636 -0.00115* 0.000461 0.00398 0.00118** 
(0.000564) (0.000982) (0.000623) (0.000750) (0.00286) (0.000554) 

PDSI -1.17e-06*** 8.39e-08 -3.08e-06*** -1.02e-06* -2.02e-06 7.25e-07 
(3.63e-07) (4.91e-07) (1.00e-06) (5.20e-07) (1.35e-06) (1.44e-06) 

Max temp 6.47e-05 6.95e-05 -7.91e-05 0.000132** -4.36e-05 -4.77e-05 
(5.46e-05) (4.28e-05) (8.38e-05) (4.99e-05) (0.000135) (4.28e-05) 

Min temp -0.000108** -0.000106*** 4.73e-05 -0.000168*** -0.000112 6.90e-05** 
(4.72e-05) (3.03e-05) (0.000101) (5.09e-05) (7.27e-05) (2.77e-05) 

Constant -0.00434 -0.00660 0.0137 -0.0154* 0.0242 0.00512 
(0.00898) (0.00917) (0.00914) (0.00742) (0.0397) (0.00751) 

Obs. 382,805 257,997 119,928 308,865 45,187 35,409 
R-squared 0.001 0.001 0.001 0.001 0.004 0.001 
Num. IDs 54,987 37,106 17,318 44,176 6,473 5,157 

Note: Standard errors in parentheses; PDSI = Palmer Drought Severity Index; * p <0.1; ** p 
<0.05; *** p <0.01. 

 

Table 15. Fixed effects model coefficients for five years before and after project 
commencement. Coefficients resulted from difference-in-difference analysis for five years 
before and after project commencement, stratified by owner type. Ten-year dummy variables are 
not displayed. 

Variable All Corporate TIMO/REIT Tribal Family Other 
After 
project 
commenc. 

-0.000172 
(0.000599) 

-0.000981* 
(0.000525) 

0.000256 
(0.000538) 

-0.00115 
(0.000691) 

-0.00174 
(0.00250) 

-6.24e-05 
(0.000783) 

After 
project 
commenc. x 
type: 
project 

0.000278 
(0.000543) 

0.000251 
(0.000643) 

-0.00101** 
(0.000376) 

0.000932 
(0.000928) 

0.00156 
(0.00165) 

0.000772 
(0.000501) 
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PDSI -9.06e-07* 
(5.05e-07) 

-2.76e-07 
(2.36e-07) 

-8.35e-07 
(6.62e-07) 

-1.43e-06 
(8.66e-07) 

8.32e-08 
(4.83e-07) 

-4.42e-08 
(9.82e-07) 

Max temp 1.64e-05 1.59e-05 -3.53e-05 1.70e-05 0.000114 4.87e-05 
(2.01e-05) (2.45e-05) (5.05e-05) (1.36e-05) (5.15e-05) (6.18e-05) 

Min temp -4.35e-05 -3.88e-05** 1.67e-05 -5.69e-05* -0.000124* -2.07e-05 
(2.64e-05) (1.80e-05) (5.03e-05) (3.11e-05) (4.01e-05) (6.37e-05) 

Constant 0.00183 0.00746 0.00839 0.00153 -0.0167 -0.00940 
(0.00296) (0.00452) (0.00715) (0.00267) (0.0127) (0.00905) 

Obs. 569,336 390,643 184,632 441,336 70,625 54,045 
R-squared 0.000 0.000 0.001 0.001 0.002 0.000 
Num. IDs 54,987 37,106 17,318 44,176 6,473 5,157 

Note: Standard errors in parentheses; PDSI = Palmer Drought Severity Index; * p <0.1; ** p 
<0.05; *** p <0.01. 

 

4.4 Discussion & Conclusion  
The incentive structure of California’s U.S. Forest Projects Compliance Offset 
Protocol is reflected in results from the analyses in this dissertation, wherein 
California’s protocol issues credits by comparing a project's baseline against 
common practice statistics. Highly stocked forests are issued large credits, and 
developers are paid immediately for existing carbon stocks. Setting baselines in 
this way rewards landowners for past decisions not to harvest. However, these 
may be the very landowners and locations that are also unlikely to harvest in the 
future. In this way, California's program fails to properly incentivize additionality 
and potentially suffers from strong adverse selection—presenting “significant 
design challenges to decision-makers adopting offset programs and offset 
standards as part of emissions trading programs” (Bento et al., 2015a, 2015b; 
Bushnell, 2011; Gillenwater, 2012; Gren et al., 2016; Montero, 2000; Ruseva et 
al., 2017, p. 278). This is reflected in results from these analyses, where we cannot 
statistically document decreases in forest harvest patterns three and five years 
after project establishment for the program by any landowner type except 
TIMO/REIT.  

 

Limitations of this work 

While these results suggest limited additionality, and I believe our findings are 
explained by the incentives provided by California's policy, I stress that this is an 
early assessment of a program that requires forests to maintain carbon stocks for 
100 years. While differences in forest harvest patterns three and five years after 
project establishment were not detected, disturbance rates were low—
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particularly in project areas—and the difference in disturbance rates may widen 
as forest harvest occurs outside of project areas over time. Optimal carbon 
management over the project period may require early management actions that 
result in forest disturbance but lead to greater carbon throughout the project. 
There is a chance that the positive coefficients for forest disturbance for 'other' 
forestlands identify early management that may lead to longer-term 
sequestration. Further research at the individual project forest management 
plans level will help clarify if this is the case.  

As this program is in its infancy, many registered and even credited IFM 
offset projects were omitted from this analysis, primarily due to a lack of available 
data. In addition, the program’s early participants are likely to have skewed 
toward larger landowners with the interest and capital available to participate. 
The full demographic of potential participants has not yet participated in this 
program, particularly concerning family landowners who own the majority of 
privately-owned forestland in the U.S. but comprise fewer than 10% of offset 
projects. The profile of offset projects and landowners may evolve moving forward, 
especially with potential policy revisions and outreach to smaller landowners. 
Further research to understand differences in landowner motivations, 
management approaches, and forest types can contribute to a greater 
understanding of why project establishment was affected by disturbance on 
TIMO/REIT project lands but not on other types of land.  

Furthermore, this analysis does not cover the reversal risk of offsets and 
the associated difficulties of measuring this risk, particularly in natural 
disturbances like wildfires. CARB requires a portion of each project’s credits to 
be relinquished into a central pool that acts as an insurance buffer against 
potential reversals to account for reversal risk. However, CARB may not be 
assigning accurate risk probabilities to offset lands and therefore not adequately 
ensuring against potential threats. Two examples of this include Tribal project 
owners, who are not required to contribute any credits to buffer the risk of harvest 
on Tribal lands; and California project owners, who are only required to 
contribute 2% of credits (if landowners have completed any fire reduction work to 
reduce risk of wildfire for the project area) or 4% of credits (with no fire reduction 
work to reduce risk of wildfire) despite a likely more significant risk of wildfire. 
Finally, the matching methods used in Chapter 4 highlight the importance of 
comparing historical disturbance rates of forest disturbance to statistically 
comparable forestlands within the Supersection assessment area. The U.S. Forest 
Projects Compliance Offset Protocol instructs project developers to generate a 
common practice statistic to quantify how much (%) above or below the project's 
initial above-ground carbon stocking is compared to all forests in the Supersection 
assessment area. Future studies could reassess the common practice statistic 
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using matched points generated using the methods described in Chapter 4, likely 
improving the initial percentage above common practice statistic for new projects.  

 

Significance and policy recommendations 

At this early stage in California's program, I suggest strengthening protocols to 
assure additionality. CARB should reconsider assessing baselines and business-
as-usual carbon stocking scenarios relative to regional data. Data on past forest 
harvest, both inside and outside of project areas, can be used to provide 
compelling and credible insight into the historical risks of forest harvesting–
whether that risk is minimal or severe. The data used throughout this 
dissertation is publicly available at sufficiently high resolution for all areas 
covered by the U.S. Forest Projects Compliance Offset Protocol. All tools needed 
to conduct these analyses—QGIS (in place of ArcGIS Pro or ArcMap), R, GDAL, 
& GEE—are free for any researcher to use without limits. Future availability of 
spatial data assessments of carbon stocking at fine resolutions and long temporal 
scales will hopefully simplify the scope and effort required in conducting future 
research.  

Van Kooten et al. (2021) reinforce two key insights that have emerged in 
doing this work. First, it is important to scrutinize climate policies as soon as data 
availability and robust methods allow. Since the Kyoto Protocol of the United 
Nations’ Framework Convention on Climate Change, we have increasingly seen 
the emergence of voluntary and state-mandated initiatives designed to reduce 
GHG emissions, from individuals to states to nations. Forestry-based climate 
change solutions can require a substantial investment of time to realize projects’ 
full potential benefits, which underscores the timeliness of analyses such as this. 
“… if there is an urgent need to address climate change, investments in forest 
restoration could come too late to make a difference … one can conclude that a 
forestry strategy needs to be implemented immediately or not at all” (Van Kooten 
et al., 2021, p. 4). It is particularly important to promptly evaluate and improve 
upon California’s U.S. Forest Projects Compliance Offset Protocol, as California 
has developed ambitious climate change policies and programs over the last two 
decades that stand to influence younger programs as they emerge in years to 
come.  

Second, it is fundamentally important to consider the benefits and utility 
of forest offset programs against risks, including the possibility that investing in 
forest offsets may embolden companies or other entities to delay reducing point-
source emissions longer than they would have in a compliance market without 
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the opportunity to purchase credits (Van Kooten et al., 2021). Offsets serve a 
purpose and can contribute to the success of an emissions trading scheme such as 
California’s cap-and-trade program. However, to maximize GHG reductions with 
the short-term goal of mitigating catastrophic climate change, there is no 
substitution—no matter how it is measured or modeled—for actual, verifiable, 
point source emissions reductions.  

In this dissertation, I have focused on California’s U.S. Forest Projects 
Compliance Offset Protocol under the state’s cap-and-trade system—the first such 
program in the United States and one of the world's largest (Kelly & Schmitz, 
2016). As of May 2022, 237 million offset credits had been issued (CARB, 2022). 
Outcomes of decisions made in California’s program are likely to influence the 
development of offset programs elsewhere, and as such, the U.S. Forest Projects 
Compliance Offset Protocol must serve the overall goal it was designed to aid in 
achieving. Current incentives encourage the offsetting of carbon-rich forests but 
do not sufficiently address additionality. I suggest that strong reforms are needed 
for California's offset program to continue to be a world-leading standard. 
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Annex 
 

Variable Description 

ID Project ID 

ARB_ID ARB ID 

Status Project status (as recorded by the registry for which the project belongs) 

Acres Project acres (as recorded in the project’s listing document or provided by the registry) 

Credits Total credits received (as recorded by the registry for which the project belongs) 

Credited Whether or not the project has received credits (1 = Yes, 0 = No) 

Active Whether or not the project is a presently active project (1 = Yes, 0 = No) 

Project_Commenceme
nt_Date 

Project commencement date (as recorded in the project’s listing document or provided by the 
registry) 

Name Project name (as recorded in the project’s listing document or provided by the registry) 

Location Project location (as recorded in the project’s listing document or provided by the registry) 

State State that the project is located within 

Developer_Owner_O
perator_Designee 

Four fields combined into one and separated by underscores: 1) Project developer; 2) Project 
owner; 3) Project operator; 4) Project designee. 

Individual 
Entity or person determined to be spearheading the project--sometimes the same as owner, 
developer, operator, or designee. Determined by Jared Stapp and colleagues in conversation, and 
by consulting the project's documents and/or media or other online sources about the project. 

Individual_Type 
Project developer class, as determined by Jared Stapp and colleagues in conversation, and 
relevant literature. This is an initial ownership class designation based off of Individual and used 
to then determine Class. 

Class Ownership class 

Verifier Project verifier (as recorded in the project’s listing document) 

initial_above_ground
_standing_live_tree_c
arbon_stocks_per_acr
e_c02e 

Initial above-ground standing live tree carbon stocks per acre within the project area (MT 
CO2e/acre). (as recorded in the project’s listing document) 

adjusted_initial_abov
e_ground_standing_l
ive_tree_carbon_stock
s_per_acre_c02e2 

Adjusted above-ground standing live tree carbon stocks per acre within the project area (MT 
CO2e/acre) (as recorded in the project’s listing document). 

Project_Baseline_Use
d 

= adjusted_initial_above_ground_standing_live_tree_carbon_stocks_per_acre_c02e2 unless no adjusted 
value is given, in which case, initial_above_ground_standing_live_tree_carbon_stocks_per_acre_c02e is 
used. 

common_practice__a
bove_ground_carbon
_stocks_tonnes_per_a
cre_c02e 

The calculated common practice, which is, “for the purposes of this protocol, the average carbon 
stocks (metric tons) of the above-ground portion of standing live tree from within the forest 
project’s assessment area, derived from FIA plots on all private lands within the defined 
assessment area” (s. 1.2(17) of the Compliance Offset Protocol U.S. Forest Projects, p. 3). 

baseline_percent_of_c
ommon_practice 

= (common_practice__above_ground_carbon_stocks_tonnes_per_acre_c02e) / (Project_Baseline_Used) (For 
true percentage value, multiply by 100). 

above_or_below_cp 
= “above” if baseline_percent_of_common_practice is > 1; = “below” if 
baseline_percent_of_common_practice is < 1.  
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Primary_Supersectio
n 

Primary Supersection that the project resides within. The project might be located partially in 
multiple Supersections, or solely in the Primary_Supersection. If the project is located within 
multiple Supersections, the Primary_Supersection is the Supersection with the largest portion of the 
project’s acreage. 

Primary_Supersectio
n_Acres 

Number of project acres within the Primary_Supersection. 

Secondary_Supersecti
on 

If the project is located within two or more Supersections, the Secondary_Supersection is the 
Supersection with the second largest portion of the project’s acreage. 

Secondary_Supersecti
on_Acres 

Number of project acres within the Seondary_Supersection. 

Third_Supersection 
If the project is located within three or more Supersections, the Third_Supersection is the 
Supersection with the third largest portion of the project’s acreage. 

Third_Supersection_
Acres 

Number of project acres within the Third_Supersection. 

Fourth_Supersection 
If the project is located within four or more Supersections (uncommon), the Fourth_Supersection is 
the Supersection with the fourth largest portion of the project’s acreage. 

fourth_Supersection_
Acres 

Number of project acres within the Fourth_Supersection. 

Acres_Dist_1986 
Through 
Acres_Dist_2018 

Acres disturbed in the given year within the project boundaries. Calculated from the LandTrendr 
output disturbance raster layer. Pixels with their greatest magnitude disturbance for the time 
series for the given year are summed and acreage is calculated by multiplying the sum by the 
spatial resolution of the raster layer and then converting square meters to acres by dividing the 
value by 4047. 

Percent_of_Total_Are
a_All_Acres_1986 
Through 
Percent_of_Total_Are
a_All_Acres_2018 

The percentage of total project area disturbed for the given year.  

Mean_Percent_of_To
tal_Area_All_Acres 

The mean value for all years’ Percent_of_Total_Area_All_Acres 

Notes 
Optional. Notes about the project, either recorded by the author or taken from the registry 
“Notes” field of the registry table entry for the project 

Description 
Optional. Description about the project, either recorded by the author or taken from the registry 
“Description” field of the registry table entry for the project 

 

Annex Table 1. Metadata for project database. 
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