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By leveraging shared entanglement between a pair of qubits, one can teleport a quantum state from one
particle to another. Recent advances have uncovered an intrinsically many-body generalization of quantum
teleportation, with an elegant and surprising connection to gravity. In particular, the teleportation of
quantum information relies on many-body dynamics, which originate from strongly interacting systems
that are holographically dual to gravity; from the gravitational perspective, such quantum teleportation can
be understood as the transmission of information through a traversable wormhole. Here, we propose and
analyze a new mechanism for many-body quantum teleportation—dubbed peaked-size teleportation.
Intriguingly, peaked-size teleportation utilizes precisely the same type of quantum circuit as traversable
wormhole teleportation yet has a completely distinct microscopic origin: It relies upon the spreading of
local operators under generic thermalizing dynamics and not gravitational physics. We demonstrate the
ubiquity of peaked-size teleportation, both analytically and numerically, across a diverse landscape of
physical systems, including random unitary circuits, the Sachdev-Ye-Kitaev model (at high temperatures),
one-dimensional spin chains, and a bulk theory of gravity with stringy corrections. Our results pave the way
toward using many-body quantum teleportation as a powerful experimental tool for (i) characterizing the
size distributions of operators in strongly correlated systems and (ii) distinguishing between generic and
intrinsically gravitational scrambling dynamics. To this end, we provide a detailed experimental blueprint
for realizing many-body quantum teleportation in both trapped ions and Rydberg atom arrays; effects of
decoherence and experimental imperfections are analyzed.

DOI: 10.1103/PhysRevX.12.031013 Subject Areas: Atomic and Molecular Physics
Gravitation Quantum Physics
Quantum Information

I. INTRODUCTION

Quantum teleportation leverages entanglement to trans-
mit quantum information between distant locations [1–5].
Typically, one thinks about teleportation in the context of a
few, well-controlled degrees of freedom. For example, two
distant observers might share a pair of maximally entangled
qubits [i.e., an Einstein-Podolsky-Rosen (EPR) pair [6] ],

enabling a measurement by one observer to teleport an
unknown quantum state to the other.
Recently, a confluence of seminal results has unveiled

several novel instances of teleportation in strongly inter-
acting, many-body systems [7–17]. Similar to conventional
quantum teleportation, these protocols utilize shared entan-
glement as well as measurement and classical communi-
cation. However, they differ from conventional quantum
teleportation in a few key aspects. Most notably, prior to
teleportation, the initial quantum state is scrambled by the
application of a many-body unitary. At first glance, this
coexistence of scrambling—broadly speaking, the increas-
ing complexity of initially simple quantum information
under many-body time dynamics [18–22]—and teleporta-
tion might seem counterintuitive. Indeed, one often thinks
of teleportation as a directed quantum channel moving
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information between two specific locations; in contrast,
scrambling disperses quantum information across all of the
degrees of freedom in a system. The most natural way to
reconcile these two perspectives is through the language
of quantum error correction [23]: By encoding, via scram-
bling, one observer’s local information into nonlocal
correlations across a many-body system, one can, in fact,
teleport this information with access only to any few of the
system’s qubits.
The most notable example of many-body teleportation is

the so-called traversable wormhole (TW) protocol, discov-
ered in the context of quantum gravity [7–9,15–17]. From the
bulk gravitational perspective, this protocol consists of a
particle traveling fromone side of awormholegeometry to the
other; thewormhole is rendered traversable by the application
of a coupling between the two sides. In the boundary theory,
the wormhole geometry corresponds to a highly entangled
thermofield double (TFD) state shared between two copies of
a many-body system, and the coupling is implemented via
measurement and feed-forward operations [Fig. 1(a)].
Crucially, for this bulk-boundary correspondence to hold,
theHamiltonian describing the boundary systemmust exhibit
“coherent,” gravitational scrambling dynamics—this is real-
ized,most notably, in the Sachdev-Ye-Kitaev (SYK)model at
low temperatures [24,25].
Interestingly, recent work has uncovered a number of

instances of many-body teleportation without gravitational

dynamics. For example, teleportation in the TW protocol
was recently demonstrated analytically in the SYK model
at high temperatures [17] and numerically in chaotic spin
chains at late times [15,16]; in both cases, the microscopic
mechanism for teleportation remains an outstanding puzzle.
In addition to the TW protocol, an alternate many-body
teleportation protocol was introduced in the context of the
Hayden-Preskill variant of the black hole information
paradox [11,23]. This so-called Hayden-Preskill recovery
(HPR) protocol allows for many-body teleportation via
generic scrambling dynamics. Although the two protocols
bear some structural similarity, the HPR protocol is
exponentially less efficient for teleporting multiple qubits.
To this end, understanding the precise relationship between
these protocols remains an essential open question.
In this work, we present a unified framework for

many-body teleportation from the perspective of the growth
of operators under scrambling time evolution. Most sig-
nificantly, this framework leads to the identification
of a new teleportation mechanism—dubbed peaked-size
teleportation—which succeeds for a wide variety of physi-
cal systems and encapsulates all known examples of many-
body teleportation outside of the gravitational regime. We
emphasize that peaked-size teleportation represents a dis-
tinct teleportation mechanism compared to “gravitational”
teleportation. Although the same TW protocol can host
either mechanism, the features of peaked-size teleportation

(a) (b) (c)
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Time
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operator growth
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ecreasing capacity
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gravity
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Gravity-based teleportation

Peaked-size teleportation

FIG. 1. (a) Teleportation protocol, proceeding from bottom to top. To teleport, a subset of the left qubits are measured in the Ôi basis,
and operations V̂i ¼ eigoiÔi=K conditioned on the measurement results oi are performed on the right (purple). (b) The protocol hosts two
mechanisms of teleportation: peaked-size (red) and gravitational (blue). The channel capacity of peaked-size teleportation decreases
with increasing time (dark to light red), while its fidelity decreases with decreasing temperature (dark to light red, again). At high
temperature and late times, it is equivalent to teleportation in the HPR protocol (red diamond). Gravitational teleportation occurs at low
temperatures in systems dual to semiclassical gravity (e.g., the SYK model) and exhibits the same channel capacity but higher fidelity
compared to peaked-size teleportation. Increasing the strength of stringy corrections to the gravity theory interpolates between
gravitational and peaked-size teleportation. (c) The two mechanisms display distinct time profiles for the teleportation fidelity at fixed
coupling strength g. In systems dual to gravity (top), the fidelity features a single Oð1Þ peak near the scrambling time (gravitational,
blue) and a late-time revival (peaked-size, red) to a fidelity suppressed by the two-point functionGβ [7]. In generic thermalizing systems
(bottom), the fidelity oscillates between 0 and Gβ with phase proportional to the operator size, may subsequently decay if sizes become
not peaked, and revives at late times.

THOMAS SCHUSTER et al. PHYS. REV. X 12, 031013 (2022)

031013-2



differ markedly from those of gravitational teleportation
[Fig. 1(c) and Table I]. Crucially, this distinction implies
that the TW protocol can act as a litmus test for identifying
intrinsically gravitational dynamics. More broadly, our
results pave the way toward utilizing the TW protocol as
a powerful experimental tool for characterizing the growth
of operators in strongly interacting systems.

II. SUMMARY OF RESULTS

We now provide a technical overview of our main results
and the organization of our manuscript. This summary is
intended to introduce the overarching concepts of our work,
such that the remaining sections are self-contained and can
be read according to individual preference. A more
detailed, section-by-section guide to the reader is included
at the end of this summary.
In Sec. III, we begin with a general description of the

TW protocol [Fig. 1(a)]. In this protocol, locally encoded
quantum information is inserted into one side of an
entangled TFD state and teleported to the other side
through a combination of (i) unitary evolution of each
side individually and (ii) a simple two-sided coupling that
acts on a large subsystem of each side. The coupling is
quite flexible in form and corresponds to unitary evolution
eigV under a two-sided interaction

V ¼ 1

K

XK
i¼1

Oi;lO�
i;r; ð1Þ

where fOig are any set of K local, nonidentity operators
applied to the left (l) and right (r) sides of the system. This
coupling can be performed as either a quantum gate or
through local measurements ofOi on the left side, followed

by classical communication and feed-forward operations
on the right side [Fig. 1(a)].
In Sec. IV, we discuss the general requirements for

successful teleportation in the TW circuit. In particular, we
relate the teleportation fidelity to the following correlation
functions of the two-sided system [7]:

CQðtÞ≡ hTFDjQrð−tÞeigVQlðtÞjTFDi; ð2Þ

where Qð�tÞ is a time-evolved operator initially acting
on the qubit(s) to be teleported. Our analysis leads to two
conditions on these correlators that, when combined, are
necessary and sufficient for teleportation to succeed with
unit fidelity:
(1) The magnitudes of the correlators must be maximal

for every Q.
(2) The phases of the correlators must be the same for

every Q.
Here, Q runs over a complete basis of operators on the
qubits to be teleported. We show that Condition 1 is
naturally satisfied, even without the coupling V, if the
TFD state is at infinite temperature, in which case it reduces
to an extensive set of maximally entangled EPR pairs. On
the other hand, Condition 2 requires that the coupling acts
nontrivially on the operators Q.
In Sec. V, we describe the relation between the coupling

V and the growth of time-evolved operators, QðtÞ. For the
purposes of teleportation, this growth is characterized
by the size distribution of the operators [26–28], which
provides a finer-grained measure of quantum information
scrambling compared to more conventional quantities such
as out-of-time-ordered correlators (OTOCs) [19,21,29].
Specifically, writing QðtÞ as a sum over Pauli strings,
QðtÞ ¼ P

R cRðtÞR, we define the size distribution as

TABLE I. Summary of our expectations for teleportation in a variety of physical models. For each model, we specify the associated
teleportation mechanism, the optimal value of the coupling strength g, the optimal teleportation fidelity, and the channel capacity. Here,
Gβ is the imaginary time two-point function (Sec. VI B), SðtÞ is the size of a time-evolved operator, K is the number of measured qubits
[Fig. 1(a)], ηd ¼ 1=ð1 − 1=d2Þ is an order one constant determined by the local qudit dimension d (Sec. VA), and GN is Newton’s
constant. We refer to the summary of results and the cited sections for further details.

Model
Teleportation
mechanism

Protocol
parameters

Maximum fidelity
per qubit

Channel
capacity

All scrambling systems at late times
(Refs. [7,11] and Sec. VII)

Peaked-size g ¼ π mod 2π ∼Gβ
1 qubit

≥ 1D RUCs and chaotic spin systems
(Secs. VI B, VIII B, and X D)

Peaked-size ηdgSðtÞ=N ¼ π mod 2π ∼Gβ
∼K qubits

0D RUCs, with encoding (Sec. VIII C) Peaked-size ηdgSðtÞ=N ¼ π mod 2π ∼1 ∼K qubits

High-T SYK, with encoding
(Ref. [17] and Sec. VIII D)

Peaked-size ηdgSðtÞ=N ¼ π mod 2π ∼1 ∼K qubits

Low-T SYK or AdS2 gravity
(Refs. [7,8,15,17] and Fig. 1)

Gravitational
get=N ∼ 1 (SYK)
gGNet ∼ 1 (AdS2)

∼1 ∼K qubits

AdS2 gravity with strong stringy corrections,
with encoding (Sec. IX D)

Peaked-size gSðtÞ=N ∼ π mod 2π ∼Gβ
� � �
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PðSÞ ¼
X

S½R�¼S

jcRðtÞj2; ð3Þ

where the sum is over Pauli strings R of size S (equal to the
string’s number of nonidentity components). By probing
correlations between the two sides of the doubled Hilbert
space, the coupling V directly measures the operator
size [27].
In Sec. VI, we introduce the peaked-size mechanism

for many-body teleportation. This mechanism is possible
whenever the size distributions of time-evolved operators
QðtÞ are tightly peaked about their average size. In this
scenario, the exponentiated coupling eigV applies approx-
imately the same phase, proportional to the size, to each
coefficient cR and, therefore, to the entire operatorQðtÞ. We
show that these applied phases are sufficient to align the
correlators’ phases for all operators Q, thereby achieving
Condition 2. We also demonstrate that the magnitudes of
the correlators are unchanged by the coupling when size
distributions are tightly peaked. This implies that peaked-
size teleportation achieves perfect fidelity at infinite tem-
perature, where Condition 1 is automatically satisfied; at
finite temperature, peaked-size teleportation can still occur
but with a reduced fidelity (Table I).
In Secs. VII–VIII, we analyze examples of peaked-size

teleportation across a wide variety of interacting, many-
body dynamics. We demonstrate that the capabilities of
peaked-size teleportation—most notably, the fidelity and
the number of qubits that can be sent (i.e., the channel
capacity)—depend on the temperature, coupling strength,
evolution time, and the specific scrambling dynamics of the
model under study (Table I).
More specifically, in Sec. VII, we provide general

arguments that all scrambling systems exhibit peaked-size
teleportation at late times, after the system’s scrambling
time (t≳ ts). In this regime, operators have become fully
delocalized across the system, so that their size distribu-
tions are peaked about a typical, extensive value. We also
show that late-time peaked-size teleportation is limited to
transmitting only a single qubit.
In Sec. VIII, we show that many scrambling quantum

systems also feature peaked-size teleportation at intermedi-
ate times, i.e., after the local thermalization time but before
the scrambling time (tth ≲ t≲ ts). We begin with ergodic
short-range interacting systems in ≥ 1D, which we show
naturally possess peaked-size distributions due to thermal-
ization within the bulk of a time-evolved operator’s light
cone. In contrast, the size distributions of operators in all-
to-all coupled (0D) systems are not intrinsically peaked;
nevertheless, peaked sizes can be engineered by nonlocally
encoding the quantum information before insertion into the
teleportation circuit. Interestingly, in both of these classes
of dynamics, we find that multiple [OðKÞ] qubits can be
teleported simultaneously via the peaked-size mechanism,
in contrast with the unit channel capacity of late-time

teleportation. We substantiate these claims through exten-
sive numerical and analytic studies on a variety of physical
models: random unitary circuits (RUCs) in dimensions
d ¼ 0, 1, and 2 [30], the SYK model, and (in Sec. X D)
experimentally relevant spin chain Hamiltonians [31].
In Sec. IX, we discuss the interplay between peaked-size

and gravitational teleportation. Notably, we expect gravi-
tational teleportation to occur only at low temperatures,
where certain quantum mechanical models (e.g., the SYK
model) are known to possess a dual description in terms of
conformal matter coupled to gravitational dynamics. From
the perspective of operator growth, the unique feature of
gravitational teleportation is the presence of nontrivial
phase winding in a variant of the size distribution [15].
Crucially, this effect enables gravitational teleportation to
satisfy Condition 1 and, thereby, achieve high teleportation
fidelity at low temperatures, in sharp contrast with peaked-
size teleportation (Table I).
Intriguingly, while it may seem that there is a sharp

distinction between peaked-size and gravitational telepor-
tation, we find that this is not always this case. In particular,
we show that varying the temperature of the SYK model
provides a continuous interpolation between gravitational
teleportation at low temperature and peaked-size telepor-
tation at high temperature. In the dual picture, perturbing
away from the low-temperature limit corresponds to adding
stringy corrections to the gravity theory [25,32,33].
Following this intuition, we show that teleportation in a
gravity theory with strong stringy corrections [7] bears a
remarkable qualitative similarity to peaked-size teleporta-
tion, thus providing a first step toward a bulk understanding
of this phenomenon.
Finally, in Sec. X, we discuss experimental applications

of the TW protocol for probing many-body dynamics. In
particular, we demonstrate that the protocol can function as
a diagnostic tool for scrambling dynamics in near-term
quantum simulators, enabling one to starkly distinguish
between generic thermalizing systems and gravitational
dynamics. To this end, we provide detailed blueprints for
realizing the protocol in two complementary experimental
platforms—Rydberg atom arrays [31,34–38] and trapped
ions [39–43]. Specifically, the observation of a high
teleportation fidelity at low temperatures would be a
tantalizing experimental indicator of gravitational scram-
bling dynamics. In addition, gravitational dynamics exhibit
unique qualitative features as a function of both evolution
time and protocol parameters [Fig. 1(c) and Table I]. More
broadly, our analysis suggests that the TW protocol can
provide insights into many-body dynamics outside the
gravitational regime. In particular, we demonstrate that
the fidelity of peaked-size teleportation probes higher
moments of operator size distributions [28].
Guide to the reader.—Considering the wide scope of

results presented in this work, we encourage readers to skip
to sections that align with their specific interests and refer to
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the above summary for context. To this end, we highlight
below the nature of each section and provide recommen-
dations for readers of different backgrounds. Sections III–V
introduce the formal tools and derivations necessary for
rigorously understanding our results. These sections will
be of interest to readers with a background in quantum
information who wish to understand the precise connec-
tion between teleportation and operator sizes. Sections VI–
VIII introduce peaked-size teleportation and analyze its
realization in several example systems. Since many these
systems are experimentally accessible, these sections are
most relevant to members of the quantum simulation and
many-body physics communities. Section IX focuses on
the interplay of peaked-size teleportation and gravitational
physics, both in the SYK model and from a bulk
gravitational perspective. For brevity, background material
on gravitational physics is relegated to references, making
this section best suited for experts at the intersection of
quantum information and quantum gravity. Finally, Sec. X
contains a summary of the experimental signatures of the
TW protocol, detailed blueprints for Rydberg atom and
trapped ion implementations, and a discussion of the
protocol’s behavior under experimental error. This section
will be of interest to experimentalists and all readers
interested in near-term realizations of many-body quantum
teleportation [44].

A. Relation to previous works

To further elaborate on the broad context of our results,
a brief summary of the relevant prior studies and their
relation to our work is provided as follows.
Gravitational teleportation in the TW protocol.—

Traversable wormhole teleportation was originally intro-
duced in Refs. [7,8] in the context of gravitational physics,
where it was realized that a coupling of the form V enables
a traversable channel between the boundaries of a two-
sided black hole. The explicit quantum mechanical circuit
implementing this teleportation [Fig. 1(a)] was later
introduced in Refs. [15,17], alongside exact calculations
for the teleportation fidelity in the large-q SYK model
[17]. While the emphasis of our work is not on the
bulk interpretation of gravitational teleportation—indeed,
the peaked-size teleportation mechanism is intended
to contrast with the gravitational mechanism—it is
helpful to recall the main results from the gravitational
perspective.
We focus on the specific case of two-dimensional anti–

de Sitter space, which is the bulk dual of the SYK model at
low temperatures [7,45]. In the simplest case (ignoring
gravitational backreaction), the two-sided correlator
[Eq. (2)] can be explicitly calculated and is given by [7]

CQðtÞ ¼
�

1

2 − g ΔO
22ΔOþ1 GNe2πt=β

�
2ΔQ

: ð4Þ

Here, GN is Newton’s constant, β ¼ 1=T is the inverse
temperature of the black hole, ΔO is the conformal dimen-
sion of the coupling operators Oi [Eq. (1)], and ΔQ is the
conformal dimension of the operatorQ. In the context of the
SYK model, GN is inversely proportional to the number of
Majorana fermions, N, and the black hole temperature is
equal to the temperature of the TFD state [7,17].
For our purposes, the most notable feature of the

correlator is that it exhibits a sharp peak at time t ≈
GN logðgÞ [Fig. 1(c)], corresponding to the moment a
particle inserted on one side of the black hole emerges
on the other side. While in the above formula [Eq. (4)] the
correlator diverges at this time, in the large-q SYK model,
this divergence is regularized and the correlator peaks at its
maximal value of unity [17]. Thus, at time t ≈GN logðgÞ,
the correlator satisfies Condition 1 for successful telepor-
tation; in Ref. [17], it is shown that Condition 2 is
also satisfied for certain conformal dimensions of the
operatorsQ. In combination, this leads to unit teleportation
fidelity.
Another notable feature of gravitational teleportation is

the ability to teleport multiple qubits simultaneously, as
discussed in Ref. [7]. In the gravitational picture, multiqubit
teleportation has an intuitive explanation: Particles corre-
sponding to different qubits pass through the black hole in
parallel, without interacting with one another. However, for
sufficiently many qubits, the effects of gravitational back-
reaction become important, leading to a predicted channel
capacity of OðKÞ.
HPR teleportation.—An independent, but closely related,

set of protocols for many-body teleportation is introduced in
Ref. [11] for the recovery of information in the Hayden-
Preskill thought experiment [23]. Unlike previous works on
traversable wormholes, in Ref. [11], teleportation succeeds
for any fully scrambling unitary dynamics (i.e., at late times
t≳ ts), with no reliance on gravitational physics. However,
the channel capacity of HPR teleportation is fundamentally
limited: Multiqubit teleportation requires a protocol whose
circuit depth grows exponentially in the number of qubits to
be teleported [11].
In Appendix B, we show that a deterministic variant of the

HPR protocol (for single-qubit teleportation) is, in fact,
equal to the TW protocol in Fig. 1(a), restricted to infinite
temperature and with a particular choice of the coupling
operators Oi. Furthermore, in Sec. VII B, we show that
teleportation at late times via the peaked-size mechanism is
equivalent to this variant of HPR teleportation. However,
peaked-size teleportation is more powerful than HPR tele-
portation in the sense that (i) it succeeds for a much larger
class of couplings V, (ii) it can succeed at intermediate times,
and (iii) at such times, it is capable of sending multiple qubits
with no change in the protocol’s complexity, an exponential
improvement over the HPR protocol.
Previous many-body teleportation experiments.—Many-

body quantum teleportation has recently been demonstrated
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in both trapped ion [13] and superconducting qutrit [14]
experiments. Both Refs. [13,14] implement a probabilistic
variant of the HPR protocol, which differs slightly from the
TW protocol, while Ref. [13] also implements the deter-
ministic variant discussed above. In all cases, the scram-
bling dynamics U are generated by digital quantum gates
acting on a small number of qubits. Teleportation is
performed for a single qubit and a fully scrambling unitary,
placing the experiments in the same physical regime as late-
time, peaked-size teleportation.
Our work demonstrates that experiments in the TW

protocol at intermediate times can access new regimes
of many-body quantum teleportation, with the potential to
provide more information about the scrambling dynamics
under study. Most notably, such experiments can distin-
guish between teleportation in generic many-body systems
(via the peaked-size mechanism) versus systems with a
gravity dual (via the gravitational mechanism), which is not
possible in the HPR protocol.
SYK teleportation in the TW protocol.—In Ref. [17],

the two-sided correlator of the TW protocol [Eq. (2)] is
calculated exactly for the large-q SYK model (defined in
Sec. VIII D). As anticipated in Ref. [7], the correlator at low
temperatures—where the model is dual to gravity—agrees
with the gravitational result [Eq. (4)] up to the previously
mentioned regularization. More surprisingly, it is shown
that teleportation with unit fidelity is also possible at high
temperatures—where the model is not dual to gravity. As
we see in Sec. VIII D, all features of high-temperature
teleportation in the SYK model are in precise agreement
with the peaked-size mechanism; our work thus provides a
microscopic understanding for this previously unexplained
result.
Gravity in the lab.—Reference [15] discusses various

instances of teleportation in the TW protocol. The authors
distinguish two teleportation mechanisms: (i) an “operator
transfer” mechanism, which occurs at intermediate times in
gravitational systems and is capable of teleporting multiple
qubits, and (ii) a “state transfer” mechanism, which occurs
at late times in all scrambling systems and is capable of
sending only a single qubit. Moreover, they introduce a
microscopic interpretation for the teleportation mechanism
in gravitational systems, termed “size winding,” which we
connect to in Sec. IX B.
In our terminology, the first teleportation mechanism

corresponds to gravitational teleportation, while the second
mechanism corresponds to peaked-size teleportation at
late times [46]. In our work, we provide a microscopic
interpretation for late-time teleportation (i.e., the peaked-
size mechanism) and demonstrate that it is equivalent to
teleportation in the HPR protocol. In addition, we dem-
onstrate that peaked-size teleportation is a more general
phenomenon that also occurs at intermediate times in many
systems, where we show that it is capable of teleporting
multiple qubits.

In a follow-up work, Ref. [16], the same authors
elaborate on their previous results and provide more
detailed examples and calculations. These agree with our
own results in areas of overlap.

III. INTRODUCTION TO DIAGRAMMATIC
NOTATION

We begin by introducing a diagrammatic “tensor net-
work” notation for depicting the teleportation circuit.
Adapted from Ref. [11], this notation provides a precise
visual framework for analyzing teleportation in Sec. IVand
is convenient for deriving rigorous results on the telepor-
tation fidelity in Sec. VI C.
To begin, we represent a quantum ket jψi and bra hψ j as

ð5Þ

Note that time proceeds upward—an initial state jψi
terminates the bottom of a leg, while a final projection
hψ j terminates the top. Similarly, much as in Fig. 1(a), we
represent an operator, for instance, the many-body unitary
U, as a box with input (bottom) and output (top) legs:

ð6Þ

Here, we decompose the input and output into two
subsystems—A and its complement for the input and C
and its complement for the output—in reference to the
teleportation protocol. Specifically, comparing to Fig. 1(a),
subsystem A consists of the qubits supporting the input
state jψi, while subsystem C consists of the coupled qubits.
The diagrammatic notation is particularly useful

when working with EPR states. The EPR state on two
qubits is defined as jEPRi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

; for a
system of N d-dimensional qudits, this is generalized
to ð1=

ffiffiffiffiffiffi
dN

p
ÞPdN

i¼1 jiiljii�r . Here, fig is an arbitrary dN-
dimensional basis, � denotes time reversal (i.e., complex
conjugation), and l and r denote the left and right system,
respectively. In the diagrammatic notation, we represent
this as

ð7Þ

We again decompose each system into two subsystems,
A and its complement Ā, for convenience (subsystem A is
chosen to be identical between the left and right sides).
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Each dot represents a normalization factor given by the
inverse square root of the subsystem’s dimension.
To see the utility of the diagrammatic notation, recall that

a fundamental property of the EPR state is that an operator
acting on the left side is equivalent to its transpose acting on
the right:

OljEPRi ¼
1ffiffiffiffiffiffi
dN

p
X
i;j

Oijjiiljj�ir

¼ 1ffiffiffiffiffiffi
dN

p
X
i;j

OT
ijjjilji�ir ¼ OT

r jEPRi; ð8Þ

where the middle equality swaps the i, j indices of the sum.
In diagrammatic notation, this becomes simply

ð9Þ

i.e., the operator O “slides” from the left to right side of the
EPR pairs, with its input and output indices correspond-
ingly transposed. Similarly, expectation values in the
EPR state can be easily computed in terms of the trace
of (one-sided) operators, e.g.,

ð10Þ

where the final equality follows from hEPRjBlAT
l jEPRi ¼

ð1=dNÞPijhi�jj�ihijBAT jji ¼ ð1=dNÞPihijBAT jii.
The EPR state is closely related to the TFD state,

TFD≡P
i e

−βEi=2jEiiljE�
i ir=trðe−βHÞ1=2. Here, H is a

time-reversal symmetric Hamiltonian,H ¼ H�, with eigen-
states jEii and eigenvalues Ei. The TFD state is para-
metrized by an effective “temperature” 1=β. At infinite
effective temperature (β ¼ 0), the TFD and EPR states are
equal. At finite temperature, the TFD state is obtained
by applying the square root of the density matrix,

ρ1=2 ≡ e−βH=2=trðe−βHÞ1=2, to either side of the EPR state,
which we represent as

ð11Þ

For the finite-temperature TFD state, the analog of
Eq. (9) holds only for operators that commute with the
Hamiltonian. Most notably, such operators include the
time-evolution operator U ¼ e−iHt, which thus obeys

ð12Þ

Equation (12) also holds for backward time evolution,
replacing U → U†; UT → U�. We note that, for time-
reversal symmetric Hamiltonians, U ¼ UT . In this case,
combining Eqs. (9) and (12), we have the useful identity

OlðtÞjTFDi ¼ OT
r ð−tÞjTFDi: ð13Þ

Applying Eq. (10), we can again express “two-sided”
expectation values in the TFD state in terms of “one-sided”
correlation functions, e.g.,

hTFDjAlðtÞBrðt0ÞjTFDi ¼ tr½ρ1=2ATð−tÞρ1=2Bðt0Þ�: ð14Þ
Let us now redraw the full teleportation protocol in

Fig. 1(a) using the diagrammatic notation:

ð15Þ

This circuit proceeds as follows: (i) Prepare the TFD state,
(ii) insert the state jψi on subsystem A of the left side,
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(iii) time evolve the two sides by U, U�, (iv) couple the two
sides via the unitary operator eigV, with V as in Eq. (1),
(v) evolve the right side by UT, (vi) apply a “decoding”
operator D, and (vii) measure the output state of subsystem
A on the right side. Compared to Fig. 1(a), we have made
two modifications. First, we have replaced the measure-
ment and classical communication with a quantum cou-
pling eigV , as described in Sec. II. Second, we have
included a simple decoding operator D, applied at the
end of the circuit before state recovery. For peaked-size
teleportation, we find that the optimal decoding operator is
D ¼ Y ⊗ � � � ⊗ Y, where Y is the single-qubit Pauli Y
operator (Sec. VI).
Finally, we note that a straightforward application of

Eq. (12) allows us to reexpress the circuit as

ð16Þ

This equivalent version of the protocol is introduced in
Refs. [15,17] and is more convenient for analysis from
here on.

IV. GENERAL REQUIREMENTS FOR
SUCCESSFUL TELEPORTATION

We now introduce heuristic arguments for when tele-
portation succeeds in this protocol. This culminates in the
two requirements for teleportation listed in Sec. II. In
Sec. VI, we derive these conditions more formally by
providing exact relations between the two-sided correlators
in Eq. (2) and the teleportation fidelity.
We begin with the protocol in Eq. (16). To proceed, we

insert a resolution of the identity 1 ¼ P
ϕ jϕihϕj on the

“swapped out” subsystem A (the output of U†
l ) [47]:

ð17Þ

This reformulation makes it clear that teleportation
depends on the action of the coupling on states of
the form QA;lðtÞjTFDi, where QA ¼ jψihϕj and [48]
QAðtÞ≡ UQAU†.
Teleportation succeeds when the coupling “transfers”

jψðtÞihϕðtÞj from the left to right side of the TFD state.
More precisely, the following identity, if true for all
operators QA on A, guarantees successful teleportation
for all states:

ð18Þ

Here, θQ is an overall phase, and we represent con-
jugation by the decoding operator as Q̃A ≡D†QAD. One
can verify this explicitly by plugging the rhs of the above
equality into Eq. (17): The topmost applications of DUT

and U�D† cancel, leaving QA → jψihϕj as the topmost
operator on the right side; i.e., subsystem A is in the
state jψi.
To quantify whether this equality holds, we measure the

inner product between the two states [49]:
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ð19Þ

This is precisely the two-sided correlation function intro-
duced in Eq. (2), now modified to include the decoding
operator. In particular, if the correlation function is maxi-
mal for all operators QA, then Eq. (18) holds and telepor-
tation succeeds with perfect fidelity for all initial states.
In practice, it is sufficient to evaluate the correlators for a

complete basis of operators on subsystem A (e.g., the Pauli
operators). In this case, we now have two requirements on
the operator correlators, as listed in Sec. II: (i) All corre-
lators must have maximal magnitude, i.e., equal to 1, and
(ii) all correlators must have the same phase—if two
operators both individually obey Eq. (18) but with different
phases, their sum does not.
At infinite temperature, owing to Eq. (9), we see that the

first requirement is satisfied even in the absence of the
coupling, for any symmetric or antisymmetric operator. To
satisfy the second requirement, the role of the coupling eigV

must be to apply a QA-dependent overall phase. In the
following section, we analyze the action of the coupling
and show precisely when such an overall phase occurs.

V. CONNECTION TO OPERATOR SIZE

In this section, we outline the connection between the
coupling V and the operator size when V is acted on states
of the form

QA;lðtÞjTFDi ¼ QA;lðtÞρ1=2l jEPRi: ð20Þ

This connection was discovered in a number of previous
works, focusing primarily on a specific bilinear coupling in
fermionic systems [15,16,26,27,50–52]. In the following,
we introduce this connection in the context of bosonic
systems and argue that it applies to a good approximation
for any generic, local couplings. From this, we then show
that the action of the exponentiated coupling, eigV , is

particularly simple—it applies an overall phase—whenever
operator size distributions are tightly peaked.

A. Coupling measures size

In bosonic qudit systems, we define the size of a Pauli
string as its number of nonidentity elements [26]. For
instance, the Pauli string

1 ⊗ X ⊗ 1 ⊗ 1 ⊗ Z ⊗ X ⊗ 1 ð21Þ

has size 3. A more general operator can be written as a sum
of Pauli strings, R:

QAðtÞρ1=2 ¼
X
R

cRðtÞR ð22Þ

and possesses a corresponding size distribution [26,27,53]:

PðSÞ ¼
X

S½R�¼S

jcRðtÞj2: ð23Þ

The distribution is normalized to 1 if QA is unitary:X
S

PðSÞ ¼
X
R

jcRðtÞj2 ¼ trðQ†
AQAρÞ ¼ 1: ð24Þ

One can naturally characterize the size distribution via its
moments—for instance, the average size S½QAðtÞρ1=2�≡P

S PðSÞS (when context is clear, we denote this simply as
S) and the size width δS.
We now show that the coupling V approximately

measures the operator size, in the sense that it acts on
states of the form Eq. (20) as

VQA;lðtÞjTFDi ≈ dN=2
X
R

�
1 − ηd

S½R�
N

�
cRðtÞRljEPRi;

ð25Þ

where ηd ≡ 1=ð1 − 1=d2Þ is an order one constant deter-
mined by the local qudit dimension d. Expectation values
of V thus measure the average size, while higher powers of
V measure higher moments of the size distribution [26,27].
In particular, the exponentiated coupling in the teleporta-
tion protocol applies a size-dependent phase to each Pauli
string of QAðtÞρ1=2:

eigVQA;lðtÞjTFDi ≈ dN=2eig
X
R

e−iηdgS½R�=NcRðtÞRljEPRi:

ð26Þ

We derive this connection by first introducing an exact
measure of operator size in bosonic qudit systems, general-
izing previous measures for Majorana fermionic systems
[26,27]. We then argue that successively more generic
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couplings display approximately the same behavior, when
acted on time-evolved operators in generic many-body
scrambling dynamics.
In bosonic qudit systems, we find that the operator size is

precisely measured by a sum of individual EPR projectors
on each qudit i:

Vs ¼
1

N

XN
i¼1

PEPR;i ¼
1

Nd2
XN
i¼1

X
Pi

Pi;lP�
i;r; ð27Þ

where d is the local qudit dimension, N is the number
of qudits, and Pi form a complete basis of single-qudit
operators (e.g., for qubits Pi ∈ f1; X; Y; Zg). To see this, let
us first analyze the action of a single EPR projector, PEPR;i.
Writing a given Pauli string as a tensor product of single-

qudit Paulis, R ¼ ⊗
N

j¼1
Rj, we find

PEPR;iRljEPRi ¼ δRi;1RljEPRi; ð28Þ

using Eq. (10) and triðRiÞ=di¼ δRi;1. A single EPR pro-
jector thus acts as a binary variable, giving eigenvalue 1 or
0 if a given Pauli string is, or is not, the identity on the
designated qudit. The full coupling is a sum of these binary
variables over all qudits and, therefore, counts the total
number of nonidentity elements in the Pauli string, i.e., the
operator size. Its eigenvectors are the states RljEPRi with
eigenvalues 1 − S½R�=N, as in Eq. (25).
We now turn to more general local couplings. First, as a

trivial but useful modification, we can remove the identity
operators from Vs, since these are not included our original
definition of the coupling V [Eq. (1)]. These constitute a
fraction 1=d2 of the complete basis Pi, summed in Eq. (27).
Removing these terms renormalizes the eigenvalues of the
coupling:

�
1

Nðd2 − 1Þ
XN
i¼1

X
Pi≠1

Pi;lP�
i;r

�
RljEPRi

¼
�
1 − ηd

S½R�
N

�
RljEPRi; ð29Þ

which now match those quoted in Eq. (25). Note that the
left side sum is now over Nðd2 − 1Þ nonidentity operators
and normalized accordingly.
Second, we consider omitting some of the nonidentity Pi

at each site. Intuitively, under thermalizing dynamics, if an
operator has spread to some qudit i, it should not matter
which Pauli operator we use to probe the operator’s
presence. For example, for qubits, we could omit the
Oj ¼ Xi; Yi couplings and keep only Oj ¼ Zi. A random
Pauli string has equal probability to commute with Zi
as it would with Xi and Yi; thus, coupling using only

Zi operators is sufficient for measuring a thermalized
operator’s size.
Third, we expect even more general couplings, com-

posed of Oi that are local but not necessarily Pauli
operators, to behave similarly. Specifically, each individual
coupling Oi;lOi;r asymptotes to two different expectation
values before and after the time-evolved operator spreads
to the support of Oi. Before, the coupling maintains its
expectation value in the unperturbed TFD state,
trðOiρ

1=2O†
i ρ

1=2Þ. After, the spread of QAðtÞ disrupts the
two-sided correlations in the TFD state that give rise to this
initial expectation value, and the coupling instead asymp-
totes to its value in two thermal states, trðOiρÞ · trðOiρÞ. As
before, the sum of many terms, each behaving as above,
leads to an approximate measure of operator size.
Lastly, we consider the case where the coupling is

restricted to act only on some subsystem C, consisting
ofK qudits [54]. The coupling nowmeasures the number of
nonidentity elements of a Pauli string within C—we denote
this as the K size SK of the Pauli string. The eigenvalues of
the coupling are the same as those in Eq. (29), with the
replacement S=N → SK=K. For a typical Pauli operator,
we expect the K-size distribution of an operator to be
similar to its full size distribution when K is large and the
coupled qubits are distributed randomly. In particular,
in this scenario, we expect the average K size SK to be
proportional to the average size S:

SK

K
≈
S
N
: ð30Þ

For simplicity, we make this substitution in the remainder
of the work. However, if C is a spatially local subsystem
(instead of a random subsystem), then this replacement is
modified depending on the spatial extent of the operator.
As a final remark, we note that the operator size

distribution is directly related to OTOCs, a more familiar
quantity for probing operator growth [19,21,29]. In par-
ticular, the average size is equal to a sum of OTOCs
between QA and Oi [26,27]:

ð31Þ
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using Eqs. (9)–(14). Higher moments of the size distribu-
tion can also be probed by OTOCs, now between QA and
various products of theOi, e.g.,OiOj for the size width. We
discuss these relations further, paying particular attention to
subtleties that arise at finite temperature, in Sec. IX.

B. Peaked-size distributions

The exponentiated coupling [Eq. (26)] has a particularly
simple action when the size distribution of QAðtÞρ1=2 is
tightly peaked about its average size. In this regime, each
Pauli string gains approximately the same phase, and so the
action of the coupling reduces to applying a QA-dependent
overall phase:

eigVQA;lðtÞjTFDi ≈ eighViQQA;lðtÞjTFDi; ð32Þ

where the applied phase is proportional to the average K
size [see Eqs. (29) and (30)]:

ghViQ ¼ ghTFDjQ†
A;lðtÞVQA;lðtÞjTFDi

≈ g − ηdg
SK½QAðtÞρ1=2�

K
; ð33Þ

defining ηd ≡ 1=ð1 − 1=d2Þ for convenience.
Corrections to this behavior are controlled by higher

moments of the size distribution. Focusing on the overlap
of the coupled and uncoupled states, the leading-order
correction is equal to the K-size variance δS2K=K

2 ¼
hV2iQ − hV2iQ, multiplied by g2:

heigViQ ¼
�
1þ igV−

1

2
g2V2þ�� �

�
Q

¼
�
1þ ighViQ−

1

2
g2hVi2Qþ�� �

�

−
1

2
g2
�
hV2iQ− hVi2Q

�
þ�� �

¼ exp

�
ighViQ

�
−
1

2
ðηdgÞ2δS2

K=K
2þ�� � : ð34Þ

The K-size variance receives contributions from two
sources: the variance of the full size distribution, δS2,
and a statistical error from sampling only K of N qubits
for the K size. If the K qubits are distributed randomly,
these errors scale as δSK ∼ δS · ðK=NÞ and δSK ∼

ffiffiffiffiffiffi
SK

p
≈ffiffiffiffiffiffiffiffiffiffiffiffiffi

SK=N
p

, respectively (see Appendix F for a detailed
derivation of the latter). These are small compared to the
average K size whenever δS ≪ S and 1 ≪ SK .
In Appendix A, we go beyond these leading-order

corrections and provide quantitative bounds on when the
peaked-size approximation in Eq. (32) is valid. In general,
we can strictly prove that this approximation holds

whenever there is a parametric separation between an
asymptotic size width, defined in Appendix A, and the
average size.

VI. PEAKED-SIZE TELEPORTATION

Having established general conditions for successful
teleportation (Sec. IV) as well as the connection between
the coupling in the TW protocol and operator size dis-
tributions (Sec. V), we are now ready to introduce the
peaked-size mechanism for teleportation. In this section,
we first demonstrate peaked-size teleportation in its sim-
plest context: teleportation of a single qubit at infinite
temperature. We then show that the fidelity of peaked-size
teleportation is necessarily suppressed at finite temperature.
For ease of reading, we relegate rigorous results supporting
each of the above arguments to the end of the section. We
turn to specific physical systems realizing peaked-size
teleportation in the following sections: In Sec. VII, we
show that peaked-size teleportation of a single qubit occurs
in all scrambling systems at late times, while, in Sec. VIII,
we show that peaked-size teleportation of multiple qubits
occurs in certain systems at intermediate times.

A. Single-qubit teleportation

To analyze teleportation of a single qubit, we turn to the
two-sided correlators in Eq. (19), with QA ∈ f1; X; Y; Zg
running over the single-qubit Pauli operators. We recall that
the requirements for teleportation are for all CQ to have
(i) maximal magnitude and (ii) the same phase.
The first requirement is naturally satisfied at infinite

temperature even before coupling and decoding, but the
second requirement is not. In particular, the four correlators
with D ¼ 1, g ¼ 0 are

where the left entries are qubit operators QA and the right
entries are the correlators CQ. The correlators have maxi-
mal magnitude, because each operator can be transferred
perfectly from left to right using Eq. (9). However, the Y
operator picks up an overall minus sign during this process,
since YT ¼ −Y, and so the correlator phases are not
aligned. One can verify the resulting teleportation fidelity
is indeed trivial. Our goal is to show that the action of the
coupling in Eq. (32), as well as a simple decoding
operation, is sufficient to align the four phases.
To begin, we assume that all time-evolved Pauli oper-

ators have a tightly peaked-size distribution and that the
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average size S is the same for all nonidentity operators.
From Eqs. (32) and (33), we have that the coupling applies
a total phase difference ηdgS=N between the thermofield
double state (the identity operator; size zero) and all
perturbed states (time-evolved Pauli operators; size S).
Our table of correlator phases is thus modified to

We again do not achieve perfect phase alignment. However,
we can now correct the misaligned phases using the
decoding operatorD ¼ Y. This applies an additional minus
sign to the X and Z correlators:

The correlator phases are now aligned whenever

ηdg
S
N

¼ π mod 2π; ð35Þ

leading to perfect teleportation at these values.

B. Peaked-size teleportation at finite temperature

There are two important modifications to peaked-size
teleportation at finite temperature. First, the relevant
notion of operator size is modified [27]. In particular, in
the peaked-size regime, the difference in phase applied
between the identity and nonidentity Pauli operators is
modified to

S½QAðtÞ� → S½QAðtÞρ1=2� − S½ρ1=2�: ð36Þ

Second, the maximal fidelity of peaked-size teleporta-
tion is reduced at finite temperature. In particular, when
sizes are tightly peaked, the two-sided correlators fac-
torize into a constant magnitude multiplied by an overall
phase:

CQ ¼ hTFDjQ̃†
A;rQA;ljTFDieifg−ηdgSK ½QAðtÞρ1=2�=Kg

¼ GβðQAÞ · eiθQ; ð37Þ

where θQ combines the effects of transposition, coupling,
and decoding and the correlator magnitude corresponds
to an imaginary-time Green’s function:

GβðQAÞ≡ trðQ†
Aρ

1=2QAρ
1=2Þ ≤ 1: ð38Þ

This Green’s function is unity at infinite temperature and
generically decreases at finite temperatures, due to the
reduced entanglement of the TFD state. This violates the
maximal magnitude requirement for teleportation and,
therefore, leads to a corresponding decrease in the
teleportation fidelity.
The astute reader will recall that finite-temperature

teleportation is known to succeed with Oð1Þ fidelities
(i.e., higher than Gβ) in theories with a gravity dual
[7,8,17]; this is a signature of physics outside the
peaked-size regime, which we connect to in Sec. IX.

C. Rigorous expressions for teleportation fidelity

We now derive formal expressions of the teleportation
fidelity for n teleported qubits as a function of the correlator
phases. To do so, we consider a variant of the protocol
where instead of teleporting a quantum state we attempt to
distill an EPR pair:

ð39Þ

Here, state insertion is replaced by swapping in one “half”
of an EPR pair with a reference subsystem R (far right)
into subsystem A of the left side. When subsystem A is
teleported from left to right, the circuit results in an
EPR pair between the reference subsystem R and sub-
system A of the right (top arrows). The fidelity of EPR
distillation is precisely related to the average fidelity of
state teleportation [12], FEPR ¼ ½ðdA þ 1ÞhFψi − 1�=dA,
where dA ¼ 2n is the dimension of subsystem A when
teleporting n qubits.
We calculate the teleportation fidelity by Pauli decom-

posing the SWAP operator as SWAP ¼ P
QA

QA ⊗ Q†
A=dA.

This gives
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ð40Þ

where the third equality utilizes the diagrammatic identities
Eqs. (9) and (10) and the fourth equality inserts the identity
1 ¼ DrUrU

†
rD

†
r in the center of the right side (recall our

notation Q̃1=2 ¼ D†Q1=2D). Writing the rightmost diagram
as an equation, we have

FEPR ¼ 1

d4A

X
Q1;Q2

hTFDjQ†
2;lðtÞe−igVQ̃2;rð−tÞ

× Q̃†
1;rð−tÞeigVQ1;lðtÞjTFDi: ð41Þ

Similar expressions for teleportation of quantum states are
contained in Appendix C.
In general, the teleportation fidelity and two-sided

correlators are related only by a lower bound [55]

FEPR ≥
				 1

d2A

X
QA

CQ

				2: ð42Þ

This is obtained diagrammatically by inserting the projector
jTFDihTFDj into the center of Eq. (40):

ð43Þ

A similar bound is obtained in Refs. [15,16], conditional on
certain assumptions about operators’ size distributions.
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At infinite temperature in the peaked-size regime,
we have CQ ¼ eiθQ , and the fidelity is equal to the lower
bound:

FEPR ¼ 1

d4A

X
Q1;Q2

eiðθQ1
−θQ2

Þ ¼
				 1

d2A

X
QA

eiθQ
				2: ð44Þ

The sum is over d2A terms and is unity only when all the
operators’ phases are the same. In the case of a single-qubit
teleportation at infinite temperature in the peaked-size
regime, plugging the final table in Sec. VI A into the
above equation gives a fidelity:

FEPR ¼ 5

8
−
3

8
cosðηdgS=NÞ; ð45Þ

which oscillates between trivial fidelity (FEPR ¼ 1=4) and
unity as a function of the operators’ size. At finite temper-
ature in the peaked-size regime, we instead find

FEPR ¼ 1

d4A

X
Q1;Q2

eiðθQ1
−θQ2

ÞtrðQ†
2Q1ρ

1=2Q†
1Q2ρ

1=2Þ

≤
1

d4A

X
Q1;Q2

trðQ†
2Q1ρ

1=2Q†
1Q2ρ

1=2Þ

¼ 1

d2A

X
QA

trðQAρ
1=2Q†

Aρ
1=2Þ

¼ 1

d2A

X
QA

GβðQAÞ; ð46Þ

where the maximum fidelity is again achieved when the
correlator phases align. However, its value is now less than
unity and, instead, is equal to a sum of various imaginary
time Green’s functions, i.e., the correlator magnitudes
[Sec. VI B, Eq. (38)].

VII. PEAKED-SIZE TELEPORTATION
AT LATE TIMES

We now introduce the simplest physical example of
peaked-size teleportation: teleportation in any scrambling
system at late times (after the scrambling time). There are
two distinguishing features of this regime: (i) the circuit
can teleport only a single qubit—i.e., the channel capacity
is one—and (ii) as for all peaked-size teleportation, the
teleportation fidelity is suppressed at low temperatures. We
also demonstrate that this regime of peaked-size telepor-
tation, as well as the full quantum circuit implementing the
TW protocol, is equivalent to HPR teleportation of a single
qubit. In Sec. VIII, we demonstrate that the single-qubit
late-time channel capacity can be overcome at intermediate
times in many scrambling systems.

A. Teleportation at late times

At late times, the dynamics of a scrambling system can
be approximated by a Haar random unitary [23,56,57]. In
this case, each time-evolved operatorQAðtÞ becomes a sum
of random Pauli strings, each with probability 1=d2 to be
the identity at any individual site. As a result, time-evolved
operators have an average size

S ≈ ð1 − 1=d2ÞN ð47Þ

and a size width

δS ∼
ffiffiffiffi
N

p
; ð48Þ

where the scaling is based on the central limit theorem.
The K-size distribution takes the same form, replacing N
with K, and is tightly peaked as long as K is large
(specifically, gδSK=K ≈ g=

ffiffiffiffi
K

p
≪ 1).

For simplicity, we focus on late-time teleportation at
infinite temperature; finite-temperature modifications fol-
low according to Sec. VI B. Using Eqs. (32) and (33), we
find that the coupling applies a relative phase eig between
the identity operator (size zero) and all nonidentity Pauli
operators (size above) [7]:

eigV jEPRi ¼ eigjEPRi;
eigVQA;lðtÞjEPRi ¼ QA;lðtÞjEPRi: ð49Þ

The lack of an applied phase for nonidentity Pauli operators
corresponds to the vanishing of hViQ at late times, when
OTOCs have decayed to zero [see Eq. (33)]. From
Sec. VI A, we see that, whenever

g ¼ π mod 2π; ð50Þ

single-qubit teleportation succeeds.
A brief argument shows that late-time teleportation

of higher-dimensional quantum states is not possible.
Consider teleportation of a d-dimensional qudit, with a
basis of states jii, i ¼ 0;…; d − 1. The qudit Pauli oper-
ators are generated by the “clock” and “shift” operators:
Zjii ¼ eiωjii, with ω ¼ 2π=d, and Xjii ¼ jiþ 1i. The two
generators obey the commutation relation XZ ¼ e−iωZX.
After transposition, each Pauli operator XpZq becomes

ðXpZqÞT ¼ ZT;qXT;p ¼ ZqX−p ¼ e−ipqωX−pZq: ð51Þ

Meanwhile, late-time dynamics ensure that the coupling
applies an overall phase only to the identity operator. For
teleportation to be successful, we therefore require a
decoding operation D that acts as DX−pZqD† ∼ XpZq.
Suppose there is such a unitary operator [61] and consider
its action on the generators: DXD† ¼ X−1 and DZD† ¼ Z.
The above action implies that commuting the two
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generators gives a different phase before and after decod-
ing: DXZD† ¼ e−iωDZXD† ¼ e−iωZX−1 and DXZD† ¼
X−1Z ¼ eþiωZX−1. This is a contradiction whenever
eþiω ≠ e−iω, i.e., whenever d > 2.

B. Equivalence to HPR protocol

We now turn to the equivalence between peaked-size
teleportation and teleportation in the HPR protocol. The
latter was originally introduced to recover information in
the Hayden-Preskill thought experiment [11,23] and is
reviewed in detail in Appendix B.
Here, we restrict our attention to teleportation in the

deterministic variant of the protocol, of a single qubit at
infinite temperature [11,13]. The protocol takes the form

ð52Þ

where PEPR projects onto an EPR pair between subsystems
C on the left and right sides.
The equivalence between this protocol and the TW

protocol [Eq. (15)] is manifest, with the only difference
being the locality of the coupling. Specifically, the HPR
coupling is of the same general form as the TW coupling
[Eq. (1)]:

gV ≡ πPEPR ¼ π

d2C

X
PC

PC;lP�
C;r; ð53Þ

where the sum is over of a complete basis of d2C Pauli
operators on C. However, the operators PC are typically
nonlocal across C, whereas the coupling considered in the
TW protocol is restricted to local operators. As a conse-
quence, the HPR coupling functions as a binary variable
measuring whether or not an operator has support on
subsystem C (see Sec. V). In contrast, the TW coupling
measures the operator size within C, which takes an
approximately continuous range of values when C is large.
Crucially, at late times under scrambling dynamics, the
effect of both couplings is the same: to apply an overall
phase to nonidentity operators.
A few additional remarks are in order. First, while the

leading-order effect of the HPR and TW couplings is the
same, they lead to different finite-size corrections. In
particular, in a fully scrambled system, the variance in
the phases applied by the HPR coupling is equal to the
probability of a random Pauli string not having support

on C, which is suppressed exponentially in the size of C,
i.e., 1=d2C. On the other hand, the variance in phases applied
by the TW coupling is suppressed only polynomially,
by ∼g2δS2

K=K
2 ∼ g2SK=K2 ∼ g2=K [see Eq. (48) and the

discussion below Eq. (34)]. These enhanced phase fluctua-
tions are relevant for finite-size implementations of the TW
protocol, as discussed further in Sec. X.
Second, it has previously been shown that an extended

version of the HPR protocol allows for teleportation of
multiple qubits at late times [11]. Because of the equiv-
alence between the protocols, this extension also allows for
multiqubit teleportation via the peaked-size mechanism.
However, the enhanced channel capacity comes with a
trade-off: The circuit complexity (measured by the number
of applications of the unitary U) grows exponentially in
the number of qubits to be teleported. As we see in the
following section, this limitation can be overcome by
peaked-size teleportation in the TW protocol at intermedi-
ate times, owing to the locality of the TW coupling.

VIII. PEAKED-SIZE TELEPORTATION
AT INTERMEDIATE TIMES

We now turn to analyzing the behavior of peaked-size
teleportation at intermediate times, i.e., before the scram-
bling time. In this regime, multiple qubits can be teleported
given a certain condition on the growth of time-evolved
operators, namely, when the overlap of the operators’
support is sufficiently small.
We explicitly demonstrate that this condition is satisfied,

and multiqubit teleportation is possible, in a wide variety
of physical systems at infinite temperature. These include
random unitary circuits (RUCs) in ≥ 1D, for which peaked
sizes naturally occur due to local thermalization within
each operator’s light cone, and time-evolved operators are
nonoverlapping due to spatial locality. More surprisingly,
we show that multiqubit peaked-size teleportation can also
be achieved in “fast scrambling,” all-to-all coupled systems,
including 0D random unitary circuits and the SYK model
(at infinite temperature) [18,23]. In this case, operators are
not spatially separated at any nonzero time; nonetheless,
the overlap of their size distributions remains probabilisti-
cally small at sufficiently early times. Furthermore, we
demonstrate that, while size distributions of local operators
are generically not tightly peaked in all-to-all systems,
peaked-size distributions can be engineered in the TW
protocol by encoding one’s initial state into large p-body
operators.
Finally, we consider the channel capacity—i.e., the

maximum number of qubits that can be teleported
(allowing both g and t to vary)—of peaked-size telepor-
tation in all-to-all coupled systems. This is an essential
question for comparing the capabilities of peaked-size
teleportation with those of gravitational teleportation in
traversable wormholes [7]. Remarkably, we provide ana-
lytic and numerical evidence that the channel capacity of
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peaked-size teleportation in 0D RUCs, a quite simple
microscopic system, is asymptotically equivalent to that
of the gravitational mechanism. Namely, the number of
qubits n that can be teleported scales with the number of
couplings in the protocol, n ∼ K.

A. Multiqubit teleportation: Additive operator sizes

We begin with a few simple examples of multiqubit
teleportation to build intuition. First, consider a unitary U
that factorizes as U ¼ U1 ⊗ � � � ⊗ Un, where each Ui acts
on a disjoint subsystem. If we insert n qubits individually
into the n different subsystems, then the entire protocol
decouples into n independent channels, and there is no
restriction on sending multiple qubits. This trivial example
relies on the fact that U does not scramble information
across the entire system but only within each disjoint
subsystem. We see that full scrambling of information
by U, in fact, inhibits the teleportation protocol’s
channel capacity (considered for a fixed set of qubits
and dynamics).
A similar situation occurs even when the dynamics are

not factorizable, as long as the teleported qubits are in
causally separated regions. For example, consider a
ðD ≥ 1Þ-dimensional system with short-range interactions,
where the inserted qubits are spatially separated. At
intermediate times, the time-evolved qubit operators
have support within a local “light cone” about their initial
location but continue to act on disjoint subsystems. This
scenario is, therefore, no different from the previous
example and multiqubit teleportation remains possible,
as long as (i) the size distribution of each operator is
tightly peaked, (ii) the coupling V has support within each
qubit’s light cone, and (iii) the light cones of each qubit are
nonoverlapping. This final requirement constrains the
number of qubits that can be sent at a given time t.
In particular, the light cone of each operator has a radius
vBt, where vB is the butterfly velocity. The maximum
number of nonoverlapping light cones—equal to the total
number of qubits n that can be teleported—is, therefore,
n≲ N=ðvBtÞD, where N is the total system volume.
More formally, we can analyze the success of n-qubit

teleportation using the two-sided correlators CQ. We are
concerned with n-qubit operators QðtÞ ¼ Q1ðtÞ…QnðtÞ,
where each Qi ∈ fI; X; Y; Zg is a single-qubit Pauli on
the ith teleported qubit. We work at infinite temperature
and assume that sizes are tightly peaked. Teleportation,
therefore, succeeds whenever all correlators have the
same phase.
Inspired by the example of n decoupled protocols,

we take the decoding operator to be the tensor product
D ¼ Y ⊗ � � � ⊗ Y. The combination of transposition and
conjugation byD thus applies a minus sign to every single-
qubit nonidentity Pauli operator. An additional phase is
applied by coupling proportional to the size of each
operator. For example, for n ¼ 2 qubits, we have

where Si and Sij are shorthand for S½QiðtÞ� and
S½QiðtÞQjðtÞ�. In order for all correlators to have the
same phase, we require that ηdgS1=N ¼ ηdgS2=N ¼
π mod 2π and that the operator sizes add, such that
e−iηdgS12=N ≈ e−iηdgðS1þS2Þ=N ¼ eiðπþπÞ ¼ 1.
This requirements generalize straightforwardly to n

qubits. Specifically, teleportation succeeds whenever the
single-qubit operator sizes obey ηdgSi=N ¼ π mod 2π
and the multiqubit operator sizes add under operator
multiplication:

S½Q1ðtÞQ2ðtÞ…QnðtÞ�
≈ S½Q1ðtÞ� þ S½Q2ðtÞ� þ � � � þ S½QnðtÞ�: ð54Þ

This latter requirement implies that the phases applied by
the coupling, eigV , factorize and allows the n qubits to be
teleported “in parallel” as in the previous simple examples.
The size addition requirement naturally bounds the

channel capacity in terms of the number of couplings K.
Specifically, the K size takes integer values between 1 and
K. However, the requirement that all three single-qubit
Pauli operators have the same K size increases the mini-
mumK size to 2. From Eq. (54), this implies that an n-qubit
operator has aK size of at least 2n, which is possible only if

2n ≤ K: ð55Þ

Indeed, this strict upper bound can also be understood from
an information theoretic perspective: Teleporting n qubits
requires an increase of 2n in the mutual information
between the left and right sides of the system. Each of
the K classical bits sent from left to right in Fig. 1(a)
increases the mutual information by at most 1, so at least
2n bits are required.

B. ≥ 1D random unitary circuits

As a first concrete example of intermediate time peaked-
size teleportation, we consider a random unitary circuit
(RUC) applied to a lattice of N qubits in one or higher
dimensions. At each time step, pairs of neighboring qubits
are evolved via independent Haar random unitaries
arranged in a “brick-layer” fashion, with periodic boundary
conditions [Figs. 2(a) and 2(b)]. Operator growth in such
systems has been studied at great length and is believed to
be a good model for many aspects of information scram-
bling under Hamiltonian dynamics [30,58,59,62–64]. We
extend these previous studies by demonstrating new results
on the behavior of the operator size width—i.e., power-law
scaling at intermediate times and suppression at late
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times—which we show can be detected by the teleportation
fidelity (Fig. 3).
A key property of Haar random unitary circuits is that

the expectation values of many circuit quantities can be
computed by replacing the Haar random unitaries with
randomly chosen Clifford unitaries, thereby enabling effi-
cient classical simulation [30,65]. Generally, this equiv-
alence holds for any quantity that contains no more than
two copies each of U and U† (e.g., the Renyi-2 entropy, or
the OTOC); however, for systems of qubits, this property
holds for up to three copies [66–68]. From Eq. (41), we see
that the teleportation fidelity contains three copies of U and
U†, so the average fidelity is efficiently simulable [69].
Moreover, by definition, the size distributions of operators
under Clifford dynamics are perfectly tightly peaked, since
a Pauli operator QA evolved under a Clifford unitary
remains a single Pauli string. Hence, the teleportation
fidelity can be computed using the simplified expression
given in Eq. (44).
In more detail, we calculate the average EPR fidelity for

teleporting n qubits through the following procedure. First,
we choose a particular realization of U by sampling each
two-qubit unitary from a uniform distribution of two-qubit
Clifford unitaries. Second, we determine the K size of
UQAU† for each n-qubit Pauli operator QA or, if n is large,
for a random subset of these operators; such simulations
can be performed efficiently with a time cost that scales

linearly with the circuit depth. Third, we compute the
fidelity for a given coupling g using Eq. (44), with the
phases θQ ¼ ηdgSK=K þ πS½QAð0Þ�, where the latter term
captures the fact that decoding and transposition apply a
minus sign for each nonidentity element of the initial QA.
Finally, we average the EPR fidelity over multiple realiza-
tions of U.
The results of these simulations for n ¼ 1 qubit in 1D

and 2D are shown in Figs. 2(a) and 2(b). As expected, the
average operator size grows ballistically, S ∝ tD, until the
operator’s light cone reaches the edge of the system,
at which point the size saturates to 3=4N. While the
behavior of the size width is more complex, in both
dimensionalities it grows more slowly than the average
size. This implies that the size distribution is tightly peaked
and the teleportation fidelity can be approximated by F ¼
5
8
− 3

8
cosðηdgS=NÞ [Eq. (45)]. We verify that the time

profile of the fidelity follows this prediction, and nearly
perfect fidelity is achieved when ηdgS=N ¼ π mod 2π.
In Appendix E, we also demonstrate that teleportation of
n > 1 qubits is also possible at intermediate times, as long
as their light cones do not overlap.
Probing the size width.—Let us now turn to the time

profile of the size width, which exhibits a peak near the
scrambling time in both 1D and 2D. Qualitatively, this
behavior arises from fact that the size width receives
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FIG. 2. Numerical results for averaged operator size and teleportation fidelity of 1D, 2D, and 0D RUCs. (a),(b) In 1D and 2D, sizes
grow ballistically in time, while the size width grows with a slower power of t and matches predictions from the KPZ universality class
(Sec. VIII B). Because of the separation between the size and size width, the teleportation fidelity for a single qubit exhibits an
oscillatory behavior at intermediate times, with nearly perfect maximum fidelity. At late times, the teleportation fidelity saturates close to
1 for odd values of g=π, as expected for any scrambling system (Sec. VII). (c) In 0D all-to-all coupled RUCs, both the size and size width
grow exponentially in time, and obtaining a large separation between them requires encoding the initial state into p-body operators. With
this encoding, the teleportation fidelity displays a distinct three-regime profile for g ≫ 1. In particular, as in 1D and 2D, peaked-size
teleportation succeeds (i) at early times, with an oscillating fidelity, and (ii) at late times, where the fidelity saturates close to 1 (for odd
g=π). Between these regimes, no teleportation occurs, because the size width grows too large: gδS=N ≳ 1.
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contributions from two sources: the interior of the light
cone and the boundary of the light cone. Within the light
cone, we expect a ≥ 1D system with a small local Hilbert
space to “locally thermalize” as the operator spreads. This
implies that the bulk’s contribution to the size width scales
as δSbulk ∝

ffiffiffiffi
S

p
∝ tD=2 and saturates at the scrambling time.

Second, the size width also receives contributions from the
light cone’s boundary, which has not yet thermalized. At
late times, the boundary of the light cone reaches the edge
of the system, and these additional contributions subside,
leading to the peak in the size width at the scrambling time.
To quantify these effects, we note that the growth of

operators in ≥ 1D RUCs is predicted to fall in the Kardar-
Parisi-Zhang (KPZ) universality class [30,70]. In 1D,
fluctuations in the light-cone boundary are verified numeri-
cally to have a growing width ∼tα with the KPZ growth
exponent α ¼ 1=2 [30]. This implies that the contribution
of the boundary to the size width is δSboundary ∝ t1=2, and
the full width is

δS ¼
( ðαbulk þ αboundaryÞt1=2; t≲ tscr;

αbulkt
1=2
scr ; t≳ tscr:

ð56Þ

We note that the maximum size width relative to the late-
time size width is a constant set by ðαbulk þ αboundaryÞ=αbulk.
Comparing the size width of multiple system sizes, we
observe excellent agreement with predicted scalings over a
wide range of system sizes (Appendix E).
The time profile of the size width is directly observable

in the peaked-size teleportation fidelity if we scale
g ∼ t1=2scr ∼ N1=2. In particular, by setting N=g to lie between
the maximum size width and the late-time size width, we
observe a distinct decay-revival profile for the teleportation

fidelity (Fig. 3). At early times, we observe successful
teleportation with an oscillating fidelity. The fidelity decays
slowly, as a power law in time, as it receives corrections
proportional to the growing size variance ∼g2δS2=N2.
After the scrambling time, we see a revival in the
teleportation fidelity as the size width narrows. The lack
of a parametric separation between the maximum and late-
time size widths means that late-time teleportation also has
some finite error for this value of g.
In 2D, we find that the scaling of the size width also

matches predictions from the KPZ universality class. In this
case, the width of the boundary scales as ∼tα, with α ¼ 1=3
[30]. However, to calculate the boundary’s contribution to
the size width, one must take into account two additional
considerations. First, the boundary is one-dimensional, so
its length trivially grows in time as ∼t. Second, fluctuations
of the boundary are expected to have a finite correlation
length, ξ ∼ t1=z, where z ¼ 3=2 is the KPZ dynamic
exponent [71]. Thus, the boundary can be modeled as nξ ∼
t=ξ ¼ t1=3 uncorrelated regions, each of length ξ. Each
region contributes ∼ξtα to the size width; adding the
uncorrelated contributions from all regions yields a total
size width δS ∼ ffiffiffiffiffinξp

ξtα ¼ t1=6þ2=3þ1=3 ¼ t7=6.
The time profile of the size width in 2D is thus given by

δS ¼


βbulktþ βboundaryt7=6; t≲ tscr;

βbulktscr; t≳ tscr:
ð57Þ

We confirm these scalings in our numerics [Fig. 2(b) and
Appendix E]. Notably, the size width is now dominated by
the boundary contribution at intermediate times, such that
the ratio of the maximum size width to the late-time size
width scales as t1=6scr ∼ N1=12. As in 1D, one can probe this
behavior using the peaked-size teleportation fidelity, now
with g ∼ N=t7=6scr ∼ N5=12. We emphasize that, in 2D, the
scaling of the size width is determined by correlations
between different points on the light-cone boundary. This
goes beyond the behavior studied in previous works on
RUCs, which focus on quantities probed by local OTOCs.

C. 0D random unitary circuits

We now turn to random unitary circuits in zero dimen-
sions, a prototypical model for “fast scramblers” [18,23].
These circuits are constructed as follows: At each time step,
we partition the N qubits into randomly chosen pairs and
apply independent Haar random two-qubit unitaries to
each pair.
Below, we analyze such circuits using theoretical argu-

ments, in combination with numerical simulations via
Clifford circuits. As the later parts of our analysis are
rather technical, we briefly summarize the main results:
(i) Peaked-size teleportation remains possible but only if
the input state is initially encoded in nonlocal, p-body
operators; (ii) even though there is no complete separation

Time

FIG. 3. Probing operator size width in a 1D RUC. Top: The size
width initially grows as t1=2 and reaches a peak at the scrambling
time t� ∼ N ¼ 10000. Bottom: We probe this behavior by
measuring the teleportation fidelity of a single qubit with a large
coupling g ¼ 57π ∼

ffiffiffiffi
N

p
. The fidelity exhibits a distinct decay-

revival profile, controlled by whether the size width exceeds the
threshold gδS=N ≈ 1: nearly perfect fidelity initially, power-law
decay toward a trivial fidelity at intermediate times, and partial
revival at late times.
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of operator light cones, size addition still occurs at
intermediate times in a probabilistic sense and enables
multiqubit teleportation; and (iii) the maximum channel
capacity is linear in the number of coupled qubits, K. These
results are depicted numerically in Figs. 2(c) and 4.
Peaked sizes.—In all-to-all coupled systems, operators are

generally expected to grow exponentially in time, S ∼ eλt,
where λ is the Lyapunov exponent [18]. The reason is
simple: At each time step, every term in an operator—rather
than just those on a “light-cone” boundary—has a fixed
probability of spreading under random pairwise unitaries.
A somewhat less intuitive expectation is that the size width
also generally grows exponentially [27]. One way of under-
standing this is by imagining two realizations of the
dynamics: In one realization the initial operator doubles at

the first time, and in the other it does not. In effect, the latter
system now lags behind the former by one time step Δt, and
the difference in their sizes at later times is exponentially
magnified to eλtð1 − e−λΔtÞ.
The lack of separation between the size and size width

seems to preclude the possibility of peaked-size teleporta-
tion at intermediate times. Nevertheless, we can engineer
such a separation by encoding the information of each input
qubit into p-body operators, with p ≫ 1 [17]. As an
example, consider encoding a single qubit into p ¼ 5 qubit
operators via

EðX ⊗ 1⊗ 1⊗ 1⊗ 1ÞE† ¼ Z⊗ X ⊗ X ⊗ Y ⊗ Z;

EðY ⊗ 1⊗ 1⊗ 1⊗ 1ÞE† ¼ Y ⊗ Z⊗ Z⊗ X ⊗ Y;

EðZ⊗ 1⊗ 1⊗ 1⊗ 1ÞE† ¼ X ⊗ Y ⊗ Y ⊗ Z⊗ X: ð58Þ

Here, E is a Clifford unitary encoding operation that
conjugates state insertion and decoding [explicitly, replac-
ing U → UE, U� → U�E�, and UT → ETUT in Fig. 1(a)].
The success of teleportation is now dependent on the size
distributions of time-evolved p-body operators, QAðtÞ ¼
UEPE†U†, where P runs over the initial unencoded single-
qubit Pauli operators. As we soon verify explicitly, before
the scrambling time, the support of each of the p operators
composing QA is approximately nonoverlapping, so that
their size distributions convolve. Thus, the total operator
size is multiplied by a factor of p, but, through the central
limit theorem, the size width is multiplied only by

ffiffiffiffi
p

p
.

In more detail, consider the size growth of an operator
QA, with initial size S0 ¼ p. During a single time step,
each qubit i in the support of QAðtÞ is paired with
another random qubit; for simplicity, we assume the second
qubit is outside the support ofQAðtÞ, which should be valid
at times well before the scrambling time. Under random
two-qubit Clifford time evolution, QAðtÞ grows to have
support on both qubits with probability ν ¼ 1–2ðd2 − 1Þ=
ðd4 − 1Þ (9=15 for qubits). The operator size St, therefore,
grows stochastically in time, according to

Stþ1 ¼ St þ
XSt

i¼0

si

¼ St þ BitðSt; νÞ
≈ ð1þ νÞSt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Stνð1 − νÞ

p
N tð0; 1Þ; ð59Þ

where each si is a binary random variable that increases the
size by 1 with probability ν and 0 with probability 1 − ν and
BitðSt; νÞ denotes the binomial distribution with St trials
and probability ν, which we can approximate as a normal
distribution, N t½νSt;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Stνð1 − νÞp �. The size at time t can

thus be written as a sum of random variables drawn at each
time step:

∼ K

F
(1

)
E
P
R

(a)

(b)

Time

FIG. 4. Teleportation of multiple qubits in 0D RUCs.
(a) Many-body teleportation fidelity FEPR as a function of
time for teleporting n ¼ 1, 3, 10 qubits with fixed coupling
strength (g ¼ 177π). Compared to a single qubit, the decay-
revival profile for multiple qubits is shifted to earlier times,
since multiqubit operators both have a larger size width and
saturate the system size earlier. Moreover, multiqubit telepor-
tation is not possible at late times, resulting in a trivial late-time
fidelity (Sec. VII A). (b) Numerical results for the channel
capacity nmax as a function of the number of coupled qubits K,
which exhibit a clear linear scaling. To determine the channel

capacity, we compute the maximum per qubit fidelity Fð1Þ
EPR for

a fixed number of qubits, n, and couplings, K, while allowing
the coupling strength, g, and evolution time to vary. For fixed

K, Fð1Þ
EPR decreases as the number of qubits n is increased, as

depicted in the inset for K ¼ 9000. The channel capacity nmax is
defined as the maximum number of qubits for which the fidelity
is above a fixed threshold (dashed line).
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St ≈ ð1þ νÞtpþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1− νÞ

p Xt−1
t0¼0

ð1þ νÞt−t0−1
ffiffiffiffiffiffi
St0

p
N t0 ð0;1Þ;

ð60Þ

from which we see that the average size grows exponen-
tially in time with Lyapunov exponent eλ ¼ 1þ ν.
Deviations arise at each time step t0, with typical magnitude
ð1þ νÞt−t0−1 ffiffiffiffiffiffi

St0
p

≈ ð1þ νÞt−1−t0=2 ffiffiffiffi
p

p
. Since this decays

exponentially in t0, we can approximate the total variation
δSt as the largest term in the sum (t0 ¼ 0), which has
magnitude

δSt ∼ ð1þ νÞt−1 ffiffiffiffi
p

p
≈

Stffiffiffiffi
p

p : ð61Þ

As anticipated, the size width is dominated by early-time
errors that have exponentially grown in time, so that the
ratio of the size width to the size remains constant at
∼1= ffiffiffiffi

p
p

(after some period of growth from its initial
value 0).
To support these claims, we numerically simulate the

time-evolved size distribution of operators with an initial
size p ≈ 1000 [Fig. 2(c)]. As expected, we observe that the
average size grows exponentially as ∼peλt and saturates at
a timescale t� ∼ logðN=pÞ. Moreover, the size width grows
at the same exponential rate, but its magnitude is sup-
pressed by a factor of

ffiffiffiffi
p

p
compared to the average size.

To verify that this allows for teleportation, we next
compute the fidelity for teleporting a single qubit, in the
regime g ≫ 1. As shown in Fig. 2(c), teleportation occurs
with near perfect fidelity beginning at t ≈ t� − logðgpÞ,
corresponding to gS=N ≈ 1. Thereafter, the teleportation
fidelity decreases exponentially in time, consistent with the
increase of the size width. At time t ≈ t� − logðg ffiffiffiffi

p
p Þ,

teleportation stops succeeding entirely, since the size
width has reached the limit δS=N ∼ 1. Finally, at late
times t ≈ t� − logðpÞ, the fidelity revives as the system
becomes fully scrambled and the operator size width
narrows to δS ∼

ffiffiffiffi
S

p
.

Size addition.—We now turn to the possibility of tele-
porting multiple qubits in 0D RUCs. Within the peaked-
size regime, this reduces to the question of whether
operator sizes add according to Eq. (54). Satisfying this
requirement in all-to-all coupled systems is not as trivial as
in ≥ 1D, since time-evolved operators typically act on
overlapping subsystems at any finite time. Nevertheless, we
now provide a simple argument for why size addition holds
despite this.
To do so, we model each time-evolved Pauli operator

QiðtÞ as an independent random Pauli string of size S½Qi�.
Consider two such strings, P1 and P2, with support on
regions A1 and A2 and sizes S½P1� ¼ jA1j and S½P2� ¼ jA2j.
The size of the product, P1P2, is the size of the union

A1 ∪ A2 minus the number of sites where the two strings
overlap and have the same single-qubit Pauli operator. This
occurs with probability 1=ðd2 − 1Þ ¼ 1=3 at each site in the
region A1 ∩ A2, giving

S½P1P2� ≈ jA1 ∪ A2j −
1

3
jA1 ∩ A2j

¼ S½P1� þ S½P2� −
4

3
jA1 ∩ A2j: ð62Þ

The deviation from the simple additive rule S½P1P2� ¼
S½P1� þ S½P2� is thus controlled by jA1 ∩ A2j. If the Pauli
strings P1 and P2 have independently random areas of
support, the size of this intersection scales as

jA1 ∩ A2j ∼ S½P1�S½P2�=N; ð63Þ

which is subleading to S½Pi� at intermediate times
(when S=N ≪ 1). To derive this, note that the probability
for both strings to have support on a given qubit is
∼ðS½P1�=NÞðS½P2�=NÞ; summing over N qubits gives
the above result.
For n-qubit teleportation, one must consider the com-

bined size S½P1…Pm� of m independent Pauli strings,
where m takes a typical value m ≈ 3n=4 (a typical n-qubit
operator has nonidentity support on 3n=4 qubits). In
general, this quantity receives corrections from ðmkÞ differ-
ent k-way intersections of the strings, for all 2 ≤ k ≤ m. For
random Pauli strings, the expected size of these intersec-
tions scales as NjA1 ∩ � � �∩Akj¼

Q
k
i¼1ðjAij=NÞ∼Sk=Nk−1,

where S ∼ jAij is the typical size of a single Pauli string
[see Eq. (63) above]. For a given k, the correction to size
addition is the sum of ðmkÞ ∼mk different intersections and,
therefore, scales as mSðmS=NÞk−1. These corrections can
be neglected if they are small compared to the total size;
this occurs when mS ≪ N, which corresponds to a time-
scale much less than the scrambling time.
To demonstrate this claim, we numerically simulate

the teleportation protocol with n > 1 qubits in the regime
1 ≪ p; np ≪ K (Fig. 4). Analogous to single-qubit
teleportation, the teleportation fidelity exhibits oscilla-
tions beginning at t ≈ t� − logðgpÞ, and vanishes at
t ≈ t� − logðg ffiffiffiffiffiffi

pn
p Þ, due to the growth of the combined

size width. However, in contrast to the single-qubit case,
teleportation of multiple qubits is not possible at late times,
t≳ t� − logðgpnÞ, as predicted in Sec. VII. Interestingly,
between these two regimes, we observe a partial revival of
the fidelity: This indicates that the operator size widths
begin to narrow before the additive condition is completely
invalidated.
Error analysis.—While we have confirmed that multi-

qubit teleportation can be achieved in certain ideal limits, a
key question remains: How does the maximum number of
qubits that can be teleported scale as a function of K; i.e.,
what is the protocol’s channel capacity? To answer this
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question, we now estimate how deviations from these ideal
limits lead to errors in peaked-size teleportation and
ultimately constrain the channel capacity. Throughout this
discussion, we assume that the size S is extensive, but K is
not; this is the natural regime for probing the channel
capacity of the protocol at intermediate times and is the
physical scenario in the context of traversable wormholes
[7]. The details of this and the following subsection are
quite technical in nature and may be skipped by most
readers.
In summary, we identify four distinct sources of error in

the multiqubit teleportation fidelity F ¼ 1 − ϵ:
(1) errors due to finite p: ϵ ∼ ng2S2

K=K
2p;

(2) errors due to finite K: ϵ ∼ ng2SK=K2;
(3) errors due to imperfect size addition: ϵ ∼ ½n2g2S4

K=
K4 þ � � ��, where ellipses indicate higher orders
in ðnSK=KÞ2;

(4) errors due to fluctuations in size addition: ϵ∼
½n2g2S2

K=K
3 þ � � ��, where ellipses indicate higher

orders in nSK=K.
We discuss each of these errors in detail below.
The first and second sources of error are due to

imperfectly peaked K-size distributions. The K-size width
receives contributions from finite-p corrections, ∼SK=

ffiffiffiffi
p

p
,

and finite-K corrections, ∼
ffiffiffiffiffiffi
SK

p
[see the discussion below

Eq. (34)]. To translate these into errors in the teleportation
fidelity, we multiply the size width by g=K and take
the square. This gives fidelity errors ∼g2S2

K=pK
2 and

∼g2SK=K2 per teleported qubit.
The third and fourth sources of error arise from imperfect

size addition. This leads both to “systematic” errors, due to
the average overlap of operators, as well as “sampling”
errors, due to random fluctuations in this overlap. We begin
with the systematic errors: As we recall, the size addition
of m time-evolved operators receives corrections from
k-way overlaps of the operators, each scaling as
∼mSKðmSK=KÞk−1, for 2 ≤ k ≤ m (rescaling our previous
results to the K size instead of the size). The nonlinear
dependence on m indicates that sizes do not add perfectly.
Nevertheless, when teleporting an n-qubit initial state for
large n, we can correct for the above effect at leading order
by using a linear approximation for mk about its typical
value ð3n=4Þk. This leads to an effectively smaller operator
size, which can be observed in the reduced frequency of the
fidelity oscillations for ten-qubit teleportation compared to
one- and three-qubit teleportation in Fig. 4(a). The leading
errors after this shift are quadratic in δm≡m − 3n=4,
which has a typical magnitude δm ∼

ffiffiffi
n

p
. Multiplying by

g=K and taking the square, we therefore find multiqubit
fidelity errors ∼ðgSK=KÞ2ðnSK=KÞ2k−2; at leading order
k ¼ 2, this gives ∼n2g2S4

K=K
4.

Finally, each intersection above is subject to additional
random fluctuations about its average value. When operator
sizes are much smaller than the system size, we can

treat each intersection as arising from a binomial
process, in which case fluctuations are proportional to
the square root of the intersection’s average size (see
Appendix F for a detailed accounting). These add in
quadrature for ∼nk overlaps, producing a total fidelity
error of ∼ðg2=KÞðnSK=KÞk.
Channel capacity.—To define the channel capacity of

the teleportation protocol, we fix a per qubit error threshold
ϵth and determine the maximum number of qubits that can
be sent while maintaining a multiqubit fidelity above this
threshold [72], i.e., F ≥ 1 − nϵth. We are interested in how
the channel capacity scales with the number of couplings,
K, while allowing both g and SK (determined by the
evolution time) to vary.
In 0D RUCs, all errors increase with g, so it is optimal to

set g to its minimal value ηdgS=N ¼ π. This gives a per
qubit error

ϵ

n
∼
1

p
þ 1

SK
þ
�
nS2

K

K2
þ � � �

�
þ
�
n2

K
þ � � �

�
: ð64Þ

The first term is negligible in the large p limit, and so we
neglect it from here on.
We minimize the remaining terms with respect to SK .

There are two relevant regimes. For n≲ ffiffiffiffi
K

p
, the minimum

is determined entirely by the leading-order contributions
in nSK=K to the error (i.e., neglecting the ellipses). Taking
the derivative and setting to zero, we have the minimum

at Sð1Þ
K ∼ K2=3=n1=3. As we increase n, the optimal size

approaches the value Sð2Þ
K ∼ K=n. At this point, size

addition errors of all orders (i.e., the ellipses) become
large, and so the true minimum becomes fixed just

below Sð2Þ
K . This crossover between these two minima

occurs at n ∼
ffiffiffiffi
K

p
, at which Sð1Þ

K ∼ Sð2Þ
K .

The above minima give two distinct scalings for the per
qubit error and thus the channel capacity. The first mini-
mum has a per qubit error ϵð1Þ=n ∼ ðn=K2Þ1=3, which gives
rise to a superlinear channel capacity n≲ ϵ3thK

2. However,
as we increase K, this capacity eventually surpasses the
value

ffiffiffiffi
K

p
. Above this, the optimal size is given by the

second minimum, which has an error ϵð2Þ=n ∼ n=K, and
thus the channel features an asymptotically linear capacity:

n≲ ϵthK: ð65Þ

This is a stronger instance of the strict general bound
Eq. (55). Intuitively, this channel capacity arises because
the individualK sizes must be large, SK ≫ 1, for the K size
to be tightly peaked, while at same time the combined K
size must be much smaller than K, nSK ≪ K, for the K
sizes to add; hence, n ≪ K.
We test this scaling numerically by simulating the

teleportation protocol and measuring the per qubit fidelity
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Fð1Þ
EPR as a function of n and K. Specifically, for each value

of K, we sweep the number of qubits n and determine the
maximum qubits that can be sent before the infidelity

exceeds a threshold, 1 − Fð1Þ
EPR ¼ ϵth. These results are

shown in Fig. 4(b) and exhibit a clear linear trend across
2 orders of magnitude, confirming our prediction of a linear
channel capacity.
A few final remarks are in order. First, while in principle

the per qubit fidelity can be calculated by taking the nth
root of the full n-body fidelity, this approach is numerically
unstable for large n. Thus, we instead compute the fidelity
of a single qubit, while trying to send multiple qubits, using
an approach derived in Appendix E. This amounts to
performing a sum analogous to Eq. (44) but including
only pairs of Q1 and Q2 that are equal on all sites except
for one.
Second, the range of system parameters that lie within

the linear scaling regime is ultimately constrained by the
finite total system size N ¼ 108. In particular, to maximize
the linear scaling regime, we choose p ¼ 101 and
ϵth ¼ 0.07. The former ensures that finite-p errors are
negligible, while the latter allows the number of qubits
at the threshold to be large enough to access the n≳ ffiffiffiffi

K
p

regime but small enough that the operators are initially
dilute, i.e., n ≪ N=p.

D. Large-q SYK model: Infinite temperature

We now demonstrate peaked-size teleportation in a 0D
Hamiltonian system, the large-q SYK model, at infinite
temperature. While teleportation at low temperatures in the
SYK model is known to succeed via the gravitational
mechanism, teleportation at infinite temperature was dis-
covered only recently [17]. In addition to showing that this
mechanism is, in fact, peaked-size teleportation, we also
find that, remarkably, all qualitative aspects of this tele-
portation match those of 0D RUCs.
The large-q SYK model is defined by the Hamiltonian

[25,27]

H ¼ iq=2
X

1≤j1≤���≤jq
Jj1;…;jqψ j1…ψ jq ; ð66Þ

where ψ i are Majorana fermions, fψ i;ψ jg ¼ 2δij, and the
couplings are drawn independently from a Gaussian dis-
tribution with zero mean and a variance hJ2j1;…;jq

i ¼
J2=2qðN−1

q−1Þ. This model is exactly solvable at all temper-
atures in the large-q, large-N limit [25,27].
To construct the teleportation protocol for the SYK

model, we first define the N-fermion EPR state:

ψ j;ljFEPRi≡ −iψ j;rjFEPRi; ∀ j ¼ 1;…; N: ð67Þ

From this, the TFD state is obtained as before:

jTFDi≡ e−βHl=2jFEPRi: ð68Þ

For the two-sided coupling, we consider the simple bilinear
interaction

V ¼ 1

2qN

XN
j¼0

iψ j;lψ j;r; ð69Þ

which measures the size of operators in the Majorana string
basis, divided by qN [26,27].
As in 0D RUCs, the size and size width of time-evolved

operators in the SYK model increase exponentially in
time and exhibit a large separation only when initially
encoded in p-body operators. To see this, we can generalize
previous computations of size distributions in the
large-q SYK model [27] to initial p-body operators,
ψ ¼ ψ1ψ2…ψp; this relies on the factorization of SYK
correlation functions in the large-N limit [17]. After the
relaxation time (t≳ 1=J), but before the scrambling time
(t≲ logðN=pÞ=J), the size and size width are

S ≈
p
2
e2Jt; δS ≈

ffiffiffiffiffiffiffiffiffi
2qp

p
4

e2Jt: ð70Þ

The scaling δS ∼ S=
ffiffiffiffi
p

p
matches that found for 0D RUCs;

in particular, ensuring a large separation between the size
and size width requires p ≫ q. Note that our condition for
peaked-size distributions depends on the (large) parameter
q, through the size width.
This large separation suggests that peaked-size telepor-

tation is possible at early times in the large-p limit. To
verify this, we analyze the two-sided correlator, which is
given by [8]

CψðtÞ ¼ he−igVψ rð−tÞeigVψ lðtÞi

¼
�

1

1þ i g
N
1
4
e2Jt

�
2p=q

ð71Þ

at infinite temperature before the scrambling time [73].
For large p and early times, we can approximate the
correlator as

Cψ ðtÞ ≈ exp
�
−i

g
qN

p
2
e2Jt

�
; ð72Þ

using ð1þ ixÞm ≈ eimx, valid when mx2 ≡ ð2p=qÞ×
½ðg=NÞ 1

4
e2Jt�2 ≪ 1. We refer to this regime as the

“early-time regime” and analyze its analog in large-N
systems at finite temperature in Sec. IX A.
Crucially, as expected for peaked-size teleportation, the

early-time correlator consists of an overall phase equal
the average operator size [Eq. (70)] multiplied by g=qN.
This indicates that teleportation succeeds with nearly
maximal fidelity beginning when gS=qN ≈ 1. Based on
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its similarity with 0D RUCs, we expect that teleportation in
this regime is capable of teleporting OðKÞ qubits (Table I);
however, we do not calculate this explicitly. Teleportation
continues to succeed until the above approximation breaks
down, which occurs when δS ∼ ðg=qNÞ−1. As for all
scrambling systems, the two-sided correlator is expected
to revive at late times, t≳ logðN=pÞ=J, at which point the
sizes saturate the entire system [7,8] (see Sec. VII); this is
not reflected in Eq. (71), which is valid only before the
scrambling time.

IX. INTERPLAY BETWEEN PEAKED-SIZE AND
GRAVITATIONAL TELEPORTATION

In this section, we seek to understand the interplay
between peaked-size and gravitational teleportation. A
central theme in this understanding is a comparison
between the size distribution introduced in Sec. V and
the winding size distribution introduced in Refs. [15,16].
To illustrate the distinction between these distributions,

consider a time-evolved Majorana fermion operator,
decomposed in a basis of Majorana strings, χ [26,27]:

ψðtÞρ1=2 ¼
X
χ

cχχ: ð73Þ

From this decomposition, one defines the size distribution
[26,27]

PðSÞ ¼
X

χ∶S½χ�¼S

jcχ j2 ð74Þ

and the winding size distribution [15,16]

fðSÞ ¼
X

χ∶S½χ�¼S

c2χ ; ð75Þ

where S½χ� is the size of the string χ. Note that the size
distribution is real valued, while the winding size distri-
bution may be complex.
The teleportation correlators [under coupling Eq. (69)]

are, in fact, directly related to the winding size distribution
[15,16]:

Cψ ðtÞ ¼ −i
X∞
S¼0

e−igS=qNfðSÞ; ð76Þ

which can be derived by explicitly plugging Eq. (73) into
the teleportation correlator. The size distribution, by con-
trast, is related to “one-sided” correlation functions, e.g.,
Eq. (31), where both instances of the time-evolved operator
appear on the same side of the TFD state [27].

Despite this distinction, we have so far been able to
analyze teleportation using the size distribution, as opposed
to the winding size distribution, because the two are equal
in two circumstances. The first is at infinite temperature,
where the coefficients cχ are real because ψðtÞ is Hermitian.
The second is precisely our focus: when size distributions
are perfectly tightly peaked, in which case both distribu-
tions approach a delta function.
In what follows, we describe several scenarios in which

the distinction between the two distributions becomes
relevant. First, we begin in large-N systems, where
large-N factorization provides a precise relation between
the teleportation correlator and the OTOC at early times.
We find that, even in the presence of the large-p encoding,
the correlator deviates from the peaked-size prediction
whenever the OTOC contains an imaginary part. Large-
N systems encompass both peaked-size and gravitational
teleportation—our results suggest that the former occurs in
systems where the OTOC is real (e.g., at infinite temper-
ature with large-p encoding; see Sec. VIII), while the latter
occurs where the OTOC is imaginary (e.g., at low temper-
ature in SYK) [33,45]. Second, we review recent results
showing that this deviation eventually leads an Oð1Þ
correlator magnitude when the winding size distribution
takes a particular form, thereby enabling teleportation with
unit fidelity (see Sec. IV). This is conjectured to be the
microscopic origin of gravitational teleportation [15,16],
and so we expect it to occur only in low-temperature
models with a gravity dual. Third, we return to teleportation
in the large-q SYK model and show that this model
interpolates between gravitational teleportation at low
temperatures and peaked-size teleportation at high temper-
atures. Surprisingly, this interpolation occurs despite the
fact that the large-p encoding ensures a large separation
between the size and size width; i.e., the size distribution
naively appears tightly peaked, even at low temperatures.
Finally, motivated by this smooth interpolation, we con-
clude this section by searching for a “dual” description of
peaked-size teleportation in a bulk gravitational theory. In
particular, we argue that strong stringy effects lead to the
same qualitative features as peaked-size teleportation.

A. Early-time teleportation in large-N systems

In Sec. V, we saw that for peaked-size operators the
teleportation correlator depends only on the first moment
of the size distribution, i.e., the average size [Eq. (31)]. We
now show that a more general relationship holds for large-
N systems at early times, where we substitute the average
size with the first moment of the winding size distribution.
Specifically, using Eqs. (9)–(14), the first moment of the
winding size is given by a two-sided OTOC:
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ð77Þ

using Eqs. (9)–(14). This differs from the one-sided OTOC,
for probing the average size [Eq. (31)], in terms of the
placement of the thermal density matrix.
To relate the OTOC and the teleportation fidelity, we

consider two simplifying assumptions. First, we focus on
0D large-N systems, e.g., the SYK model, with a p-body
initial encoding. In such systems, the teleportation corre-
lator, in fact, factorizes into a product of single-body
correlators (up to 1=N corrections) [17]:

CψðtÞ ¼ he−igVψ rð−tÞeigVψ lðtÞi
≈ ½he−igVψ1;rð−tÞeigVψ1;lðtÞi�p; ð78Þ

where ψ1 is a single-body operator.
Second, generalizing Eqs. (34) and (72), we consider

sufficiently early times to work at leading order in g [74]:

CψðtÞ ≈ e−igphVi½hψ1;rψ1;li þ ighψ1;rVψ1;li þ � � ��p

≈ e−igphVihψ1;rψ1;lip
�
exp

�
igp

hψ1;rVψ1;li
hψ1;rψ1;li

�
þ � � �

�

¼ ð−iGβÞp exp
�
−i

gp
2q

�
OTOC2

Gβ
−Gβ

��
þ � � �

¼ ð−iGβÞp exp
�
−i

gp
2qN

GβF 2ðtÞ
�
þ � � � ; ð79Þ

where Gβ ¼ ihψ1;rψ1;li ¼ trðρ1=2ψ1ρ
1=2ψ1Þ is the imagi-

nary time Green’s function and F 2ðtÞ is the first-order,
connected component of the two-sided OTOC [Eq. (77)]:

OTOC2 ≈ G2
β

�
1þ 1

N
F 2ðtÞ þ � � �

�
: ð80Þ

Similar to Eq. (34), the leading correction to Eq. (79)
is ∼pg2½hV2iψ − hVi2ψ=Gβ�, and the approximation holds
when this is small.
Let us now consider the behavior of the teleportation

correlator [Eq. (79)] under different physical scenarios.

We focus on chaotic systems during the so-called
Lyapunov regime, which occurs between the thermalization
time t ∼Oð1Þ and the scrambling time t ∼OðlogNÞ. In this
regime, the connected OTOC is characterized by a simple
exponential F 2ðtÞ ∼ eλt with a prefactor that is generally
complex. As a result, we expect the teleportation correlator
to exhibit two distinct effects: (i) the real part of F 2ðtÞ
causes rapid phase oscillations in the teleportation corre-
lator, while (ii) the imaginary part increases or decreases
the teleportation correlator magnitude, depending on the
sign of the coupling g.
At infinite temperature, F 2ðtÞ is strictly real, and thus

only effect (i) can occur. Indeed, in this case, the two-sided
OTOC directly measures the operator size, and Eq. (79) is
equivalent to Eq. (34). It follows that peaked-size telepor-
tation can be achieved with perfect fidelity: The telepor-
tation correlator magnitudes are equal to one due to the
infinite temperature, and their phases can be aligned by
tuning g or t. More generally, at finite temperature, F 2ðtÞ
contains both a real and imaginary part, and the real part—
which leads to effect (i)—is formally distinct from the first
moment of the size distribution. Rather, recent work shows
that RefF 2ðtÞg is computable via a ladder diagram identity
and is physically interpreted as a “branching time” [33,75].
Here, teleportation is similarly possible by tuning g or t to
align the correlator phases; however, the teleportation
fidelity is bounded from above if the correlators do not
have magnitude one (Sec. IV).
At the opposite extreme, effect (ii) is dominant in

systems with a gravity dual [33,45] (as well as other
maximally chaotic systems, e.g., maximally chaotic 2D
conformal field theories with a large central charge [76]).
In such cases, F 2ðtÞ is mostly imaginary and leads to the
growth (or decay) in the magnitude of the correlator.
This opens the door to magnitudes greater than the two-
point function, jCψ ðtÞj > Gβ, which is not possible in
peaked-size teleportation (Sec. VI B). Interpolating
between the two above limits, it is conjectured that
the prefactor of F 2ðtÞ is proportional to eiλβ=4π [33,45].
This would imply that the imaginary part is dominant if
and only if λ ≈ 2πβ; i.e., the system approaches the
bound on chaos [21].

B. Gravitational teleportation
and the size-winding mechanism

We now move beyond early times and provide a brief
review of how the correlator can achieve its maximal
magnitude, 1, at finite temperatures. This occurs via the
“size winding” phenomenon introduced in Refs. [15,16] as
the microscopic mechanism for gravitational teleportation
[7,8]. We refer the reader to Ref. [16] for a complete
discussion of this mechanism, including its connection to
physical quantities in the bulk gravity theory. As we
emphasize in Sec. IV, maximizing the magnitude of the
correlators is necessary for high-fidelity teleportation, but it
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is not sufficient: We must also align the correlator phases,
for every operator on the subspace to be teleported.
To begin, note that the winding size distribution is

normalized to the two-point function, Gβ ≤ 1, in contrast
to the size distribution, which is normalized to 1. From
Eq. (75), we see that this norm being less than one implies
that the phases of the coefficients cχ are not perfectly
aligned for different strings χ. It is convenient to separate
this misalignment into two classes: first, when coefficients
of strings of the same size S are misaligned, which
manifests in the magnitude of fðSÞ being less than
maximal for a given S, and, second, when the phases of
fðSÞ for different sizes S do not align with each other.
We focus on the latter case and, more specifically,

consider an ansatz in which the coefficients’ phases wind
with the size [15,16]:

cχ ¼ e−iαS½χ�=qjcχ j: ð81Þ

In this case, the coupling of the teleportation protocol, by
applying a phase that is also proportional to the size, can
serve to unwind the phases of fðSÞ at the value g=N ¼ −2α
[see Eq. (76)]. This increases the teleportation correlator
magnitude from its initial value Gβ to unity. Although
seemingly artificial, in the following subsection, we show
that this ansatz holds exactly for the SYK model at low
temperatures.

C. Large-q SYK model: Finite temperature

We now turn to explore the interplay between peaked-
size and gravitational teleportation in an explicit example:
the large-q SYK model at finite temperature and large-p
encoding [27]. Despite the fact that this model features a
large separation between the size and size width, we show
that teleportation is not governed by the peaked-size
mechanism at low temperatures, due to the presence of
strong size winding.
To begin, let us consider the finite-temperature telepor-

tation correlator, given by [17]

CψðtÞ ¼ ð−iGβÞp
�

1

1 − g
N

J
2λ e

λt sinðλβ=4Þ þ i g
N
1
4
eλt

�
2p=q

;

ð82Þ

where ðGβÞp ¼ iphψ rψ li ¼ ðλ=2JÞ2p=q is the p-body two-
point function and the Lyapunov exponent λ corresponds to
the solution of

βλ ¼ 2βJ cosðλβ=4Þ ð83Þ

and interpolates between 2π=β at low temperatures and 2J
at high temperatures. At infinite temperature, the correlator
reduces to Eq. (71) and follows our expectations for
peaked-size teleportation (see Sec. VIII D). At low

temperatures, where the model is known to possess a
gravitational dual [24,25,45], the correlator behaves sub-
stantially differently; most notably, its magnitude increases
from Gp

β at time zero to unity when gJeλt=2λN ¼ 1

[illustrated in Fig. 1(c)].
From this correlator, we can verify the two predictions

made in Secs. IX A and IX B: (i) The early-time behavior
is governed by the two-sided OTOC, and (ii) the size
winding mechanism is responsible for the Oð1Þ peak in
the correlator magnitude at low temperatures. To see the
former, we expand the correlator in the early-time regime:

CψðtÞ ≈ ð−iGβÞp exp
�
−

igp
2qN

�
i
2J
λ
eλt sinðλβ=4Þ þ eλt

��
:

ð84Þ

Indeed, the term in the exponent is directly proportional to
the connected piece of the two-sided OTOC [33]

F 2ðtÞ ¼ i
2J
λ
eλt sinðλβ=4Þ þ eλt; ð85Þ

matching Eq. (79) [77]. At high temperatures, this OTOC is
equal to twice the operator size [Eq. (70)], resulting in
phase oscillations, whereas at low temperatures the OTOC
rotates to become predominantly imaginary, leading to an
exponential growth in the correlator magnitude.
Next, to understand the role of size winding, we must

analyze the full winding size distribution. We can derive
this distribution by expanding the teleportation correlator
in powers of e−ig=qN to match Eq. (76) [15,16,27]. To do so,
it is convenient to consider the exact correlator (before a
g=N ≪ 1 approximation) [17,27]:

CψðtÞ¼ð−iGβÞp
�

e−ig=2N

1þið1−e−ig=NÞ½ J
2λsinðλβ=4Þ− i

4
�eλt

�
2p=q

:

ð86Þ

Rewriting this correlator using Eq. (83) and the Taylor
expansion,

�
1

1þ ð1− e−μÞx
�

2p=q

¼ 1

ð1þ xÞ2p=q
X∞
n¼0

e−nμ
�
nþ 2p

q − 1

n

�
1

ð1þ 1=xÞn ; ð87Þ

and identifying the nth coefficient with the winding size
distribution, we have
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fðqnþ pÞ ¼ −
ð−iGβÞp

ð1þ J
2λ e

λteiλβ=4Þ2p=q

×

�
nþ 2p

q − 1

n

�
1

ð1þ 2λ
J e

−λte−iλβ=4Þn : ð88Þ

At intermediate times and large p, the distribution takes a
particularly simple form:

fðqnþ pÞ ≈ ð−iGβÞp
ðγ þ i2αÞ2p=q

Γð2pq Þ
nð2p=qÞ−1e−γne−i2αn;

ð89Þ

where we define the size decay rate γ as

γ ¼ 2λ

J
e−λt cosðλβ=4Þ ¼

�
λ

J

�
2

e−λt; ð90Þ

using Eq. (83), and the size winding coefficient α as

2α ¼ −
2λ

J
e−λt sinðλβ=4Þ: ð91Þ

The above expression holds when ð2p=qÞ2 ≪ n ≪ 1=γ2;
1=α2. Crucially, the distribution follows the size winding
ansatz fðnÞ ¼ jfðnÞje−i2αn. Thus, we recognize that the
maximum in the correlator magnitude occurs when the
coupling has unwound the phases of fðnÞ, at g=N ¼ −2α,
as expected from Sec. IX B [15,16].
The fact that the correlator magnitude increases in time,

and, moreover, reaches an Oð1Þ value at low temperatures,
is a hallmark of gravitational teleportation and signals
physics outside the peaked-size regime. Naively, this result
is surprising, as we expect the p-body encoding to ensure a
peaked-size distribution. Indeed, the average size and size
width remain separated by

ffiffiffiffi
p

p
at all temperatures [27]:

S½ψðtÞρ1=2� − S½ρ1=2� ≈ p
2

�
2J
λ

�
2

eλt ¼ 2p
γ
; ð92Þ

δS½ψðtÞρ1=2� ≈
ffiffiffiffiffiffiffiffiffi
2qp

p
4

�
2J
λ

�
2

eλt ¼
ffiffiffiffiffiffiffiffiffi
2qp

p
γ

: ð93Þ

This demonstrates that our simple intuition, of judging a
size distribution to be tightly peaked if the ratio between the
size width and average size is small, is not always correct.
Rather, in Appendix A, we provide a more precise con-
dition for when peaked-size teleportation holds and explic-
itly show that this condition breaks down for the SYK
model at finite temperature (but remains satisfied at infinite
temperature).
Let us now provide intuition for how peaked-size

teleportation is modified by size winding at low

temperatures. To this end, we express the SYK correlator
in terms of the winding size distribution parameters:

CψðtÞ ≈ ð−iGβÞp
ðγ þ i2αÞ2p=q

Γð2pq Þ

×
Z

∞

0

dnnð2p=qÞ−1 expð−γnÞ expð−i½g=N þ 2α�nÞ

¼ ð−iGβÞp
�

γ þ i2α
γ þ i2αþ ig=N

�
2p=q

: ð94Þ

At early times, this integral can be solved using a
saddle-point approximation. At infinite temperature, the
saddle point ns occurs precisely at the average size
ns ¼ ð2p=qÞ=γ ¼ S=q, giving the peaked-size correlator
Cψ ¼ ð−iGβÞp · expð−igS=qNÞ. In contrast, at finite tem-
perature, the size winding α shifts the saddle point in the
imaginary direction of the complex plane, giving ns ¼
ð2p=qÞ=ðγ þ 2iαÞ and a correlator Cψ ¼ ð−iGβÞp ·
expð−igns=qNÞ. From this, we recognize the saddle point
as precisely the two-sided OTOC ns ¼ ðp=2qÞF 2ðtÞ.
The inclusion of the size winding in the low-temperature

saddle point thus has two effects. First, it contributes
an imaginary part to the OTOC and, thereby, increases
the magnitude of the teleportation correlator. More subtly, it
also alters the real part of the OTOC. At low temperatures,
α=γ ≈ βJ ≫ 1, and we can approximate the saddle as
ns ≈ ð2p=qÞ=ð2iαÞ þ ð2p=qγÞðγ=2αÞ2. Recognizing S ¼
2p=γ, we see that the real part of the OTOC now
corresponds to the average size suppressed by two factors
of the ratio ðα=γÞ2.

D. Gravity with stringy effects

While the bulk of this paper approaches teleportation
firmly through the lens of quantum mechanics, we would
be remiss not to explore the analog of peaked-size
teleportation in gravitational physics. Specifically, we
would like to ask: Is there a teleportation mechanism in
gravitational systems that shares the same features as
peaked-size teleportation? Such a connection might seem
surprising, given the prevalence of peaked-size teleporta-
tion in quantum mechanical models with no apparent
connection to gravity. Nonetheless, the smooth blending
between gravitational teleportation and peaked-size tele-
portation in the SYK model suggests a positive answer.
Here, we demonstrate—in a particular gravitational

geometry, AdS2—that an analog of peaked-size teleporta-
tion indeed occurs when strong stringy corrections [7,32]
are included in the gravitational theory [78]. Intuitively, our
results are consistent with our previous analysis of the SYK
model, where, in the dual gravitational theory, increasing
the temperature is known to add stringy effects [45].
Our derivation closely follows that of Ref. [7] and

assumes a background familiarity with the gravitational
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description of teleportation in AdS2 (a thorough summary
of which can be found in the seminal works of Refs. [7,8]).
In this setting, the teleportation correlator can be calculated
explicitly by considering gravitational scattering in a
wormhole geometry (Fig. 5). We maintain our SYK
notation, so that V consists of K single-body fermion
operators ψ i and our input operator is a p-body fermion ψ .
The correlator can be solved for by decomposing the
fermion operators in a momentum basis and applying
the scattering matrix:

Csc
ψ ðtÞ ¼ e−ighVi

Z
dkΨrðk; tÞΨ�

l ðk;−tÞ

× exp

�
ig
Z

dseiδðk;sÞiΨ1;rðs;0ÞΨ�
1;lðs;0Þ

�
; ð95Þ

where Ψl=rðk; tÞ is the wave function for the p-body
operator inserted on the left or right boundary with in-
falling momentum k [and, similarly, Ψ1;l=rðs; 0Þ for any
single-body operator in V] and eiδðk;sÞ is the scattering
matrix element between ψðtÞ and ψ1ð0Þ. In pure gravity,
i.e., in the absence of stringy effects, these quantities take
the form [7]

Ψrðk; tÞΨ�
l ðk;−tÞ ¼

ð2ike−tÞ2Δe−4ike−t
iΓð2ΔÞð−kÞ Θð−kÞ; ð96Þ

δðk; sÞ ¼ GNks; ð97Þ

where we set β ¼ 2π for convenience, ΘðxÞ is the
Heaviside function, and Δ ¼ p=q is the conformal weight

of ψ . The single-body wave function Ψ1ðs; 0Þ is obtained
by setting t ¼ 0 and replacing Δ → Δ1 ¼ 1=q (i.e., the
conformal weight of a single fermion).
In the semiclassical limit, we can evaluate the correlator

by expanding eiδ to linear order in GN [7]. We find

Csc
ψ ðtÞ ¼ hψ lψ ri

ð−iÞ42Δ
Γð2ΔÞ

×
Z

∞

0

dkð−ikÞ2Δ−1 exp ½−iðg̃GNet − 4Þk�; ð98Þ

where g̃≡ g4−Δ1Δ1=2. This expression is almost identical
to the large-q SYK correlator of Eq. (94), setting the size
decay rate to zero, γ ¼ 0, and identifying the momentum k
in the gravitational calculation with the size n in the SYK
model [79]. Notably, the correlator diverges at the telepor-
tation time 4 ¼ g̃GNet. In bulk gravity, this divergence is
exactly the light-cone pole between the left and right sides
of the traversable wormhole and is regulated by including
higher-order terms in GN or stringy corrections [7].
While the full effects of stringy scattering in an AdS

background are not known, we take a phenomenological
treatment as in Refs. [7,32]. Here, the total effect of stringy
corrections is to change the scattering amplitude to

δðk; sÞ ¼ iGNð−iksÞε; 0 ≤ ε ≤ 1; ð99Þ

where ε controls the strength of stringy effects and varies
from 1 in pure gravity to 0 in the highly stringy limit.
Again expanding eiδ to leading order in GN and Wick

rotating k → −ik, we can write the correlator as

(a) (b)

FIG. 5. Schematic of the teleportation protocol from the bulk gravitational perspective in AdS2, under both (a) semiclassical gravity
and (b) strong stringy corrections. The TFD state corresponds to a two-sided black hole. Local quantummechanical operators ψ l=r create
or annihilate particles near the two boundaries, with wave functions Ψl=r (red). The protocol begins by inserting a particle on the left
side, with wave function Ψl (red, bottom left), at time −t, which then falls toward the interior of the geometry during time evolution (red
line). The two-sided coupling ðg=NÞPi ψ i;lψ i;r is then applied, producing a shock wave (blue) that interacts with the in-falling particle
[7,8]. (a) In the semiclassical limit, the shock wave shifts the position of the in-falling particle outside of the right horizon (dashed),
which enables the particle to reemerge near the right boundary (red, top right) [7,8]. (b) When stringy effects are present, the scattering
amplitude between the in-falling particle and the shock wave is modified according to Eq. (99) [7,32]. In the highly stringy limit and at
early times, the interaction results in an overall phase shift θ ¼ gGNAεðΔ=2Þεeεt [Eq. (101)]. The overlap between the in-falling particle
and a particle at the right boundary is nevertheless nonzero (red, top right) and is given by the unperturbed two-point function
Gβ ¼ i< ψ lψr >. [Note that stringy effects may also modify the initial wave functions ofΨl=r, as we discuss in the context of Eq. (103).]
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Cstringy
ψ ðtÞ ¼ hψ lψ ri

42Δ

Γð2ΔÞ
×
Z

dkk2Δ−1e−4k expð−i1þεgGNAεkεeεtÞ;

ð100Þ

where Aε is a constant of the order of 1. Note that the k
dependence in front of the exponential is a Poisson
distribution with a saddle point at ks ≈ Δ=2 in the heavy
particle limit, Δ ¼ p=q ≫ 1. At early times, eεtGN ≪ 1,
and for strong stringy effects, ε → 0, the change in this
saddle point from the scattering, g, is negligible. In these
limits, the saddle point approximation thus gives the
correlator:

Cstringy
ψ ðtÞ ≈ hψ lψ ri exp½−igGNAεðΔ=2Þεeεt�; ð101Þ

which has exactly the same form as in peaked-size
teleportation [Eq. (37)] [80]. Specifically, the correlator
is equal to the two-point function Gβ ¼ ihψ lψ ri multiplied
by a pure phase. Tentatively, this suggests interpreting
the phase as the operator size in a dual boundary theory.
This size

S=N ∼ GNAεðΔ=2Þεeεt ð102Þ

grows exponentially in time with a nonmaximal Lyapunov
exponent, 2πε=β.
A few remarks are in order. First, while in the above

treatment the strength of stringy effects depends on a “free”
parameter ε, we expect that in a UV complete theory ε
would, in turn, depend on the temperature (and other
physical parameters). In particular, we expect ε → 1 at
low temperature in theories that are dual to pure gravity and
ε → 0 at high temperature, where stringy, UV effects
should play an important role. This statement also follows
from the point of view of the boundary field theory, since
the scattering matrix is proportional to an OTOC of the
boundary theory, which is real at infinite temperature.
Second, if we would like to recover the infinite-

temperature SYK correlator [Eq. (71)] from the scattering
computation, choosing a proper ε as a function of β is
not enough. One also needs to modify the wave function
of ψ , to

Ψrðk; tÞΨ�
l ðk;−tÞ ¼

εð2ikεe−εtÞ2Δe−4ikεe−εt
iΓð2ΔÞð−kÞ Θð−kÞ: ð103Þ

Such a wave function modification due to UV data should
be model dependent, and it would be interesting to under-
stand how to derive this “stringy-corrected” wave function
from the bulk point of view. Nevertheless, one particular
feature of the modified wave function has a clear motiva-
tion from the boundary perspective. Specifically, Wick

rotating Eq. (103), k → −ik, leads to a distribution whose
width δk ∼ Δ1=ε broadens as ε → 0. This broadening
increases the phase variations in the exponential of
Eq. (100) and results in the decay of the correlator at
the timescale eεtGN=

ffiffiffiffi
Δ

p
≈ 1 for small ε. From the boun-

dary point of view, this decay corresponds to the require-
ment that the size width must be small, gδS=N ≲ 1, for
peaked-size teleportation, as we see for 0D RUCs and
infinite-temperature SYK (Sec. VIII). We expect this
decay to be common to many 0D quantum systems at
high temperatures, which suggests that the broadening of
the bulk stringy wave function as ε → 0 might also be a
general feature.
Finally, the most obvious effect of a nonunity ε is to

change the scattering phase δðk; sÞ from being real valued
to complex. Indeed, in the strong stringy limit, δðk; sÞ
becomes purely imaginary. In general scattering theory,
a complex δ means that the scattering matrix eiδ is no
longer normalized and implies the existence of inelastic
scattering [32]. Since peaked-size teleportation is replicated
in the limit ε → 0, this suggests a more general relation-
ship between peaked sizes and inelastic scattering. In
Appendix H, we demonstrate that these two phenomena
also coincide at infinite temperature, for arbitrary wave
functions and scattering amplitudes.

X. EXPERIMENTAL PROPOSALS

Having illustrated the wide breadth of physics that enters
into the TW protocol, in this section, we outline explicitly
how one can probe this physics in the laboratory. We begin
with a summary of the key signatures of teleportation and
how they can be applied toward (i) characterizing operator
size distributions in generic scrambling dynamics and
(ii) distinguishing generic versus gravitational scrambling
dynamics. For (i), we show that the TW protocol can be
simplified dramatically at infinite temperature, where an
equivalent “one-sided” protocol eliminates the need to
experimentally prepare the thermofield double state. We
next present two near-term experimental realizations of the
protocol: first with neutral atoms and second with trapped
ions. The fundamental requirement is the ability to time-
evolve forward and backward under many-body scram-
bling dynamics; recent experimental progress has demon-
strated this in a number of quantum simulation platforms
[81–85]. We conclude with a discussion of the effect of
experimental error and a comparison of the TW protocol
with other diagnostics of scrambling physics.

A. Signatures of the TW protocol

We begin by reviewing the key signatures of the TW
protocol, as discussed in the previous sections and sum-
marized in Table I. We first recall that the simplest
experimental signal—that is, any nontrivial teleportation
fidelity of a single qubit—has already been demonstrated
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experimentally in the closely related HPR protocol [13,14].
As discussed in Sec. VII, this signifies that the imple-
mented unitary is scrambling but does not distinguish
between peaked-size or gravitational teleportation. In what
follows, we discuss two more refined applications of the
TW protocol.
Characterizing size distributions in generic scrambling

dynamics.—The dynamics of the teleportation fidelity
within the TW protocol can be used to probe the size
distributions of time-evolved operators. This approach
relies on the peaked-size teleportation mechanism and thus
applies to generic scrambling systems, including the
examples analyzed in Sec. VIII (e.g., RUCs, spin chains,
and high-T SYK).
Specifically, the teleportation fidelity as a function of

time exhibits three relevant features. First, since peaked-
size teleportation relies on the width of the size distribution
being small, gδS=N ≲ 1, its success or failure indicates
whether the width has surpassed the tunable value N=g.
Depending on the model and the value of g, this leads to a
temporal profile that exhibits three regimes: initial telepor-
tation when the size width is small, no teleportation when
δS ≳ N=g, and late-time teleportation once the size width
converges to its small final value in a finite-size system [as
depicted schematically in Fig. 1(c) and observed numeri-
cally in 0D RUCs in Fig. 2(c)].
Second, within the peaked-size regime, oscillations in

the teleportation fidelity as a function of time, F ¼ 5
8
−

3
8
cos½ηdgSðtÞ=N� [Eq. (45)], provide a direct measurement

of the growth in operator size. In particular, setting
g ¼ 2πnþ π, one expects to see n oscillations in the
teleportation fidelity before it reaches its late-time plateau.
The peaks in these oscillations give the operator size as a
function of time: S ¼ ðm=nÞð1 − 1=d2ÞN at the mth peak.
Third, the teleportation of multiple qubits demonstrates

the equivalent channel capacities of peaked-size and
gravitational teleportation (Sec. VIII). Formally, multiqubit
teleportation probes whether the sizes of time-evolved
operators add under operator composition. While this is
trivial when the operators are causally separated, determin-
ing the requirements for size addition under more general
dynamics—e.g., all-to-all or power-law interactions—
remains an open question [86].
Distinguishing gravitational scrambling dynamics.—

The TW protocol can also be used as an experimental
litmus test for gravitational dynamics. To this end, we
propose to use two experimental signatures that distinguish
between gravitational and peaked-size teleportation: (i) the
teleportation fidelity at low temperature and (ii) the behav-
ior of the teleportation fidelity as a function of time t and
the coupling strength g. For (i), the observation of a high
teleportation fidelity, ∼Oð1Þ, at low temperatures strongly
suggests the occurrence of gravitational teleportation,
since the fidelity of peaked-size teleportation is limited
at such temperatures by the (small) two-point function Gβ.

For (ii), one observes that the qualitative profile of the
teleportation fidelity as a function of time differs between
the two mechanisms [see Fig. 1(c) for a comparison
between the two and Figs. 2 and 3 for additional examples
of peaked-size teleportation]. Namely, keeping g fixed, the
fidelity of gravitational teleportation is expected to display
a single peak as a function of time, whereas the fidelity of
peaked-size teleportation is highly oscillatory in time.
Furthermore, gravitational teleportation works only for a
specific sign of the coupling, g > 0, while the peaked-size
teleportation fidelity is an even function of g [7,8,15,16].
Contrasting with finite-size effects.—Finally, we distin-

guish many-body teleportation from spurious effects that
may be seen in the TW protocol at small-size systems. The
most effective way to avoid such signals is by utilizing a
coupling gV [Eq. (1)] whose individual terms have a small
magnitude, i.e., g=K ≪ 1; this is most naturally achieved
by including many couplings—which requires a suffi-
ciently large system—and setting g ∼Oð1Þ. In this limit,
the action of the coupling is negligible unless local
operators grow significantly under many-body dynamics,
i.e., S ∼ K=g ≫ 1 (see Sec. V); any teleportation signal
is thus necessarily a result of scrambling dynamics.
Furthermore, we expect large-size operators to generically
exhibit smooth size distributions, justifying our approxi-
mation (Sec, V B) that the teleportation fidelity is governed
by the distributions’ first few moments.
Away from this limit, our general framework relating the

teleportation fidelity to operator size distributions remains
valid [e.g., Eq. (26)]. However, for g=K ≲ 1, we expect the
fidelity to be sensitive to the discrete nature of the size
distributions, and our predictions based on the first few
moments may no longer apply. Fortunately, as we show
in the following subsections, none of these complications
are evident for experimentally relevant system sizes
(e.g., K ∼ N ∼ 20) and g ∼Oð1Þ coupling strengths;
indeed, our finite-size numerical results agree very well
with predictions from the peaked-size teleportation frame-
work [Figs. 7(b) and 8].
Lastly, in the case where g=K ∼ 1, operator growth is

no longer necessary for the coupling to have a strong
effect, leading to the possibility of a teleportation signal
unrelated to scrambling. Indeed, for g=K ¼ π, the coupling
effectively “swaps” the left and right qubits. This is
made precise for the coupling Vs [Eq. (27)], where
expðiπNVsÞ ¼ ðSWAPÞYlYr. In this case, one would
observe perfect teleportation fidelity even without many-
body time evolution, i.e., U ¼ 1; in fact, if U is perturbed
away from the identity via scrambling dynamics, the
teleportation fidelity would actually become suppressed.
The simplest way to see this is via Fig. 1(a)—in particular,
any subsequent time evolution on the right side of the
system is in the wrong direction to refocus the time-evolved
state (one would want to apply U† after the coupling, not
UT). To achieve a large teleportation fidelity, the combined
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time evolution UTU therefore needs to preserve the “tele-
ported” state hψ jUTUjψi ∼ 1, a situation that is likely to
occur only if the dynamics are nonscrambling (U ¼ 1 is a
special case of this) or undergo a late-time, fine-tuned,
Poincaré-type recurrence.

B. One-sided implementation of teleportation circuit

Before proceeding to the experimental blueprints, we
first introduce a simpler implementation of the teleportation
protocol that works at infinite temperature (Fig. 6). The
outcome of this protocol is equivalent to that of the
two-sided protocol (up to experimental errors), yet it
eliminates the need to prepare EPR pairs and requires half
as many degrees of freedom. The cost of this simplification
is twofold: (i) It is restricted to simulating an infinite-
temperature TFD state, and (ii) it requires a higher-depth
quantum circuit.
We derive the one-sided implementation from the “two-

sided” implementation [copied in Fig. 6 from Fig. 1(a)] by
sliding all operations from the left side of the many-body
EPR pairs to the right side, using Eq. (9). The initial state of
the one-sided circuit thus corresponds to the top left of
the two-sided implementation. Namely, we initialize the K
“measured” qubits of subsystem C in a definite outcome
state, jo1…oKi (purple). These states should be drawn from
the distribution of measurement outcomes, but when tele-
porting an EPR pair at infinite temperature they are
uniformly distributed. For the N − K “unmeasured” qubits,
we use the resolution of the identity 1 ∝

P
s jsihsj to

replace the unterminated legs with an initial product state in

the computational basis, joKþ1…oNi (gray). This state
should be sampled from shot to shot over all 2N−K basis
states, in effect preparing a maximally mixed state on these
qubits. Finally, we include one ancillary qubit for each
qubit to be teleported, whose initial state is sampled over a
complete basis jϕi for the teleported subsystem (i.e.,
subsystem A in Sec. III). Similar to the unmeasured qubits,
this corresponds to the unterminated leg of the thermofield
double state when we insert the teleported qubit jψi in the
two-sided implementation.
Having defined an initial pure state, we now implement

the circuit starting from the top left of the two-sided
implementation and proceeding counterclockwise (Fig. 6).
The circuit consists of three successive applications of U or
U†, interspersed with a SWAP gate exchanging subsystem A
with the ancillary qubit(s), and operations V̂i ¼ eigoiÔi=K

determined by the initial state of the “measured” qubits. The
outcome of the circuit is an EPR measurement between the
ancilla qubit and subsystem A (black arrows).
As one can see in Fig. 6, the one-sided implementation

no longer performs teleportation but rather prepares an EPR
pair from an otherwise scrambled, many-body system.
Specifically, we know that, upon swapping out, subsystem
A is maximally entangled with the remaining qubits
whenever the unitary U is scrambling; the one-sided circuit
distills this entanglement into an output EPR pair. This
connection is noted in gravity, where similar one-sided
protocols can be interpreted as distilling the partner
operators of emitted Hawking radiation [88,89] or observ-
ing behind the horizon in the SYK model [90].

C. Preparing the thermofield double state

In the previous subsection, we introduce a one-sided
protocol that obviates the need to prepare the highly
entangled TFD state. However, this approach is restricted
to infinite temperature; at finite temperature, one must
implement the original two-sided protocol, which necessi-
tates preparing a finite-temperature TFD state. A number of
recent works explore the preparation of TFD states varia-
tionally using quantum approximate optimization algorithms
(QAOAs) [91–93]; we note that these preparation strategies
require no additional experimental capabilities beyond those
already necessary for the TW protocol. The optimization
step within a QAOA-based TFD preparation relies on a cost
function that requires one to measure the entanglement
entropy between the two sides [91,92]. While challenging,
this can, in principle, be experimentally realized by either
using several copies of the system [94–96] or via randomized
measurements [97], both of which are demonstrated in
small-scale trapped ion experiments [98,99].

D. Implementation with neutral Rydberg atoms

One particularly promising platform for implementing
the traversable wormhole protocol is a quantum simulator

FIG. 6. One-sided implementation (right) of the original two-
sided teleportation protocol (left), derived using repeated appli-
cations of Eq. (9) [replacing U → UT for convenience, compared
to Fig. 1(a)]. Blue arrows denote the sequence of operations in the
one-sided protocol, the green band marks the teleported qubit and
its corresponding component in the one-sided protocol, and the
red band marks the initial EPR state and its corresponding
component.
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based on neutral alkali or alkaline-earth atoms held in a
reconfigurable and controllable array of optical dipole
traps. Recent experiments have already achieved near-
deterministic trapping and loading of atoms into arbitrary
geometries in one, two, and three dimensions [34,100,101].
By leveraging the strong dipole coupling between atomic
Rydberg states, high-fidelity analog quantum simulations
and digital gates have also recently been demonstrated
[31,34–38]. These demonstrations primarily use two natu-
ral schemes of encoding qubits into neutral atoms:
(1) A qubit can be encoded by choosing an atomic

ground state jgi to be the j0i state and a highly
excited Rydberg state jri with principal quantum
number n ≫ 1 as the j1i state [see Fig. 7(a)].

(2) Alternatively, the qubit states can also be chosen as
two long-lived hyperfine ground states (for alkali
atoms or fermionic alkaline-earth atoms) or a ground
state and a metastable clock state (for bosonic
alkaline-earth atoms), such that the j1i state can
be coupled to a Rydberg state to perform entangling
gates [see Fig. 7(c)].

We show how both encodings can be used to realize the
teleportation protocol in feasible near-term experiments.
We find that the first encoding is naturally suited to
“analog” time evolution under the native (Ising-type)
Hamiltonian for a Rydberg setup but is limited to system
sizes of ≲30–35 qubits (in one spatial dimension) due to
the inability to perfectly time reverse long-range inter-
actions. On the other hand, the second encoding is more
flexible and allows for digital time evolution including
RUCs and Floquet dynamics. This time evolution can be

reversed exactly and is limited only by qubit and gate
fidelities. While we primarily consider realizations of our
protocol in experimental setups where the neutral atoms
are individually trapped in optical tweezers and undergo
(near-)resonant excitation to Rydberg states, we also
conclude by discussing how similar physics can be seen
in an optical lattice setup where the atoms are primarily in
ground states j0i and j1i, but one of these states is
“dressed” by an off-resonant laser field which couples it
to a Rydberg state [103–105].
Analog implementation.—We first consider the encoding

where the qubit states j0i and j1i correspond to a ground
state jgi and a highly excited Rydberg state jri. While
neutral atoms are effectively noninteracting in their ground
states, nearby atoms interact strongly via van der Waals
interactions ∝ n11=R6 if they are both in the Rydberg state,
where R is the distance between the atoms. If one drives the
transition jgii ↔ jrii at each site i with tunable Rabi
frequency Ωi and detuning Δi [see Fig. 7(b)], the system
undergoes analog time evolution under the Hamiltonian

H ¼
X
i

Ωi

2
Xi þ

X
i

Δi

2
ð1−ZiÞ þ

X
i≠j

Jij
4
ð1−ZiÞð1−ZjÞ;

ð104Þ

where Xi ¼ jgiihrij þ jriihgij, Zi ¼ jgiihgij − jriihrij, and
Jij ¼ J0=ji − jj6 is the van der Waals interaction strength
between two atoms at positions i and j.
The Hamiltonian in Eq. (104) is scrambling and exhibits

a scrambling time limited by the smaller of J0 and Ωi,

(a)

(b)

(c)

FIG. 7. (a) In the proposed analog Rydberg teleportation protocol, qubits are encoded in a ground state jgi and a Rydberg state jri.
Nearest-neighbor interactions (dark blue) can be time reversed, but next-nearest neighbor interactions (light blue) cannot. (b) Numerical
results comparing the average state teleportation fidelity for single-qubit teleportation with perfectly reversed time evolution (solid lines)
with the proposed, imperfect time reversal (dashed lines). In particular, we implement the one-sided protocol using N ¼ 20 total spins;
K ¼ N − 1 measured spins (i.e., all except the spin encoding jψi), whose single-qubit rotations are generated by Ôi ¼ Ẑi; and time
evolution under the analog Rydberg Hamiltonian [Eq. (104)] with parameters Ωi ¼ 0.9, Δi ¼ −1.5, and J0 ¼ 1 (for all i).
(c) Implementation of U or U† in the digital protocol, consisting of alternating layers of controlled-phase gates (horizontal black
lines) between nearest-neighbor atoms and single-qubit rotations (red boxes). Here, qubits are encoded in two hyperfine ground states.
Insets show possible pulse sequences to implement the controlled-phase gate and the single-qubit rotations [102]. The full TW protocol
is obtained by inserting this gate sequence (and its Hermitian conjugate) in place of U and U† in Fig. 5.
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t� ∼ N=minðJ0;ΩiÞ. To minimize the total evolution time,
we set jΩij ∼ J0, so that evolution under H for a time
∼N=J0 implements a fully scrambling unitary U in the
teleportation protocol. To implement U†, we reverse the
nearest-neighbor interactions by conjugating time evolu-
tion via Pauli operators Xi (i.e., applying π pulses) on every
other site. The tunable single-site parameters Ωi and Δi are
then adjusted to ensure that each single-site term is also
reversed. We note that this simple scheme does not reverse
the (much weaker) next-nearest-neighbor interactions.
In a one-dimensional array, we expect errors in our

implementation to arise from two main sources: (i) the
finite lifetime of the Rydberg state, which gives rise to a
nonzero decoherence rate at each of the N sites, and (ii) the
weak next-nearest-neighbor interactions ∼J0=26 ¼ J0=64,
which cannot be time reversed simultaneously with nearest-
neighbor interactions. To estimate the effect of the former,
let us consider the specific case of 87Rb atoms excited to
the 70S Rydberg state [31,35], which has lifetime
τ ≈ 150 μs. Realistically achievable Rabi frequencies and
interaction strengths are of the order of 2π × 10–100 MHz.
The total time to implement the three scrambling unitaries
of the teleportation protocol is thus ∼3N=jΩij; when
summed over N qubits and compared to the Rydberg
lifetime, this gives an estimated many-body error
of ∼3N2=jΩijτ.
In order to precisely characterize the effects of imperfect

backward time evolution, we perform large-scale numerical
simulations of the teleportation protocol with the Rydberg
Hamiltonian [Eq. (104)] [106]. Our results are depicted in
Fig. 7(b) for a one-dimensional chain of N ¼ 20 atoms and
three values of the coupling g. Analogous to our 1D RUC
numerics [Fig. 2(a)], the fidelity increases monotonically in
time for g ¼ π; while, for g ¼ 2π and g ¼ 3π, the fidelity
oscillates in time, reaching a local maximum whenever
the average size satisfies the phase-matching condition
[Eq. (35)]. Notably, even with perfect time reversal, the
overall fidelity is reduced from unity due to the finite width
of the size distribution. This is a general feature of peaked-
size teleportation in finite-size systems, since the relative
size width scales as δS=S ∼ 1=

ffiffiffiffi
N

p
(Sec. VII). Indeed, in

Fig. 8, we confirm that the fidelity improves with increas-
ing system size and is consistent with our peaked-size error
analysis [e.g., see Eq. (34)].
With imperfect time reversal, we observe an additional

∼10% reduction in the fidelity compared to the ideal case at
the scrambling time [Fig. 7(b)]. We can estimate the
magnitude of this effect by assuming errors due to the
next-nearest-neighbor interactions add coherently over time
intervals δt ∼ 1=J0 (the local thermalization time) and
incoherently at larger timescales. Within each δt, each
atom accumulates an error of ∼ðδtJ0=64Þ2; summed overN
atoms and total time 3t� ≈ 3Nδt, this gives a total many-
body error of ∼3N2=642. Thus, the error due to imperfect
time reversal is magnified at larger system sizes and

eventually outweighs the improvement in fidelity from
the narrowing of the size distribution.
Combined with the Rydberg lifetime error, this suggests

that near-term experiments should be able to implement
peaked-size teleportation in systems of N ∼ 35 qubits. We
note that, in higher dimensions, the smaller relative distance
of next-nearest neighbor atoms gives rise to a larger error
contribution from imperfect time reversal.
Digital implementation.—To implement the protocol in

larger systems, in higher dimensions, and at finite temper-
ature, we propose a digital scheme, using the second type
of qubit encoding (i.e., hyperfine ground states) [Fig. 7(c)].
In this approach, we envision time evolution to be formed
from alternating layers of nearest-neighbor controlled-
phase gates and single-qubit rotations. Here, the con-
trolled-phase gates can be implemented by applying a
simple pulse sequence to excite and deexcite qubits from
the j1i state to the jri state, so that the wave function
acquires a phase of −1 if either of the two qubits are in
the j1i state, but not if both qubits are in the j0i state [see
Fig. 7(c) insets] [102]. As demonstrated in recent experi-
ments [107], these Rydberg-mediated controlled-phase

(a)

(b)

FIG. 8. Finite-size scaling of the Rydberg simulations (a) as a
function of time with g ¼ π and (b) as a function of coupling
strength g with t ¼ 12. The system is evolved under the Rydberg
Hamiltonian [Eq. (104)] with the same system parameters as in
Fig. 7. At late times, the fidelity increases for larger systems but
decreases for larger values of g. This is consistent with our error
analysis in Sec. VII; in particular, we expect the error to scale as
g2δS2=N2 and the size distribution to approach a binomial
distribution for which δS ∼ S=

ffiffiffiffi
N

p
. In contrast, at early times,

smaller systems exhibit a larger fidelity not because of the size
width but because the acquired phase is ηdgSðtÞ=N, where ηdg is
fixed and SðtÞ is initially independent of size. The curves in
(a) intersect near the scrambling time due to the transition
between the early- and late-time regimes.
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gates can be performed in parallel for sufficiently well-
separated pairs of qubits, and non-nearest-neighbor inter-
actions can be avoided by slightly reducing the parallelism
within each layer of controlled-phase gates. Single-qubit
rotations can be performed with sufficiently high fidelity
such that the overall circuit fidelity is primarily limited by
the entangling gates [100,108].
For a generic choice of gates, the circuit are fully

scrambling when U is composed of ∼N layers of con-
trolled-phase gates. The fidelity of the overall implemen-
tation is limited by the finite lifetime of the Rydberg state,
which is populated for a time of ∼1=J0 during each
controlled-phase gate. Assuming the same experimental
parameters as in the analog case, one expects to be able to
perform approximately Ωτ ∼ 103 − 104 controlled-phase
gates within the decoherence timescale. Thus, in the digital
approach, one expects that the teleportation protocol can
naturally be implemented for N ∼ 200 qubits.
The digital approach can also be adapted to experiments

using Rydberg-dressed neutral atoms in an optical lattice
[103–105]. In such a setup, qubits are again encoded in
hyperfine ground states, and strong Ising-like interactions
are generated by coupling the qubit state j1i to a Rydberg
state with a far-detuned laser field. In this way, the Rydberg
interaction gives rise to an energy shift for two neighboring
atoms both in the j1i state. Analogous to our previous
discussion, a simple scrambling unitary could consist of
alternating layers of Rydberg-dressed interactions and
single-qubit rotations. While the total accumulated error
in the Rydberg-dressing approach is comparable to the
gate-based protocol, one potential advantage is an
increased tunability of the interactions [109,110].
In addition to scrambling time evolution, there are three

ingredients to implement the one-sided teleportation circuit
(Fig. 6): (i) the ability to “swap” in the qubit jϕi, (ii) single-
qubit rotations, Vi ¼ e�igZi=K , and (iii) the final measure-
ment in the EPR basis. In both digital setups, these are
easily accomplished by combining controlled-phase gates,
arbitrary single-qubit rotations, and local measurements.
In the analog setup, we propose to temporarily “turn off ”
the Hamiltonian by transferring each Rydberg state jri to a
hyperfine ground state (e.g., the state used as j1i in the
digital protocol) using a resonant laser pulse. Once this is
done, all of the above operations can be performed
identically as in the digital setup. Afterward, an additional
resonant laser pulse returns the system to the analog
encoding. The ancillary qubit can be decoupled from the
system qubits during Hamiltonian time evolution in two
ways: (i) by physically positioning the ancillary qubit far
from the system or (ii) by encoding the ancillary qubit in
the hyperfine subspace throughout time evolution.
The two-sided, finite-temperature TW protocol can be

achieved by combining the above techniques with TFD
preparation as in Sec. X C. A particularly natural geometry
for such a realization would be two parallel chains of

Rydberg atoms, with each chain forming one side of the
TFD state. The coupling between the two sides is naturally
realized by the atoms’ Ising interactions. This coupling can
be applied independently from the one-sided Hamiltonian
either using full digital control or by manipulating the
interchain versus intrachain atomic distance.

E. Implementation with trapped ions

A second experimental platform that naturally enables
the implementation of the TW protocol is arrays of
individual trapped atomic ions [111–113]. Trapped ion
qubits feature near-perfect replicability, negligible idle
errors, and the ability to implement both a universal set
of reconfigurable quantum gates [43] as well as analog
long-range spin Hamiltonians [39,40]. Entangling quantum
gates have been demonstrated between isolated pairs of
trapped ions with fidelities exceeding 99.9% [41,42].
Teleportation protocols—including the HPR protocol
[13]—involving gate operations, partial measurement,
and feed-forward operations, have been experimentally
realized in a number of contexts [3,4,13,114].
Compared to Rydberg atom arrays, trapped ions offer

two new regimes for exploring many-body teleportation.
First, trapped ions naturally interact via a long-range
analog Hamiltonian, whose time evolution can be fully
reversed within certain experimental regimes [115,116].
Implementing the TW protocol in this setting provides a
window into operator spreading and size distributions
under such long-range dynamics [117,118]. Second, when
operated digitally, the same long-range interaction has
already been demonstrated to enable the preparation of
thermofield double states [91–93,119], a crucial step
toward realizing the two-sided TW protocol at finite
temperature (see Sec. X C).
We begin by outlining the analog and digital forms of

time evolution that are possible in trapped ion systems.
Interactions between qubits typically stem from state-
dependent optical dipole forces that off-resonantly drive
motional sidebands of the qubit [120,121]. These sideband
operations mediate entanglement and give rise to an
effective Ising coupling. When the optical forces are
symmetrically detuned far from the upper and lower
sidebands, the motion is only virtually excited, resulting
in a long-range Ising Hamiltonian [Fig. 9(b)]:

H ¼
X
i<j

JijXiXj þ Bz

X
i

Zi; ð105Þ

where Jij ≈ J0=ji − jjα, with 0 < α < 3 and J0 ≲ 1 kHz,
and the effective magnetic field Bz can be realized by
slightly asymmetrically detuning the driving field [122].
The sign of the couplings can be reversed by changing
the detuning of the optical forces from the motional
sidebands [115,116].
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On the other hand, when the optical dipole forces are
closer to resonances of the motional modes, one can
mediate interactions significantly faster, allowing for the
execution of rapid, entangling quantum gates between pairs
of illuminated ion qubits [Fig. 9(a)] [123,124]. The native
entangling gates are based upon Ising interactions between
any selected pair of ions with a tunable interaction angle;
in particular, both XXijðθÞ ¼ e−iθXiXj=2 and YYijðθÞ ¼
e−iθYiYj=2 gates are available, and θ ¼ π=2 naturally creates
an EPR pair [125,126]. Typical entangling operations have
duration 1=Jent ∼ 100 μs, while decoherence timescales are
on the order of τ ∼ 400 ms [127]. Following the estimates
in Sec. X D and requiring 3N2=Jentτ ≲ 1, we estimate that
near-term state-of-the-art experiments can support high-
fidelity many-body teleportation for up to N ∼ 35 qubits.
Let us now describe an implementation of the one-sided

TW protocol (Fig. 6). We first focus on the ability to
implement both U and its inverse U†. For analog time
evolution [Eq. (105)], U† can be implemented by changing
the sign of the detuning [81], while for digital time
evolution, one can directly invert and reverse the ordering
of the quantum gates.
The one-sided protocol also requires the ability to locally

address a subextensive number of individual qubits. In
particular, a subset K of the qubits must be initially
prepared in a product state jo1;…; oKi and later rotated
by V̂i ¼ eigoiÔi=K. These rotations can be achieved by
taking Ôi ¼ Ẑi and individually addressing the target ions
using an auxiliary “poke” laser beam [113,128].
Following the first application of U, one must swap out

the qubit(s) corresponding to the teleported subsystem.

This swap can be implemented either digitally by applying
a SWAP gate or, physically, by exchanging the two ions via a
modulation of the ion trap’s axial fields [40,129,130].
Extending this implementation to the two-sided protocol

[Fig. 1(a)] is straightforward. Initialization into EPR pairs
(for infinite temperature) can be accomplished via simple
Ising gates at the input of the circuit [Figs. 9(a) and 9(c)],
while the TFD state (for finite temperature) can be prepared
via variational methods (Sec. X C). Time evolution can
again take the form of either digital quantum gates
[Fig. 9(a)] or analog Hamiltonian dynamics. To separately
implement analog dynamics on the two sides of the system,
one illuminates only half of the ion chain at any given time
[Fig. 9(b)]; this has the added benefit of avoiding unwanted
coupling between the left and right sides but implies that
the time evolution must be performed serially [Fig. 9(c)].
Finally, in the two-sided protocol, one must perform

projective measurements on K qubits that feed forward to
the conditional rotations V̂i. These partial measurements
can be accomplished by using multiple ion species (i.e.,
different elements or isotopes) [114], or, alternatively, this
entire procedure can be replaced with a specific interaction,
eigV , between the two sides; this interaction is naturally
realized via an XXijðθÞ gate with θ ¼ 2g=K.

F. Effects of experimental error and relation
to quantum error correction

We now turn to the effect of experimental error on the
TW protocol. We find that teleportation is robust to nearly
all errors that occur on the left side of the TFD state after
time evolution by U but is strongly sensitive to errors at

Y

Y

Y

Y

Y

Y

Z

Z

Z

(a) (c)

(b)

FIG. 9. (a),(b) Chain of atomic ions, with qubit states j0i and j1i represented by hyperfine ground states. The states are coupled by
a pair of laser beams, one with individual addressing (with strength g1, purple) and one applied globally (with strength g2). Each
beam is strongly detuned from an excited state jei by an amount Δ. The coherent beat note between the beams, at frequency ω0,
drives stimulated Raman transitions between the qubit levels with an effective Rabi frequency g1g2=2Δ and also modulates the
Coulomb interaction between qubits to give rise to an effective Ising interaction. (a) A two-qubit entangling gate, XXijðθÞ (red), is
performed by addressing only ions i and j with the first beam. (b) Half of the qubits are addressed, which leads to analog time
evolution under the Hamiltonian Eq. (105) (blue) for all addressed spins. (c) Quantum circuit implementation of the teleportation
protocol at finite temperature. EPR pairs are formed using two-qubit gates. The TFD state is then prepared via a QAOA approach by
iterating multiple times between two-qubit gates coupling the sides and analog time evolution on both sides individually [91,92].
The state jψi is inserted either by projectively measuring the designated qubit and preparing the state or by digitally swapping in an
additional qubit (not shown). Finally, teleportation is implemented using similar ingredients as well as feed-forward measurements
(purple dotted lines).
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nearly all other locations in the protocol. These two
extremes are emblematic of two different relations between
scrambling and error: The former corresponds to interpre-
tations of scrambling as an error-correcting code [23],
while the latter reflects recent results showing that the
effect of errors on scrambling measurements is enhanced
proportional to the size S of time-evolved operators [131].
In the following discussion, we demonstrate each of these
points through simple but representative examples of
experimental error.
We begin with the first case: Consider errors occurring

on the left side of the TFD state after application of U but
before measurement or coupling. Recall that, in the absence
of error, one can perform teleportation by using any K ∼
Oð1Þ qubits of the left side. This implies that teleportation
is robust to any errors that affect only N − K qubits: As
long as one has knowledge of at least K qubits that are
unaffected, measuring these qubits performs teleportation
identically to the error-free case.
This robustness reflects previously noted connections

between scrambling and quantum error correction [23]. In
particular, we note that many-body teleportation can be
understood as an especially generic example of entangle-
ment-assisted quantum error correction (EAQEC) [132].
Indeed, the setup for EAQEC is identical to that of the
teleportation protocol: Two parties, Alice and Bob, share
entanglement (the TFD state), Alice applies an encoding
circuit to her share of qubits (the left unitary U), and
decoding is achieved by teleporting Alice’s quantum
state to Bob’s share of qubits (via the coupling V and
unitaries on the right). Previous schemes for EAQEC focus
primarily on encodings via Clifford unitaries. In contrast,
many-body teleportation, and more specifically peaked-
size teleportation, succeeds for a vastly broader class of
encoding procedures—i.e., scrambling many-body time
dynamics—indicating that naturally occurring, strongly
interacting systems offer novel methods of EAQEC.
On the other hand, errors that occur during encoding or

decoding—i.e., during the application of U on the left side
or at any point on the right side—strongly inhibit telepor-
tation. As a first example, consider a single local error W1,
occurring with probability ε on the right side after coupling
but before UT (i.e., just before decoding). If the error W1

grows to have a size S after UT is applied, one estimates
that it decreases the teleportation fidelity by an amount
1 − F ∼ εS=N, proportional to the probability that W1 has
support on the teleported qubit after time evolution. If we
sum over such errors on all N qubits, we have 1 − F ∼ εS.
As a second example, consider a local error W2,

occurring with probability ε on the left side simultaneously
with state insertion (e.g., a damaged TFD state in Fig. 1). In
effect, this error shifts the correlator operators [Eq. (2)],
Q → Q ⊗ W2; following the arguments in Sec. VIII, one
then requires that the sizes add for teleportation to succeed,
S½QW2� ¼ S½Q� þ S½W2�. In a 1D short-range system

(Sec. VIII B), this condition holds if and only if the light
cones of W2 and Q do not overlap. For OðεNÞ randomly
distributed errors, we expect this to hold as long as the
spacing between errors, 1=ε, is much larger than the size of
the light cone, εS ≪ 1. A similar scaling holds in 0D
(Sec. VIII C). Here, we expect size addition to hold as long
as the size of the total error (corresponding to a time-
evolved product of ∼εN initially local operators) is much
smaller than the system size N. Once again, this requires
εNS ≪ N, or εS ≪ 1.
The two previous examples are straightforwardly gen-

eralized to errors that accumulate continuously throughout
time evolution. To do so, we replace the error probability
with an error rate ε (now with units of inverse time). The
total effect of the error is then given by the integral of the
error rate multiplied by the size over time, ε

R
t
0 dt

0Sðt0Þ
[131]. In one-dimensional systems evolved up to the
scrambling time, i.e., S ∼ Jt and ts ∼ N=J for a local
interaction strength J, we thus estimate a total error
ε
R ts
0 dt0Jt0 ∼ εSts ∼ εN2=J, in agreement with our rough

estimates in Secs. X D and X E.
Finally, we consider a particular form of error that

may be relevant for analog time evolution: mismatches
between the evolution times of U, U�, and UT . We denote
these three evolution times as t1, t2, and t3, respectively,
and their mismatches as Δt12 ¼ t2 − t1 and Δt13 ¼ t3 − t1.
We can characterize the mismatches’ effect on the tele-
portation fidelity using the correlators CQðt1; t2; t3Þ ¼
hU�

rðt3ÞQrUT
r ðt3ÞeigVUlðt1ÞQlU

†
l ðt2Þi (Sec. IV). From this,

we anticipate that the protocol is relatively insensitive to
mismatches between t3 and t1, t2: Teleportation succeeds
as long as the mismatch is small compared to the local
interaction strength J, i.e., JΔt13 ≲ 1. To estimate this, we
set g ¼ 0 and t1 ¼ t2, in which case the correlator magni-
tude is given by an autocorrelation function CQ ¼
hQðt1ÞQðt3Þi ¼ GðΔt13Þ. The teleportation fidelity is
bounded above by this expression, which decays on a
timescale of ∼1=J. On the other hand, teleportation is more
strongly sensitive to the mismatch between t1 and t2. To
estimate this, we treat the difference in time evolution
between U and U� as a product of ∼ðJΔt12Þ2N local errors
occurring simultaneous with state insertion [to motivate this
scaling, note that one can approximate UðΔt12Þ as a
product of ∼N local unitaries for small Δt12, and we
expect the error to be an even function of Δt12]. Following
our previous analysis, teleportation is successful as long as
SðJΔt12Þ2N ≪ N, or SðJΔt12Þ2 ≪ 1.

G. Directly measuring the size distribution

In Sec. X A, we discuss that the time profile of the
teleportation fidelity reveals important features of the
operators’ size distributions, including the average operator
size and the size width. We now demonstrate that a more
precise characterization of the operator size distribution
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can be obtained by sweeping the coupling strength g at a
fixed time t.
For simplicity, we restrict to infinite temperature [133]

and the coupling Vs in Eq. (27), which precisely measures
the operator size. In this case, the two-sided correlator
[Eq. (2)] is equal to the characteristic function ΦSðgÞ of
the size:

CQðtÞ ¼ eig
X
S

PðSÞe−igS=N ≡ eigΦSðgÞ; ð106Þ

from which the size distribution can be obtained by a
Fourier transform in g.
More precisely, to measure the real part of the character-

istic function (i.e., the teleportation correlator), we perform
the teleportation protocol with two small modifications:
(i) We replace state insertion with the specific projection
operator ð1þQÞ=2, and (ii) we measure the expectation
value of Q applied to the right side, instead of the
teleportation fidelity. This yields the quantity

hEPRj 1þQlðtÞ
2

e−igVsQrð−tÞeigVs
1þQlðtÞ

2
jEPRi

¼ Re½hEPRje−igVsQrð−tÞeigVsQlðtÞjEPRi�
¼ Re½φSðgÞ�; ð107Þ

where in the second line we use that the “diagonal” terms
between the two copies of ð1þQÞ=2 vanish at infinite
temperature. The imaginary part of the characteristic
function can be obtained similarly, by replacing state
insertion ð1þQÞ=2 with an application of the unitary
operator ð1þ iQÞ= ffiffiffi

2
p

. Analogous to Fig. 6, both of these
measurement schemes can be adapted into one-sided
protocols using Eq. (9) whenever the coupling V is classical
(i.e., composed of terms Oi;lO�

i;r, where fOig mutually
commute). While such couplings do not measure the exact
size distribution, we expect their behavior to be similar in
most cases (Sec. VA).
For completeness, we also note an alternate method to

measure the size distribution: One prepares the state
QlðtÞjEPRi and directly measures the two-sided coupling
Vs. The probability distribution of the measurement
results gives the size distribution [see the discussion below
Eq. (27)].
Let us now compare these two protocols to other

schemes for characterizing the size distribution of oper-
ators. First, we recall that a sum of local OTOCs yields the
average operator size [Eq. (31)]. Hence, many existing
protocols for measuring local OTOCs [134,135] can be
straightforwardly adapted to measuring the average size.
Higher-order moments of the size distribution can similarly
be obtained from local OTOCs, using Eq. (27):

hð1 − S=NÞni ¼ hVn
s iQ

¼ 1

Nn

X
Pi1

;…;Pin

tr

�
QðtÞ

Yn
k¼1

PikQ
†ðtÞ

Y1
k¼n

P†
ik

�
; ð108Þ

where the sum is over every possible combination of n
single-qubit Pauli operators Pi1 ;…; Pin . Based on this
approach, however, the number of measurements required
to determine the nth moment scales as OðNnÞ. In certain
situations, this scaling may be reduced through sampling,
though this depends on the nature of the size distribution
and the desired degree of precision. Furthermore, recon-
structing the full profile of the size distribution from a finite
number of moments is generally a difficult numerical
task [136]. In contrast to these limitations, our proposal
directly yields the full size distribution and can recover its
moments with a number of measurements independent of
the system size [137].
We can also compare our proposal to an independent

protocol for measuring the size distribution introduced
in Ref. [28]. The protocol of Ref. [28] is experimentally
simpler than our own and, in particular, involves only a
single application of time evolution byU (and no backward
time evolution). However, this simplicity comes at a cost:
Resolving high-size components of the distribution
requires a number of measurements that scale exponentially
with size.

XI. OUTLOOK

In this work, we develop a unified framework for
understanding many-body teleportation from the perspec-
tive of operator growth under scrambling dynamics. The
unifying concept within this framework is the size distri-
bution of time-evolved operators [15,16,26–28]: These
form the backbone of peaked-size teleportation and provide
a more fine-grained measure of operator growth compared
to the average operator size (as given by the expectation
value of OTOCs).
Our work suggests several future directions for apply-

ing and building upon this framework. First, while we
have studied the size distributions in 0D and ≥ 1D RUCs,
it would be interesting to extend this analysis to a
multitude of other physical systems, where one expects
to find qualitatively distinct behavior. These include long-
range interacting systems [138,139], interacting and non-
interacting integrable systems [28], ≥ 1D systems with a
large on-site Hilbert space [140], 0D systems with sparse
couplings [141], and systems with conserved quan-
tities [59].
Another set of open questions concerns the notion

of operator size at finite temperature. In systems with
peaked-size distributions, we find that the phase of the two-
sided teleportation correlator is directly proportional to the
conventional definition of operator size [27]. Surprisingly,
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we observe that this relationship does not hold in the finite-
temperature SYK model; rather, the phase is given by the
real part of the two-sided OTOC. Unlike the conventional
size, this OTOC is not UV divergent and is thus expected to
be inherently independent of the microscopic Hilbert space.
Recent work shows that its real part isolates an incoherent
component of operator spreading in large-N models [33];
further work is needed to establish and expand this
framework. Related to these considerations, one may hope
to better understand the bulk analog of operator size in
theories dual to gravity with strong stringy effects. While
we have seen that stringy effects can mimic peaked-size
teleportation, developing a physical interpretation of this
correspondence would be extremely exciting.
Third, we show that a promising application of the

teleportation protocol is to distinguish between different
classes of scrambling dynamics. In particular, we focus on
two classes of scramblers—generic thermalizing systems
and those with gravitational duals—and demonstrate that
the key distinction between them is their teleportation
fidelity at low temperatures. It is intriguing to ask whether
the fidelity increase associated with gravitational telepor-
tation may also occur in other systems, without a gravi-
tational dual. For instance, recently, the teleportation
correlator magnitude was observed to increase slightly
above Gβ in nonlocal random Hamiltonian systems
[15,16]; generalizing this to other physical models would
be of tremendous interest.
One may also wonder what role an extensive low-

temperature entropy—a key feature of the SYK model
[25]—plays in the teleportation process. In particular, how
well can systems with extensive low-temperature entropy
but no known gravitational dual teleport [142,143]?
We conjecture that an extensive entropy would allow
one to locally encode each qubit into low-energy degrees
of freedom [i.e., operators with an Oð1Þ two-point func-
tion], since one would require only Oð1Þ qubits on the left
side of the TFD in order to have one qubit of mutual
information with the right side. Such an encoding would
allow low-temperature teleportation with perfect fidelity if
operator sizes were peaked, naturally motivating the study
of operator size distributions in such models.
Finally, we discuss the relation between our results on

the TW protocol and the eternal traversable wormhole
(ETW) introduced in Ref. [10]. In the latter, the coupling V
has an Oð1Þ coefficient and, moreover, is applied
simultaneously with single-sided Hamiltonian evolution
(i.e., the full system evolves under a Hamiltonian
Hl þHr þ g

P
j Oj;lO�

j;r). Under these conditions,
Refs. [10,144] find that the ETW teleportation fidelity
oscillates in time under gravitational dynamics, indicating
that information is transmitted back and forth between the
two boundaries. Intriguingly, unlike the TW protocol, the
ETW oscillations occur at a timescale given by the
single-sided thermalization time (∼β, the inverse effective

temperature) and not the scrambling time. Developing a
microscopic understanding of the ETW in terms of operator
spreading, as well as exploring analogous physics in more
generic many-body systems, remains an exciting open
direction.

The code used for our numerical simulations is available
on the Zenodo public database [145]. For the exact
dynamical simulations, we utilize the dynamite PYTHON

front end [106], which supports a matrix-free implementa-
tion of Krylov subspace methods based on the PETSc and
SLEPc packages.
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APPENDIX A: PRECISE BOUND FOR
THE PEAKED-SIZE REGIME

In this appendix, we provide a precise mathematical
bound guaranteeing that the teleportation correlator obeys
the peaked-size prediction [Eq. (32), Sec. V B] when the
size distribution is sufficiently tightly peaked. We apply
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this bound to two examples where the size distribution is
known exactly: late times in all scrambling systems
(Sec. VII) and the large-q SYK model (Secs. VIII D and
IX C). Notably, in the latter, we find that our bound applies
only at infinite temperature, despite the profile of the size
distribution (e.g., its ratio of size width to average size)
behaving similarly at all temperatures. The discrepancy
arises instead, because the correlator magnitude ðGβÞp
decreases exponentially in the encoding size p at all finite
temperatures.

1. Precise bound

As in the main text, we decompose a time-evolved finite-
temperature operator into a sum of Pauli strings:

QAðtÞρ1=2 ¼
X
R

cRðtÞS: ðA1Þ

In this basis, for qubit systems, the correlator takes the form

CQ ¼ hTFDjQ̃†
A;rð−tÞeigVQA;lðtÞjTFDi

¼ eigþiπS½QAðt¼0Þ�X
R

e−iηdgS½R�=Nc2RðtÞ

¼ eigþiπS½QAðt¼0Þ�X
n

eiηdgn=NfðnÞ; ðA2Þ

where again Q̃†
A;r ¼ DQ†

A;rD
† for the decoding

operation D ¼ Y ⊗ � � � ⊗ Y and we use hTFDjQ̃†
A;rð−tÞ ¼

eiπS½QA�hEPRjQA;lðtÞρ1=2 for qubit Pauli operators QA.
Here, we define the winding size distribution [15,16]

fðnÞ≡ X
S∶S½R�¼n

c2RðtÞ: ðA3Þ

At finite temperature, this size wave function is distinct
from the size distribution:

PðnÞ≡ X
S∶S½R�¼n

jcRðtÞj2; ðA4Þ

which is a real, normalized probability distribution probed
by the one-sided correlator [27]

hTFDjQ†
A;lðtÞeigVQA;lðtÞjTFDi ¼ eig

X
R

e−iηdgS½R�=N jcRj2ðtÞ

¼
X
n

eiηdgn=NPðnÞ: ðA5Þ

Nevertheless, the size distribution bounds the size wave
function magnitude via the triangle inequality:

jfðnÞj ≤ PðnÞ; ðA6Þ

with equality achieved when all Pauli operators of size n
contribute the same phase to fðnÞ.
The average size and size variance are easily found from

the size distribution as

S ¼
Z

∞

0

dnnPðnÞ; δS2 þ S2 ¼
Z

∞

0

dnn2PðnÞ; ðA7Þ

where we work in the continuum limit, replacing sums over
the size by integrals for simplicity. We now define the
asymptotic size width with error ε as the minimal widthWε

about the average size such that

1 −
Z

SþWε

S−Wε

dnPðnÞ ≤ ε; ðA8Þ

i.e., a fraction 1 − ε of the size distribution’s support
is contained in the interval I ¼ ½S −Wε;S þWε� [the
lower limit of the integral should be bounded by zero;
for simpler notation, we deal with this by instead defining
PðnÞ ¼ fðnÞ ¼ 0 for n < 0]. We can now separate the
correlator into two pieces, one arising from sizes in the
interval I and the other from the interval’s complement
Ī ¼ ½−∞;S −Wε� ∪ ½S þWε;∞�:

CQ ¼
Z
I
dnfðnÞeiηdgn=N þ R; ðA9Þ

where the remainder R ¼ R
Ī dnfðnÞeiηdgn=N is strictly

smaller than ε:

jRj ¼
				
Z
Ī
dnfðnÞeiηdgn=N

				
≤
Z
Ī
dnjfðnÞeiηdgn=Nj

≤
Z
Ī
dnjPðnÞj

≤ ε: ðA10Þ

Peaked-size teleportation occurs in the regime where
gWε=N ≪ 1. In this limit, we can expand

eiηdgn=N ¼ eiηdgS=N ½1þ EðnÞ�; ðA11Þ

where the deviation for n ∈ I is bounded by

jEðnÞj ≤ maxn∈I j1 − eiηdgðn−SÞ=N j ¼ j sinðηdgWε=NÞj;
ðA12Þ

which holds as long as gWε=N ≤ π=2. We then have

THOMAS SCHUSTER et al. PHYS. REV. X 12, 031013 (2022)

031013-38



CQ ¼
Z
I
dnfðnÞeiηdgS=N ½1þ EðnÞ� þ R

¼ eiηdgS=NGβðQAÞ þ Rþ R0 þ R00; ðA13Þ

where GβðQAÞ ¼
R∞
0 dnfðnÞ ¼ trðQ†

Aρ
1=2QAρ

1=2Þ is the
imaginary time two-point function, the error R0 ¼
eigS=N

R
I dnfðnÞEðnÞ is bounded by

jR0j ¼
				
Z
I
dnfðnÞEðnÞ

				
≤
Z
I
dnjfðnÞjjEðnÞj

≤ j sinðηdgWε=NÞj
Z
I
dnjfðnÞj

≤ j sinðηdgWε=NÞj; ðA14Þ

and the second error R00 ¼ GβðQAÞ −
R
I dnfðnÞ is

bounded by

jR00j ¼ jGβðQAÞ−
Z
I
dnfðnÞj ¼

				
Z
Ī
dnfðnÞ

				≤ ε: ðA15Þ

We therefore conclude that, whenever ηdgWε=N ≤ π=2, the
deviation of CQ from the peaked-size value is controlled by
the upper bound

jCQ − eiηdgS=NGβðQAÞj ≤ 2εþ j sinðηdgWε=NÞj≡ B:

ðA16Þ

Practically speaking, the lowest value of g for successful
peaked-size teleportation is ηdgS=N ¼ π. Therefore, for a
given size distribution, we can guarantee that peaked-size
teleportation is possible if we find ε such that B ≪ GβðQAÞ;
i.e., the error in the correlator is small compared to the
correlator magnitude.

2. Application to late times

We illustrate this with some examples, in the few
cases where we can exactly solve for operators’ full size
distribution. First, consider a thermalized system at late
times, which we approximate by setting the size distribu-
tion of QAðtÞ to be that of a random Pauli string. For large
n, N is a Gaussian distribution with mean S ¼ 3N=4 and
variance δS2 ¼ 3N=16:

PðnÞ ¼ ð3=4Þnð1=4ÞN−n ≈
1ffiffiffiffiffiffi
2π

p
δS

exp ½−ðn − SÞ2=2δS2�:

ðA17Þ

We, therefore, have

1 −
Z

SþWε

S−Wε

dnPðnÞ ¼ 2erfc

�
Wεffiffiffi
2

p
δS

�
¼ ε: ðA18Þ

The error function decays exponentially in its argument,
so even for exponentially small ε we require only Wε ¼
AδS for some constant A ∼Oð1Þ. Setting g equal to its
minimal value, ηdgS=N ¼ π, we have both ε ≪ 1 and
j sinðηdgWε=NÞj ≈ AδS=S ∼ 1=

ffiffiffiffi
N

p
≪ 1, and so peaked-

size teleportation is guaranteed.

3. Application to the large-q SYK model

We can also use this method to guarantee peaked-
size teleportation in the large-q SYK model at infinite
temperature.
We begin by writing down the size distribution for

the large-q SYK model in detail, quoting the results of
Ref. [27]. The generating function for the size
distribution is

X
n

PðnÞe−μn ¼ e−μp

½1þ ð1 − e−μqÞ sinh2 Jt�2p=q

¼
X
n

Δn

n!
xnð1 − xÞΔe−μðqnþpÞ; ðA19Þ

where we define

Δn ≡ ΓðΔþ nÞ
ΓðΔÞ ; x≡ sinh2Jt

1þ sinh2Jt
; Δ≡ 2p=q: ðA20Þ

From this, we can identify the size distribution:

Pðqnþ pÞ ¼ Δn

n!
xnð1 − xÞΔ: ðA21Þ

The size and size width are, respectively,

S ¼ n̄ ¼
X
n

n
Δn

n!
xnð1 − xÞΔ ¼ Δx

1 − x
;

δS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̄2 − n̄2

p
¼

ffiffiffiffiffiffi
Δx

p

1 − x
: ðA22Þ

Therefore, the ratio of size width to average size is

δS=S ¼
ffiffiffiffi
x
Δ

r
1

1þ x
; ðA23Þ

which approaches zero when p → ∞ (Δ → ∞).
To apply the upper bound Eq. (A16), we need to

integrate (i.e., sum) the tail of the size distribution in
order to compute its asymptotic width [Eq. (A8)]. In this
example, the discrete tail can be summed explicitly, and we
define
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IðkÞ≡X∞
n¼k

Pðqkþ pÞ ¼
X∞
n¼k

Δn

n!
xnð1 − xÞΔ ¼ Bxðk;ΔÞ

Bðk;ΔÞ ;

ðA24Þ

where Bxða; bÞ and Bða; bÞ are the incomplete and ordinary
beta function, respectively. Let us take k ¼ n̄ð1� ζÞ for
some small ζ representing the asymptotic width

Wε ¼ n̄ζq: ðA25Þ

This width corresponds to an error

ε ¼ 1 − I½n̄ð1 − ζÞ� þ I½n̄ð1þ ζÞ�: ðA26Þ

Taking gS=N ¼ π, the upper bound is

B ¼ 2f1 − I½n̄ð1 − ζÞ� þ I½n̄ð1þ ζÞ�g þ sin
2πζx
1þ x

¼ 2

�
1 −

BxðΔxð1−ζÞ1−x ;ΔÞ
BðΔxð1−ζÞ

1−x ;ΔÞ
þ BxðΔxð1þζÞ

1−x ;ΔÞ
BðΔxð1þζÞ

1−x ;ΔÞ

�
þ sin

2πζx
1þ x

:

ðA27Þ

At infinite temperature GβðQAÞ ¼ 1, we need to show that
the minimum of B tends to zero when Δ → ∞.
For early time sinh Jt ∼Oð1Þ, 1 − x is an order 1

number, and we take the Δ → ∞ limit to get

BxðΔxð1−ζÞ1−x ;ΔÞ
BðΔxð1−ζÞ

1−x ;ΔÞ
→ 1;

BxðΔxð1þζÞ
1−x ;ΔÞ

BðΔxð1þζÞ
1−x ;ΔÞ

→ 0: ðA28Þ

The bound becomes

B → sin
2πζx
1þ x

: ðA29Þ

This basically means that the integrated probability
between n̄ð1 − ζÞ and n̄ð1þ ζÞ for any finite ζ is 1. One
can thus take ζ → 0 with speed slower than 1=Δ → 0 in
order to have the bound vanish. This computation applies
for x ∈ ð0; 1Þ, which means that the peaked size always
holds for early time. This is physically reasonable, as the
operator has not yet been scrambled extensively. However,
since the size is small at such early times, in order for
teleportation to work we must choose g ∼ N.
For intermediate times, such that sinh2 Jt ∼ N and

Δ ≪ N ∼ 1=ð1 − xÞ, we must take the x → 1 limit first.
Using the fact that

BxðΔxð1−ζÞ1−x ;ΔÞ
BðΔxð1−ζÞ

1−x ;ΔÞ
¼ 1−

ð1− xÞΔxΔxð1−ζÞ
1−x ΓðΔð1−xζÞ

1−x Þ
ΓðΔxð1−ζÞ

1−x ÞΓð1þΔÞ

×F

�
1;
Δð1− xζÞ
1− x

;Δþ 1;1− x

�
; ðA30Þ

whereF is the Gauss hypergeometric function, in the x → 1
limit the right portion of Eq. (A30) tends to

F

�
1;
Δð1− xζÞ
1− x

;Δþ 1; 1− x

�
→ 1F1½1;Δþ 1;Δð1− ζÞ�

¼ Δ1−ΔeΔð1−ζÞð1− ζÞ−ΔfΓðΔÞ− Γ½Δ;Δð1− ζÞ�g;
ðA31Þ

where Γðx; aÞ is an incomplete gamma function.
Meanwhile, the left portion of the second term of
Eq. (A30) gives

ð1 − xÞΔx½Δxð1−ζÞ�=ð1−xÞΓðΔð1−xζÞ
1−x Þ

ΓðΔxð1−ζÞ
1−x ÞΓð1þ ΔÞ

→
ΔΔð1 − ζÞΔe−Δð1−ζÞ

Γð1þ ΔÞ
ðA32Þ

under x → 1. Combining the two, we have

lim
x→1

BxðΔxð1−ζÞ1−x ;ΔÞ
BðΔxð1−ζÞ

1−x ;ΔÞ
¼ Γ½Δ;Δð1 − ζÞ�

ΓðΔÞ : ðA33Þ

It follows that the upper bound is

B ¼ 2

�
1 −

Γ½Δ;Δð1 − ζÞ�
ΓðΔÞ þ Γ½Δ;Δð1þ ζÞ�

ΓðΔÞ
�
þ sin πζ:

ðA34Þ

This function has a unique minimum for ζ ∈ ½0; 1=2�, and
this minimum decreases as Δ increases. Taking the deriva-
tive with respect to ζ, we get

∂ζB ¼ π cos πζ

−
2ΔΔ

ΓðΔÞ ½ð1þ ζÞΔ−1e−Δð1þζÞ þ ð1 − ζÞΔ−1e−Δð1−ζÞ�

→ π cos πζ −
ffiffiffiffiffiffi
2Δ
π

r
½ð1þ ζÞΔ−1e−Δζ þ ð1 − ζÞΔ−1eΔζ�;

ðA35Þ

where in the second step we take the large Δ limit. Solving
∂ζB ¼ 0 in this limit, we find the minimum at
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ζ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Δ
log

8Δ
π3

r
→ 0; ðA36Þ

which, in turn, gives the limit value of B to be zero. This
proves that, at infinite temperature, teleportation exactly
matches the peaked-size prediction for both early and
intermediate times. For late times t ≫ ð1=2JÞ logN, the
size distribution above breaks down, as can be seen since
PðnÞ is dominated by some n > N, which is unphysical
since N is the total number of fermions.
In contrast, we can also show that the above bound does

not apply at low temperatures for large-q SYK, as expected
from the main text. At low temperature, the upper bound B
needs to be much smaller than the two-sided correlation
function GβðQAÞ ∼ ðβJÞ−2Δ in order to guarantee peaked-
size teleportation. The low-temperature size distribution is
essentially the same as at infinite temperature, requiring
only the replacement [27]

x →
sinh2 πt=β

ðπ=βJÞ2 þ sinh2 πt=β
∈ ½0; 1� ðA37Þ

and adding e−μNδβ to the distribution, which shifts the initial
size by a constant amount Nδβ (accounting for the size of
the thermal density matrix [27]). Following a similar
computation to above, one can show that B still asymptotes
to zero but now with a slower speed than GβðQAÞ.
For example, in the early time and large Δ limits,
B ∼ exp½−ΔCðx; ζÞ�= ffiffiffiffi

Δ
p

, where Cðx; ζÞ is of the order
of 1, while GβðQAÞ ∼ exp½−2Δ logðβJÞ� is exponentially
smaller for large βJ. Therefore, the upper bound B
fails to guarantee peaked-size teleportation. This is
consistent with the fact that the correlation function
CQðtÞ in Eq. (86) in low temperature is far from being a
pure phase.

APPENDIX B: THE HAYDEN-PRESKILL
RECOVERY PROTOCOL

In this appendix, we review the HPR protocol following
Refs. [11,12] and derive its equivalence to the TW protocol
in the case of infinite-temperature teleportation of a single
qubit (introduced in Sec. VII B). This single-qubit variant
of the HPR protocol is experimentally implemented in
Ref. [13], although an explicit derivation of its quantum
circuit is not provided.
There are two variants of the HPR protocol: a probabi-

listic variant, which teleports successfully only with some
finite probability, and a deterministic variant, which uses an
analog of Grover’s search algorithm and succeeds with unit
probability but involves a more complex decoding oper-
ation. Both protocols take the general form

ðB1Þ

shown for teleportation of a quantum state jψi (the gener-
alization to EPR teleportation is straightforward). We now
outline the interpretation of each aspect of the above protocol
in the context of the Hayden-Preskill thought experiment. For
consistency with past literature, we use different subsystem
labels than introduced in the main text—most notably,
subsystem D now denotes the coupled qubits, and subsystem
C denotes its complement. SubsystemB represents an eternal
black hole that is maximally entangled with its past Hawking
radiation subsystem B0, as represented by a dimension dB ¼
d0B EPR pair between the two subsystems. Subsystem A
contains the initial state jψi of an observerAlice’s diary.Upon
falling into the black hole, the diary’s information is
scrambled by the unitary time evolution U acting on the left
subsystem l≡ AB ¼ CD. Far from destroying the informa-
tion of Alice’s diary, scrambling by U, in fact, allows an
outside observer Bob to decode the diary if he has access to
any few qubits of new Hawking radiation D, along with the
past Hawking radiation B0 and an ancillary EPR pair between
A0 and R0, where d0A ¼ dA. This decoding relies on OTOCs
between subsystemsAandDbeingminimal, a general feature
of thermalizing time evolution after the scrambling time. We
describe each of the decoding protocols of Ref. [11] in
detail below.

1. Probabilistic decoding: Intuition

Although our main focus is on the deterministic tele-
portation protocol, we review the probabilistic protocol
here for completeness and as a convenient platform to
introduce the intuition connecting operator spreading to the
success of teleportation. The decoding operation of the
probabilistic HPR protocol consists of projection onto EPR
pairs on subsystems D and D0:

ðB2Þ
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Perfect teleportation requires dD ≥ dA and succeeds with
probability 1=d2A when U is maximal scrambling. The
nonunity success probability signifies that the decoding
protocol becomes exponentially more complex with the
number of qubits to be teleported.
To provide intuition for the protocol’s success, we

analyze the action of EPR projection on the initial states
QA;lðtÞjEPRi. We restrict to infinite temperature, i.e., EPR
pairs in place of the TFD state, in keeping with the original
introduction of the HPR protocol in Ref. [11]. We write
QAðtÞ as a sum of Pauli strings S on the entire system:

QAðtÞ ¼
X
R

cRðtÞS: ðB3Þ

Denoting the EPR projector on subsystems D and D0 as
PEPR;D and writing each Pauli string as a tensor product
R ¼ RC ⊗ RD of Paulis on subsystems D and C, we have

PEPR;DRljEPRi ¼ δRD;1RljEPRi; ðB4Þ

since hEPRD;D0 jSD;ljEPRD;D0 i ¼ trDðRDÞ=dD ¼ δRD;1.
Perfect teleportation is achieved when all input Pauli
operators on subsystem A have spread to subsystem D,
such that every Pauli string S composing QAðtÞ has
nonidentity support on subsystem D, for all nonidentity
QA. In this situation, the EPR projector has eigenvalue 1
on the thermofield double state and eigenvalue 0 in all
perturbed states:

PEPR;DjEPRi ¼ jEPRi; PEPR;DQA;lðtÞjEPRi ¼ 0: ðB5Þ

However, this is no different than projecting onto EPR pairs
between subsystems A and A0 before time evolution by
UlU�

r . This projection would, of course, have an action

PEPRjEPRi ¼ jEPRi; PEPRQA;ljEPRi ¼ trðQAÞ ¼ 0:

ðB6Þ

Expressed diagrammatically, this equivalence is

ðB7Þ

for all initial states ψ . However, performing EPR projection
between subsystems A and A0 before time evolution is
precisely the standard quantum teleportation protocol,
applied to subsystems A, A0, and R0. The scrambling
dynamics of U allow one to perform this teleportation
via coupling any subsystem D of the system’s qubits.

2. Deterministic decoding

After scrambling, the probability of successful EPR
projection on subsystem D, Oð1=d2AÞ, is exponentially
small in the size of subsystem A, the state to be teleported.
In contrast to standard teleportation, nonsuccessful EPR
projection (i.e., projection onto a different maximally
entangled state, not jEPRD;D0 i) cannot be corrected
via an additional decoding operation. This exponential
decrease in success probability is overcome in the deter-
ministic HPR protocol, which uses an analog of Grover’s
search algorithm to search for an EPR pair between

subsystems D and D0. The protocol requires OðdAÞ steps
for completion, again exponential in the number of qubits
to be teleported (albeit with half the exponent of the
probabilistic decoding).
Grover’s search algorithm involves two operations: The

first applies a minus sign to the state one is searching for,
and the second applies a minus sign to the system’s initial
state. We search for an EPR pair on subsystem D, so for the
first step we apply WD ≡ 1–2PEPR;D ¼ eiπPEPR;D :

ðB8Þ

In the second step, we flip the sign of the initial state (the
time-evolved EPR pair between A0 and the reference qubit
R0) by applying W̃A ≡U�WAUT :
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ðB9Þ

whereWA ¼ 1–2PEPR;A acts on A0 and R0 to apply a minus
sign if the two are in an EPR pair.
The entire Grover protocol is identical to the probabi-

listic protocol but with EPR measurement replaced by
repeated applications of the two above steps until the EPR
pair is found. Displaying, for instance, only the first two
iterations,

ðB10Þ

After OðdAÞ iterations, the state jψi is found on subsys-
tem R0.

3. Single-qubit deterministic decoding

Two important simplifications occur to the deterministic
HPR protocol in the case of single-qubit teleportation

dA ¼ 2. The first is that the Grover operator WA is equal
to a SWAP operator composed with single-qubit Y operations.
To see this, we expand WA in terms of Pauli operators:

WA ¼ 1 − 2PEPR;A

¼ 1 −
2

d2A

X
PA

PA;lP�
A;r

¼ 1

2
−
1

2
XlXr þ

1

2
YlYr −

1

2
ZlZr

¼ 1

2
Yl½1þ XlXr þ YlYr þ ZlZr�Yl

¼ YlðSWAPÞYl

¼ YlYrðSWAPÞ; ðB11Þ
where in the final equality we use YrSWAP ¼ SWAPYl and
in the second equality we use the Pauli decomposition for the
swap operator between two dA-dimensional boson systems:

SWAP ¼ 1

dA

X
PA

PA;lP
†
A;r: ðB12Þ

Expressed graphically, we have

ðB13Þ

The second simplification is that Grover’s search for an
EPR pair D, D0 succeeds after only one step; this is a
general result for Grover’s search in a d2D ¼ 4-dimensional
database [6]. It implies that the Grover protocol can teleport
one qubit through the circuit:

ðB14Þ

If we care about only the fidelity of the teleported state, we
can neglect the final application of U�. Performing the
SWAP gate explicitly and neglecting the action of the final Y
operator on R0, we have
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ðB15Þ

This exact circuit has been performed in a trapped ion
experiment [13]. We now make a small cosmetic adjust-
ment and move the reference qubit R0 from the far right to
the far left:

ðB16Þ

Sliding U� to the left side using Eq. (9), we have

ðB17Þ

This is the same circuit appearing the teleportation
protocol of Refs. [15,16], modulo the precise form of
the coupling. In the case of EPR teleportation, we instead
have

ðB18Þ

where subsystems R0 and A0 are in an EPR pair
when teleportation is successful. This is the circuit appear-
ing in Ref. [17], modulo the form of the coupling as well
as the Y decoding operation. The lack of a Y decoding
operation for fermionic teleportation is discussed in
Appendix G.

APPENDIX C: STATE TELEPORTATION
FIDELITY

In Sec. VI C, we provide a detailed derivation of
the teleportation fidelity’s relation to the teleportation
correlators in the case where one teleports one-half of an
EPR pair. This allows us to lower bound the fidelity in
Eq. (42) and calculate the peaked-size fidelity in Eq. (44).
In this appendix, we do the same for teleportation of a
quantum state, as shown in Fig. 1(a) and outlined in
Sec. III. Our results provide a rigorous foundation for
the arguments in Sec. IV, in particular, the insertion of the
state hϕj and the subsequent replacement of jψihϕj with a
Pauli operator QA.
We begin with the insertion of hϕj into the

protocol Eq. (16). We do so by inserting the resolution
of the identity ð1=dAÞ

P
jϕi jϕihϕj ¼ 1 into the ancillary

qubit leg of the diagram for the state teleportation fidelity.
We find
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ðC1Þ

Plugging Eq. (18) into this diagram provides unit teleportation fidelity, as described in the main text. When teleportation is
successful, each of the dA terms of the sum must succeed individually, so the right input state jϕi does not affect the success
of the teleportation.
As with EPR distillation [Eq. (40)], we can relate the state teleportation fidelity to correlators of Pauli operators by

decomposing the SWAP operator. Diagramatically,

ðC2Þ
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and, in equation form,

Fψ ¼ 1

d2A

X
P1;P2

hψ jP2P
†
1jψi · hTFDjP†

2;lðtÞe−igV jψihψ jrð−tÞeigVP1;lðtÞjTFDi: ðC3Þ

When the correlators are maximal with phases eiθP , i.e., when eigVP1;lðtÞjTFDi ¼ eiθPP1;rð−tÞjTFDi, we can simplify this
expression as

Fψ ≈
1

d2A

X
P1;P2

hψ jP2P
†
1jψi · hTFDjP†

2;rð−tÞjψihψirð−tÞP1;rð−tÞjTFDi

¼ 1

d2A

X
P1;P2

eiðθP1−θP2 Þ · hψ jP2P
†
1jψi · trðρP†

2jψihψ jP1Þ

¼ 1

d2A

X
P1;P2

eiðθP1−θP2 Þ · trðP†
1jψihψ jP2Þ · trðρP†

2jψihψ jP1Þ: ðC4Þ

As expected, when the phases eiθP are the same for all operators, this gives unit fidelity:

Fψ ¼ 1

d2A

X
P1;P2

trðP†
1jψihψ jP2Þ · trðρP†

2jψihψ jP1Þ

¼ 1

dA

X
P1

trðP†
1jψihψ jjψihψ jP1ρÞ

¼ trðjψihψ jÞtrðρÞ
¼ 1; ðC5Þ

using properties of Pauli operators as a 1-design [146]. Differing phases eiθP cause the terms in the sum to interfere with
each other, giving lower fidelity. At finite temperature, the fidelity of peaked-size teleportation is again limited. For instance,
if jψi is a single-qubit eigenstate of the Pauli Z operator, we have

FEPR ¼ 1

22

X
P1;P2

hψ jP2P
†
1jψi · hTFDjP†

2;lðtÞe−igV ½Yjψihψ jY�rð−tÞeigVP1;lðtÞjTFDi

¼ 1

22

X
P1;P2

hψ jP2P
†
1jψi · trðjψihψ jρ1=2P†

2P1ρ
1=2Þ

¼
X
P

hψ jP†jψi · trðjψihψ jρ1=2Pρ1=2Þ

¼ 2trðjψihψ jρ1=2jψihψ jρ1=2Þ

≈
1

2
tr½ð1þ ZÞρ1=2ð1þ ZÞρ1=2�

≈
1

2
þ 1

2
Gðt0 − tþ iβ=2Þ þ hZiβ; ðC6Þ

where hZiβ ¼ trðZρÞ, which averages to zero for different initial states jψi.

APPENDIX D: RYDBERG NUMERICAL
SIMULATIONS

For the numerical results shown in Figs. 7 and 8,

we simulate the full TW protocol with time evolution

generated by the analog Rydberg Hamiltonian [Eq. (104)].

In particular, we implement the one-sided version of state
teleportation, which is obtained by replacing the EPR
measurement in Fig. 6(b) with a measurement of a two-
qubit state jψi ⊗ jψ�i. The many-body unitary corre-
sponds to U ¼ e−iHt, where H is given in Eq. (104) with
Ωi ¼ 0.9, Δi ¼ −1.5, J0 ¼ 1, and open boundary
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conditions. The teleported state jψi is inserted in the middle
qubit, and the remaining K ¼ N − 1 qubits serve as
“measured” qubits, with Ôi ¼ Ẑi (see Sec. X B).
More explicitly, the numerical procedure is given as

follows: (i) Begin in a random initial state, jo1 � � � oNi;
(ii) evolve forward for time t under the Rydberg
Hamiltonian; (iii) apply the operator jϕihψ j onto the middle
qubit; (iv) evolve backward in time, apply V̂i ¼ eigoiẐi=K to
each of the K ¼ N − 1 measured qubits (where oi is
determined by the initial state), and evolve forward again;
(v) measure the projector jψihψi on the middle qubit.
We repeat this procedure for jϕi ∈ fj0i; j1ig [see Eq. (C2)]
and starting from ∼100 random initial states. Moreover,
to compute the average state fidelity, we average jψi
over all single-qubit states in a 2-design [13], i.e.,
jψi ∈ fj0i; j1i; ð1= ffiffiffi

2
p Þðj0i � j1iÞ; ð1= ffiffiffi

2
p Þðj0i � ij1igÞ.

Lastly, we note that the time evolution is implemented with
Krylov subspace methods, an iterative technique that is
amenable to parallelization and is more computationally
efficient than exact diagonalization [106,147].

APPENDIX E: RANDOM UNITARY
CIRCUIT NUMERICS

In this section, we provide additional details and
numerical data from our random unitary circuit simulations
(Secs. VIII B and VIII C).

1. Algorithm

Our goal for the RUC simulations is to compute the
Haar-averaged EPR fidelity and operator size distribution
for the circuit layouts shown in Fig. 2. Crucially, the
relevant diagrams for computing these quantities—Eq. (40)
for the EPR fidelity and Eq. (31) for the operator size
distribution—contain at most three copies of U and U†.
Together with the fact that Clifford unitaries form a
3-design for qubits, this implies that one can compute
the averaged quantities by replacing each Haar-random
gate with a random Clifford gate [66–68]. This dramatic
simplification is exploited in prior studies of operator
growth in random unitary circuits [30,62]; here, we adapt
these same techniques for computing the full size distri-
bution and the teleportation fidelity.
In more detail, our algorithm consists of the following

three ingredients. First, following a standard approach
[30,148], we represent an initial n-qubit Pauli operator
Q as a binary string v ¼ x1x2 � � � xnz1z2 � � � zn of length 2n:

Q ¼
Yn
i¼1

Qiðxi; ziÞ; ðE1Þ

where Qið0; 0Þ ¼ Ii, Qið1; 0Þ ¼ Xi, Qið0; 1Þ ¼ Zi, and
Qið1; 1Þ ¼ Yi denote individual Pauli operators within
the Pauli string. For example, the operator 1 ⊗ 1 ⊗ Z ⊗
1 ⊗ 1 is represented as x ¼ 00000 and z ¼ 00100.

Normally, one would also keep track of the overall phase
of Q, but for our purposes the phase is irrelevant and is
dropped in the above notation.
Second, we evolve Q under a random Clifford unitary U

to obtain QðtÞ ¼ UQU†. We consider the circuits shown in
Fig. 2, which are composed of random two-qubit Clifford
unitaries laid out in a “brick-layer” fashion. Each of the
two-qubit unitaries is sampled uniformly from the set of
two-qubit Clifford unitaries. While an algorithm exists to
perform this sampling directly [149], in practice we find it
more convenient to precompute and enumerate the entire
two-qubit Clifford set (which consists of 11 520 distinct
unitaries) [150]. In the binary notation, each two-qubit
Clifford unitary corresponds to a map which acts on the
relevant components v; i.e., a unitary with support on
the jth and kth qubits updates the values of ðxj; zj; xk; zkÞ.
The time complexity of applying the full circuit thus scales
linearly with the number of two-qubit gates and does not
otherwise depend on the number of qubits n. As a reference
point, simulating a 0D circuit until the scrambling timewith
108 qubits for a single realization takes approximately one
day on a standard single-core processor.
Third, we compute the average operator size distribution

and EPR fidelity of the time-evolved operators. For the
former, we simply count the size, i.e., number of noniden-
tity terms, of a time-evolved operator QðtÞ for a single-
circuit realization and determine the distribution of sizes
with respect to ∼103 circuit realizations. Depending on the
simulation, we initialize Q either with support on a single
site (i.e., p ¼ 1) or as a p-body operator. In either case, the
specific terms in Q (e.g., whether each site is initialized as
X, Y, or Z) is arbitrary, since the averaged quantities are
basis independent.
Computing the averaged EPR fidelity requires an addi-

tional average over the initial operators. In particular, for a
single-circuit realization U, we compute the EPR fidelity
using [Eq. (44)]

FEPR ¼
				 1

d2A

X
QA

eiθQA

				2; ðE2Þ

where

θQA
¼ ηdgSK½UQAU†�=K þ πS½QA� ðE3Þ

and ηd ≡ 1=ð1 − 1=d2Þ, as defined in Sec. V B. Note that
the first term in θQA

corresponds to the phase applied by
the coupling, while the second term accounts for minus
signs associated with transposition and decoding (see
Sec. VIII A). The sum in Eq. (E2) is over the complete
basis of Pauli operators in subsystem A. For single-qubit
teleportation, this consists of three nontrivial Pauli oper-
ators and the identity (for which θ ¼ 0), and the sum can be
performed explicitly. However, for teleporting many qubits,
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the number of terms quickly becomes intractable, and we
instead approximate the sum by sampling QA (e.g., ∼100
randomly selected operators). To compute the average EPR
fidelity, we repeat this procedure for ∼100 realizations of
U. Finally, we note that the coupling strength g enters the
fidelity calculation in a computationally efficient manner;
in particular, upon determining the distribution of sizes for
a particular circuit realization, we can compute the tele-
portation fidelity for arbitrary values of g “offline” with no
additional simulation cost.

2. Extended data for 1D and 2D RUCs

Size distribution.—The average size and size width for
time-evolved operators in 1D and 2D for various system
sizes are shown in Fig. 10. In each case, we apply periodic
boundary conditions and begin with a single-qubit operator.
These results match the functional forms predicted by the
KPZ universality class [Eqs. (56) and (57)] and allow us
to extract the growth parameters fαbulk; αboundary; βbulk;
βboundaryg ¼ f0.66; 0.70; 1.2; 4.5g.
Multiple qubits.—In Fig. 11, we present numerical

evidence to support our claim that multiple qubits can
be teleported in ≥ 1D short-range models if their operator
light cones are nonoverlapping (Sec. VIII B). In particular,
we simulate the teleportation of n ¼ 5 qubits that are
initially evenly spaced in a 1D RUC with periodic boun-
dary conditions. At early times (t < 1300, region I), we
confirm that high-fidelity teleportation is possible for a
wide range of coupling strengths, and, by measuring the
average operator size, we infer that during this time the
operator light cones have not overlapped. In contrast, after

the light cones have overlapped, we generally observe a
large suppression in the teleportation fidelity.
Interestingly, there is one noticeable exception

to this reasoning: When only adjacent light cones have
overlapped (i.e., 1300 < t < 2600, region II), high-fidelity
teleportation can still occur for specific values of g. This
situation corresponds to when the multiqubit size is a
multiple of 2πK=ηdg off from the size addition value,
e.g., S½Q1ðtÞQ2ðtÞ� ¼S½Q1ðtÞ�þS½Q1ðtÞ�−2πmðK=ηdgÞ,
where m is an integer value. Therefore, strictly speaking, it
is possible to satisfy the conditions for many-body tele-
portation without size addition; nevertheless, it is a non-
generic effect that requires finely tuned values of g and
evenly spaced input qubits.

3. Channel capacity for 0D RUCs

An important result of our numerical simulations is
substantiating the claim that 0D RUCs exhibit a channel
capacity that scales linearly with the number of coupled
qubits K. To this end, we first recall that our working
definition for the channel capacity is based on setting a
threshold for the per qubit fidelity. The most direct way to
compute this fidelity would be to take the nth root of the
many-body EPR fidelity; in practice, however, this
approach is numerically unstable for large n. Thus, we
instead consider a modified protocol for estimating the per
qubit fidelity where one attempts to send n qubits but
measures only the fidelity of one of the n qubits. At infinite
temperature and generalizing from one to m qubits, this
fidelity is given by

(a) (b)

FIG. 10. Extended data for average operator size and size width in 1D (a) and 2D (b) RUCs. The average size grows ballistically ∼td
(dashed line) and saturates at tscr ∼ L ∼ N1=d. The size width matches the predictions from the KPZ universality class (dashed lines) and
allows us to extract the prefactors in Eqs. (56) and (57). In particular, we determine αbulk and βbulk from the saturation values (light gray)
and αboundary and βboundary from the initial growth rate (dark gray).
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FðmÞ
EPR ¼ 1

d4A

X
Q1;Q2

hTFDjQ†
2;lðtÞe−igVQ̃m

2;rð−tÞQ̃m†
1;rð−tÞeigVQ1;lðtÞjTFDi · trðQu†

1 Qu
2Þ

¼ 1

d4md2u

X
Q1;Q2

eiðθQ1
−θQ2

ÞδQu
1
;Qu

2
; ðE4Þ

where Q ¼ Qm ⊗ Qu and dA ¼ dmdu, such that Qm acts on the measured qubit(s) and Qu acts on the unmeasured qubits.
This can be derived diagrammatically via

ðE5Þ

Hence, computing the per qubit fidelity Fð1Þ
EPR is nearly identical to computing the full many-body fidelity, except we sample

only over pairs of Pauli operators ðQ1; Q2Þ which are identical on every qubit except for one.
We next discuss how to determine the channel capacity from the teleportation fidelity. Specifically, we compute the

maximum number of qubits nmax that can be teleported above a certain teleportation fidelity, where we fix the number of
coupled qubits K and optimize over the evolution time t and the coupling strength g. We consider each of these parameters
in turn. First, when sweeping the evolution time and holding all other parameters fixed, the maximum fidelity occurs during

Region I Region II

Region III

(a) (b)

FIG. 11. Teleporting multiple qubits (n ¼ 5) in 1D, where the input qubits are evenly spaced in the system (N ¼ 10000).
(a) Teleportation is achieved with high fidelity for t ≤ 1300 (region I). This corresponds to the regime in which the light cones of the
operators are nonoverlapping. Interestingly, order-one fidelity can also occur for 1300 < t < 2600 (region II), when adjacent light
cones have overlapped, but only for certain values of g. No multiqubit teleportation is possible for t ≥ 2600 (region III), as expected
from the lack of size addition. (b) The three regions can be detected by changes in the slope of the operator size as a function of time. In
particular, the growth rate decreases when nearest-neighbor light cones, then next-nearest-neighbor light cones, etc., begin to overlap.
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the first peak in the time profile; this corresponds to a size
ηdgS ¼ π=N. After optimizing the evolution time (but
holding n and K fixed), the fidelity is nonmonotonic with
respect to g, owing to the competition among errors due the
size addition and finite K. Finally, after optimizing evolu-
tion time and g, we determine the maximum number of
qubits that can be teleported while maintaining a per qubit
fidelity above a fixed threshold value, i.e., 1 − F1

EPR ≥
0.07. Our results from this procedure are shown in Fig. 12
and demonstrate that the channel capacity follows a linear
trend in K across 2 orders of magnitude, in agreement with
our analytical predictions.

APPENDIX F: RANDOM CIRCUIT
CALCULATIONS

Here, we provide more detailed technical calculations of
the size overlap and K-size distribution of random Pauli
operators of a fixed size. The former is relevant to 0D RUCs
(Sec. VIII C), as the vanishingly small overlap of random
Pauli strings with size much less than the system size
underlies the circuit’s ability to teleport multiple qubits at
intermediate times. The latter is applicable to all systems
when the K coupled qubits are chosen randomly and
quantifies the width introduced to the K size by this
random sampling (Sec. V B). In the appropriate limits,
these calculations reproduce the intuitive binomial scalings
we argue for in the main text.

1. Distribution of the overlap
of two random Pauli strings

We are interested in the probability distribution of the
size of the overlap, p (not to be confused with the large-p
encoding, which we do not reference in this appendix) of
two randomly samples Pauli strings of fixed size R1 and R2,

in a system of N qubits. We expect this to quantify errors to
the size addition formula [Eq. (54) in Sec. VIII] for 0D
RUCs with large-p encoding (Sec. VIII C), where the
assumption of random Pauli strings of a fixed size is
appropriate. Our precise derivation is necessarily quite
technical; however, our final result matches that obtained
by intuitive arguments in Sec. VIII [see beneath Eq. (62)].
This probability distribution is computed exactly as a

product of various factorials:

P½p� ¼ CN
pC

N−p
R1−pC

N−R1

R2−p

CN
R1
CN
R2

¼ 1

p!
R1!

ðR1 − pÞ!
R2!

ðR2 − pÞ!
ðN − R1Þ!ðN − R2Þ!

N!ðN − R1 − R2 þ pÞ! :

ðF1Þ

The numerator computes the number of distinct configu-
rations with Pauli strings of size R1 and R2 and overlap p,
while the denominator computes the number of distinct
Pauli strings of size R1 and R2 regardless of the overlap. We
are interested in the case where all variables are extensive
(scale with N), but N ≫ R1; R2 ≫ p. We proceed by
applying Stirling’s approximation to each term above,
which holds as long as all quantities are large compared
to 1. For instance, for dummy variables n and k, we have

n!
ðn− kÞ!≈

ffiffiffiffiffiffiffiffiffiffi
n

n− k

r
nn

ðn− kÞn−k e
−k ¼ nk

�
1−

k
n

�
−nþk−1=2

e−k

ðF2Þ

or, taking the logarithm,

(a) (b) (c)

Time

FIG. 12. Procedure for determining the channel capacity in 0D RUCs. (a),(b) For fixed n and K, we compute the per qubit fidelity
while sweeping both the evolution time and coupling strength g. (a) The fidelity as a function of evolution time with coupling strength
fixed is optimized at the first local maximum, which corresponds to ηdgS=N ¼ π. (b) After optimizing the evolution time, the fidelity as
a function of the coupling strength g is maximal when g (and, correspondingly, the average operator size S) is tuned to balance errors due
to size addition and the finite number of couplings (see Sec. VIII C for details). The data shown correspond to n ¼ 38 and K ¼ 9000.
(c) The channel capacity is defined as the maximum number of qubits that can be teleported while maintaining the fidelity per qubit

above a fixed threshold, i.e., 1 − Fð1Þ
EPR ≤ 0.07 (dashed line). To determine this number, we fit the optimal fidelity as a function of n (for

each K) with a linear fit in log space and compute the intercept of the fit with the threshold fidelity. The fits approximately collapse with
respect to n=K, indicating that the channel capacity is linear in K.
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log
n!

ðn − kÞ! ≈ k logðnÞ −
�
n − kþ 1

2

�
log

�
1 −

k
n

�
− k: ðF3Þ

We apply this to a few pairs of factorials in our original expression for P½p�. For convenience, we keep track of only the p
dependence of the probability and neglect overall constants which serve to normalize the distribution. Anticipating that the
average p will be R1R2=N, we expand p ¼ R1R2=N þ δ and work to second order in δ. At the end, we show that this is
justified. We have

log
R1!

ðR1 − pÞ! ≈ p logðR1Þ −
�
R1 −

R1R2

N
þ 1

2

�
log

�
1 −

R2

N
−

δ

R1

�
−
R1R2

N
− δ: ðF4Þ

Expanding the logarithm using

logð1 − y − xÞ ≈ logð1 − yÞ − x
1 − y

−
1

2

x2

ð1 − yÞ2 þOðx3Þ; ðF5Þ

we have

log
R1!

ðR1 − pÞ! ≈ p logðR1Þ −
�
R1 −

R1R2

N
− δþ 1

2

��
log

�
1 −

R2

N

�
−

δ=R1

1 − R2=N
−

ðδ=R1Þ2
ð1 − R2=NÞ2

�
− δþ � � �

≈ p logðR1Þ þ δ log

�
1 −

R2

N

�
−
1

2
δ2
�
1

R1

1

1 − R2=N

�
þOðδ=RÞ þOðδ3=R2Þ þ � � � : ðF6Þ

This gives

log
R1!

ðR1 − pÞ!
R2!

ðR2 − pÞ! ≈ p logðR1R2Þ þ δ log

��
1 −

R2

N

��
1 −

R1

N

��
−
1

2
δ2
�
1

R1

1

1 − R2=N
þ 1

R2

1

1 − R1=N

�
þOðδ=RÞ þOðδ3=R2Þ þ � � � : ðF7Þ

The last piece is

log
N!

ðN − R1 − R2 þ pÞ! ≈ −p logðNÞ −
�
N − R1 − R2 þ

R1R2

N
þ δþ 1

2

�
log

�
1 −

R1

N
−
R2

N
þ R1R2

N2
þ δ

N

�
þ δþ � � �

≈ −p logðNÞ −
�
N − R1 − R2 þ

R1R2

N
þ δþ 1

2

�

×


log

��
1 −

R1

N

��
1 −

R2

N

��
þ δ=N

ð1 − R1

N Þð1 − R2

N Þ
−

δ2=N2

ð1 − R1

N Þ2ð1 − R2

N Þ2
�
þ δþ � � �

≈ −p logðNÞ − δ



log

��
1 −

R1

N

��
1 −

R2

N

���
−
1

2
δ2
�
1

N
1

ð1 − R1=NÞð1 − R2=NÞ
�

þOðδ=NÞ þOðδ3=N2Þ: ðF8Þ

Combining these together, we have

logP½p� ≈ − logðp!Þ þ p log

�
R1R2

N

�
−
1

2
δ2
�
1

R1

1

1 − R2=N
þ 1

R2

1

1 − R1=N
þ 1

N
1

ð1 − R1=NÞð1 − R2=NÞ
�

þOðδ=RÞ þOðδ3=R2Þ: ðF9Þ

Exponentiating,

P½p� ≈ 1

p!

�
R1R2

N

�
p
exp



−
1

2

�
p −

R1R2

N

�
2
�

R1R2

R1 þ R2

þOð1=NÞ
�
−1

þOðδ=RÞ þOðδ3=R2Þ
�
: ðF10Þ
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The first two terms are precisely a Poisson distribution,
which has mean R1R2=N and width

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2=N

p
. The

exponential is a Gaussian with the same mean R1R2=N
and a larger width

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2=ðR1 þ R2Þ

p
. The smaller width

determines the width of the product of the two functions, so
we conclude that

hpi ¼ R1R2

N
; hpi2 − hpi2 ≈ R1R2

N
: ðF11Þ

This is what we would expect for drawing p random sites
out of N, where each site has independent probability Ri=N
of being in either Pauli string (Sec. VIII C). The width is
subextensive, δ ∼ ε

ffiffiffiffi
N

p
, justifying the higher-order terms

we neglect along the way.

2. Distribution of the K size

Here, we are interested in the probability distribution
of the K size of a Pauli string of fixed total size S, with K
randomly chosen couplings. Our results substantiate
those obtained by intuitive arguments beneath Eq. (34)
in Sec. V B in the main text.
This objective is, in fact, an identical problem to

calculating the overlap: The K size is the overlap of the
K coupled qubits with the S qubits acted on by the operator
of interest. We should just replace R1 → K, R2 → S, p → n
above, where n is the K size. This is confirmed by
comparing the factorial expressions:

P½n� ¼ CS
nCN−S

K−n
CN
K

¼ 1

n!
S!

ðS − nÞ!
K!

ðK − nÞ!
ðN − SÞ!ðN − KÞ!
N!ðN − S − K þ nÞ! ; ðF12Þ

where the numerator computes the number of distinct
configurations with n qubits overlapping the Pauli operator
support of size S and K − n qubits not overlapping and the
denominator computes the number of distinct configura-
tions of the K coupled qubits. There are two regimes of
interest: when K and S are both extensive and when S is
extensive but K is not. The former provides a more accurate
measure of the full operator size (K → N), while the latter
is relevant for probing the channel capacity. Both regimes
share the same mean K size SK and K-size width δSK:

SK≡hni¼SK
N

; δS2
K≡hni2−hni2≈SK

N
¼SK: ðF13Þ

This matches our prediction in Sec. V B, which is based on
a simple scenario of picking K sites, each with a S=N
chance of being in the support of the Pauli operator.

APPENDIX G: TELEPORTATION OF FERMIONS

Here, we generalize the teleportation protocol to
Majorana fermion systems, as discussed in the main text
for the SYK model. This involves a few small modifica-
tions, stemming from (i) a different definition of fermionic
EPR (FEPR) pairs and (ii) a different relation between
FEPR pair projector and the SWAP gate. These modifica-
tions explain the results of Ref. [17], which find that late-
time teleportation in the SYK model occurs with less than
unit fidelity even at infinite temperature [where we would
generally expect perfect fidelity, from late-time peaked-size
teleportation (Secs. VI B and VI)]. In particular, we find
that the encoding procedure for the late-time fermionic
protocol must be modified for teleportation to succeed with
perfect fidelity, due to modification (ii) above.
Consider two complex fermions χl and χr, decomposed

into pairs of Majorana fermions via χl ¼ ψ1
l þ iψ2

l and
χr ¼ ψ1

r þ iψ2
r . The number operators of the original

fermions are Majorana bilinears, e.g., iψ1
lψ

2
l ¼ 2N̂l − 1 ¼

ð−1ÞN̂l . We define a single FEPR pair as the positive
eigenstate of iψ1

lψ
1
r and iψ2

lψ
2
r . In the number operator

basis of the original complex fermions, this is the max-
imally entangled state ðj10i − ij01iÞ= ffiffiffi

2
p

. Multiple fermion
EPR pairs are formed as a tensor product of single
FEPR pairs.
This definition leads to some simple relations when

“sliding” fermion operators around FEPR bras and kets in
diagrammatic calculations. We have

ψ j
l jFEPRi ¼ iψ j

rjFEPRi;
hFEPRjψ j

l ¼ −ihFEPRjψ j
r; ðG1Þ

diagrammatically,

ðG2Þ

As in bosonic systems, the thermofield double state is
obtained by applying ρ1=2 to one side, jTFDi ¼
ρ1=2l jFEPRi. Since the SYK Hamiltonian is composed of
four-fermion terms, we have

HljTFDi ¼ ðiÞ4HrjTFDi ¼ HrjTFDi: ðG3Þ
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As in bosonic systems, the coupling for Majorana systems
[Eq. (69)] measures the size of Majorana strings.
There are two options teleportation in fermionic system.

First, we could teleport an ordinary bosonic qubit by
encoding it into Majorana fermion operators, for instance,

X ≡ iψ1ψ2;

Y ≡ iψ2ψ3;

Z≡ iψ1ψ3: ðG4Þ

At infinite temperature before coupling, each of the above
operators has a correlator equal to −1, which is exactly the
result for bosonic systems, but without a need for the
decoding operation Y. At late times, the coupling eigV

applies a relative phase between the identity and noniden-
tity Paulis, giving correlator phases:

When ghVi ¼ π, all correlators have the same phase, and
peaked-size teleportation succeeds with perfect fidelity at
infinite temperature. At intermediate times, peaked-size
teleportation of multiple bosonic qubits succeeds just as in
bosonic systems.
The second option is to send a fermionic qubit, for

instance, by inserting half of an ancillary FEPR pair. Here,
we begin with intermediate times and discuss a modifica-
tion necessary for late-time teleportation afterward. We

represent a single complex fermion with two Majorana
operators ψ1 and ψ2 and suppose that the operators’ size
distributions are tightly peaked and the size of iψ1ψ2 is
twice that of the individual Majorana sizes, denoted S (this
assumption of size addition is appropriate in all-to-all
coupled systems, e.g., SYK, but does not necessarily hold
for, e.g., a 1D Majorana chain). The relevant operator
correlators after coupling with a bilinear fermionic inter-
action, as in Eq. (69), are

At gS=qN ¼ π=2, we have perfect teleportation. This
generalizes straightforwardly to multiple fermionic qubits:
A p-fermion operator gains a phase ip from sliding across
the FEPR pair and a phase eigpS=qN from coupling.
At late times, the sizes of initial single-body and two-

body Majorana operators are equal, since they saturate the
size of the system, and the above operator correlators do not
have the same phase. We now show that an alteration of the
encoding procedure can rectify this and lead to perfect late-
time teleportation. This alteration is explained by the HPR
protocol, and we derive it by reexamining the equivalence
between the HPR and TW protocols in the case of
fermionic qubits. Here, the relevant difference between
bosons and fermions is that the fermionic SWAP gate is not
related to the Grover search operation 1 − 2PFEPR by
single-qubit rotations. Since fermions gain a minus sign
upon exchange, the fermionic SWAP gate takes the form

SWAPF ¼

0
BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

1
CCCA ¼ iψ1;lψ2;l þ iψ1;rψ2;r þ iψ1;lψ2;r − iψ2;lψ1;r

2
: ðG5Þ

This is a two-qubit controlled-phase (CZ) gate away from 1 − 2PFEPR:

1 − 2PFEPR ¼

0
BBB@

1 0 0 0

0 0 i 0

0 −i 0 0

0 0 0 1

1
CCCA ¼ 1 − iψ1;lψ1;r − iψ2;lψ2;r − ðiψ1;lψ1;rÞðiψ2;lψ2;rÞ

2
¼ SWAPF · CZ; ðG6Þ

where the CZ gate is defined as
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CZ ¼

0
BBB@

1 0 0 0

0 i 0 0

0 0 −i 0

0 0 0 −1

1
CCCA ¼ ð1þ iÞψ1;lψ2;l þ iψ1;rψ2;r

2

¼ exp

�
i
π

4

�
· exp

�
−i

π

2
½iψ1;lψ2;l�

�
· exp

�
i
π

4
½iψ1;lψ2;l�½iψ1;rψ2;r�

�
: ðG7Þ

The single-fermion expf−iðπ=2Þ½iψ1;lψ2;l�Þg gate occurs on the swapped-out fermion and may be neglected. Inserting this
in place of the second Grover search operation gives the appropriate teleportation protocol:

ðG8Þ

In the second diagram, we slide the action of each side of the CZ gate such that the gate acts at the same time and on the same
qubits as the initial SWAP gate.
We can relate the fidelity of teleportation to operator correlators by decomposing the encoding gate as

CZ · SWAPF ¼ 1

2

X4
j¼1

SLj;lS
R
j;r; ðG9Þ

where we define the operators

according to Eq. (G6). The final column displays the product SLj S
R
j , where both act on the same qubit, which is useful

shortly. We find a fidelity:
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ðG10Þ

In the peaked-size regime with correlator phases θR;j, we have

FEPR ¼ 1

24

X
j;k

hTFDjSR;j;lðtÞe−igV ½SL;j;rS†L;k;r�ð−t0ÞeigVS†R;k;lðtÞjTFDi

¼ 1

24

X
j;k

expð−i½θR;j − θR;k�Þtr½SR;jðt − t0Þρ1=2SL;jð0ÞS†L;kð0Þρ1=2S†R;kðt − t0Þ�: ðG11Þ

At infinite temperature, late times, and ghVi ¼ π, we have correlator phases θR;j ¼ 0 for the identity and two-bosonic
operator and θR;j ¼ π=2 for single-body fermionic operators and find perfect teleportation fidelity:

FEPR ¼ 1

24

X
j;k

expð−i½θR;j − θR;k�ÞtrðSR;jSL;jS†L;kS†R;kÞ

¼ 1

24

X
j;k

expð−i½θR;j − θR;k�Þ · iFj · ð−iÞFk · trðiψ1ψ2iψ1ψ2Þ

¼ 1

24

X
j;k

expð−i½θR;j − θR;k�Þ · iFj · ð−iÞFk

¼ 1

24

X
j;k

ð−iÞFj · iFk · iFj · ð−iÞFk

¼ 1; ðG12Þ

where we define Fj ¼ 1 if SL=R;j is fermionic and 0 if bosonic.

We note that for state, as opposed to EPR, teleportation,
the above CZ gate turns out not to be necessary. Since
coherent superpositions of different fermion parity cannot
be created by physical Hamiltonians, which contain only

even combinations of fermionic operators, we should
consider teleporting only states of definite fermion parity.
The CZ gate applies only an overall phase on these states
and so does not affect the success of teleportation.
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We can also briefly analyze the low-temperature results
of Ref. [17] through the lens of operator correlator phases.
Here, state teleportation is found to succeed perfectly at low
temperatures only when the initial operators are encoded in
p-body Majoranas, with p ¼ q=2þ 1, despite the operator
correlators having maximal magnitude for any value of p.
At the semiclassical gravity teleportation time, the corre-
lators have phases:

For single-body Majoranas, p ¼ 1, the correlators clearly
do not have the same phase—in fact, their phases are nearly
identical to their phases at infinite temperature with no
coupling—so state teleportation is not possible. When
p ¼ q=2þ 1, in the large-q limit, these phases are 1,
�1, �1, and 1, respectively, where the sign is determined
by whether p ¼ 1; 3 mod 4. When the sign is odd, it can
be corrected via the decoding operation iψ1ψ2 ¼ ð−1ÞN ,
which applies a minus sign when conjugating fermionic
operators. Either case can, therefore, achieve perfect
teleportation.

APPENDIX H: TELEPORTATION AND
INELASTIC SCATTERING AT INFINITE

TEMPERATURE

In Sec. IX D, we find that strong stringy corrections to
a bulk theory of gravity lead to peaked-size teleportation
as well as a deeply inelastic scattering amplitude. We now
demonstrate that these two phenomena—peaked-size
teleportation and inelastic scattering—also coincide at
infinite temperature, for arbitrary functional forms of the
wave functions and scattering amplitudes. As we argued
before, for a UV complete theory of quantum gravity,
strong stringy (and, in general, deep inelastic) effects
are expected to dominate only at high temperatures,
β → 0.
At infinite temperature, the form of the correlator is

constrained by the equality

Cψðt; gÞ� ¼ −Cψðt;−gÞ: ðH1Þ

This implies that CψðtÞ can be written as a real function of
ig multiplied by the two-point function:

CψðtÞ ¼ hψ lψ rie−Fðig;tÞ: ðH2Þ

When g ¼ 0, CψðtÞ is equal to hψ lψ ri, implying

FðigÞ ¼ igf1ðtÞ þOðg2Þ; ðH3Þ

where f1ðtÞ is a real function. Therefore, at this order in g,
the infinite-temperature correlator is simply the two-point
function multiplied by a pure phase, matching peaked-size
teleportation [Eq. (37)].
To justify that higher-order terms in g are subleading, we

need an additional assumption: that the wave function of
ψðtÞ has a saddle point at some momentum k. This is
analogous to the boundary assumption that operator sizes
are tightly peaked. At early times, this saddle is not
significantly changed by the coupling, since the derivative
of the scattering matrix with respect to k is suppressed
by GN, and at early times the time dependence of the
wave function is not strong enough to compensate for
this suppression (for example, in semiclassical AdS2, we
observe competition between e2πt=β and 1=GN). In such
cases, it is easy to see that Eq. (95) becomes hψ lψ ri times a
pure phase linear in g, with higher powers of g suppressed
by GN.
Infinite temperature also implies purely inelastic scatter-

ing; i.e., the scattering amplitude eiδ ¼ 1 − Sðk; sÞ is
automatically real. To see this, we first rewrite the correlator
in terms of the in-falling momentum operators P̂ and K̂,
for ψ1 and ψðtÞ, respectively. For instance, for the former
we have

Ψ1;rðs;0ÞΨ�
1;lðs;0Þ¼hψ1;lð0Þjsihsjψ1;rð0Þi

¼
Z

da
2π

hψ1;lð0Þe−iaP̂ψ1;rð0Þieias: ðH4Þ

As ψðtÞ and ψ1 are, in principle, independent operators, we
have ½K̂; P̂� ¼ 0. Using this, we can rewrite Eq. (95) as

CψðtÞ ¼ hψ rð−tÞ exp ½−igSðK̂; P̂Þiψ1;lψ1;r�ψ lðtÞi: ðH5Þ

Taking the complex conjugate gives

CψðtÞ� ¼ hψ lðtÞ exp ½igSðK̂; P̂Þ�ð−iÞψ1;rψ1;l�ψ rð−tÞi
¼ −hψ rð−tÞ exp ½igSðK̂; P̂Þ�iψ1;lψ1;r�ψ lðtÞi; ðH6Þ

where we use the fact that K̂ and P̂ are Hermitian and
that at infinite temperature ψ lðtÞjTFDi ¼ ψ rð−tÞjTFDi.
Combining this with Eq. (H1) then enforces SðK̂; P̂Þ� ¼
SðK̂; P̂Þ, i.e., purely inelastic scattering.
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Entanglement Entropy via Randomized Measurements,
Science 364, 260 (2019).

[100] T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J.
Piotrowicz, L. Isenhower, and M. Saffman, Randomized
Benchmarking of Single-Qubit Gates in a 2D Array of
Neutral-Atom Qubits, Phys. Rev. Lett. 114, 100503 (2015).

[101] Daniel Barredo, Vincent Lienhard, Sylvain De Leseleuc,
Thierry Lahaye, and Antoine Browaeys, Synthetic Three-
Dimensional Atomic Structures Assembled Atom by Atom,
Nature (London) 561, 79 (2018).

[102] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cote, and
M. D. Lukin, Fast Quantum Gates for Neutral Atoms,
Phys. Rev. Lett. 85, 2208 (2000).

[103] A. W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch,
and P. Zoller, Designing Frustrated Quantum Magnets
with Laser-Dressed Rydberg Atoms, Phys. Rev. Lett. 114,
173002 (2015).

MANY-BODY QUANTUM TELEPORTATION VIA OPERATOR … PHYS. REV. X 12, 031013 (2022)

031013-59

https://doi.org/10.1007/JHEP03(2021)094
https://doi.org/10.1007/JHEP10(2019)048
https://doi.org/10.1007/JHEP10(2019)048
https://arXiv.org/abs/1802.01198
https://arXiv.org/abs/1802.01198
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.123.090605
https://doi.org/10.1103/PhysRevLett.123.090605
https://doi.org/10.1103/PhysRevA.100.013623
https://doi.org/10.1103/PhysRevA.100.013623
https://doi.org/10.1007/JHEP08(2021)134
https://doi.org/10.1103/PhysRevD.103.046004
https://doi.org/10.1103/PhysRevD.103.046004
https://doi.org/10.1007/JHEP10(2019)132
https://doi.org/10.1007/JHEP10(2019)132
https://arXiv.org/abs/1707.02325
https://arXiv.org/abs/1707.02325
https://doi.org/10.1103/PhysRevLett.123.220502
https://doi.org/10.1103/PhysRevLett.123.220502
https://doi.org/10.1073/pnas.2006337117
https://doi.org/10.1073/pnas.2006337117
https://doi.org/10.1103/PhysRevA.104.012427
https://doi.org/10.1103/PhysRevA.104.012427
https://doi.org/10.1103/PhysRevLett.109.020505
https://doi.org/10.1103/PhysRevLett.109.020505
https://doi.org/10.1103/PhysRevLett.109.020504
https://doi.org/10.1103/PhysRevB.96.195136
https://doi.org/10.1103/PhysRevLett.120.050406
https://doi.org/10.1103/PhysRevLett.120.050406
https://doi.org/10.1103/PhysRevA.98.052334
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1103/PhysRevLett.114.100503
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.114.173002
https://doi.org/10.1103/PhysRevLett.114.173002


[104] I.-D. Potirniche, A. C. Potter, M. Schleier-Smith, A.
Vishwanath, and N. Y. Yao, Floquet Symmetry-Protected
Topological Phases in Cold-Atom Systems, Phys. Rev.
Lett. 119, 123601 (2017).

[105] J. Zeiher, J. y. Choi, A. Rubio-Abadal, T. Pohl, R. van
Bijnen, I. Bloch, and C. Gross, Coherent Many-Body Spin
Dynamics in a Long-Range Interacting Ising Chain, Phys.
Rev. X 7, 041063 (2017).

[106] Our parallelized dynamics code is available open source as
the package dynamite: https://dynamite.readthedocs.io/,
10.5281/zenodo.3606826..

[107] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T.
Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletic, H.
Pichler, and M. D. Lukin, Parallel Implementation of
High-Fidelity Multi-qubit Gates with Neutral Atoms, Phys.
Rev. Lett. 123, 170503 (2019).

[108] H. Levine, A. Keesling, A. Omran, H. Bernien, S.
Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V.
Vuletic, and M. D. Lukin, High-Fidelity Control and
Entanglement of Rydberg Atom Qubits, Phys. Rev. Lett.
121, 123603 (2018).

[109] R. M.W. van Bijnen and T. Pohl,QuantumMagnetism and
Topological Ordering via Enhanced Rydberg-Dressing
near Forster-Resonances, Phys. Rev. Lett. 114, 243002
(2015).
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