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ABSTRACT 

The one-photon self-energy radiative level shift for an 

electron in a Coulomb potential is evaluated numerically for the 

184 state. The eValuation is done for. values of the nuclear charge 
2 

Z = 10,20,·.·,110. The errors in the values obtained are estimated 

to be less than 0.1%. The results are compared with the·results of 

previous ~alculations. The evaluation. is based. on the expressions 

given in the preceding paper. 

-~-

I. INTRODUCTION 

In the preceding paper [1], the one-photon self-energy 

radiative level shift is expressed in a form suitable for direct 

numerical evaluation by a computer. In this paper, we describe the 

numerical evaluation for the case of the lSI state, for 
"2 

Z = 10,20, ••• ,110. 

In Sec. II the numerical evaluation of ~ is described. 

Values associated with ~ are given in Sec. III. Evalua.tion· of 

the remainder ~ is described in Sec. IV. In Sec. V the results 

are summarized and compared with the results of previous calcUlations. 

Algori thms used to evaluate the special functions which arise in the 

calculation are described in appendices. 

-1 6 The value used for a 1s 137.03 02. The numerical calcu1a-

tions were done with the CDC 7600 computer at the Lawrence Berkeley 

Laboratory. 

II. NUMERICAL EVALUATION OF THE LOW-ENERGY PART ~ 

We consider the numerical evaluation of Re(~) with the 

aid of (3.14 )of r. In the case of the lSA state, specification 
2 

of the principal value of the integral over z is not necessary, 

because there is no bound-state pole in the integrand in the interval 

is then real. We introduce new variables of integration 

in the expression (3.14) of I : 

;[ 2~ 
x2 for ~ <. Xl I' = 
Xl 

t 1 - .!... (2.1) E n 
Xl 

2~ r = for ~ ::: ~. 
~ 

• 
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In (2.1), r = za and En = (1 - t2)l. Employing these variables, 

and noting that the integrand is symmetric under interchange of ~ 

and ~, we have 

where 

s(r,y,t, r) 

and where 

T (r,y,t,r) It I {(l - En) GKll(ru,u,z) Iltl 

signs 
of It 

... 
L TIt(r,y,t,r) 

K=l 

(2.4) 
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The expression which appears in (2.2) is in a form suitable 

for direct numerical evaluation by a computer. We shall first briefly 

outline the method we use, and then give a detailed description of 

each step. The triple integral which appears in (2.2) is evaluated by 

Gaussian quadrature. For certain values of za, the multiple integral 

is evaluated three times. In each successive evaluation, the number 

of integration points in each dimension is increa::eci. In this way, 

a convergent sequence of approximations to the integral is obtained . 

The integrand is in the form of an infinite ~um over It. This sum ' 

is evaluated for each set of values of the integration variables needed 

for the numerical evaluation of the multiple integral. The most 

significant contribution to the sum comes from terms for which 

Iltl < rv, where rv is the smaller of the arguments of the spherical 

Bessel functions. For Iltl:> rv, the ternis in the sum approach zero 

rapidly as Iltl increases. The spherical Bessel functions and radial 

Green's functions which appear in the individual terms of the sum are 

evaluated by algorithms which are described in Appendices Band D •. ' 

We first examine the sum over It to establish the nature of 

its convergence. The asymptotic behavior of T (r,y,t,r) 
It 

as 

is found from the asymptotic behaVior, shown in (A.S), of the radial 

Green's functions and from the asymptotic behavior of j£ and j.e 
as £ -> 00: 

£ f,' £ 
-i(2£:1)!(2x) . 
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We have 

T (r,y,t,r) '" A (r,y,t,r) 
1(' It 

-3 -2 -4 2 [ ~ I ] 2 2'1t r u v It *,: (2rv) (2.6) 

as It ~oo. We obtain an indication of the rate of convergence of the 

sum over It in (2.3) by considering the remainder 

It=N+l 

We find 

c (2.8) 

where C is a constant independent of N. The above expression 

indicates the nature of the convergence of the partial sums 

(2.9) 

when N is so large that the terms Tit' It > N, are well approximated 

by the asymptotic forms A • 
It 

Actually, the partial sums are often 

close to the limi t before N is sufficientlY large for the asymptotic 

form to be a good approximation. The rapid convergence arises as 

follows. For £ > x, the asymptotic forms in (2.5) are good approxima-

~ions for the corresponding functions. For such £, it is evident 

rrom the asymptotic forms that these functions decrease rapidly as 

increases. On the other hand, the, other factors in Tit are 

relatively slowly varying as It increases. Therefore, for Ie 

greater than the smaller of ...the arguments of the Bessel functions, Tit 

'decreases rapidly as It increases, and the partial sums SN converge 

rapidly. The behavior of T~ as a function of It, for some values of 

the other parameters, is illustrated in Fig. 1. In the numerical 

computation of S(r,y,t,r), we terminate the sum over Ie at It = N 

when both of the following conditions are met: 

N 

ITN+11 < 10-
15 

[Tit 

It=l 

N > rv (2.10) 

We now describe the procedure we use for evaluating S(r,y,t,r). 

The evaluation is performed by a subroutine which, given a value for 

each of the arguments r, y, t, and r, computes the value of 

S(r,y,t,r). First, within the subroutine, a number L 

L 2rv + 25 (2.11) 

is computed. We find empirically that this number is always larger, 
, . 

and not excessively larger, than the smallest N which satisfies 

(2.10). The Bessel functions and their, derivatives which appear in 

(2.4), with indices in the range 0 to L, are computed with the 

method described in Appendix B and stored in arrays. Then the sum 

over It is performed. The radial Green's fUnctions are evaluated as 

described irrAppendix D. The summation over It is terminated at 

It = N, where N-is thesmal1est ~umber which satisfies the conditions 

in (2.10). Finally, the sum is multiplied by the remaining factors 

which appear in (2.3). The evaluation of the gamma function is 

described in Appendix F. 

II 
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With values for s(r,y,t,r) available, we numerically evaluate 

the integrals in .(2.2). The integrals are'done by repeated one-

dimensional Gaussian quadrature with new variables of integration which 

are defined in subsequent discussion. Integrals evaluated numerically 

over the interval (0,1) are done, with the appropriate linear mapping 

to the interval (-1,1), by Gauss-Legendre quadrature; integrals 

evaluated numerically over the interval (0,=) are done by Gauss-

Laguerre quadrature r2]. We designed the integration scheme to give 

the result correctly to 11 significant figures when Z = 10. The 

corresponding accuracy in the physically interesting part of the 

result is much less, for the following reason. The low-energy part 

~ is of order 1 [see (3.10) of I], while the renormalized self 

energy is well known to be of order (la)4 .en(la)-2. Hence, in the 

worst case that we consider here, i.e., Z = 10, the physically inter-

esting part of the number we compute is smaller than the number itself 

by a factor of order (lOa)4 ~ 3 x lO~. 

We choose new variables of integration to be used in evaluating 

the integrals over rand y. In order to motivate our choice, we 

consider a simple fUnction which exhibits the qualitative features of 

the dependence of s(r,y,t,r) on its variables.' To find such a 

function, we recall that the main contribution to the sum S(r,y,t,r) 

comes from values of It for which I It I < rv <. ru. Therefore, we 

expect that the behavior of the sum is qualitatively reproduced by 

,the expression obtained if the radial Green's functions are replaced 

by their asymptotic forms, ,for ru» Iltl, which appear in (A.3). 

Taking the last term in (2.4) as a typical term in Tit' making the 

above -men tioned replacement for the radial Green's functionS, perform-

ing th~ sum over It, and replacing the r,ela ti vely slowly varying 

-10-

factors by 1, we obtain 

s(r,y,t,r) 
-1.(~-1)( l-r) 

-y 2 r, Y sin~(l - r)v] 
e e , 1 _ r} (2.12) 

2 1. ) where ,c = (1 - z )2, Re(c > O. Here, the symbol ~ means the 

fUnctions on either side are qualitatively similar in their dependence 

on the variables. The fa~tor (~-~) in the exponent is positive 

fer the range of values of the energy z under considera.tion. 

We now consider the integral 

./:' dr S(r,y,t,r) 

We note, from (2.12), that the qualitative r dependence of the 

integrand is 

where 

e-q(l-r) sin[Qq(l - r)] 
(1 - r) 

q ! (~ - l)Y , 
2 r 

0<9 < (!..:!:J.)' \J - r 

O<q<CD 

(2.15) 

For Z ~ 110, we have 9 < 11:. For q large, the sine ,function in 

(2.14) Oscillates rapidly as r varies, but the oscillations are 

strongly damped by the exponential. To numerically evaluate the inte

gral in (2.13), we employ the following prescription: 

for ° <. q ~ 10 
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= I
1 

. 2 
o dx 2x Sex ,y,t,r) , N = [qJ + 9 ; 

for 10 < q :::: 30 

(0
1 

Sl(y,t,r) = Jr dxS(x,y,t,r), N = min([0.4q] + 8,18) ; 

ror 30 < q :::: 100 

Sl (y,t,r) 1
1 . 

• 30 30 
dx qS0 - qX,y,t,0 + E, 

o . 
N = 18; 

~or q > 100 

Sl(y,t,r) = ·f- dx ~ S(l - ~,y,t,r) , . 

o 
N = 8; 

(2.16) 

here N is the number of integration points used to evaluate the 

ntegral, S is given by 

(2.17) s(r,y,t,r) 
{:<r,y",r) , 0<r<1 

r < O· .- , 

nd E is given by 

E 

I
SO 

-3Ox -y 
dx e e 

1 

-15· -y .. 3)( 10 e (2.18) 
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The contribution of E in (2.16) is neglected. We arrived at the 

above prescription in the following way. We examined the integral 

numerically for r = lea and sample values of y and t which cover 

the. range of numerical values given for these variables when the 

integrals over y and t are evaluated. For each fixed value of ~ 

y and t, we tried various variables of integration in the integral 

over r, and for each variable of integration, we tried Va~ious numbers 

of points .in the integration formula. A choice of integration variable 

and number of integration points was considered acceptable if the 

resUlting value for the integral was correct to approximately li 

places beyond the decimal point, and the rate of convergence was good. 

The correctness of the result was judged by varying the number of 

points in the integration formula and observing the degree of stability 

of the corresponding values for the integral.. By good rate of 

convergence for the integral, we mean one for which increasing the 

number of integration points. by two, decreases the error in the result 

by approximately a factor of 10. 

We next consider the integral 

The dominant y dependence of the integrand is simply e-Y• The 

method we use to numerically evaluate the integral in (2.19) is as 

follows: 
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~' dx .,(X,t,T) N = 14; 

= 

1· . £ ""4o,.(1+4x,t,T) , N = 12; 

N = 6 . ~.20 ) 

!he number N is the number of integration points used to evaluate 

the integral. We arrived at this method o~ evaluation by examining 

the integral in (2.19) ~or r = len and 

sample values ~or t. For each value of t, we tried various 

. -variables- o~ integration and numbers of integration points to evaluate 

the integral. In choosing a method, we applied the same criterion o~ 

acceptability as 1n the integration over r. 

We £inally consider the integral over . t 

£' dt .2(t,T) . 

The most signi~icant ~eature o~ the integrand in (2.21) is the 

presence of the bound-state poles near t = O. This integral is 

numerically evaluated as follOWS: 

-14-

N = 14; 

N = 10 
(2.22) 

The number N is again the number o~ integration points used in the 

numerical evaluation o~ each integral. We arrived at this method by 

using the same approach as was used in the preceding integrations. 

For Z = 10, 20, 30, 50, 70, 90, and 110, we numerically 

evaluatErl the integral in (2.2) three times, employing the variables 

displayed in Eqs. (2.16), (2.20), and (2.22). In the first evaluation, 

the number o~ int~gration points used to evaluate each integral was 

two less than the value given for N ~or that integral. In the 

second evaluation, the number o~ integration points used to evaluate 

each integral was equal to the value given for N ~or that integral. 

In the third evaluation, the number o~ integration points was two 

greater than the value given .~or N. For Z = 40, 60, 80,. and 100, 

the integralswere.evaluated once with the number o~ integration points 

equal to the values given ~or N. The tesults of these evaluations 

/ 
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S3(za) . 

0.492604558261 

0.492604558212 

0.492604558219 

0.471522661337 

0.471522662028. 

0.471522662053 

0.438918124592 

0.438918122718 . 

0.438918122834 

0.397217582472 

0.348910859260 

0.;48910857608 

0.348910857653 

0.29647;044488 

0.242325295399 

0.242325282906 

0.242325282216 

0.188809276812 

0.138167108750 

0.138167073328 

0.1;8167073750 

0.092524835161 

0.053885535012 

0.053885561168 

0.053885562857 

f'L (za) 

5.885057461 

5·885055755 

5·885055985 

4.399376065 

4·399377589 

4.399377644 

3.635616766 

3.635615950 

3.635616000 

3·157389794 

2.832339685 

2.832339592 

2.832339594 

2.6044;8382 

2.446696882 

2.446696699 

2.446696689 

2.346786654 

2.302805682 

2·302805492 

2.302805494 

2.325000983 

2.447660167 

2.447660230 

2.447660234 

-16-

If', in the sets of three values for S3(za) obtained for 

Z = 10, 20, 30, 50, 70, 90, and 110~ the difference between the 

second and third numbers is taken as an approximate measure of'the 

error in the second number, then the order of magnitude of' that error 

is a t:airly slowly varying function of' Z. In view of' this, one can 

infer the magnitude of error in the values of s;(za) for Z = 40, 60, 

80, and 100 by interpolation. We note that the errors, as defined' 

above, in the val~es for S3(za) increase as Z increases. this is 

to be expected as the integration scheme is designed for Z = 10. On 

the other hand, the errors in the values for fL (za) decrease as Z 

increases because the effect in fL(za) of the error 1n s;(za) 

becomes less important. 

As a test against errors in algebra or programming 1n the 

evaluation of the low-energy part, we consider the behavior of the 

numbers in Table I in the limit za -+ O. From (;.10) of I, it 

follows that 

lim 
za-tO 

This condition, which is not very stringent, appears to be satisfied 

by the calculated numbers. The behavior of fL(za) provides a 

better test. From (6.3) of I, we have 

(2.24 ) 

The seco~d line in (2.24) follows from the known behavior of F(za) 

for small za given in (1.2) of I, and from the values for fHA (0) 

• 
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and fHB(O) given in (3.5) and (4.23) respectively. We check for 

this behavior by plotting values of the tunction 

and the limit point in Fig. 2. The calculated points in this figure 

are consistent with the limit point -1.5546. We note that a 

deviation of 10-5 in the value for S3(za) at Z = 10 would produce 

a deviation of 0.35 in fL(za) which would be enough to destroy the 

consistency in Fig. 2. 

III. THE FUNCTION fHA (za) 

We consider the function fHA1(za) which appears .in (4.15) of 

I. For the lSi state, we have 

(v) 

Numerical values for fHA l(za) are listed in Table II. We note from 

the formula for fHA1(za) that 

7 1 
- 12 - 4" £n 2 

We next consider eValuation of the functions hi' i = 1,2,3,4. 

These functions are given as one-dimensional integrals in (4.23) of I. 

The functions and i = 1,2, which appear in those formulas, 

are given explic1 tly for the lS~ state In the appendix of I. The 

-18-

integrals in (4.23) of I were evaluated by Gaussian quadrat~e with 

new variables of integration x given by 

p 

p = 

2 
(za) 1 -2x 

x 

(za) 1 - ~ 
~ . 

We used a 60-point Gauss-Legendre formula. The numerical error in the 

h's with this method of evaluation, as determined by observing the 

convergence in the values for the integrals as the number of integratioI 

points is increased, is of the order of 10-12 or less for 

10 ::: Z ::: 110. The results of this evaluation are listed in Table II.· 

The limits of hi (za), i = 1,2,3,4, as za .... 0, are 

5 118 
4" ..en 2 - 105 ' 

9 ..en 2 - ~ 
5 ' 

h4 (0) = 8 -12 £n 2 

Values for the function fHA(za), which is defined in (4.25) of 

I, are listed in TablE II. From (3.2) and (3.4), we have 

1 b - 2 ..en 2 
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Table n. 1 The results of numerical evaluation of fHA' hI' h2, 

hy h4, and the total f
HA

. All figures shown are significant. 

Z fHA l(za) h1 (za) h2(za) h
3

(za) h4(za) fHA(za) 

10 -0.759762 0.061029 -0.235254 0.041051 -0.308422 -1.201358 

20 -0.769348 0.047569 -0.219782 0.045286 -0.303368 -1.199643 

30 -0.785874 0.033259 -0.208071 0.050676 -0.301391 -1.211401 

40 -0.810250 0.017768 -0;198607 0.057061 -0.301606 -1.235634 

50 -0.843934 0.000742 -0.190326 0.064314 -0.303269 -1.272473 

60 -0.889193 -0.018187 -0.182321 0.072286 -0.305666 -1.323081 

70 -0.949575 -0.039426 -0.173684 0.080762 -0·308012 -1.389936 

80 -1.030831 -0.063471 -0.163350 0.089399 -0·309339 -1. 477591 

90 -1.142851 -0.091023 -0.149890 0.097638 -0.308314 -1.594440 

100 -1.304309 -0.123305 -0.131106 0.104522 ";0.302901 -1.757100 

110 -1.555971 -0.163032 -0.103036 0.108286 -0.289584 -2.003337 

-20-

IV. NUMERICAL EVALUATION OF THE REMAINDER ~ 

In the expression for ~ in (5.7) of I, we introduce the 

variable of integration t, where z = i(t-1 - t)/2 on the positive 

imaginary z-axi~ and z = ':'i(t-1 - t)/2 on the negative imaginary 

z-axis. We also introduce the. variables y and r defined in (2.1). 

Then, for the function fHB defined in (5.10) of I, we have 

(4.1) 

where 

S(r,y,t,y) 

(4.2) 

and where 

-I Iltl Re((u + iE H(l + E") cP-
B 

. - ro12 
. n n, It B, It 

signs 
oflC 

- Yf!21 + ·(1 ) 22 ] j h (1) [(1 E) ct1 " 12 IUB,1t . - En GB,IC . 11t~I-t lutl-k - 3 - n B,1t ~ roB,1t 

", .. 
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The fUnctions GB are defined in (5.5) of I. The arguments of the 

functions G
B
,. j, and h(l) in (4.3) are given by 

Gij B,K G~~K(ru,u,w) 

jK jK (w - En)ru) (4.4) 

_h(l) h~l) (w - En)0 K 

u = y/(2r) ; w = i(t-l - t)/2 

The numerical evaluation of ~HB is siinilar to the evaluation 

of ~L. The integration in (4.1) is performed by repeated Gaussian 

quadrature. The function s(r,y,t,r) is computed with the aid of 

(4.2); the truncation of the sum over It is discussed below. The 

numerical evaluation of the spherical Bessel functions, spherical 

Hankel functions, and radial Green's functions which appear in (4.3) 

is described in Appendices C and E. 

We now examine the convergence of the sum over I( in (4.2). 

For It ... +co, we have 

rlt-l 1 . . All 1 
- [-2 r(l - r) + .....,.(-:;)J 
2Ky2 A 

It-I 
~ [2rz(1 .:. r)y - , .en r + "H)J , 
2Ky 

Equation (4.5) continued next page 
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Equation (4.5) continued 

22 
G: (ry,y,z) 
13,-1t 

and 

K-1 
_r _ [~ r(l _ ~) + &(~)] 
2Ky2 2 r A 

1(-1 
- _r_ [2rz(1 - r)y '-.en r + cr(~I()] , 

2Ky2 

Hence, for fixed r, y, t, and r, 

4 r 2K-2 
2r --. (1 - r) 

KY3 

as It-+ ... We define a function PK(r,y,t,r) by writing 

21t 
r K PIt(r,y,t,r) 

(4.5 ) 

( 4.6 ) 

( 4.8 ) 



In order to obtain an approximation for the remainder Ru which is 

left if t~e sum over It in (4.2)is truncated at ~ = N, we assume 

2.1 
that for ~ ~ 1.5 cu , where c = (1 - w)2 and Re(c) > 0, the 

function p~, as ~ function of ~,is sufficiently slowly varying 

compared to (r2~)/~ that the following approximation is justified: 

t --It 
It=N+l 

This assumption is suggested by the form of the expression in (4.7) 

together with a numerical examination of the terms in the sum in (4.2) 

for various values of the parameters. From (4.9), we obtain 

(4.10) 

The sum over I< in QI..2) is thus truncated at I< = N, where N is 

the smallest number which is greater than 3, greater than or equal 

to 1.5 cu, and large enough that the magnitude of the absolute 

contribution of the remainder, as estimated by (4.10), to the sum S 

is less than 10 .... 4. The validi ty of this error apprOximation \Olas 

tested by evaluating the sum S with the cutoff described above, and 

-4 then re-evaluating the sum with the error bound of 10 replaced by 

an error bound of 10-6. The two values for the sum were then 

compared. The evaluation and com~arison was made for all combinations 

of the values r = 0.1, 0.5, 0.9, y = 0 .. 1, 1, 10, t = 0.1, 0.5, 

0.9, and r = 10/137, 110/137, and for the values 

(r,y,t,r) = (0.99, 10, 0.1, 110/137), (0.999, 10, 0.1, 110/137), 

(0.99, 1, 0.1, 10/lY/), (0.999, 1, 0.1, 10/137), (0.99, 10, 0·9, 

10/137), and (0.999, 10, 0.9, 10/137). In all cases, the magnitude 

of the difference between the two values for S is -4 less than 10 • 

The validity of the error approximation was further tested by varying 

the error bound in some of the final eValuations of ~. 

In the evaluation of the sum S, the products of Bessel 

functions which appear in (4.3) are evaluated recursively, as 

described in AppendixC, before the sum over ~ in (4.2) is performed .. 

Therefore, we need a preliminary moderate overestimate NO for the 

number of Bessel functions which are needed to evaluate the sum to 

the desired accuracy. The value we employ for this purpose, for 

specified values of r, y, t, and r, is given by 

NO max(Nl ,N2 ,3) +.1 (4.11) 

where 

Nl [1.5 cuJ (4.12) 

and 

[ 'nG~4-Br:J] 
N2 + 3 0.5 

in r 
(4.13) 

where B is the coefficient of the sum over ~ in (4.2). If it is 

found, in a particular evaluation of S, that NO is too small, then 

the value of NO is increased by 10 and the evaluation of S 

begun again. 

is 

A crude approximation for. the function S(r,y,t,r), which 

serves to motivate our choice of new variables of integration in the 

numerical evaluation of the integral in (4.1), is obtained by 

replacing the radial Green's functions in (4.3) by their asymptotic 



forms for large argument which appear in (A.3). Taking the first 

term in the curly brackets in (4.3) as a typical term, replacing the 

radial Green's fUnctions in that term by the first terms in the 

corresponding asymptotic expansions, and performing the sum over K, . 
we obtain 

s(r,y,t,r) 
-}(~-l) (l-r)y 

e -y e rt (4.14) 

In arriving at the expression in (4.14), we have set relatively slowly 

varying factors equal to 1. Two singular factors t-2 and (1 _ r)-l 

which have been set equal to 1 in arriving at (4.14) are the result 

of the crude nature of the approximatioR. The behavior of S near 

t = 0 corresponds to the behavior of the integrand in (5.6) of I for 

large Izl. From the construction of ~ considered in I, it 

follows that S 'is integrable in this region. That S is integrable 

near r = 1 is seen by inspection of (4.7). 

We next give the method that we use to numerically evaluate 

the integral in (4.1). The Gaussian integration formulas mentioned 

in Sec. II are used here. We employ the notation 

IO
,l 

dr s(r,y1t,y) 

~2 dy S,(y,t,r) 

Equation (4.15) continued next page 

Equation (4.15) continued 

~i (r) 

q 
1 1 
-(- - l)Y 2rt 
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i = 1,2 

( 4.15) 

Four region5, A, B, C, and D, in the space of the parameters r, y, t, 

and r = ZCX ,are defined by 

A: y <. 2, Z <.60 

B: y <. 2, z 2: 60 

( 4.16) 
C: y > 2, z < 60 

D: y > 2, 

In the follOWing, NA'~' Ne, and ~ are the number of integration 

points used in the evaluation of the integrals with which they appear 

when the parameters are in the corresponding regions. The integral 

over r in (4.1) is evaluated as follows: 

~' dx 2x S(X2,7,t,r) 

11 dx sC,x,y,t,r) 

o . 
1<.q~12; 

12 12 
dx - S(l - - x,y,t,r) + E , q q , q > 12 

(4.17) 



Wbere for all three integrals 

NA 

and where 

€ 

Ne = ND 

fI2 
dx ~2 S(l 

1 " 
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{: 
for t > 0.2 

5 , NB 
for t < 0.2 

(4.18) 

12 
- qx:,y,t,r) (4.19) 

~e contribution of € to the value of the integral in (4.17) is 

neglected. 

given by 

In view of (4.14), an approximate overestimate for € is 

€ .. f
!2 

12 -12x -
A(l - q'Y' t, r) dx e e Y 

1 

(4.20) 

where A(r,y,t,r) is the ratio of S(r,y,t,r) to the term on the 

right side in (4.14), and Xo is the largest .value assigned to x in 

the numerical evaluation represented by the third equation in (4.17). 

We examined .the corresponding values for S which occurred in the 

numerical integrations and found, based on the estimate in (4.20), that 

the magnitude of € was always less than 4 -4 X 10 , and in most cases 

it was much less than that value. We evaluate the integral over y 

in (4.1) in the following way: 
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'10 for t ~ 0.5 8 for t > 0.4 

10 for 0.1 < t < 0".4-

12 for t < 0.5 , 12 for t < 0.1 ; 

for t > 0.5 

(4.21) 

for t.s 0·5 

The integral over t in (4.]) 1s evaluated as follows: 

2 dx 2x 821(1 - x ,r) , 

(4.22) 

1 = 1; NB = 6 

12; He = 4, 

~ = 5 

The choices of variables of integration and.nuCbers of integration 

points in the preceding discussion are the results of an effort to 

obtain a numerical value for the integrals in (4.1) with an error less 

than 5 'X 10-4 in magnitude and with the use of a minimum 8.lWunt of 

computer time. We arrived at the above scheme with an approach 



.. 
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analogous to the one used in the numerical evaluation of the low

energy part. The values for NA, NB, NC' and ND were determined by 

an examination of the integrals at the values Z = 30, 110, 50, and 

llO respectively., 

The results of the numerical integrations are given in Table 

III. In that table, where three values are given for a single point, 

the IIliddle value is the result obtained with the above described method 

of integration; the upper value is the result of evaluating the inte

grals~tha number of integration points in each integral which is one 

less than the number of integration points specified for that integral 

in the above method; the lower value is' the result obtained with one 

extra integration point in each integral. The single values in that 

table are the results of evaluating the integrals with the method of 

integration described above, except that the value for 832 at Z = 40 

is obtained with one extra integration point in each integral. Values 

tor f HB , obtained by adding the corresponding values tor 831 and 

832, are also listed in Table III. We have given error limits with 

each value for f HB . These are subjective estimates of the maximum 

uncertainty in the values, based on an examination of the behavior of 

the numbers within the groups of three values obtained for· 831 . and 

S32 for a given Z. For values of Z for which only one evaluation 

was made, the error limit was obtained by interpolating between the 

error limits for neighboring values of Z. The numbers marked with an 

asterisk in TableIII are the values obtained by evaluating the inte

grals with the integration method described above, and with the error 

bound employed in truncating the sum over K reduced to 10-5 . 

Comparison of these values with the corresponding uns,tarred values in 

Table III. 

-3<)-

Computed values for S31(za) , 

Z 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

30 

110 

831(za) 

-0.007094 

-0.007685 

-0.007650 

0.070451 

-0.155291 

0.154183 

0.154438 

0.252596 

0·359596 

0.358150 

0.357949 

0.458330 

0.552628 

0.552438 

0·552314 

0.646615 

0 .. 752997 

0.752544 

0.752223 

0.888973 

1.092590 

1.091980 

1.091547 

0.154205-

1.092001-

S32(za) 

-0.027008 

-0.020876 

-0.022085 

-0.024465 

-0.025616 

-0.026"(85 

--0.026712 

-:0.039257 

-0.052991 

-0.054137 

-0.053430 

-0·055898 

-0.041619 

-0.041645 

-0.041598 

-0.012562 

0.026850 

0.027536 

0.027442 

0.074809 

0.124257 

0.125498 

0.125506 

-0.026737* 

0.125555* 

-0.030(2) 

0.046(1) 

0.1277(5) 

0.2133(7) 

0.3045(8) 

0.4024(4) 

0·5107(4) 

0.6341(6) 

0.7797(7) 

0.9638(8) 

1.2171(8) 
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the table indicates that the method used to attain the desired accuracy 

in the sum over K. is effective. 

As a check against errors in algebra or programming in the 

numerical evaluation of f HB, we plot, in. Fig: ; I the calculated 

values for fHB(za) for Z = 10, 20, 30, 40, and 50 and the limit 

point fHB(O). From (5.11) of I, we have 

(4.23) 

The calculated points appear to be consistent with the limit point. 

V. CONCLUSION 

The total value of the self-energy radiative level shift for 

the lSI state is given by 
2" 

where 

F(za) 

Values for F(za) are given in Table IV. The numbers in parentheses 

in that table !ire error limits associated with f
HB

, and are discussed 

near the end of Sec. IV. The calculated values for F(za) along with 

values for F(za) obtained from the results of previous calculations 

[3,4,5] are shown in Fig. 4. 

For Z in the range 70-90, we compare the results of this 

calculation with the results, for a Coulomb potential, of Desiderio 

and Johnson [4J. In Table V we list the values they give (in Rydbergs), 

the corresponding values for F(za), and the values that we obtain 

for F(za). The agreement is good. 

To compare our calculated values for F(za) to the known 

behavior of F(za) as za ..... 0, we consider the function 

G(za) 

( )2 -2 ()2 2 -2 - A6l za £n(za) - A62 za £n (za) ] (5.;) 

where the Aij are the coefficients which appeat in (1.2) of I. In 

view of that equation, we have 

lim G(za) 
zo-o 

(5. 4) 
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Table IV. Values for F(~) obtained in this calculation. 

Z F(~) 

10 4.654(2) 

20 3.246(1) 

30 2.5519(5) 

40 2.1351(7) 

50 1.8644(8) 

60 1.6838(4) 

70 1·5675(4) 

80 1.5032(6) 

90 1.4880(7) 

100 1.5317(8) 

110 1.6614(8) 
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Table V. The results of the Desiderio and Johnson calculation for 

a Coulomb potential and the results of this calculation. The 

numbers in the third column are the Desiderio and Johnson results 

converted to o,¥ units and rounded to three figures. Tbe num11ers 

in the fourth colUmn are our results rounded to three figures. 

Desiderio Desiderio This 
and Johnson 

4 
and Johnson calculation 

Z ~(Ry) F(~) F(~) 

10 9.1 1.53 1.57 

75 11.9 1:52 

80 15·0 1.48 1.50 

85 19·1 1.48 

90 23·5 1.45 1.49 
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If there were a significant inconsistency between our calculated values 

for F(za) and the coefficients which appear in (5.3), except possibly 

for A6l, then G(za) would increase rapidly in magnitude asza -+ O. 

We have plotted the values of G(za) corresponding to the calculated 

Values of F(za) in Fig. 5. Inspection of the points in that figure 

suggests that G(za) approaches a constant as za ~ O. We obtain an 

approximate value for that constant by fitting the function 

to the calculated values of G(za) at the points Z =10, 20, and 30. 

There is some theoretical motivation for employing this function in 

making the fit. We thus obtain 

- 31 

This value, taken as an approximation to A60, has uncertainty 

associated with the errors in the values of the points used in making 

the fit and uncertainty associated with higher order terms in G(za) 

which are missing from GA(za). Erickson and Yennie [6] and Erickson 

[3] have given the following estimates for A60: 

(Ref. 6) 

(5·7) 

(Ref. 3) 

Our numerical values are reasonably consistent with the known 

beha'/ior of F(za) for small za and with the values obtained by 

Desiderio and Johnson for Z near 80. For Z greater than 90, 

F(za) appears to increase rapidly. This is consistent with the result 

-36-

of a preliminary investigation we have inade which indicates that 

F(za) -+~ as za ~l- [7J. This is not a surprising result for a 

pure Coulomb potential. 
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.APPENDIX A 

We list here asymptotic forms for the radial Green's functions 

defined in the appendix of I. We shall restrict our attention to the 

case in. which 
ij . . 

~ < xl in Git (x2'~'z). We g1Ve the asymptotic 

behavior in terms of new variables defined by 

y = ~ ; r = (A.l) 

The first ,limit of interest is for x2 and ~» IKI. The 

Whittaker functions have the following asymptotic forms, for a,~ 

fixed, ~ > 0, x > ° [8], 

totx,~(x) 

as x -t .... 

r(l + 2"') !2 [ (~+ !.2 +a)(~ - !.2 - a). 1] 
- 1~- e x-o 1 - . + C1(2) , 

r(~ + 2' - a) x x 

X· [ 1 1 J 2 a (~ + 2' - a)(ti - 2' +a) .d 1 
= e x 1 + + V(2) 

x x 
(A.2) 

:!O 
By x , we mean :!Oln x e ln x real. From these 

expressions, we find 

( 
{ 

1. + r r 1· - r [ ( '1 z + 1) S· 1 + -- - - -- K It + 1) - 2 2cry c 2cry· c 

Equation (A.3) continued next page 

Equation (A.3) continued 

12 
G

K 
(ry,y,z) - ~c~r It - ~c~r [lt2 - ~ ~ +~)] 

+ec~~} , 
cS {1 + !....:....!: K - !....:...!- [ .... 2 + It;. _ i\] 

.2cry 2cry c \::. c) 

+ BCY] 
22 

GI( (ry,y,z) ( ) 
{ 

l+rr 1-r[ '] z - 1 S 1 - 2cry C - 2cry K(1t - 1) - c2 

+ <1C;0} , 

-v 
S r -(1-r)cy 

= :--2 e 
2cry 

(A·3) 

The symbols v, r, and c are defined in (A.l7} of I. 

The second limit of interest is for I KI »~ > x
2

• For 

a,x fixed, x > 0, the Whittaker functions hllve the following 

asymptotic forms [8] 

totx,~(x) 

x - a-
2 ;!: 
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as ~ -+ 00.. From these expressions, we obtain the asymptotic forms of 

the Green's functions for II<I -+00. We list the cases for positive 

and negative subscripts separately. 

" > 0 

12 
GI( (ry,y,z) 

21 GI( (ry,y,z) 

22 
GI( (ry,y,z) 

1(-1 
= ~ Cr + (z + 1)ry + <"'(~») 

2 ICY 

,,-1 2 1 2 2 2 
= ~ [21( - r tn r +2n(1 - r)y - 2(1 - r )c y 

2JCY 

1e-1 . 
= ~[r + (z - 1)y + ~(~») 

2 ICY . 

12 r,,-l . 2 . 1 2 2 2 
G (ry,y,z) '" - -2[21e - r_ln r + 2n(1 - r)y .. ~l - r )c y 

-I( 2 ICY 

1 + 0'(-)] 
Ie 

Equation (A.5) continued next page 
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Equation (A.5) continued 

G:!(ry,y,z) 
1e-1 

= _r _[ ey(!») 
2 2 It . ICY 

1e-1 .' 

= ;.c/Cr + (z - 1)ry + er(~») 

APPENDIX B 

For the computation of the lOw-energy part, we give the method 

by which, for a given value of x, 0 ~ x ~ 500, and a given value of 

L, we evaluate jt(x) and ji(x) for 0 S .t S L. To evaluate the 

Bessel functions, it is convenient to first compute the values of the 

function· 

~ jt+l(x) 
x j t(x) (B.l) 

at the point x for t in the range 0 ~ t < L •. We assume, of 

course ; that x is not a zero of j t (x). From the. standard recurrence 

relation for the Bessel ·functions, we have 

rt_l(x) 
1 (B.2) 2 

1 - (2t + l){2t +3) rt(x) 

In view of the asymptotic form of jt(x), we ha-,;e 11m rt(x) = l. 
t-+ 00 

We compute the rt(x) recursively, with the aid of (B.2), in the 

direction of decreasing .t. To obtain the initial value rL(x), we use 
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a variation of the method of J. C. P. Miller [9J. We compute values 

for thequantitiesrN(x), rN_l(x), r N_2 (x), .•. ,rL(x) recursively, with 

the aid of (B.2), starting with th~ approximation rN(x) ~ 1. For 

large enough N, the value obtained for rL(x) is correct to a 

predetermined accuracy. The value we use for N is given by 

N max(L,LO) + [15 + O.lxJ 

where LO = [xJ. The function [15+ O.lxJ was determined empirically 

by examining the convergence in the sequence of values for rL (x) 
o 

corres'ponding to a sequence of increasing sample values of N. We 

chose for N the smallest sample value which leads to a value for 

rL (x) which is correct to approximately 
o 

From the value for rL(x), values for the 

12 significant figures. 

o :s £ < L, are 

calculated. The j£(x) are then computed with the aid of 

sin x 
x 

(B.4) 

Once the values of the j£(x) are known, the values of ji(x), 

O:s £ S L, are obtained from j£(x) and j£_l(x). 

Values for j£(x) and jiCx) obtained by using the above 

method were tested by numerically evaluating the following sums: 

00 

L (2£ + 1) j £(ry) j ley) 

£=0 

00 
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sin u 
u 

I (2£ + 1) £(£ + 1) j£(ry) j£(y) 

£=0 

00 

L (2£ + 1) j .e(ry) j £Cy) 

£=0 

L (2£ + l)j £(ry) j iCy) 

£=0 

sin u cos u 
--2- ---

u u 

cos u sin u ----y, 
u u 

u = (1 - r)y 

These sums were evaluated for all combinations of the values 

r = 0.2,0.4, .• ·,1.0 and y = 0.001,0.005,0.01,0.05,"',500. In each 

case, the sum was truncated at .l = M, where M is the smallest 

number for which the magnitude of the ratio of the Mth term to the 

sum of the first M terms is less than 10-12• The results are 

consistent with 12 significant figures being correct in the values for 

the spherical Bessel fUnctions. 
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APPENDIX C 

We describe here the method used to evaluate the products of 

spherical Bessel and Hankel functions jt(x) h~l)(y) which arise in 

the numerical evaluation of ~. The relevant range for the 

parameters x, y, and t is given by: ° < ~ <1, ° < Re(y) < 200 , 

° < Im(y) < 20,000, ° S t S 20,000. The evaluation is done by a 

subroutine in which for a given value of X, y, and L, 

1 S L S 20,000, the set of values jt(x) h~l)(y), ,0 st S L, is 

computed. 

It is convenient to first compute the set of values rt(x) 

defined in Eq. (B.l). We use the method described in Appendix B to 

compute these values, except that here we replace the number N 

defined in (B.3) by the number N' 

N' = max(L,LO) + [15 + 0.1 Re(x)] , (C.l) 

where LO = [Ixl]. This expression for N' was arrived at with the 

same method as the one described in Appendix B for finding N. 

We also compute the set of values t£(y), where 

(1) 
2£ + 1 he (y) 
-y- h(l)(y) 

£+1 

y for £ in the range ° < £ < L. We assume 

(C.2) 

at the point 

h(l)( ') .j o. 
£+1 y , Because the function satisfies the standard 

'recurrence relation, we have 

1 
2 

1 - (2£ + 1)(2£ + 3) t£(y) 
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We also have lim tt(Y) ,= 1. The values tt(Y)' 0 < t < L, are 
t-.. CD 

computed recursively, with (c.4), in the direction of increasing t. 

The initial value is to(y) = (1 - iy)-l. 

The products o ~ £ ~ L, are then computed 

recursively with the aid of 

jo(x) h~1) (y) 

and 

sin x ely 
= -x-ly 

We tested the subroutine which computes the products 

jl(x) h}l)(y) by numerically evaluating the following sums: , 

t. (2£ + 1) £(l + 1) j .e(ry) h~l)(~) 
£=0 

( )2( -3 -2 v 2r iy v - v )e , 

v = iy(l - r) 

, (c.4) 

( c.6) 

.' 



The evaluation was made for all col!lbinations of the . values 

Re{y) = 0.01;0.02,0.1,0.2,···,100,200, Im(y) = 0.01,0.02,0.1,0.2, ••• , 

100,200, r = 0.2,0.4,0.6,0.8, and for all combinations of the 

values Re{y) = 0.01,0.02,0.1,0.2,"',100,200, Im{Y) = 1000,2000, 

10000,20000, and r = 0.99. In every case, each sum over £ in 

(c.6) was terminated when the ratio of the last term in the partial 

sum to the partial sum was lESS than 10-15 in magnitude. The 

values of the sums agree with th~ corresponding expressions on the 

right side in (c.6) to more than 11 significant figures. 

APPENDIX D 

The method given here for numerically evaluating the radial 

Green's functions GK(x2'~'z) is valid for the range of parameters 

involved in the computation of the low-energy part: IKI < 500, 

o < ~ < ~ < 250, and 0 < z < E1 , where El is the 1St bound

state energy. We refer to Eqs. (A.16) and (A.l?) of I in which the 

radial Green's functions are given in terms of Whittaker functions and 

gamma functions. 

The evaluation ·01' M .1 ,(2cx...) is done by evaluating the 
vI2,1'. c: 

standard series exysnsion (10], 10Ihich is conveniently expressed in 

the form 

co 

lb,t3(x) ~~ e~x [ T(n) (D.l) 

n=O 

""here 
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T(O) 

(D.2) 

T(n + 1) 

1 
(n + t3 +2' -a)x 

Cn + 2t3 + IHn + 1) T(n) 

In our case, the parameters in (D.l) and (D.2) obey the restrictions 

1 3 
- 2' < u. < 2' o < t3 < 500, o < x < 500, and t3 + ~ - a ;: O. fhe 

terms in the sum in (D.l), which are all non-negative, are easily 

computed numerically with the aid of (D.2). If the first N terms 

are used to approximate the sum, the error is estimated by 

co 

[ T(n) < N!;: x T(N + 1) for N + 2 > x . 

n=N+l 

Terms in (D.l) are summed until the relative error, as det.ermined by 

-12 (D.3), is <10 • The number of terms necessary is not excessive, 

because for N > x, T(N) approaches zero rapidly·as N increases. 

.We next consider 

the variables is the same 

the evaluation of W ,,(x). The range for a,1-' 
as for M ,,(x). Two methods of evaluation ex, ... 

are used; the choice of method depends on the magnitude of x. 

For x > 30, we use the large-x asymptotic expansion {lO] 

,p • -';XC t T' (nJ + EN) (D.4) 



where 

T'(O) 

T' (n + 1) 

1 , 

(n + ~ + ~ - ex)(~ - ~ + ex - n) 
---~-------- T' (n) 

(~ + l)x 

We employ the estimate 

1 
for N + 1 > ~ -2' + ex (D.6) 

The value of Wex,B(X) is then obtained by performing the sum in 

(D.4). The value for N is determined by requiring that 

N + 1 >~ - ~ + ex, and that the ratio of the error, as given by (D.6), 
-12 to the value of the sum be less than 10 in magnitude. For x > ,0, 

we find empirically that such an accuracy can always be achieved. 

For x ~ 30, Wex,B(x) is computed with the aid of the 

standard formula in which Wex,~(x) is expressed as a linear combination 

of Mb,-B(x) and ~'B(x) [10]. That formula is expressed, for 

2B I integer, as 

r(2~) 1· 1 

---'-1-- X2 -B e -'2
x (U + TjS) 

r(~ + 2' - ex) 

where 

111 2B sin[ 11(13 + 2' + ex)] r(B + 2' - ex) reB + 2' + ex) 
-:-X (D.8) 

sin(r.2B) r(2B) r(2B + 1) 

the terms U and S are given by 
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... ... 
U L V(n) S [ T(n) (D.9) 

n=O n=O 

where 

V(O) 1 

1 

V(n .;. 1) 
(n - ~ + 2". - ex}x 

V(n) 
(n - 2B + l)(n + 1) 

(D.IO) 

andwhere Ten) is defined in (D.2): The error which results from 

truncating the first sum in (D.9) after N terms is 

(D.ll) 

for N + 2 > max(2B+ l,ex), whe~e 

eN +.1 .,. B + ~ - ex). 0 e max ,1 
(N + 1 - 2~ + 1) 

(D.12) 

Guided by the estimates in (D.ll) and (D.3), one can evaluate 

the individual terms U and S numerically to a preassigned 

precision. However, the expression in .(D.7)is numerically unsafe 

when x is large and B is small. This can be seen by considering 

the large-x asymptotic forms for Mb,B(x) and Wex,B(x) given in 

Eq. (A.2). We find that for x .... DO 

U + T]S 

lUi + I~I 

.. 



Hence in "the worst case, which occurs when x ,= 30, the sum is roughly 

e -30 times the in"di vidual terms, which corresponds to a loss of 

approximately 13 significant figures. We have studied this cancella-

tion numerically, and find that by using double precision arithmetic, 

which gives approximately 27 significant figure accuracy, we can 

achieve better than 12 significant figure accuracy in the evaluation 

of the sum U + T}S. In evaluating W ",(x), we trunl!ate the first .a, .... 
.. sum over n in (D. 9) when the magnitude of the ratio of the remainder 

of the sum to the partial sum is less than 10-28 . We then truncate 

the second sum over n in (D.9) at n = N when the magnitude of the 

ratio 

co 

TJ L T(m) 

m=N+l 

is less than 10-12 • 

[ N ]-1 
U + TJ ~ T(n) (D.14 ) 

For x =30, we compared the two values obtained for Wa,~(x) 

using the two methods described above. The comparison was made for 

various combinations of the remaining parameters. In all cases, the 

two values agree to approximately 12 significant figure.s. 

The method that",e use for evaluating the gamma function is 

described in Appendix F. 

We note that care is required in handling potentially very 

large or very small quantities in the evaluation of the radial Green's 

functions. Quantities such as or r(2~) can be greater than 

101000 for the. range of values of x and t3 under consideration. 

Such magnitudes are out of the range for real constants in the computer. 

Th 11 d .. b 10-294 < IR I ~ 10322 . e a o~e range 1S g1ven y ~ In order to 
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avoid this problem, we compute the logarithm of quantities with extreme 

magnitudes. We find that when all such factors have been combined, the 

result is of moderate magnitude and can be safely exponentiated. For 

the parameters which occur in the low-energy evaluation of the radial 

Green's functions, the range ,of magnitude of the terms in the sums in" 

(D.l), (D.4), and (D.9) is within the allowed limits. 

As a check that the numeric.al evaluation of the radial Green's" 

functions was programmed correctly, we computed the expectation value 

of the Dirac Green's function in various bound states. We note the 

identity 

1 (En - z)(G(z» 

2 

L 
i,j=l 

(D.15) 

where Itn is the angular quantum number of the bound state *n' The 

integrals in (D.15) were evaluated numerically with essentially the 

same techniques as those described in Sec. II. The evaluation was 

made .for all states with principal quantum number 1 or 2, for" 

nuclear charges of 10 and 110, and for energies z = 0.lEl,0.2El'· •• ' 

O.9El . In all cases, the error in the result is less than 10-1l. 
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APPENDIX E 

In this appendix, we give the method used to evaluate the 

Coulomb radial Green's functions GIt(~'~'Z) for the range of 

parameters encountered in the numerical evaluation of . ~. The 

range is' Iltl < 20,000, ° < ~ < ~ < 200,Re(z) = 0, 

o < Im(z) < 100. 

We first consider the evaluation of ~,~(x) for the 

1 corresponding range of variables: Re(a) = ± ~' 0 < Im(a) < 1, 

o < ~ < 20,000, 0 < x < 40,000. Two methods of evaluation are used. 

The choice of method depends on the relative magnitude of x and ~. 

:l. 
~or x< 2-0 ~2,' we employ the power series for M ","(x) obtained by 

Ct, ... 

expanding the exponential function in the integral representation 

M (x) 
-a,~ 

r(l + 2~) 

r(~ +' ~ - Ct) r(~ + ~ + Ct) 

1 
valid for Re(~ + 2 ±Ct) > ° and larg x I < It , 

The resulting series is . 

~~ f I(n)(~?n 
O

n. 
n= 

where 

. x (2t - l)n 

(E.l) 

in powers of x. 

(E.2) 

(E.3) 
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It is convenient to consider the corresponding expansions 

M -l ,(2cx2) ± M ~t ,(2cx-) v 2'~' v~,~ ~ 

(E.4) 

where v, A., and c are the parameters which appear in (A.16) of I, 

and where Et(N) are the remainders. The~~nctions Ir satisfy the 

equations 

( n + 1 ( 
1_ n + 1) = n + i + 2A. I+ n) 

These relations together "wi th the initial values 1+(0) =' 2 ,and 

I (0) = 0 provide a simple and safe method for numerically evaluating 

the series in (E.4~. We obtain approximate values for the errors Er 

in.(E.4), which arise from truncating the sum over n at n = N,'by 

estimating these errors to lowest order in v: 

. (cx )N+l (2)-.. + N + 2)(N + 3) 
+ 1) 1_~2 __ --'----------~ 

(N + l)! (2)-.. + N + 2)(N + 3) _ (c~)2 

(E.6) 

valid when N is odd and satisfies (2~ + N + 2)(N + 3) > (c~)2; 
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IEJN) I 
1 (C )N+l (2A + N + 3)(N +2) 

< (2cx2 )A+z1 1 (N +1) I ~ . . 2 
- (N + l)! (2;\ + N + 3)(N + 2) - (c~) 

" [1 + (9'( I v I )l (E.7) 

~ valid when N is even and satisfies (2A + N + 3)(N + 2) 

, . 

... 

'. 

In the numerical evaluat\on of the sums in (E.4), the value of N is 

taken to be .the sl]lB.llest value for .which both the inequality 

(2~ + N + 3)(N + 2) > (cx2)2 is satisfied and the errors E% 

corresponding to N and N - 1, as estimated in (E.6) and (E.7), are 

-12 less than. 10 times the corresponding partial sums in magnitude. 

The numerical evaluation of ~,~(x) for x ,2~i is done 

with the aid of the expansion in (D.l). In this case, the summation is 

begun at n = nO' where nO = [(~2 + ~ x2)! + ~ x -~] is approximately 

the value of n for which the magnitude of T(n), defined in (D.2), 

has its maximum value. The sum is evaluated by summing terms T(n) 

normalized so that T(n) =T(no)T(n): 

(E.8) 

The summation is performed first in the direction of increasing n 

until n = Nl , and then in the direction of decreasing n until 

'. n = N2 • The values Nl and N2 are determined by evaluating the 

error which would result from truncating the sum over n as each term 

is added .and continuing the summation until the relative magnitude of 

the error from truncating the sum is less than· 10-11 • The errors 

are estimated by 

co 

T(n) 
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I (Nl + ~ + ~ -a)x I 
(~ + 2 + 2~)(Nl + 2) 

valid for Nl large enough that Q < 1, and by 

N2-1 

~ T(n) < N21"T(N2 - 1) I 
n=O 

(E.IO) 

valid for N2 smaller than the value of n· for which IT(n) I is at 

the maximum. From the coefficient of the sum in (E.8), we store 

separately in the computer the complex logarithm of 

1 reno + ~ + 2 .- a) r(e + ~ - Re(aV 
1 

r(~ + 2 - a) 

and the double precision logarithm of 

no~+l .r00 + t3 + ~ - Re(a») r(2~ + l}x 

(E.ll) 

e -;x 

storing the double precision 10g~rithm of (E.12) is necessary because 

of the loss of significant figures ~ich occurs when the logarithm of 

a quantity with a very large magnitude is added to the logarithm of a 

quantity with a very small magnitude. This loss can occur when the 

various factors in the radial Green's functions are Combined. 
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As a test of the programming of the two methods of evaluation 

of ~,~(x) given above, we compared the two values obtained for this 

function with these methods for x = 2o~i and a and ~ given a 

large number of sample values which cover the range for these parameters 

relevant to the evaluation of ~. In all cases, the relative 

magnitude of the difference of the two values was less than 10-11• 

In the numerical evaluation. of Wa,~ (x), the. choice of method 

of evaluation depends, as in Appendix D, on whether x is less than 

or greater than 30. The two methods used here are basically the same 

as those described in Appendix D, except for some modifications 

necessary to accommodate the large range of parameters and complex 

numbers which occur here. 

For x ~ 30, we evaluate Wa,~(x} with the aid of the 

asymptotic expansion given by Eqs. (D.4) and (D.5). The summation 

over n in (D.4) is begun at n = nO' where 

2 1 2 1 1 nb = (~ + 4 x )2 - 2 xJ is approximately the value of n for 

which the magnitude of T'{n) is at its first relative maximum 

encountered as the value of n increases from zero. Normalized 

terms T'{n) = T'{n)/T'{n') , 0 
are employed in evaluating the sum: 

(E.l3) 

We sum first in the direction of decreasing n until n = Ni and 

then in the direction of increasing n until n = N2' In each 

direction, the summation is terminated when the magnitude of the 

ratio of the error to the partial sum is less than 10-11 . We employ 

the error estimates 
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(E.14 ) 

valid for Ni smaller than the value n for which IT'(n)1 is at 

its first relative maximum, and 

fM + fr(i -~Im(a)Jfl I~,I .::; IT' (N2 + 1) I ,. 
2 

~ .2)]) 
(E.15) e 1 

M = max 0, l~e (t) - 2' + ex 

valid for N2 larger than the value n for which T'(n) is at its 

first relative maximum. The coefficient of the sum in (E.l3) is 

factorized into a complex factor with magnitude of order 1 whose 

complex logarithm is stored, and a real factor whose double precision 

logarithm is stored, in analogy with the separation shown in (E.11) 

and (E.l2). 

For x.::; 30, we employ the method described in Appendix D, 

beginning with Eq. (D.7), to evaluate Wa,~{x). It is necessary to 

have double precision accuracy in that method. This is accomplished 

here by explicitly programming the complex arithmetic operations in 

terms of separate double precision real and imaginary parts for the 

variables involved, The term S, which appears in (D.7), is evaluated 

with the aid of (D.2) and (D.9). ~n estimate for the error which 

results from truncating the sum over n at a finite value N is 

easily obtained with the appropriate modification of the discussion 

of (E.8). The term V, which appears in (D.7), 1s evaluated with the 

~ 
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aid of (n.9) and (D.10). The error which results from truncating the 

relevant sum over n in (D.9) at n = N is estimated by 

00 

L V{n) < 1 :.gIV(N+ 1) I 
n=N+l 

(E.16) 

I 
(N:' 13 + ~ - ex )x I 

(N -213 + 2)(N + 2) 

valid for N + 1 2 max (:, [13 + ~ x + (132 
+ fr i + x) ~ J) 

To evaluate Wa ,t3{x) with the preceding method, we need the 

full double precision accuracy for certain combinations of the param-

eters. The worst case, where the full accuracy is required, is for 

IKI = 1 and x near 30. We explored other regions in the parameter 

space by examining the numerical behavior of the series for sample 

values of thE parameters. On the basis of this study, we found that 

some time-saving modifications in the metbod of evaluation could be 

made in certain regions of the parameter space. For t3 < 40 and 

x 5 ~ (t3 - 6), single precision arithmetic. is used. For t3 ~ 40, the. 

contribution of the term ~. in (D.7) is negligible and the term U 

is evaluated with single precision arithmetic; in this. case, the contri-

but ion to the first sum in (D.9) from terms with n > t3 is negligible. 

To check the programming of the two methods of eValuation of 

,described above, we compared the two values obtained with the 

two methods for x = 30 and sample values for the remaining parameters. 

This was done for a large number of sample values, and in all cases, 

the agreement between the two values for W .,(x) was satisfactory. a,.., 
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We now briefly describe the method used to evaluate the free 

radial Green's functions FK{~,xl'z) for the range of parameters 

given in the beginning of this appendix. The free Green's functions 

are given in terms of spherical Bessel and Hankel functions of imaginary 

argument in (A.20) of I. 

We first consider the evalua.tion of j l(ix). We employ the 

power ser·ies 

(~X\l f' r(~) ~( ~-fn 
:; ~.r(n + l + L

2
) n! 2) 

n=O 

The summation over n in (E.17) is begun at n = nO' Where 

nO = [~(.e2 + x2)~ - ~ .e], which is near the value of n for Which the 

magni tude of the terms in the sum is the maximum. The summation is 

performed first in the direction of decreasing n, and then in the' 

direction of increasing n from nO' In each case, we terminate the 

sum When the magnitude of the ratio of the remainder to the partial 

sum is less than 10-11• Estimates for the re.mainders are easily 

obtained as in the Coulomb case. The sum over n is normalized by 

extracting the nO th term as an overall factor. 

To evaluate h~l)(iX), we employ the series 

_ ( 2ix f l e -x f:1 =rr,C:-,-2_.e _+~l-::-..... n~)~(~2x~)L..n-:-o" 
x ' reI - n + 1) r(n + 1) 

n-
• (E.l8) 

The method we use for evaluating the sum is the analog of that used in 

the evaluation of J t(ix); in this case we have 

2 2 l 
nO = [I + x- {£ + x )2 J. 
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As a check on the programming of the Coulomb radial Green r s 

function algorithm, we numerically evaluated expectation values of the 

Green's function. The relevant formula appears in (D.15). The 

evaluation was made for the state with n = 2, K ~ -2, 

where Z = llO, and for the state with n = 2, K = -1, where Z = 10. 

In both cases, evalua.tions were made for values of the energy given by 

~ = lu, where u = 1,51 ,101,151, and 201. In all cases, the result, 

was correct to at least II significant figures. As a check on the 

programming of the free radial Green's function algorithm, we 

numerically performed the sum over K' in the, 1,1 element of the free 
~ 

Green's function, in the form correspOnding to (A.14) of I, for the 

case The sum over K was terminated at 

magnitude of the ratio of the Nth term of the sum to the partial sum was 

less than 10-15 . The result was compared numerically to the value for 

the sum obtained from the expression in (A.2l) of I. The comparison was 

made for all combinations of the values X2/~ = 0.2,0.8, ~ = 0.1,1,10, 

and z = 0.79i, and for the values x2/x1 = 0.95, ~ = 0.1,1,10, and 

z = 197i. In all cases, there was agreement to at least 12 significant 

figures. Further checks were performed on both the Coulomb and free 

radial Green's function programs. We checked numerically that the 

functions satisfied the appropriate differential equation. We also 

examined numerically the asymptotic behavior of the functions in the 
• 

limit IKI ~~, with the remaining parameters fixed, and in the limit 

Xl ~~, with x2/xl and the remaining parameters fixed. The asymptotic 

values were compared with the values obtained from Eqs. (A.3) and 

The results are in satisfactory agreement. 
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APPENDIX F 

Our numerical evaluation of the gamma function is based on 

stirling's asymptotic series [10] 

£n r(y) (y _ !) £n y _ y + ! £n(21C) + ....L __ 1_ 
'2 ' 2 12y 36ey3 

+ _,_1_' ___ 1 __ + _1__ _ 691 

126ey5 168Oy7 1188y9 360360yll 

1 +._-- -
156y13 

For y positive real, we have [10] 

Two sets of values which we employ are 

° < R < 10-
14 for y > 7 , 

O. < R < 10-28 for y > 46 . 

3617. +R 

12240015 

(F.l) 

(F.2) 

The. second set of values is relevant to d9uble precision evaluation of 

the gamma function. From the relations in (F.3), it follows that for 

sufficiently large y, we obtain an accurate value for the gamma 

fUnction by evaluating the series in (f.l). To evaluate the gamma 

function of argument x, where x is too small to satisfY the relevant 

condition in (F.3), we take advantage of the relation 

rex) 
{ 

n-l 1 1 
= 11 ex , 1) J r(x , n) (F.4) 
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In (F.4), we choose n large enough that y = x +n. is greater than 

the appropriate number in (F.3). We then evaluate r(y) with the 

series in (F.l), and obtain rex) with the aid of (F.4). The 

relative error in this value for r(x) is then just R. 

In the case where y is complex and satisfies the condition 

larg YI S ~ n, we have the slightly weaker bound on the remainder R 

in (F.l) [10]: 

Thus, for max (7 , Re{xD ~ IIm(x) I, we employ the preceding method 

to evaluate rex), choosing n in (F.4) large enough that 
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FIGURE CAPTIONS 

Fig. L In this graph, we have plotted logloITK(r,y,t,r) I as a 

function of It, for various values of r, y, t, and r. The 

vertical line on each curve gives the value, on the same 

scale as K,' of the smaller argument of the Bessel functions 

in (2.4). 

Fig. 2. The points in this graph are the calculated values of 

4 ( -2 fL(za) - 3" .en 2'0) for Z = 10, 20, 30, 40, and 50. The 

point at Z = ° is the limit as za -t 0, of the same 

function and is obtained by an independent method. 

Fig. 3. Numerically calculated values for fHB(za) for Z = 10, 20, 

30, 40, and 50 and the value of the limit point fHB(O) 

which is obtained analytically. 

Fig. 4. Values for the function F(za) obtained in this calculation 

and values for F(za) based on the results of Erickson [3J, 

Desiderio and Johnson [4J, and Brown and Mayers [5]. The 

cUrve with the error estimates is based on the graph given in 

Ref. 3. According to Desiderio and Johnson, there is an error 

in algebra in the work leading to the result of Brown and 

Mayers. 

Fig. 5. Calculated values for G(za). The error limits on the point 

at Z = 10 correspond to the error limits of F(za) at 

Z = 10. The dashed line shows the function GA(za) fitted 

to G(za) at Z = 10, 20, and 30. 
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