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Δ9-THC Disrupts Gamma (γ)-Band Neural Oscillations
in Humans

Jose Cortes-Briones1,2, Patrick D Skosnik1,2,3, Daniel Mathalon2,4,5, John Cahill1,2,3, Brian Pittman2,3,
Ashley Williams1,3, R Andrew Sewell1,2,3, Mohini Ranganathan1,2,3, Brian Roach4,5, Judith Ford2,4,5 and
Deepak Cyril D’Souza*,1,2,3

1Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA; 2Department of Psychiatry, Yale University School of Medicine,
New Haven, CT, USA; 3Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA; 4Department of Psychiatry,
University of California, San Francisco, San Francisco, CA, USA; 5Mental Health Service Line, San Francisco VA Medical Center, San Francisco,
CA, USA

Gamma (γ)-band oscillations play a key role in perception, associative learning, and conscious awareness and have been shown to be
disrupted by cannabinoids in animal studies. The goal of this study was to determine whether cannabinoids disrupt γ-oscillations in humans
and whether these effects relate to their psychosis-relevant behavioral effects. The acute, dose-related effects of Δ-9-tetrahydrocannabinol
(Δ9-THC) on the auditory steady-state response (ASSR) were studied in humans (n= 20) who completed 3 test days during which they
received intravenous Δ9-THC (placebo, 0.015, and 0.03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design.
Electroencephalography (EEG) was recorded while subjects listened to auditory click trains presented at 20, 30, and 40 Hz. Psychosis-
relevant effects were measured with the Positive and Negative Syndrome scale (PANSS). Δ9-THC (0.03 mg/kg) reduced intertrial
coherence (ITC) in the 40 Hz condition compared with 0.015 mg/kg and placebo. No significant effects were detected for 30 and 20 Hz
stimulation. Furthermore, there was a negative correlation between 40 Hz ITC and PANSS subscales and total scores under the influence
of Δ9-THC. Δ9-THC (0.03 mg/kg) reduced evoked power during 40 Hz stimulation at a trend level. Recent users of cannabis showed
blunted Δ9-THC effects on ITC and evoked power. We show for the first time in humans that cannabinoids disrupt γ-band neural
oscillations. Furthermore, there is a relationship between disruption of γ-band neural oscillations and psychosis-relevant phenomena
induced by cannabinoids. These findings add to a growing literature suggesting some overlap between the acute effects of cannabinoids
and the behavioral and psychophysiological alterations observed in psychotic disorders.
Neuropsychopharmacology (2015) 40, 2124–2134; doi:10.1038/npp.2015.53; published online 20 May 2015
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INTRODUCTION

With the legalization of ‘medical’marijuana (cannabis) (Kleber
and DuPont, 2012; Procon.org, 2014) and recreational
cannabis use in some states of the United States (Wilkinson
and D'Souza, 2014), the high rates (ONDCP, 2008; SAMHSA,
2011) and earlier onset of cannabis use (Johnston et al, 2012),
the increasing potency of cannabis (Mehmedic et al, 2010), the
recreational use of highly potent synthetic cannabinoids (eg,
Spice and K-2) (Johnson et al, 2011; Vardakou et al, 2010), and
the high rates of emergency department visits related to
cannabis (SAMHSA, 2012), there is a need to understand the
basic mechanisms underlying the behavioral effects of
cannabinoids such as Δ-9-tetrahydrocanabinol (Δ9-THC),
the primary psychoactive constituent in cannabis.

Δ9-THC, via activation of brain cannabinoid 1 receptors
(CB1Rs), induces a range of acute alterations in perceptual,
emotional, and cognitive functions that are relevant to
psychotic states and psychotic disorders such as schizo-
phrenia (reviewed in Radhakrishnan et al, 2014). Neural
oscillations in the gamma (γ)-band (30–80 Hz) are thought to
play a key role in the operation of these functions by partici-
pating in sensory registration and integration, associative
learning, and conscious awareness among other processes
(Uhlhaas et al, 2008). Therefore, it is expected that altera-
tions in these processes will be associated with abnormalities
in γ-band oscillations. Consistent with this view, a number
of studies in schizophrenia patients have confirmed the
existence of an association between functional and γ-band
abnormalities as measured by electroencephalography (EEG)
(see Uhlhaas et al, 2008 for review). This raises the intriguing
possibility that some of the acute psychosis-relevant func-
tional abnormalities induced by Δ9-THC may be associated
with γ-band alterations (Skosnik et al, 2006).
Consistent with this possibility, both in vitro and in vivo

studies in animals have shown that CB1R agonists modulate
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γ-oscillations in the cerebral cortex and hippocampus (Hajos
et al, 2000, 2008; Morgan et al, 2008; Robbe et al, 2006).
For example, systemic administration of the CB1R agonist
CP-55940 has been shown to decrease the amplitude of
γ-band oscillations in mice as measured via neocortical
electrocorticograms (Sales-Carbonell et al, 2013). Similar
findings have been observed via local field potential (LFP)
recordings in rats (Hajos et al, 2008).
However, although γ-band abnormalities have been

reported in schizophrenia, cannabinoids have been shown
to acutely induce psychosis-relevant phenomena in healthy
humans, and cannabinoids have been shown to disrupt γ-
band oscillations in animals, we are unaware of any studies
in humans examining the acute effects of CB1R agonists on
either γ-band oscillations or the relationship between γ-band
oscillations and the acute psychosis-relevant phenomena
induced by CB1R agonists.
In humans, macroscopic synchronized neural oscillations

can be evaluated noninvasively with the EEG by measuring
the brain’s auditory steady-state response (ASSR) to sensory
stimulation, that is, the entrainment of EEG activity to
regular auditory stimuli (eg, auditory click trains) of varying
frequencies. Neural circuits act as oscillators that tune their
activity to the frequency and phase of the presented stimuli,
providing an indicator of the brain’s ability to engage in
transient states of synchronized oscillatory activity at the
frequency used for stimulation. Furthermore, a number of
studies have shown that the ASSR is sensitive to the abnor-
malities present in schizophrenia. For example, first-episode
and chronic schizophrenia patients show attenuated γ-band
(~40 Hz) responses in the ASSR paradigm (Krishnan et al,
2009; Kwon et al, 1999; Light et al, 2006; Spencer et al, 2008a)
that is associated with some of the characteristic abnorm-
alities of the disorder (eg, positive symptoms and working
memory deficits) (Light et al, 2006; Spencer et al, 2008b).
In view of this, we selected the ASSR paradigm to study
the relationship between acute Δ9-THC-induced alterations
in γ-band oscillations and psychosis-relevant effects.
This study was part of a larger project that aimed to assess

the dose-related effects of Δ9-THC on several electrophysio-
logical indices of information processing relevant to psychosis
(eg, P300; D'Souza et al, 2012) and to determine the
relationship between the electrophysiological and behavioral
effects of Δ9-THC. In this study we examined the acute,
dose-related effects of intravenous (i.v.) Δ9-THC on the
ASSR in a number of frequency bands, and the relationship
between these effects and the psychosis-relevant effects
induced by Δ9-THC. We hypothesized that Δ9-THC would
specifically reduce the γ-band (40 Hz) ASSR, and that γ-band
ASSRs measures would be inversely correlated with the
psychosis-relevant effects of Δ9-THC.

MATERIALS AND METHODS

This randomized, double-blind, placebo-controlled, counter-
balanced, crossover study was conducted at the Neurobio-
logical Studies Unit (VA Connecticut Healthcare System
(VACHS), West Haven, CT). Subjects were recruited by
advertisements and by word of mouth, and were paid for
their participation. The study was approved by the institu-
tional review boards of the VACHS and Yale University

School of Medicine and was carried out in accordance with
the Helsinki Declaration of 1975. Subjects were informed
about the potential for adverse effects of Δ9-THC including
psychosis, anxiety, panic, and abuse liability.

Subjects

After obtaining written informed consent, subjects (n= 30;
18–35 years) underwent a Structured Clinical Interview for
DSM-IV (SCID; First et al, 2002) and were carefully screened
for any DSM Axis I lifetime psychiatric or substance use
disorder (excluding tobacco and cannabis use) and family
history of major Axis I disorder. Subjects were screened at a
separate session within ∼ 4 weeks of the first test day.
Cannabis-naive individuals were excluded to minimize any
risk of promoting future cannabis use/abuse. Subjects with
DSM-IV cannabis dependence based on the SCID were
excluded because cannabis dependence has been associated
with a bunted response to THC (tolerance). Subjects were
categorized into those who had not used cannabis in the past
30 days (recent users) and those who had not (nonusers) for
exploratory analyses to determine the effects of cannabis
exposure on study outcomes. The history provided by
subjects was confirmed by a telephone interview conducted
with a spouse or family member identified by the subject. A
general physical and neurological examination, electrocar-
diogram, and laboratory tests (serum electrolytes, liver
function tests, complete blood count with differential, urine
toxicology, and urine pregnancy in women) were also con-
ducted. After screening, subjects were instructed to refrain
from alcohol, caffeinated beverages, illicit drugs (other than
cannabis), or prescription drugs not approved by the
research team for 2 weeks before the study and throughout
study participation. Cigarette smokers were permitted to
participate only if their pattern of cigarette consumption
would allow them to abstain for each test day (0800–1500 h)
and their consumption did not exceed 10 cigarettes/day.
Recent users of cannabis were instructed to abstain from
smoking for at least 24 h before test day. Test days were
rescheduled if subjects reported using cannabis within 24 h
of the test day. Subjects who were not categorized as recent
users of cannabis were reminded not to use cannabis for
2 weeks before testing and throughout study participation.
For this group, abstinence was confirmed by urine drug
testing on the morning of each test day.
Subjects completed 3 test days during which they received

Δ9-THC (placebo (vehicle (ethanol)), 0.015 mg/kg, or
0.03 mg/kg) over 10 min by i.v. route in a randomized,
counterbalanced order under double-blind conditions. Both
staff and subjects received identical information without
reference to any hypothesized group differences.

Drugs

The preparation, formulation, and storage of the Δ9-THC
solutions are reported elsewhere (D'Souza et al, 2004). For
the control placebo condition, an equivalent volume of
ethanol (vehicle) was used that was previously shown to
be undetectable in multiple postinjection blood samples
(D'Souza et al, 2004). The i.v. route of administration was
chosen to standardize the delivery of Δ9-THC as discussed
previously (D'Souza et al, 2004).
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General EEG Acquisition and Processing

Multichannel EEG was recorded from the scalp using a 22-
lead electrode cap (Physiometrix, Billerica, MA) based on the
International 10–20 System (see Supplementary Text 5).
Electrode impedances were maintained o5 kohms. Record-
ings were made using a linked ear reference. The data were
recorded using Neuroscan Synamps amplifiers (Neuroscan
SynAmps, Compumedics Neuroscan, Charlotte, NC). Codes
indicating stimulus onset and type were incorporated into
the data stream for offline averaging and analysis using
Neuroscan Acquire software for data acquisition and soft-
ware for stimulus presentation (Presentation, Neurobeha-
vioral Systems, Berkeley, CA). EEG was continuously
monitored on a screen outside the recording chamber to
detect drowsiness.

ASSR Paradigm

For assessment of ASSRs, subjects sat in an acoustically shielded
booth in front of a computer monitor with eyes open,
while passively listening to click trains presented through
Etymotic insert ER-1 earphones (Etymotic Research, Elk
Grove Village, IL). Stimuli consisted of standard, unattended
(nontarget) auditory click trains from a three-stimulus oddball
task as reported previously (D'Souza et al, 2012). The auditory
click trains were presented at three different frequencies (20, 30,
and 40Hz; 80 dB SPL). Each block contained 150 trials of a
single frequency presented for 500 ms each (ISI 750 ms).
Each trial lasted 1250 ms, and each block lasted 4 min. Across
subjects, the order of blocks was counterbalanced and the
order of conditions was randomized.

EEG Signal Analysis

A detailed account of EEG methods is provided in the
Supplementary Text 1. Continuous EEG data were band-pass
filtered (0.5–100 Hz), line noise was removed using a multi-
tapering technique (Partha and Hemant, 2007), muscle
artifacts were removed using a blind source separation
algorithm (De Clercq et al, 2006), and eye movement and
blink artifacts were removed with an adaptive filter algorithm
(Puthusserypady and Ratnarajah, 2005). Data were segmen-
ted in 1200 ms epochs time-locked to stimulus onset, with a
300-ms prestimulus baseline. A ± 95 μV voltage criterion was
used to reject bad epochs. EEG data from three midline
electrodes (Fz, Cz, and Pz) were used for ASSR analyses,
given that the ASSR is typically maximal at the midline
electrodes (Skosnik et al, 2012). All analyses were done in
Matlab (MathWorks, Natick, MA) using either custom-made
scripts (for inter-trial coherence (ITC) and evoked power) or
the EEGLAB toolbox’ scripts and plugins (for signal pre-
processing) (Delorme and Makeig, 2004; Gómez-Herrero
et al, 2006).
ITC reflects the consistency across trials of the phases of

the brain’s electrophysiological response to equivalent
stimuli/events (Tallon-Baudry et al, 1996). ITC values range
from 0 to 1, being maximal at a given time point (relative to
the onset of the stimulation/event) when the phases of the
EEG signals of all the trials are the same at the time point,
and minimal when the phases at the time point are randomly
distributed across the trials. For each auditory stimulation

frequency (20, 30, and 40 Hz) and electrode (Fz, Cz, ad Pz),
the signal epochs (trials) were band-pass filtered around the
stimulation frequency (stimulation frequency ± 5 Hz) and
then Hilbert-transformed to obtain the analytic signal.
Instantaneous ITC was obtained as the norm of the point-
by-point average across trials of the normalized analytic
signals. ITC values were averaged in the time window 50–
550 ms after the onset of the auditory stimulation, and the
average ITC of the baseline period (−300 to − 50 ms) was
subtracted from it.
Evoked power reflects both the magnitude of the brain’s

voltage response to a stimulus/event and the consistency
across trials of the time course of this time-locked response.
For each auditory stimulation frequency and electrode, signal
epochs (trials) were band-pass filtered (stimulation fre-
quency ± 5 Hz), averaged across trials in a point-by-point
manner, and then Hilbert-transformed to obtain the analytic
signal. Instantaneous evoked power was obtained by squaring
the norm of the analytic signal. Evoked power was then
averaged in the interval 50–550 ms after the onset of auditory
stimulation, and the average power of the baseline period
(−300 to − 50 ms) was subtracted from it.

Behavioral Psychosis-Relevant Measures

Psychosis-relevant effects were captured with the Positive
and Negative Syndrome Scale (PANSS) (Kay et al, 1989)
positive, negative, general, and total scores that are known to
be sensitive to the effects of Δ9-THC (Radhakrishnan et al,
2014).

General Procedure and Test Days

Test days were separated by 3 days to minimize carryover
effects (see Supplementary Table 1). On the morning of each
test day, subjects underwent drug and pregnancy testing.
EEG was recorded during an ASSR task, administered before
and when peak drug effects were expected to occur on each
test day. In-study safety procedures and poststudy prospec-
tive safety assessments were performed; their results were
reported in further detail elsewhere (Carbuto et al, 2011;
D'Souza et al, 2004).

Statistical Analysis

Initially, data were examined descriptively using means, SDs,
and graphs. For each drug condition (placebo, 0.015 mg/kg,
and 0.03 mg/kg), EEG (evoked power and ITC) and beha-
vioral (PANSS positive, negative, general, and total scores)
measures were assessed for normality with the Kolmogorov–
Smirnov test. Outliers were detected using a median absolute
deviation (MAD)-based (Hampel, 1974) criterion that,
compared with the common ‘standard deviations above
the mean’ criterion, is highly robust against the presence
of multiple outliers (Davies and Gather, 1993) (for further
details, see Supplementary Text 2). Using this approach, no
greater than 12% of the data for any outcome variable were
excluded from the analysis.
Given that the auditory steady-state stimulation response

was maximal at the electrode Cz, only this electrode was used
for statistical analyses. EEG measures were obtained both
before drug administration (baseline) and around predicted
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occurrence of peak drug effects. However, as there were no
significant differences in predrug measures of ASSR between
the 3 test days (for further details, see Supplementary Text 3),
predrug data were not included in the analysis to detect drug
effects.
The effects of Δ9-THC on ITC and evoked power were

assessed using generalized estimating equations (GEE) with
unstructured working correlation matrices (Liang and Zeger,
1986; Zeger and Liang, 1986). The effect of drug condition on
each EEG measure (two measures: evoked power and ITC)
was modeled by fitting three separate GEEs to the data, one
for each stimulation frequency. For each EEG measure, the
p-values of the GEE models were adjusted for three
comparisons (one for each stimulation frequency) with the
Holm–Bonferroni (HB) sequential procedure. The post hoc
pairwise comparisons (0.03 mg/kg vs placebo, 0.015 mg/kg vs
placebo, and 0.03 mg/kg vs 0.015 mg/kg) were performed for
the GEE models with a significant main effect of drug
condition in order to localize the source of the effect. For
each EEG measure, p-values of the pairwise comparisons
were HB adjusted in accordance with the total number of
comparisons performed for the EEG measure (maximum
possible number of comparisons for each EEG measure= 9:
3 frequencies × 3 drug condition pairs).
To characterize the relationship (correlation) between the

effects of Δ9-THC on both EEG (ITC and evoked power) and
PANSS scores, longitudinal regressions were conducted on
the data of both Δ9-THC-active conditions. The behavioral
measures were regressed on the EEG measure/s presenting
a significant main effect of drug by fitting GEE models
with unstructured working correlation matrices to the data
of both Δ9-THC-active conditions (maximum number of
regressions = 8: 2 EEG measures × 4 behavioral measures).
Furthermore, in order to approximate the regression
coefficients to partial correlation coefficients, standardized
regression coefficient (βs) were obtained by transforming the
data into composite z-scores before fitting the GEE models.
To preserve the relative differences in the values of each
variable between the two Δ9-THC-active conditions, com-
posite z-scores were calculated using the mean and SD of the
data of both Δ9-THC-active conditions pooled together. The
p-values of the coefficients were HB adjusted for the total
number of regression performed (maximum number = 8).
Analyses were done using SPSS 21 (IBM Corporation,
Armonk, NY) and custom-made scripts in Matlab (Math-
Works, Natick, MA).

RESULTS

The demographic and cannabis use data are listed in Table 1.
Of the 56 subjects who initially consented for the study, 10
failed the screening process and 8 chose not to initiate the
study. Of the remaining 38 subjects, 30 completed all 3 test
days (21% dropout rate), of which 5 had to be dropped
because of technical difficulties during EEG acquisition.
There were no obvious differences between dropouts and
completers (see Supplementary Table 2). Of the remaining
25 subjects, 2 were dropped during the EEG preprocessing
because of artifactual contamination (for details, see
Supplementary Text 1), and 3 were categorized as outliers
and dropped during the statistical inspection of the EEG

Table 1 Sample Demographics

General characteristics

No. of male (female) 14 (6)

Age (mean (SD)) 25.700 (7.623)

Handedness 1 Left handed

Years of education (mean (SD)) 15.200 (2.142)

Estimated IQ (mean (SD)) 116.850 (3.883)

Body mass index (mean (SD)) 24.25 (2.99)

Cannabis exposure

Age of first cannabis use 16.150 (4.522)

Days since last use (mean (SD) range) 402.725
(854.634)
1–3650

Subgrouping (no. of subjects) Recent users 9

Nonusers 11

Frequency of cannabis use within past
30 days (no. of subjects)

0 Days 11

1–3 Days 4

4–8 Days 1

9–15 Days 2

16–29 Days 2

Estimated lifetime exposure to cannabis
(no. of subjects)

Only once 0

2–5 Days 1

5–10 Days 2

11–20 Days 4

21–30 Days 1

31–50 Days 1

51–100 Days 1

101–200 Days 1

201–300 Days 0

301–500 Days 4

501–1000
Days

2

41000 Days 3

Estimated cannabis exposure during heaviest
use (no. of subjects)

o1 Per year 1

1 Per year 2

1 Per 6 months 4

1 Per 3 months 3

1–3 Per month 2

1–2 Per week 1

3–6 Per week 3

7 Per week 4

Other drug exposurea

Daily cigarette smokers (no. of subjects) 1

Social cigarette smoker (no. of subjects) 1

Average no. of alcoholic drinks per week (mean (SD)) 6.01 (6.06)

No exposure to other drugs (no. of subjects) 6

Exposure to drugs other than cannabis (no. of subjects) Psilocybin 11

LSD 2

Salvinorin 3

Nitrous oxide 2

Cocaine 5

Amphetamines 3

MDMA 2

Opioids 2

aNone of the subjects met criteria for abuse or dependence of tobacco, alcohol,
and other drugs of abuse. Exposure to the drugs listed above was limited and
remote.
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measures. Thus, EEG data from 20 subjects who completed
all test days were used for statistical analyses. The inspection
of the behavioral measures of these 20 subjects revealed one
outlier for the PANSS general and total scores during the
0.015 mg/kg condition. This data point was excluded from
the regression analyses (for details about the rejections of
outliers, see Supplementary Text 2).

Auditory Steady-State Response

Intertrial coherence. There was a HB-corrected signi-
ficant main effect of dose on ITC with 40 Hz stimulation
(Wald QUOTE (2)= 12.677, pAdj= 0.006). No significant
main effect of dose was observed with the 20 and 30 Hz
stimulation frequencies either before or after HB correction
(psAdj40.1). The post hoc analyses of the 40 Hz data revealed
HB-corrected (3 comparisons) significantly lower ITC in the
0.03 mg/kg condition compared with the 0.015 mg/kg (pAdj=
0.005) and the placebo (pAdj= 0.002) conditions (Figure 1).
No significant differences were found between the 0.015 mg/
kg and the placebo conditions (pAdj40.1). Means and SDs of
the EEG measures are reported in Table 2.

Evoked power. No significant main effect of dose on
evoked power was observed with any stimulation frequency
after HB correcting for multiple comparisons (pAdj40.1).
Before corrections a trend to significance was observed with
40 Hz stimulation (Wald QUOTE (2)= 5.023, p= 0.081),
whereas no effects were detected with 20 and 30 Hz

stimulation. Inspection of the means (Table 2) showed that
in the 40 Hz condition, evoked power had a dose-related
reduction as observed in ITC.

Behavioral and Subjective Effects

As reported elsewhere (D'Souza et al, 2012), Δ9-THC
significantly increased PANSS positive, negative, general,
and total scores (all pso0.001). All doses were significantly
different from each other at 10 min drug postinfusion for all
these measures (all pso0.01).

Relationship Between Electrophysiological Measures
and Psychosis-Related Measures

There was a significant main effect of dose only for the
40 Hz stimulation ITC. Thus, only the 40 Hz ITC was used in
the regressions of psychosis-relevant symptoms (PANSS
scores) on EEG measures. Results were HB adjusted for four
comparisons (ITC for 1 frequency × 4 psychosis-relevant
measures).

Intertrial coherence. For the active Δ9-THC conditions,
significant HB-adjusted inverse relationships were found
between ITC and the (1) PANSS positive (β=− 0.385,
Wald χ2(1)=4.847, pAdj=0.028), (2) negative (β=−0.358, Wald
χ2(1)= 7.247, pAdj= 0.021), (3) general (β=− 0.383, Wald
χ2(1)= 5.618, pAdj= 0.036), and (4) total (β=− 0.453,
Wald χ2(1)= 11.800, pAdj= 0.002) scores (Figure 2).
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Exploratory Analyses on the Effects of Recent Cannabis
Exposure

Exploratory analyses were conducted to determine the
association between cannabis use in 30 days before study
participation and the effects of acute Δ9-THC on ITC and
evoked power. The sample was divided into those who
reported using cannabis in the past 30 days (‘recent users’,
n= 9) and those who did not (‘nonusers’, n= 11) as per
(D'Souza et al, 2012). The effects of cannabis exposure
(recent user vs nonuser) and the interaction between dose
and cannabis exposure on each EEG measure (evoked power
and ITC) were examined by fitting a GEE model with an
unstructured working correlation matrix to the data. The
post hoc analyses were performed whenever significant main
effects or interaction effects were observed.
These exploratory analyses revealed that recent users of

cannabis had lower ITC than nonusers at a trend level (group
effect: p= 0.07). As reported earlier, the dose effect was
significant, but the group × dose interaction was not
significant (Wald χ2(2)= 2.328, p= 0.312). Furthermore,
recent users of cannabis had significantly lower evoked
power than nonusers (Wald χ2(1)= 5.188, p= 0.023). As
reported earlier the dose effect showed a trend toward
significance but the group × dose interaction was not
significant (Wald χ2(2)= 2.372, p= 0.306).

Plasma THC and THC-COOH Levels

For both active doses of Δ9-THC, there were significant
(pAdjo0.001) increases in plasma levels of Δ9-THC and its
metabolite THC-COOH (see Supplementary Figure 1 and
Supplementary Text 4 for more information).

Safety

As reported elsewhere (D'Souza et al, 2012), there were five
nonserious adverse events and no serious adverse events that
occurred on test days.

DISCUSSION

To our knowledge, this is the first report of exogenous
cannabinoids (i.v. Δ9-THC) disrupting evoked γ-band neural

oscillations in humans. For the 40 Hz ASSR, there was a
dose-dependent reduction of ITC, with the higher dose
(0.03 mg/kg) showing reduced ITC compared with both the
lower dose (0.015 mg/kg) and placebo. No significant effects
of Δ9-THC were detected on the 20 or 30 Hz ASSRs,
suggesting that cannabinoids selectively affected time-locked
γ-band activity. Although not statistically significant,
Δ9-THC also reduced evoked power.
These findings are similar to a large body of evidence from

ASSR studies showing reduced ITC during γ-band stimula-
tion (maximal effect at 40 Hz) and preserved response to
20 Hz stimulation in first-episode and chronic schizophrenia
patients compared with healthy controls (Krishnan et al,
2009; Kwon et al, 1999; Light et al, 2006; Roach et al, 2012;
Spencer et al, 2008a, b).

Intertrial Coherence

ITC is a measure of the consistency in the phases of the
brain’s oscillatory responses to a stimulus/event across dif-
ferent trials. Thus, as reflected by reductions in ITC, it seems
that both schizophrenia and relevant phenomena acutely
induced by Δ9-THC are associated with an increase in the
intraindividual variability of the brain’s response to identical
stimuli/events. This intraindividual variability may reflect
greater randomness in the neural processes underlying
the ASSR. As observed in schizophrenia, Δ9-THC-induced
increased intraindividual variability was more pronounced at
40 than 20 Hz oscillations.

Relationship to Psychotomimetic Effects

Consistent with other studies, Δ9-THC induced psychoto-
mimetic effects in a dose-dependent manner (D'Souza et al,
2004; Morrison et al, 2009). Thus, at doses that induce
psychotomimetic effects, Δ9-THC concurrently disrupted
evoked γ-band neural oscillations. Of note, there were robust
(β=− 0.35 to − 0.45) inverse relationships between ITC and
several subscales of the PANSS that assess symptoms
relevant to schizophrenia.
The γ-band neural oscillations are essential for processes

such as sensory registration, integration and binding of
perceptual features, associative learning, and conscious
awareness (for a review, see Cannon et al, 2014; Gandal
et al, 2012; Uhlhaas et al, 2008; Uhlhaas and Singer, 2013).
If disrupted, this could contribute to the Δ9-THC-induced
psychotomimetic effects (Skosnik et al, 2006) captured
by the PANSS. These observations are consistent with other
reports of inverse relationships between clinical variables
and measures of γ-band oscillations in schizophrenia. For
example, in a study by Haig et al (2000), it was demonstrated
that the magnitude of γ deficits in schizophrenia patients
correlated with PANSS scores (one of the primary dependent
measures in the current study) (Haig et al, 2000).

Neural Mechanisms Underlying Δ9-THC Effects on
γ-Band Oscillations

Given the extensive crosstalk between the CB1R system and
the GABAergic and glutamatergic systems, below herewith
we speculate on how the latter two might be mechanistically

Table 2 Δ9-THC Effects on Intertrial Coherence (ITC) and Evoked
Power

Measure Placebo, M
(SD)

0.015mg/kg, M
(SD)

0.03mg/kg, M
(SD)

Intertrial coherence

40 Hz 0.149 (0.082) 0.142 (0.073) 0.104 (0.073)

30 Hz 0.027 (0.042) 0.042 (0.044) 0.043 (0.043)

20 Hz 0.038 (0.040) 0.030 (0.040) 0.039 (0.041)

Evoked power (μV2)
40 Hz 0.288 (0.209) 0.269 (0.167) 0.196 (0.167)

30 Hz 0.075 (0.122) 0.114 (0.137) 0.107 (0.100)

20 Hz 0.252 (0.393) 0.134 (0.178) 0.184 (0.194)
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involved in mediating the effects of Δ9-THC on γ-band
oscillations.

The potential role of GABA. A large body of research has
shown that GABAergic interneurons are the generators of
neural oscillations in the γ-range (Buzsaki and Wang, 2012;
Foldy et al, 2004; Gonzalez-Burgos and Lewis, 2008; Sohal,
2012; Uhlhaas and Singer, 2010; Wang, 2010). Furthermore,
the sizeable branching of outputs from GABAergic inter-
neurons are ideally suited to synchronize large numbers of
pyramidal cells (Cobb et al, 1995). However, there are diverse
types of GABAergic interneurons based upon their electro-
physiological characteristics, their expression of calcium-
binding proteins, and/or whether or not they are ‘fast’ or
‘non-fast’ spiking neurons. The fast-spiking parvalbumin
(PV)-expressing interneurons appear to be the primary
generator of neural oscillations in the brain (Curley and
Lewis, 2012; Sohal, 2012; Sohal et al, 2009). PV cells typically
target the pyramidal cell axon initial segment and cell body,
thus positioning their terminals in an optimal location to
synchronize numerous pyramidal cells. The non-fast spiking

CCK-positive interneurons are in a prime location to ‘fine-
tune’ the network oscillations generated by PV cells (Freund,
2003). Germane to the current study, CCK-positive inter-
neurons cells appear to be the only cortical and hippocampal
interneuron type to express CB1Rs (Ali and Todorova, 2010;
Bacci et al, 2004; Bodor et al, 2005; Eggan and Lewis, 2007;
Eggan et al, 2010; Foldy et al, 2006; Hill et al, 2007; Katona
et al, 2000). CCK-positive interneurons also target pyramidal
cell bodies, putting them in an ideal location to modulate
PV to pyramidal cell oscillations (Keimpema et al, 2012).
Furthermore, CCK cells themselves have collaterals that
provide input onto PV cells (Karson et al, 2009). Thus,
whereas PV interneurons are involved in the generation of
γ-rhythms (like a ‘metronome’), CCK interneurons enhance
the signal-to-noise ratio of γ–activity through a CB1R-
mediated mechanism (Bartos and Elgueta, 2012; Csicsvari
et al, 2003; Tukker et al, 2007).

Under physiological conditions, the release of neurotrans-
mitters such as GABA or glutamate results in the on-demand
synthesis of endocannabinoids that travel retrogradely to
activate presynaptic CB1R. The activation of these presynaptic
CB1Rs results in the inhibition of further neurotransmitter
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Figure 2 Relationship between 40 Hz intertrial coherence (ITC) and psychosis-relevant measures under the effects of Δ9-THC. The scatter plots show the
z-normalized values of the 40 Hz ITC (x axes) versus the PANSS (a) positive, (b) negative, (c) general, and (d) total scores (y axes) under the effects of
Δ9-THC. The relationship between the variables is represented by the regression lines and the standardized regression coefficients (β). Data from recent users
(past 30 days) and nonusers of cannabis are depicted as circles and triangles, respectively.
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release. In the case of CCK interneurons this would lead to
the disinhibition of PCs. Only PCs that are strongly recruited
by a stimulus/task (signal) can mount an adequate endo-
cannabinoid release to overcome CCK-BC-mediated inhibi-
tion (Bartos and Elgueta, 2012; Wilson and Nicoll, 2002).
Conversely, PCs that are weakly recruited by a stimulus/task
(noise) will not be able to overcome the CCK-BC-mediated
inhibition, and thus their random activity will remain
inhibited (ie, their contribution is ‘filtered’ out).

In contrast to endocannabinoids that are synthesized on
demand, released locally, and quickly removed after release,
the administration of exogenous cannabinoids such as
Δ9-THC produces long-lasting and less localized effects.
This nonphysiological activation of CB1Rs on CCK-positive
interneurons by Δ9-THC will therefore interfere with the
fine-tuning of network oscillations. Although admittedly
speculative, interference with the fine-tuning of network
oscillations would be expected to disrupt sensory, perceptual,
and cognitive functions, leading to psychosis-like phenom-
ena. Confirming this postulate, the current study found that
40 Hz ITC during high-dose THC inversely correlated with
PANSS scores. Hence, although this finding of an association
between disruptions in neural oscillations and psychosis does
not prove a causal relationship, these data suggest a potential
relationship between THC-induced disruption in γ-oscilla-
tions and measures of psychosis.

The potential role of glutamate. In addition to the sup-
pression of GABA release from CCK-positive interneurons,
cannabinoids can disrupt stimulus-locked γ-band responses
by suppressing glutamate release from PCs through the
activation of CB1Rs located on their synaptic terminals
(Holderith et al, 2011; Katona et al, 2006; Kawamura et al,
2006). In vitro evidence shows that the CB1R-mediated
reduction of glutamate release onto PCs and fast-spiking
PV-BCs decreases γ-band local field potentials (spectral
power) by reducing the firing rate and by increasing the
temporal variability (randomness) of spiking (with respect to
the phase of local field potentials) of both types of
postsynaptic neurons (Holderith et al, 2011).

Impact of Cannabis Exposure

The limited power to examine the influence of cannabis
exposure in this study notwithstanding, the results of the
current study suggest that individuals with a recent (past
30 days) history of cannabis exposure had blunted responses
to the disruptive effects of Δ9-THC on ITC and evoked
power. These findings are consistent with the observation
that relatively limited exposure to cannabis is associated with
a blunted response to the effects of Δ9-THC across beha-
vioral, subjective, cognitive (memory), neuroendocrine
(cortisol), and neurochemical (brain-derived neurotrophic
factor (BDNF)) outcomes (D'Souza et al, 2008a, b, 2009;
Ranganathan et al, 2009). This is likely related to the known
tolerance and CB1R downregulation that occurs after
repeated cannabis exposure (Gonzalez et al, 2005; Hirvonen
et al, 2012; Jones et al, 1981). Interestingly, recent cannabis
use did not influence the disruptive effects of Δ9-THC on
P300a/b amplitude and P300b latency (D'Souza et al, 2012)
suggesting that measures of ITC and evoked power might be
more sensitive to Δ9-THC effects.

Strengths, Limitations, and Conclusions

This study has several strengths and some limitations. The i.v.
route of administration and the weight-adjusted dose
addressing the inter- and intraindividual variability associated
with oral or smoked Δ9-THC is a strength. Further-
more, the use of multiple doses allowed for establishing a
dose–response relationship. The exclusion of heavy cannabis
users who are likely tolerant to Δ9-THC effects (D'Souza et al,
2008b) also maximized the chance to capture acute Δ9-THC
effects on neural oscillations. Finally, the use of novel
preprocessing techniques (described in the Supplementary
Text 1) to clean the muscular artifacts that frequently
contaminate EEG data allowed more data to be retained,
resulting in increased signal-to-noise ratio of evoked
measures (Van Drongelen, 2006) and reduced the likelihood
of spurious findings (Goncharova et al, 2003). There are some
limitations regarding the use of EEG that should be taken into
account. Despite the fact that muscular and ocular artifactual
activity was minimized by preprocessing, it is not possible to
rule out the possibility that some drug-induced effects may
have been either obscured or erroneously boosted by residual
artifactual activity. Furthermore, because of dropouts and the
process of removing artifacts, not all the data that could have
been used were available for analysis. This should be
considered when interpreting the lack of statistically sig-
nificant effects on some outcomes including power. The study
may have had limited power to detect Δ9-THC effects on
evoked power. Therefore, in order to characterize the acute
effect of cannabinoid agonists on the ASSR in humans, future
studies with a larger sample, the inclusion of a sufficient
sample of subjects with a wide range of cannabis exposure,
and the inclusion of cognitive measures that are influenced by
γ-band oscillations are warranted.
In summary, we show for the first time in humans that

exogenous cannabinoids acutely disrupt evoked γ-band neural
oscillations that are essential for processes such as sensory
registration, integration and binding of perceptual features,
associative learning, and conscious awareness. Furthermore,
we show a relationship between the disruption of neural
oscillations and the presence of abnormalities in these
cognitive processes similar to the ones observed in psychosis.
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