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Abstract of Thesis 

 

Patient-specific optimization of automated detection improves seizure onset zone 

localization based on high frequency oscillations 

by  

Casey Trevino 

Master of Science in Biomedical Engineering 

University of California, Irvine, 2020 

Professor Beth Lopour, Chair 

 

 

High frequency oscillations (HFOs) are a promising new biomarker of epileptogenicity, 

as they occur more frequently in the seizure onset zone (SOZ) and may aid in the demarcation of 

the epileptogentic zone. Development of reliable, automatic HFO detection algorithms is 

necessary for translation into clinical practice. While existing algorithms have demonstrated 

sufficient levels of sensitivity and specificity on individual data sets, there are currently no 

standards for their broad application. It is not uncommon for a previously validated algorithm to 

work poorly when applied to a new data set, and there is no consensus on whether (and how) 

parameter optimization should be done. Here we evaluate the impact of detector optimization on 

two independent datasets, consisting of twenty medically refractory epilepsy patients with 

seizure free surgical outcomes, using a widely cited automatic HFO detector based on the root-

mean-square amplitude. We calculated SOZ localization results over a wide range of detection 

parameters and assessed the variance in results across patients. The optimal parameters were 
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patient-specific, and in some cases, the most accurate localization resulted from detection with 

unconventional parameters. This suggests that the standard configurations are not suited for all 

patients. To overcome this obstacle, we suggest a novel method of coalescing the results from 

multiple parameter sets to isolate robust HFOs of epileptic tissue. This method resulted in 

localization accuracy that was comparable to the optimal parameter sets, without the difficult 

task of choosing a single parameter set to rely on. This work has the potential to eliminate per-

patient optimization of HFO detection, which will support translation into clinical practice, and it 

suggests that future studies should continue investigating ways to address patient variability 

before applying automatic detection algorithms. 
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1. Introduction 

1.1. Electrophysiological markers of the seizure onset zone 

Epilepsy is a neurological disorder characterized by the occurrence of spontaneous, 

unpredictable seizures which affects approximately 1% of the world’s population (Ramey et al., 

2013).  Epilepsy is commonly treated with medication, however approximately 30% of patients 

are unable to achieve adequate seizure control using medication alone (Kwan & Brodie, 2000). 

For such patients with medically refractory epilepsy, surgical resection of neural tissue 

associated with seizure generation offers a viable solution to eliminate or significantly reduce the 

occurrence of seizures (Schuele & Lüders, 2008). 

Successful surgical treatment depends upon the identification of the epileptogenic zone 

(EZ), a theoretical construct defined as all brain areas potentially able to generate seizures 

(Jacobs et al., 2012). In current clinical practice, patients undergo pre-surgical evaluation in 

which intracranial electrodes are implanted and used to monitor seizure activity. The goal of this 

procedure is to identify the seizure onset zone (SOZ), which remains the best proxy for the EZ. 

The SOZ is defined as the area in which clinical seizures start based on direct 

electrophysiological measurements during pre-surgical evaluation (Rosenow & Lüders, 2001). 

Clinicians identify the SOZ through intensive visual analysis of intracranial 

electroencephalography (iEEG) and monitor for areas characterized by increased epileptiform 

discharges. Also called epileptic “spikes,” these discharges are caused by synchronous bursts of 

neuronal activity. Epileptiform discharges are considered indicative of the SOZ due to their high 

degree of association with seizures (Westmoreland, 1996). However, it has also been found that 

epileptiform discharges occur outside the SOZ (Bautista et al., 1999). Furthermore, patients with 



2 

 

spikes occurring in multiple brain areas are less likely to become seizure free after surgery than 

patients with well localized spikes (Bautista et al., 1999). Consequently, only 50-60% of patients 

are seizure free following resective surgery, emphasizing the need to improve localization of the 

EZ (Edelvik et al., 2013). 

Over the past two decades, there has been growing interest in analyzing activity above 

the gamma band (40-100Hz) in the form of electrographic events called high-frequency 

oscillations (HFOs). HFOs have been shown to provide more accurate localization of the EZ 

than spikes (Jacobs et al., 2010). They are generally defined as spontaneous EEG patterns that 

consist of at least four oscillations with frequency > 100 Hz that clearly stand out from the 

background activity (Bragin et al., 1999). HFOs are often further divided into “ripples” in the 80-

250 Hz band and “fast ripples” in the 250-500 Hz frequency range. Since their discovery in 

rodent models, numerous studies have demonstrated the ability to record HFOs in humans using 

clinical macro electrodes (Crépon et al., 2010; Worrell et al., 2008). Furthermore, HFOs occur 

during the interictal period, reducing risk and discomfort for patients by minimizing recording 

time and the necessity of ictal recordings (Migliorelli et al., 2017). Interictal HFOs are a 

promising biomarker for the SOZ, as they occur more frequently at the site of seizure onset 

(Jacobs et al., 2012; Zijlmans et al., 2012). It has also been suggested that HFOs are more 

specific to the SOZ than spikes (Crépon et al., 2010; Jacobs et al., 2008; Staba & Bragin, 2011), 

although another study found that their co-occurrence with spikes was the best predictor of the 

SOZ (Roehri et al., 2018). The removal of HFO-generating regions has also been correlated with 

good post-surgical outcome (Akiyama et al., 2011; Jacobs et al., 2010; Wu et al., 2010). 

Moreover, it was demonstrated that HFOs are not specific to brain lesions, further strengthening 
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its case as a marker of epileptogenic tissue rather than other pathologic tissue changes (Jacobs et 

al., 2009). 

 

1.2. Automatic HFO detection 

HFOs are conventionally detected through visual identification by expert reviewers, and this 

is currently accepted as the gold standard (Ferrari-Marinho et al., 2015; Jacobs et al., 2014); 

however, visual marking is time-consuming, subjective, and non-reproducible (Zelmann et al., 

2012). Several automated HFO detection algorithms have been developed to facilitate HFO 

analysis. The development of automatic HFO detectors is significant due to its elimination of 

reviewer bias, efficiency, reproducibility, and standardization in defining clinically relevant 

HFOs compared to conventional visual identification. Furthermore, translating HFO analysis into 

clinical practice cannot be accomplished without automated methods (Worrell et al., 2012) 

The first automatic HFO detector was developed to identify HFOs in hippocampal 

microelectrode recordings from humans and rats (Staba et al., 2002). Briefly, the algorithm 

identified time periods in which the signal energy of the band pass filtered data (100-500 Hz) 

exceeded a threshold for at least three oscillations (3 cycles), using the signal’s root-mean-square 

(RMS) amplitude to estimate energy. We will refer to this as the RMS detector. This algorithm 

generally achieves high sensitivity compared to visual markings, but it does so at the expense of 

high false positive rates (Gardner et al., 2007). 

Subsequent development of automatic HFO detectors included other measures of signal 

energy, frequency analysis, and machine learning techniques (Navarrete et al., 2016). Many of 

these detectors were influenced by the RMS detector, either stemming from the detection 
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algorithm, building upon the algorithm, or benchmarking against it as the gold standard (Blanco 

et al., 2010; Burnos et al., 2014; Chaibi et al., 2013; Gliske et al., 2016; Wu et al., 2018; 

Zelmann et al., 2010). For example, the line-length detector replaced the short-time energy 

estimate with line length and reported improved sensitivity and specificity values benchmarked 

against the RMS detector for their analysis in clinical EEG data (0.1-100Hz) (Gardner et al., 

2007). Blanco et al. (2010) utilized the RMS detector for the first stage of initial detection before 

using data mining to classify the remaining HFOs. A more recent detector used a fuzzy-c-means 

(FCM)- quantization error modeling (QEM)-based expectation maximization (EM) - Gaussian 

mixture modeling (GMM) algorithm to analyze significant features from HFOs detected by the 

RMS detector, as a way to isolate artifacts (Wu et al., 2018).  

When new automatic HFO detection algorithms are proposed, they are generally developed 

for detection in a specific frequency band, location of the brain, and/or electrodes types 

(Zelmann et al., 2012). When these algorithms are subsequently applied to a new dataset, it can 

be preferable to use the published configuration, in order to provide independent validation of 

the algorithm’s utility, promote reproducibility of results, and to avoid overfitting to the data. 

Moreover, optimization procedures are often complex and not feasible in a clinical setting. 

However, the use of standard configurations can lead to suboptimal performance when used for a 

different data set, frequency range, or detection task. For example, when new algorithms are 

directly compared to previously published algorithms, without optimizing the parameters, the 

results tend to be worse than originally reported (Burnos et al., 2014; Gardner et al., 2007; Wu et 

al., 2018; Zelmann et al., 2012). This suggests that optimization may be an important step of 

HFO detection, which is supported by studies noting that optimizing detection parameters can 

improve sensitivity (Zelmann et al., 2012) and localization accuracy (Chaibi et al., 2013; 
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Charupanit & Lopour, 2017; Dümpelmann et al., 2012). However, the optimization procedures 

in these studies were often limited to small parameter ranges, performed only to compare 

performance across detectors, and did not account for patient variability. Thus, it remains 

unknown whether patient-specific optimization is necessary, which parameter ranges are relevant 

for HFOs, and how this optimization should be accomplished. 

 

1.3. Motivation 

In the present study, we evaluated the significance of optimization for automatic HFO 

detection using two independent datasets. Using a frequently cited automatic detector, we tested 

a wide range of algorithm parameter sets and determined the SOZ localization accuracy for each 

one. Our goal was to determine optimal parameter ranges for HFO detection, assess the variation 

in results across patients, and investigate the impact of optimization on the accuracy of SOZ 

localization. Moreover, we aimed to use these results to suggest a standardized and simplified 

optimization procedure.  
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2. Methods 

2.1. Clinical data collection 

Twenty patients with medically refractory epilepsy from two medical centers were 

identified retrospectively and included in this study. Seven of these patients underwent 

implantation of intracranial electrodes for presurgical evaluation from June 2015 to March 2017 

at the University of California, Irvine (UCI) Medical Center. We will refer to this as the UCI 

dataset.  These patients had postoperative outcome of Engel Class I, which indicates that the 

patient was seizure free following resective surgery. This suggests that the clinical SOZ 

localization was successful. If patients had multiple seizures with different regions of onset 

during recording, all SOZ channels were considered SOZ. The demographic and clinical 

characteristics of these subjects are shown in Table 1. Collection and analysis of retrospective 

patient data for this study was approved by the Institutional Review Board of the University of 

California, Irvine.  
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Table 1. Patient demographics of the UCI dataset. Abbreviations: AM = amygdala; AH = anterior hippocampus; 

depth = depth electrode; FLE = frontal lobe epilepsy; grid = grid electrode; HH = head of hippocampus; HP = 

hippocampus; L = left; MF = mesial frontal; PFC = pre-frontal cortex; TH = tail of hippocampus; TLE = temporal 

lobe epilepsy; R = right 

Subject 
Age, 

Gender 

Seizure 

semiology 
MRI     Diagnosis Electrodes 

SOZ 

channels 
Surgery 

Engel 

outcome 

Postoperative 

follow-up 

(months) 

1 44, M Unknown 

Cortical 

Dysplasia in 

PFC 

FLE 

1 grid 8x8  

2 grid 2x8  

1 grid 4x8  

RMF28-32 
R Frontal 

Lobectomy 
IA 47 

2 50, M Unknown 

White matter 

changes in 

frontal lobe; 

possible right 

mesial temporal 

atrophy 

TLE 5 depth 1x16 RAH5-8 

R Temporal 

Lobectomy 

IB 22 

3 46, M 

Complex 

Partial 

Seizures 

Right 

Hippocampal 

Sclerosis 

TLE 5 depth 1x16 RAH4 R Temporal 

Lobectomy 

IA 41 

4 34, M 

Complex 

Partial 

Seizures 

Bilateral 

hypometabolism 

and 

hippocampus 

abnormalities; 

mild left atrophy 

TLE 

2 depth (1x14)  

3 depth (1x16) 

2 grid (2x6) 

1 depth (1x10) RAM1-2, 

RHP1-3 

R Temporal 

Lobectomy 
IA 2 

5 57, F 

Complex 

Partial (Focal 

Dyscognitive) 

Seizures 

None TLE 

11 depth 

(1x10) 

1 depth (1x12)  

LHH1-3, 

LTH2-3 

L Lateral 

Temporal 

Lobectomy, L 

Amygdala and 

Hippocampal 

Resection 

IA 23 

6 53, F 

Complex 

Partial 

Seizures 

Left Mesial 

Temporal 

Sclerosis 

TLE 
10 depth 

(1x10) 
LTH1 

L Temporal 

Lobectomy 
IA 32 

7 54, F 

Complex 

Partial 

Seizures 

None TLE 
10 depth, 

(1x10) 

RHH1-4, 

RAM1-2 

R Temporal 

Lobectomy 
IB 26 

 

The remaining thirteen patients included in this study were obtained from a freely 

available online database provided by Fedele et al. (2017) at iEEG.org (http://crcns.org/data-

sets/methods/ieeg-1/about-ieeg-1). These patients underwent invasive EEG recordings with 

subdural and/or depth electrodes from March 2012 to April 2016 at the University Hospital 

Zurich as part of their presurgical evaluation. We refer to these thirteen patients as the ETH 

Zurich dataset. As in the UCI dataset, the included patients reported good clinical outcomes 

(class 1) assigned at least 1 year following resective surgery based on the International League 

Against Epilepsy (ILAE) scale. Information regarding electrode types, data acquisition, and sleep 

scoring can be found in Fedele et al. (2017). Patient demographics for the ETH Zurich dataset 

are in Table 2.  

http://crcns.org/data-sets/methods/ieeg-1/about-ieeg-1
http://crcns.org/data-sets/methods/ieeg-1/about-ieeg-1
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Table 2. Patient demographics of the ETH Zurich dataset. Abbreviations: depth = depth electrode; ETE = 

extratemporal epilepsy; ILAE = International League Against Epilepsy; Les = lesionectomy; sAHE = selective 

amygdala hippocampectomy; strip = strip electrode; TLE = temporal lobe epilepsy  

Subject 
Age, 

Gender 
Epilepsy 

Type of 

electrodes 
Channels in resected tissue Surgery 

ILAE 

outcome 

Postoperative 

follow-up 

(months) 

8 25, M TLE 

5 depth  

1 strip 4 x 1 

1 strip 6 x 1 

AHR1-2, AHR2-3, AHR3-4, AR1-2, AR2-3, 

AR3-4, PHR1-2, PHR2-3, PHR3-4 sAHE; Les 1 12 

9 33, M TLE 8 depth 

AR1-2, AR2-3, AR3-4, ER1-2, ER2-3, ER3-

4, HR1-2, HR2-3, HR3-4, PR1-2, PR2-3, 

PR3-4 sAHE; Les 1 29 

10 20, F TLE 5 depth     

AHL1-2, AHL2-3, AHL3-4, AL1-2, AL2-3, 

AL3-4, ECL1-2, ECL2-3, ECL3-4, PHL1-2, 

PHL2-3, PHL3-4 sAHE   1 13 

11 20, F TLE 8 depth  

AR1-2, AR2-3, AR3-4, ER1-2, ER2-3, ER3-

4, HR1-2, HR2-3, HR3-4, PR1-2, PR2-3, 

PR3-4 sAHE   1 41 

12 40, M TLE 8 depth 

AR1-2, AR2-3, AR3-4, ER1-2, ER2-3, ER3-

4, HR1-2, HR2-3, HR3-4, PR1-2, PR2-3, 

PR3-4 sAHE   1 14 

13 48, M TLE 8 depth 

AR1-2, AR2-3, AR3-4, ER1-2, ER2-3, ER3-

4, HR1-2, HR2-3, HR3-4, PR1-2, PR2-3, 

PR3-4 sAHE   1 11 

14 37, M ETE 

1 grid 8 x 4 

2 strips 4 x 1 IPR1-2, IPR2-3, IPR3-4 Les 1 36 

15 36, M ETE 

1 grid 8 x 8  

1 depth TR1-2, TR2-3, TR3-4 Les 1 37 

16 49, M ETE 

1 grid 8 x 4 

1 depth 

GL1-2, GL2-3, GL9-10, GL10-11, GL11-

12, GL12-13, GL17-18, GL18-19, GL19-20, 

GL20-21, GL21-22, GL25-26, GL26-27, 

GL27-28, GL28-29, GL29-30, GL30-31, 

GL31-32, TL1-2, TL2-3, TL3-4 Les 1 25 

17 17, M ETE 

1 grid 8 x 8  

1 depth TR1-2, TR2-3, TR3-4 Les 1 25 

18 46, F ETE 

2 grids 8 x 2 

1 strip 6 x 1 

1 strip 4 x 1 

1 depth IPR3-4 Les 1 10 

19 31, F ETE 

1 grid 8 x 4 

2 strips 4 x 1 TBAL2-3, TBAL3-4, TLL1-2, TLL9-10 Les 1 25 

20 17, F ETE 

1 grid 8 x 4 

1 depth TL1-2, TL2-3, TL3-4 Les 1 19 

 

 

2.2. Data acquisition 

Intracranial EEG was recorded for each patient using a combination of subdural 

electrocorticogram (ECoG) grids and strips, as well as depth electrodes. Recordings from the 

UCI dataset were collected using a Nihon Kohden JE-120A amplifier with a minimum sampling 

frequency of 2000 Hz for all patients. Recorded data were re-referenced to a bipolar montage for 
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analysis to support precise localization. All bipolar re-referenced channel pairs that included an 

SOZ channel were deemed as SOZ (for example, channels RAH3-4 and RAH4-5 of UCI patient 

3 were considered SOZ). Five 3-minute epochs from one night of iEEG recording were 

randomly selected for each UCI patient, for a total of 15 minutes per patient. Each epoch was 

chosen from data recorded between 8pm and 8am to improve the likelihood of analyzing sleep 

data, as HFO rates increase during slow-wave sleep compared to wakefulness (Bagshaw et al., 

2009; Clemens et al., 2003; Staba et al., 2004) and the occurrence of muscle artifacts is reduced. 

All epochs consisted of interictal data, recorded at least 1 hour away from seizure activity to 

reduce the influence of seizures on HFOs (Pearce et al., 2013). We analyzed all implanted 

electrodes, which ranged from 80 to 128 total electrodes for each UCI patient.  

All interictal recordings from the ETH Zurich dataset were obtained at least 3 hours away 

from seizure activity, and we analyzed five 5-minute epochs of slow wave sleep from one night 

of recording. We included the same channels used for analysis by the original authors; the 

included and excluded channels can be found in the supplementary information provided by 

Fedele et al. (2017). Of note, the number of analyzed channels for each patient ranged from 15 to 

53. For patients implanted with depth electrodes, superficial contacts (>7) were excluded from 

analysis. For the analysis in the current study, we will define the “SOZ channels” to be the 

bipolar re-referenced channels within the resected area for each patient; the specific sites of 

seizure onset within the resected area were not provided. 
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2.3. Data processing 

2.3.1 Automatic HFO detection 

Automated HFO detection was performed using the RMS detector introduced by Staba et 

al. (2002).  We used the RMS detector because it is referenced often as a benchmark for new 

algorithms, serves as the core of many other detectors, and is algorithmically simple to 

implement and examine. In this algorithm, broadband data is bandpass filtered in the 100-500Hz 

frequency range, and candidate events are identified when the RMS of the bandpass filtered 

signal exceeds a threshold for a minimum duration (thldt) (Figure 1A).  The RMS signal is 

Figure 1. Automatic HFO detection algorithm. (A) Full RMS Detector (B) Reduced RMS Detector. The shaded gray 

region represents the window containing the identified candidate event.  



11 

 

calculated using a moving window (RMS_win), and the first threshold is defined as five standard 

deviations (nSD1) above the mean RMS signal. Consecutive events separated by less than a 

predefined gap time (tstep) are combined into one event. Candidate events are retained when a 

minimum number of peaks (min_osc) in the rectified filtered data exceed a second threshold 

defined as 3 standard deviations (nSD2) above the mean rectified data.  

To reduce algorithmic complexity and minimize the number of optimization parameters, 

we simplified the RMS detector algorithm by modifying the threshold applied to the rectified 

data (Figure 1B). We set threshold two equal to threshold one, as they both ensure that the 

signal’s energy exceeds a threshold determined from baseline activity. As in the original 

algorithm, we required that a minimum number of peaks in the rectified filtered data exceed this 

threshold, to promote rejection of fast transients. All other steps in the original algorithm were 

maintained.  

The algorithm used in our analysis thus contains five parameters that must be considered 

during optimization: RMS window size (rms_win), minimum event duration (thldt), number of 

standard deviations above the mean RMS signal (nSD1), minimum gap time (tstep), and 

minimum number of oscillations (min_osc). From these parameters, we varied the three that 

directly affect initial detection of candidate events: RMS window size, minimum event duration, 

and threshold. Because the minimum gap time is a post-processing step to join candidate events 

and the minimum number of oscillations has little impact as a criterion due to the redundancy 

with minimum event duration, we kept these variables constant at their default values. The 

default values of each parameter and values tested during the optimization procedure are 

described in Table 3.   
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Table 3. Detection parameters varied during optimization and corresponding ranges of values. Default values are in 

red. The default value for minimum gap time is 10ms and minimum number of oscillations is 6. 

Threshold (nSD1) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 

RMS window size (RMS win) (ms) 2, 3, 5, 7, 9, 11, 15, 17, 20 

Minimum event duration (thldt) (ms) 6, 12 

 

 

2.3.2 Automatic artifact rejection 

Because the RMS detector is highly sensitive, we implemented two artifact rejection 

methods to improve specificity: PopDet and BkgStabaDet. Both methods were introduced by 

Gliske et al. (2016) for the purpose of creating a generalized HFO detection algorithm for long 

term intracranial EEG recordings, such that the algorithm automatically identifies quality HFOs 

without any patient-specific tuning or operator intervention (Gliske et al., 2016). These artifact 

rejection steps were designed using the RMS detector for initial detection, making them 

appropriate for our analysis. In this study, the default parameters from Gliske et al. (2016) were 

used for all subjects and all parameter sets. 

 

2.3.2.1 PopDet 

The popDet criterion was designed to detect DC shifts and fast transients commonly 

found in EEG data (Figure 2A, B). When a DC shift or fast transient is filtered, it can have the 

appearance of an HFO in the 100-500 Hz frequency band (Bénar et al., 2010; Zelmann et al., 

2010). However, these transients also contain power at very high frequencies, whereas a true 

HFO should have band-limited power. Therefore, the popDet identifies instances when the line 

length of a 0.1s window in the 850-990 Hz frequency range exceeds a threshold of 5 standard 
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deviations above the mean line length calculated from baseline. Baseline is defined as a 5-second 

window preceding the window being evaluated. 

 

 

 

 

 

 

 

 

 

Figure 2. Examples of rejected artifacts. Both broadband (A, B, top) and bandpass filtered data 

(A, B, bottom) are shown for A and B. Bandpass filtered data from one channel (C, top) and the 

common average bandpass filtered data (C, bottom) are shown in C. (A) DC Shift detected by 

popDet and (B) fast transient detected by popDet, with the artifacts highlighted in red. (C) 

Diffuse HFO detected by BkgStabaDet. The candidate HFO detected on the common average 

(highlighted in green) represents the common average HFO that occurred at or near (±100ms) 

the same time as the detected HFO (highlighted in red) in the bandpass filtered signal. 
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2.3.2.2 BkgStabaDet 

The BkgStabaDet was designed to detect diffuse HFOs, which are considered artifacts 

because they contradict the idea that HFOs should be focal events (Bragin et al., 2002, 2011). If 

an HFO occurs in all channels of a depth electrode or grid, it will appear in the common average 

(Figure 2C). Therefore, if an HFO is detected in the common average signal, we considered it to 

be artifact. As in the Gliske et al. (2016) implementation, we applied the RMS detector from 

Staba et al. (2002) to the common average using the default parameters. Detections in a single 

channel that occurred within 100ms of detections in the common average were marked as 

artifacts.   

 

2.4  Data analysis 

2.4.1  SOZ localization defined by rate thresholding 

After HFO detection and artifact rejection were performed for a given parameter set, the 

HFO rate for each channel was averaged across epochs. To localize the SOZ, a threshold was 

applied to the average HFO rates to classify channels as in the SOZ and outside the SOZ (nSOZ). 

Channels with average HFO rates exceeding the rate threshold were classified as SOZ and the 

remaining channels were classified as nSOZ.  

 

2.4.2 Receiver operator characteristic curves and precision-recall curves 

For each parameter set, we used a receiver operator characteristic (ROC) curve to 

characterize the ability of automatic HFO detection to localize the SOZ. For channels defined 
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clinically as SOZ (based on visual interpretation of ictal iEEG), channels automatically classified 

as SOZ were marked as true positives (TP) and those automatically classified as nSOZ were 

marked as false negatives (FN). For channels defined clinically as nSOZ, the channels 

automatically classified as nSOZ were marked as true negatives (TN) and those classified as 

SOZ were marked as false positives (FP). The ROC curve was plotted by varying the rate 

threshold and determining the true positive rate (TPR) and false positive rate (FPR) for each 

value:  

TPR =  
TP

TP+FN 
    (1) 

FPR =
FP

FP+TN
    (2) 

 

The area under the ROC curve (AUC) was determined for each parameter set for all patients.  

As a complementary measure, Precision-Recall (PR) scores were evaluated to examine 

the positive predictive value for each parameter set. Precision-Recall analyses are preferred when 

prediction power of imbalanced classes is being evaluated; in our case, we have imbalanced 

classes represented by the small subset of SOZ channels compared to the larger class of nSOZ 

channels for UCI patients, and the small subset of nSOZ channels compared to the larger class of 

SOZ channels for some ETH Zurich patients (specifically, patients 10 and 16). Precision (P), 

Recall (R), and the F1 score (F1) are computed as follows: 

P =
TP

TP+FP
  (3) 

R =
TP

TP+FN
  (4) 

F1 = 2 
P∗R

P+R
  (5) 
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Like the ROC curve, the PR curve was constructed by varying the rate threshold and calculating 

the precision, recall, and F1 score for each value. The optimal F1 score was defined as its 

maximum value, which represents the maximum harmonic mean of precision and recall. 

 After calculating the ROC and PR results for each parameter set, the maximum AUC of 

the ROC curve, as well as the optimal F1 score of the PR curve were determined for each patient.  

 

2.4.3 Artifact counting 

To assess the impact of the automated artifact rejection steps, we calculated the 

percentage of candidate HFOs rejected for each parameter set. The percentage of rejected 

artifacts by popDet was calculated as the total number of artifacts marked by popDet over the 

total number of candidates counted across all epochs. The same procedure was applied to 

candidates marked by BkgStabaDet. Because a candidate can be marked by both popDet and 

BkgStabaDet, the total percentage of rejected artifacts by popDet and BkgStabaDet can exceed 

100. 
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3. Results 

3.1  Minimum event duration does not significantly impact SOZ localization  

SOZ localization results were similar when HFO detection was done using minimum 

event duration (thldt) values of 6ms or 12ms. We noted this pattern in all subjects; one 

representative example is shown in Figure 3. Comparing the heatmaps in Figures 3A and 3B, the 

range of optimal F1 scores remains the same across the parameter space, with the highest optimal 

F1 score achieved using a low threshold and short RMS window. A similar pattern of optimal 

parameters occurs in the AUC values. Because minimum event duration did not significantly 

alter localization results for any patient, even when doubling its value, the remaining results will 

be reported using only a minimum event duration of 6ms.  

 

Figure 3. Minimum event duration does not affect SOZ localization performance. SOZ localization performance 

across the parameter space, comparing results calculated using minimum event duration of (A) 6ms and (B) 12ms. 

Representative heatmaps of AUC and optimal F1 score are shown across the parameter space for subject 5, with 

RMS window length (RMS_win) varying on the horizontal axis and RMS threshold (nSD1) varying on the vertical 

axis. All values range from 0 to 1, with results closer to 1 indicating good classification of SOZ and nSOZ channels. 
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3.2 Artifact rejection does not significantly impact SOZ localization 

Detection with and without artifact rejection generally lead to the same optimal 

parameters for optimal F1 score and AUC for all patients. A representative example of 

localization performance before artifact rejection is shown in Figure 4A. For this subject, the best 

performance, denoted by the highest optimal F1 score, occurs when the threshold is low (around 

nSD1 3-5) and across most RMS window sizes. Similar results are achieved after artifact 

rejection (Figure 4B). The optimal parameter set is the same in both cases (RMS_win = 3ms, 

nSD1 = 4), but we note that artifact rejection does improve performance for higher values of 

nSD1 for this patient. Across all patients, the optimal parameters were maintained after artifact 

rejection, with some improvement in other parameter sets. 

  

Figure 4. Artifact rejection does not impact the optimal detection parameters. Comparison of optimal F1 scores (A) 

with and (B) without artifact rejection across the parameter space. Percentage of candidate events rejected by (C) 

popDet and (D) BkgStabaDet across the parameter space. Results from patient 5 are shown as a representative 

example. 
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 The percent of rejected artifacts varied across the parameter space (Figure 4C, D). Near 

the optimal parameter set, the percent of rejected artifacts by the popDet ranges from 5.2 – 8% 

and by the BkgStabaDet ranges from 6.6 – 9% for this representative example. Generally, higher 

percentages of detected events were rejected as artifacts when the RMS window was short and 

the threshold was high (top left corner of Figure 4C, D). In contrast, the smallest percentages of 

rejected artifacts were found when the RMS window was long and the threshold was low 

(bottom right). This pattern was similar across all subjects and for both artifact rejection 

methods. The total percentage of rejected artifacts was also generally consistent across patients. 

 

3.3 Optimal parameters are patient-specific and vary across a wide range 

 

The optimal HFO detection parameters, which are associated with the maximum AUC 

and optimal F1 score, varied across patients. Figure 5 displays the SOZ localization results for all 

twenty patients reported as optimal F1 score (left) and AUC (middle). A consistent range of 

generally good performance can be found for all patients as the RMS window and threshold 

increase simultaneously (indicated by the red bands stretching from the lower left corner to the 

upper right corner). However, within this range, patients have their own subrange of optimal 

parameters. Four of the twenty patients (patient 4, 5, 7, and 17) display a similar pattern with 

optimal values at or near the default detection parameters. These same patients reported high 

optimal F1 scores and AUC values, indicating a clear distinction between the SOZ and nSOZ 

channels based on HFO rate. Four of the twenty patients (patients 2, 3, 8, and 19) had optimal 
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Figure 5. Optimal HFO detection parameters are patient-specific. Optimal F1 scores (left column) and AUC values 

(middle column) across the parameter space are shown for all patients. Results based on the default detection 

parameters are outlined in green. Parameter sets achieving optimal SOZ/nSOZ classification are outlined in white. 

Representative ripples (right column) detected using optimal parameters. 
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parameters using a stricter threshold and larger RMS window based on the optimal F1 score 

results. This differed significantly from the default parameters; however, patient 8 obtained 

similar localization results at the default parameters compared to the optimal parameters. In six 

patients (patients 4, 7, 15, 16, 17, 18), the optimal parameters were spread over a wide range that 

included various RMS window lengths, indicating little influence of the RMS window parameter 

on detection. Five patients (patient 1, 6, 14, 19, and 20) had low optimal F1 scores across the 

parameter space, suggesting a substantial presence of false positives. However, three of these 

patients (patient 6, 14, and 20) displayed favorable results based on the ROC curve, indicating 

that the number of true positives was also high.   

 

 

3.4 Variability of class imbalance amongst patients affects interpretation of 

results  

For all seven patients from the UCI dataset (patients 1-7), the range of optimal 

parameters was greater based on ROC results compared to PR results. This can be explained by 

the definition of precision and false positive rate — two distinct components of the PR and ROC 

curve. Precision is interpreted as a positive predictive value determined by the number of true 

positives relative to all predicted positives as defined in equation 3. In patients from the UCI 

dataset, the number of nSOZ channels considerably outnumbers the SOZ channels; this increases 

the probability of marking a false positive, which increases the denominator of equation 3. 

Furthermore, since there are fewer true positive SOZ channels, the probability of obtaining a 

significant positive predictive value is low due to the large class imbalance. In contrast, the false 

positive rate in ROC analysis is interpreted as how often the positive class is predicted positive 
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when the actual outcome is negative, or in other words, the proportion of false positives of the 

nSOZ channels. Due to the large number of true negative (nSOZ) channels, the false positive rate 

can generally be kept low while the true positive rate increases, resulting in more favorable ROC 

results within the UCI dataset. 

For example, in patient 6, good classification performance was only visible in the AUC 

of the ROC curve. In the case of patient 6, we observe that the HFO rate distribution contains a 

considerable number of nSOZ channels with high HFO rates (Figure 6A). At least five nSOZ 

channels have higher HFO rates than the SOZ channel, thereby giving a poor PR curve (Figure 

6B). However, we see a better ROC result due to the large proportion of nSOZ channels with 

lower rates compared the SOZ channel (Figure 6C). This case study suggests that nSOZ channels 

with high HFO rates significantly affect the positive predictive value in PR, but they have a 

modest effect on ROC analysis when the proportion of nSOZ channels outweighs the SOZ 

channels. 

In contrast to the UCI dataset, most patients from the ETH Zurich dataset (patients 8-20) 

had wider ranges of optimal parameters based on the PR results (left) compared to the ROC 

results (right). This relationship is inverted compared to the UCI dataset due to the smaller 

sampling of analyzed electrodes and broader interpretation of the SOZ, which was defined by the 

resected area. Therefore, the proportion of SOZ channels outweighs the nSOZ channels, 

improving the likelihood of obtaining favorable positive predictive performance. Furthermore, 

due to the decreased number of electrodes, we see less variation in results across the parameter 

space for some ETH Zurich patients (patients 9, 10, 11, 12, 13, and 16).  

 



23 

 

 

Figure 6. Imbalanced proportion of SOZ channels and nSOZ channels can lead to different interpretations of 

precision-recall and receiver-operator-characteristic results. (A) Distribution of HFO rates across channels using an 

RMS threshold of three standard deviations (nSD1=3), RMS window size of 20ms (rms_win=20ms), and minimum 

event duration of 6ms (thldt=6ms) for patient 6. (B) The resulting PR curve with the optimal F1 point circled in red, 

and (C) the ROC curve. 

   

3.5 Optimizing HFO detection parameters improves SOZ localization  

For each patient, we determined the optimal parameter set based on the highest optimal 

F1 score and AUC result, then compared the results obtained from these parameters to the 

default detection parameters (Figure 7). We found substantial increases in optimal F1 scores 

(>0.2) for eight of the twenty patients (patients 2, 3, 4, 5, 12, 15, 18, 19; Figure 7A). For five of 

these patients, improvements in the optimal F1 score was primarily driven by an increase in 

precision, while the remaining three showed improvement influenced by increased sensitivity or 
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a balance of both measures (Figure 7C). These same patients also showed improved AUC 

results, with three patients (patients 12, 15, and 18) showing substantial improvement. Two 

patients (patients 7 and 17) showed no change in optimal F1 score or AUC because the optimal 

parameters matched the default parameters with good localization accuracy.  

 

   

Figure 7. The use of optimal HFO detection parameters improves precision, sensitivity, and specificity. Results for 

default values vs. optimal values are shown for (A) Optimal F1 scores and (B) AUC results for all patients. (C) 

Change in Precision and Recall scores (optimal – default). (D) Change in sensitivity and specificity (optimal – 

default). 
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Patient 20 also showed no change in the optimal F1 score due to consistent optimal and default 

parameters, however showed improvement in AUC driven by sensitivity. Six patients (patients 8, 

9, 10, 11, 13, and 16) had reasonable localization results (optimal F1 score > 0.6) using default 

parameters, however still showed improvement in optimal F1 using optimal parameters. The 

remaining three patients (patients 1, 6 and 14) showed marginal growth in optimal F1 scores, but 

the value did not exceed 0.65. In the majority of patients, the improvements in optimal F1 score 

and AUC were due to increases in precision and sensitivity. Outliers from this pattern include 

patients 6 and 19, which primarily showed improvement as a result of increased recall and 

specificity. Note that improvements in ROC results carry more weight than improvements in 

optimal F1 scores because the optimal F1 score represents the best localization possible, while 

the AUC represents the overall localization accuracy across a range of parameters. In total, 

seventeen of the twenty patients showed improved localization results using optimized detection 

parameters, while the remaining three maintained the same results. 

 

3.6 Optimal parameters vary widely across the parameter space 

For each patient, we plotted all optimal parameter sets to visually represent the range of 

optimal detection parameters (Figure 8). The optimal parameters derived from the optimal F1 

score (Figure 8A) and AUC (Figure 8B) span the parameter space. Most patients had the same or 

similar optimal parameters determined from both measures; deviants from this pattern include 

patients 5, 8, 13, and 20. For many patients, multiple parameter sets produced the same optimal 

results (i.e. the best result was obtained with more than one parameter set), indicated by multiple 

points on each plot, and these sets tended to span across RMS window sizes.  
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Figure 8. Optimal HFO detection parameters based on (A) optimal F1 score and (B) AUC for all patients. 

 

 

3.7 Combining HFO rates across various thresholds enables optimal SOZ 

localization 

We have thus far demonstrated the significance of choosing optimal HFO detection 

parameters by comparing a wide range of values, and this enabled us to determine one or more 

optimal parameters sets. However, a critical question remains unanswered: how can the optimal 

parameter set be determined in a patient with unknown SOZ and EZ? To address this question, 

we propose a method to simplify the optimization procedure. Based on our results from varying 

detection parameters, we found evidence that supports the notion that HFOs in SOZ channels are 

dominant over a wide range of parameters (Pail et al., 2013). Considering the characteristics of 

HFOs, we expect pathological HFOs in the SOZ to exhibit high amplitudes compared to the 

background (high signal-to-noise ratio), resulting in detection across a range of thresholds. For 

example, the nSOZ channels may contain less prominent HFOs that may have just barely 
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exceeded the detection threshold. We therefore hypothesized that we could localize the SOZ by 

studying the change in average HFO rate while varying the detection threshold.  

To test this hypothesis, we localized the SOZ by identifying channels with the highest 

HFO rates and smallest change in rate across varying detection thresholds, rather than 

identifying SOZ channels solely by the greatest HFO rates. We plotted the average HFO rate as 

the threshold increased and calculated the area under the curve for each channel for all twenty 

patients. A large area under the curve indicates that the channel has a persistently high HFO rate 

over a range of thresholds. Figure 9A shows the log-transformed average HFO rate using an 

RMS window of 3ms for patient 7 as an example. We found that the average HFO rate of SOZ 

Figure 9. An alternative optimization procedure, based on measurements of HFO rates across varying thresholds, leads 

to similar SOZ localization accuracy compared to the conventional method. (A) Example of HFO rates as a function of 

RMS threshold (nSD1) for patient 7 using RMS window length of 3ms. The SOZ channels (red) have higher HFO rates, 

and this rate decreases slowly as the threshold is increased, leading to a higher area under the curve than nSOZ channels 

(blue). (B) Optimal F1 Score results for all patients using our alternative optimization procedure with varying RMS 

window lengths. (C) AUC of ROC result using the alternative optimization procedure. For both optimal F1 score and 

AUC, good localization results are obtained using short RMS windows. 
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channels (red) decreased at a slower rate compared to the nSOZ channels (blue) as the threshold 

increased. We calculated the area-under-the-curve of the average HFO rate for all nine RMS 

window parameters for each patient. We then applied a threshold to the distribution of area-

under-the-curve values across all channels; we classified channels exceeding the threshold as 

SOZ and the remaining as nSOZ. Following the procedure described previously, we analyzed the 

classifier performance using the optimal F1 score of the PR curve (Figure 9B) and the AUC of 

the ROC curve (Figure 9C).  

Across all patients, we found similar optimal localization results with the conventional 

method (HFO rate only) and our alternative method (HFO rate plus change in HFO rate). The 

classification accuracy was similar for all patients; specifically, patients with good localization 

results using the conventional method achieved good localization results using this alternative 

method, and patients with low to average localization results using the conventional method 

achieved low to average localization results using this alternative method. For eleven patients 

(patients 1, 4, 7, 11, 12, 13, 14, 15, 16, 18, and 20), the optimal results based on optimal F1 were 

obtained at an RMS window length of 3ms, and five patients (patients 2, 3, 8, 9, and 10) were 

within 0.07 of their optimal performance for this window length.  Two patients (patients 5 and 

17) within 0.15 of their optimal performance reported optimal F1 scores of at least 0.8 at this 

window, indicating good localization accuracy despite not using the optimal parameters. This 

outcome is interesting because the optimal results occurred within a consistent range of RMS 

window values using the alternative method, whereas the optimal RMS window values varied 

widely using the conventional method. We hypothesize that shorter RMS windows provided 

better localization results in the alternative method because it results in detection of greater 
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numbers of candidate HFOs, which leads to more accurate average HFO rates across a range of 

thresholds.  

In summary, we found a possible alternative method to localizing the SOZ which 

removes the requirement of optimizing detection parameters. In the conventional method, one set 

of detection parameters is used to generate a distribution of HFO rates across channels. In our 

proposed alternative method, the HFO rate is measured while the RMS threshold is varied; the 

area under this curve can be used to classify SOZ and nSOZ channels. Because good results were 

obtained for short RMS window lengths (implying that this parameter does not need to be 

optimized), it may be possible to use this method to completely eliminate the need for 

optimization. However, further analysis and more patient data should be explored to investigate 

the feasibility and reliability of this method. 
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4. Discussion 

4.1 Summary of findings 

This study assessed SOZ localization accuracy over a wide range of HFO detection 

parameters to study the significance of parameter optimization in two patient cohorts. In both 

patient populations, we found that the range of parameters for optimal classification of 

SOZ/nSOZ electrodes was patient-specific, and the most critical parameters were the RMS 

window length and the thresholds. Additionally, we reported that detection using optimal 

parameters led to improved localization results compared to the standard parameters given in the 

original publication. We also suggested an alternative optimization procedure based on the 

hypothesis that HFOs in SOZ channels are robustly detected over a wide range of parameters. 

We found that quantifying HFO rate while varying the detection threshold could be used to 

classify SOZ/nSOZ channels with accuracy similar to the conventional method using HFO rate 

from a single, optimal parameter set. 

 

4.2 Influence of class imbalance on interpretation of results 

In this study, the class imbalance (number of SOZ channels relative to nSOZ channels) 

greatly affected the interpretation of the results for each patient. The number, type, and 

placement of electrodes varied per patient based on clinical indication, resulting in inconsistent 

sample sizes. Furthermore, the localized SOZ was specific to each patient as expected, leading to 

variable numbers of SOZ channels and nSOZ channels. Because of this, we characterized the 

classification performance using both the ROC and PR curves, as they are complementary 

measures. The ROC curve provides valuable information on the classification sensitivity for each 
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parameter set, and it has been widely used to characterize classification performance. In the UCI 

dataset, characterized by larger proportions of observed nSOZ channels for all patients, we saw 

smaller variations in AUC ROC results across the parameter space. This was due to the small 

proportion of observed SOZ channels, resulting in true positive rates that varied only marginally 

as the rate threshold was varied. In contrast, the Precision-Recall curves provide valuable 

information on the positive predictive value of the classification, and this method is considered 

to be appropriate for analysis in imbalanced datasets (Saito & Rehmsmeier, 2015). Since the 

positive predictive value is indicative of the proportion of true positives relative to the predicted 

positives, this metric varies more significantly than the true positive rate (which is used in ROC 

analysis). Furthermore, the PPV provides key information on the presence of false positives, 

which occur more frequently in the UCI dataset, as opposed to false negatives, which occur 

infrequently due to the smaller proportion of SOZ channels. As a demonstration of this, we 

observed more localized optimal parameter ranges for the optimal F1 scores than the AUC for all 

UCI patients in Figure 5.  

The patterns described here for both ROC and Precision-Recall curves were also 

observed in the ETH Zurich dataset, albeit reversed since the proportion of observed SOZ 

channels was greater. Because we cannot compare classification accuracy between the UCI 

dataset and ETH Zurich dataset directly due to the variables described, we only conclude that the 

patient’s optimal parameters differ, and cannot make comparisons on how well the detector 

performed across the patient populations. In summary, the dissimilarities in electrode sampling 

led to different ROC and PR outcomes and for some patients, localization was deemed poor 

based on these results. 
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4.3 Characteristics of resulting HFO detections 

Detecting HFOs over a wide range of parameters led to substantial differences in the 

number of HFOs detected. For parameter sets with low thresholds and small RMS windows, we 

detected more than 1,000 HFOs per channel on average for all patients. These detections are 

likely a mix of true HFOs and artifacts, and in some cases, the resulting distribution of average 

detection rates across channels yielded favorable localization results when a rate threshold was 

applied. In the opposite corner of the parameter space, parameter sets with high thresholds and 

large RMS windows contained very few detections. These detections are inordinately high 

amplitude oscillations that must meet the threshold and minimum event duration criteria, 

especially when the amplitude is damped by the use of a large RMS window. We detected very 

few of these events, as low as 0-3 detections across all channels, which likely led to the 

unreliable localization results when using these extreme parameters. The best localization results 

for patient 2 occurred for some parameter sets in this region, suggesting that identifying high 

amplitude HFOs may improve SOZ localization. This is consistent with previous findings that 

demonstrate amplitude as an important metric in HFO analysis (Charupanit et al., 2020; 

Malinowska et al., 2015; Matsumoto et al., 2013). 

 

4.4 Influence of underlying pathologies 

 A subset of patients did not achieve accurate SOZ localizations for any parameter set, and 

to the presence of secondary pathologies or specific epilepsy disorders is one possible 

explanation for this. In the UCI dataset, MRI results of patients 1, 2, 3, and 6 revealed lesional or 

tissue abnormalities consisting of hippocampal and temporal sclerosis, cortical dysplasia of the 
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prefrontal cortex, and imaging abnormalities in the frontal cortex. The presence of these 

secondary pathologies may have influenced the HFO rates detected in these regions, due to 

various types of neuronal derangements in abnormal brain tissue (Ferrari-Marinho et al., 2015). 

Regarding the influence of epilepsy disorder on HFO rate in the SOZ, previous studies have 

found distinctions between patients with temporal and extratemporal epilepsy. For example, 

Guragain et al. (2018) examined the spatial mapping of HFOs and found that patients with 

extratemporal epilepsy disorders did not contain significantly elevated HFOs rates in the SOZ 

compared to the nSOZ. In contrast, patients with mesial temporal epilepsy showed significantly 

elevated HFO rates in the SOZ, suggesting that HFOs may be a specific marker for patients with 

mesial temporal lobe epilepsies (Bragin et al., 1999; Staba et al., 2004; Greg A. Worrell et al., 

2008). Similar distinctions were found between patients with neocortical epilepsies and mesial 

temporal lobe epilepsies, where patients with neocortical epilepsies did not exhibit HFOs in 

epileptic structures or healthy regions (Crépon et al., 2010). However, HFOs were recorded in 

the SOZ of all patients with mesial temporal lobe epilepsy (Crépon et al., 2010). Of the UCI 

patients included in this study, patient 1 was diagnosed with frontal lobe epilepsy, which may 

explain the suboptimal SOZ localization results across all parameter sets. Similarly, patients 14-

20 from the ETH Zurich dataset were diagnosed with extratemporal epilepsy and underwent 

lesionectomy, which may have influenced localization because different lesion types have 

various levels of intrinsic epileptogenicity and may contribute dissimilarly to epileptogenic 

networks (Jacobs et al., 2009).  In summary, underlying pathologies may play a role in the ability 

to accurately localize the SOZ based on findings within our cohort; however additional patients 

should be studied to make proper conclusions.  
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4.5 Limitations and future work 

There are several limitations to our work. Firstly, we had a limited cohort size. However, 

our results were consistent across two independent datasets, with each dataset demonstrating 

patient-specific variability in optimal parameters. This was the main goal of our study. Secondly, 

although the results for the ETH Zurich dataset support our claim that optimal parameters vary 

per patient, the delineation of the resected volume, rather than the SOZ, restricted our ability to 

make more definitive conclusions regarding SOZ localization. For classification purposes, we 

defined the SOZ as the resected volume, which is typically a larger region of the brain that 

encompasses the SOZ. Therefore, the SOZ was loosely defined for the ETH Zurich dataset, 

which most likely affected ROC and PR results. 

Regarding automatic HFO detection, we aimed to analyze artifact-free intracranial EEG 

data during sleep. However, concurrent scalp EEG was not available for the UCI dataset, and the 

data were therefore not sleep staged. Previous studies have shown that HFO activity varies 

across wakefulness and sleep and for specific sleep stages (Bagshaw et al., 2009; Clemens et al., 

2003; Staba et al., 2004). Therefore, ensuring that all data were recorded during the same sleep 

stage may provide more accurate results. Another significant limitation in our study was the 

optimization of our artifact rejection methods. Although Gliske et al. (2016) performed an 

optimization procedure to determine the rejection threshold of the popDet, one set of parameters 

does not necessarily work equally well for all patients, as we have shown here. Furthermore, 

Gliske et al. (2016) tested the threshold ranging from 5 to 15 standard deviations; however, in 

some of our patients, we found that the popDet performed better using a lower threshold. Ideally, 

to improve localization results, visual validation should be used to optimize parameters for 

artifact rejection.  
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Lastly, our study demonstrates that patient-specific optimization can significantly 

improve SOZ localization; however, two important questions remain unanswered. First, we must 

develop methods to implement this per-patient optimization in clinical practice. Our analysis was 

retrospective, and we reported the best possible localization results assuming that the optimal 

detection parameters were chosen; however, in clinical practice, optimization would need to be 

performed on a reserved subset of patient data and without prior knowledge of the SOZ. Thus, 

future work should address the feasibility of implementing per-patient optimization in clinical 

settings. Second, we did not address the question of whether the improvement in SOZ 

localization is clinically meaningful. For example, if the AUC increases from 0.80 to 0.85 due to 

parameter optimization, would this change the patient’s treatment or outcome? What is the 

minimum level of improvement needed to provide a positive clinical impact? It may be possible 

to estimate the impact by quantifying the differences in observed true positives and false 

positives, however this is not trivial, as the consequences for selection (or omission) of 

individual channels will be specific to each patient. Future work should aim to address the 

question of what constitutes clinically meaningful improvement. 
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5. Conclusion 

This study examined the impact of optimization of automatic HFO detection parameters 

on SOZ localization in medically intractable epilepsy patients. All patients achieved seizure 

freedom following resective surgery, and we found that the majority of patients contained 

elevated HFO rates in the SOZ, which led to favorable localization results. Only a subset of these 

patients achieved their maximum localization accuracy using conventional detection parameters, 

highlighting the significance of patient variability and the importance of tuning automatic HFO 

detectors. We hypothesized that patients’ underlying pathologies may have influenced HFO 

rates, leading to unconventional optimal parameters, though a larger dataset is needed to 

definitively test this. We further sought to suggest an alternative HFO detection procedure that 

has the potential to eliminate the need for parameter optimization. We found that quantifying the 

change in HFO rate while varying detection thresholds led to similar localization results 

compared to the conventional method based on HFO rate at a single detection threshold. This 

suggests that high amplitude HFOs, which are dominant across various thresholds, may be a 

robust marker of the SOZ. Future studies should examine the characteristics of pathological 

HFOs, such as amplitude, and continue to explore whether patterns of HFO rate can be used to 

differentiate epileptic tissue. 
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