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Abstract
Convexity In Contact Geometry And Reeb Dynamics
by
Julian C Chaidez
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Michael Hutchings, Chair

Reeb flows are a rich, ubiquitous class of dynamical systems arising in symplectic
geometry, which include billiard systems, many-body orbital systems, geodesic flows
and many Hamiltonian flows. Convexity hypotheses play an important, albeit mysteri-
ous, role in the study of these flows. In this thesis, we discuss several new results in the
study of convexity in symplectic geometry and Reeb dynamics.

In Chapter 1, we resolve a longstanding open problem on the intrinsic characteriza-
tion of Reeb flows arising from Hamiltonian flows on the convex boundaries. Namely, we
prove that dynamically convex Reeb flows, introduced by Hofer-Wysocki-Zehnder, are
not all convex. Our proof uses a novel relation between Riemannian geometry and Reeb
dynamics, and uses constructions of Abbondandolo-Bramham-Hryniewicz-Salomao.

In Chapter 2, we describe a powerful new framework for computationally modelling
Reeb dynamics on the boundaries of convex polytopes. We apply this framework to
provide new evidence and examples relating to the Viterbo conjecture, a major open
problem in Reeb dynamics and quantitative symplectic geometry.

In Chapter 3, we study convex toric domains and toric surfaces. A longstanding
conjecture in toric geometry states that the Gromov width is monotonic under inclusion
of moment polytopes of closed toric varieties. We use methods from toric geometry and
ECH to prove a generalization of this conjecture in dimension 4.
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Introduction

A contact manifold (Y, &) is an odd dimensional manifold equipped with a hyper-
plane field £ = TY, called the contact structure, that is the kernel of a 1-form a such
that

ker(da) = TY is rank 1 and &|ker(da) > 0

A 1-form satisfying this condition is called a contact form on (Y, &). Every contact form
comes equipped with a natural Reeb vector field R, defined by

a(R) =1 t(rda =0

The study of the dynamical properties of Reeb vector fields (e.g. the existence
of closed orbits and their properties) is a topic of immense interest in contemporary
symplectic geometry and dynamical systems. Indeed, many dynamical systems arising
in physics can be interpreted in terms of Reeb dynamics. These include billiard systems,
planetary systems and geodesic flows.

There are several natural notions of convexity that arise in contact geometry. For
example, the boundary of any convex domain X in C" containing 0 is equipped with a
natural contact form. Contact forms arising in this way will be refered to (in this thesis)
as convex. Convexity plays a prominent (albeit mysterious) role in contact geometry, and
there are several significant conjectures about the Reeb flows of convex contact forms.

Outline

In this thesis, I discuss several new results in the study of convexity in contact
geometry and Reeb dynamics, which I obtained during my tenure as a PhD student in
collaboration with Oliver Edtmair, Michael Hutchings and Ben Wormleighton.

In Chapter 1, we recount joint work with Edtmair [14]. In that work, we settle a
longstanding open problem regarding intrinsic characterizations of contact forms arising
on the boundary of convex domains. Namely, we prove that dynamically convex contact
forms, which have many of the Floer-theoretic properties of contact manifolds, are not
all convex. In the course of the proof, we use a relation between extrinsic curvature
and rotation to prove a novel new estimate on the Ruelle invariant of the Reeb flows on
convex boundaries.

In Chapter 2, we discuss joint work with Hutchings [15]. In that work, we provide
a new computational framework for the study of Reeb dynamics on convex contact
forms, by developing the theory of singular Reeb dynamics on the boundaries of convex
polytopes in R*. We also present the results of numerous experiments performed
with these tools, including new examples of convex polytopes with interesting systolic
properties.

In Chapter 3, we shift to the study of a different notion of convexity (and concavity)
arising in the study of toric symplectic geometry. In joint work with Wormleighton [16],

iv



we apply methods developed to study the embedded contact homology of convex and
concave toric domains to prove a number of new results about embeddings of toric
domains into closed toric surfaces. In particular, we prove that the Gromov width of a
toric surface is monotonic with respect to inclusion of the moment polytope.
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CHAPTER 1

3D Convex Contact Forms And The Ruelle Invariant

1. Introduction

Contact manifolds arise naturally as hypersurfaces in symplectic manifolds satisfying
a certain stability condition. In fact, Weinstein introduced contact manifolds in [79]
inspired by the following prototypical example of this phenomenon, due to Rabinowitz
[66].

Exampie 1.1. We say that a domain X = R?" with smooth boundary Y is star-shaped
if
0 € int(X) and Oy is transverse to Y
Let w and Z denote the standard symplectic form and Liouville vector field on R*". That
is
N 1 1
— N dx: A dvs 7 - - O+ Yy = =
w ; Xi A dy; zzi:xl(?x, + Yidy, zrﬁr
Then the restriction A|y of the Liouville 1-form A = (7w is a contact form.

ExampLe 1.2. The standard contact structure & on S?"~! < R?" is given by & =
ker(/\|52n—l).

Every contact form on the standard contact sphere arises as the pullback of A|y via a dif-
feomorphism to some star-shaped boundary Y. Moreover, every star-shaped boundary
Y admits such a map from the sphere. Thus, from the perspective of contact geometry,
the study of star-shaped boundaries is equivalent to the study of contact forms on the
standard contact sphere.

1.1. Convexity. In this part of this thesis, we are primarily interested in studying
contact forms arising as boundaries of convex domains.

DerintTioN 1.3. A contact form a on S?'~! is convex if there is a convex star-shaped
domain X = R?" with boundary Y and a strict contactomorphism (S3, a) ~ (Y, A|y).

In contrast to the star-shaped case, not every contact form on $?*~! is convex, and the
Reeb flows of convex contact forms possess many special dynamical properties, both
proven and conjectural.

In [77], Viterbo proposed a particularly remarkable systolic inequality for Reeb flows
on convex boundaries. To state it, let (Y, a) be a closed contact manifold with contact
form of dimension 2n — 1, and recall that the volume vol(Y, a) and systolic ratio sys(Y, a)
are given by

_ min{period T of an orbit}"
1.1 (Y, a) = da""! Y,a) =
(1.1)  vol(Y, a) L aAda and sys(Y, a) (7~ D)Ivol(Y, a)

The weak Viterbo conjecture that originally appeared in [77] can be stated as follows.
1



CoNjeCTURE 1.4. [77] Let o be a convex contact form on S*"~1. Then the systolic ratio is

bounded by 1.
sys(S*" 1, a) <1

There is also a strong Viterbo conjecture (c.f. [34]), stating that all normalized symplectic
capacities are equal on convex domains. For other special properties of convex domains,
see [37,77].

Despite the plethora of distinctive properties that convex contact forms possess, a
characterization of convexity entirely in terms of contact geometry has remained elusive.

ProsLeEM 1.5. Give an intrinsic characterization of convexity that does not reference a
map to R?".

1.2. Dynamical convexity. In the seminal paper [37], Hofer-Wysocki-Zehnder pro-
vided a candidate answer to Problem [L.5l

Derinition 1.6 (Der. 3.6, [37]). A contact form « on S is dynamically convex if the
Conley-Zehnder index CZ(y) of any closed Reeb orbit y is greater than or equal to 3.

The Conley-Zehnder index of a Reeb orbit plays the role of the Morse index in
symplectic field theory and other types of Floer homology (see for a review). Thus,
on a naive level, dynamical convexity may be viewed as a type of “Floer-theoretic”
convexity. If X is a convex domain whose boundary Y has positive definite second
fundamental form, then Y is dynamically convex [37, Thm 3.7]. Note that this condition
is open and generic among convex boundaries.

In [37], Hofer-Wysocki-Zehnder proved that the Reeb flow of a dynamically convex
contact form always admits a surface of section. In the decades since, dynamical con-
vexity has been used as a key hypothesis in many significant works on Reeb dynamics
and other topics in contact and symplectic geometry. See the papers of Hryniewicz [39],
Zhou [83, 84], Abreu-Macarini [4,5], Ginzburg-Giirel [29], Fraunfelder-Van Koert [26]
and Hutchings-Nelson [49] for just a few examples. However, the following question
has remained stubbornly open (c.f. [26, p. 5]).

QuestioN 1.7. Is every dynamically convex contact form on S3 also convex?

The recent paper [1] of Abbondandolo-Bramham-Hryniewicz-Salomdo (ABHS) has
suggested that the answer to Question [1.7| should be no. They construct dynamically
convex contact forms on S® with systolic ratio close to 2. There is substantial evidence for
the weak Viterbo conjecture (cf. [15]), and so these contact forms are likely not convex.
However, this was not proven in [1].

Even more recently, Ginzburg-Macarini [30] addressed a version of Question [1.7]in
higher dimensions that incorporates the assumption of symmetry under the antipod
map S~ — 5§27~ Their work did not address the general case of Question

1.3. Main result. The main purpose of this part of this thesis is to resolve Question

Wk

Tueorem 1.8. There exist dynamically convex contact forms a on S that are not convex.

Theorem|L.§]is an immediate application of Proposition[I.9and which we will now
describe.



1.4. Ruelle bound. For our first result, recall that any closed contact 3-manifold
(Y, &) with contact form a that satisfies c1(&) = 0 and H'(Y;Z) = 0 has an associated
Ruelle invariant [69]

Ru(Y,a)e R

Roughly speaking, the Ruelle invariant is the integral over Y of a time-averaged rotation
number that measures the degree to which different Reeb trajectories twist counter-
clockwise around each other (see for a detailed review). Our result is stated most
elegantly using the quantity

Ru(Y, a)?
~ vol(Y, )
This Ruelle ratio is invariant under scaling of the contact form, unlike the Ruelle invariant
itself.

In recent work [47] motivated by embedded contact homology, Hutchings investi-
gated the Ruelle invariant of toric domains in C2. In that paper, the Ruelle invariant of
the standard ellipsoid E = E(a,b) = C? with symplectic radii 0 < a < b (see §3.1) was
computed as

(1.2) Ru(E) =a+b

The systolic ratio and volume of E are well-known to be a/b and ab/2 respectively. This

implies several constraints relating the systolic and Ruelle ratios. In particular, we have
E) +1)* +b)?

() 3B + ) (a+1)
sys(E) b2
Our first result may be viewed as a generalization of the estimate on the right to arbitrary
convex contact forms on S>.

ru(Y, a)

and thus 1 <ru(E)-sys(E) = <4

PropositioN 1.9 (Prop B.I). There are constants C > ¢ > 0 such that, for any convex
contact form a on S3, the following inequality holds.

(1.3) c <ru(S3,a)-sys(S%,a) < C

Note that a result of Viterbo [77, Thm 5.1] states that there exists a constant y; such that
sys(SS, a) < 7 for any convex contact form. Thus, Proposition also implies that

CoroLLary 1.10. There is a constant ¢ > 0 such that, for any convex contact form o on S3,
we have

(1.4) c <ru(S3,a)

We have included a helpful visualization of Proposition in the sys —ru plane in
Figure[l]

Let us explain the idea of the proof of Proposition First, as explained above,
the result holds for ellipsoids. By John's ellipsoid theorem, we can always sandwich a
convex domain X between a standard ellipsoid and its scaling, after applying a linear
symplectomorphism.

E(a,b)c X =4 -E(a,b)
Now note that the volume and minimum closed orbit length are monotonic under
inclusion of convex domains. In particular, X satisfies

ab 8 ab _g a
(1-5) 7 < VOI(X) <2°- 7 and 27°. E
3

<sys(Y) < 28. %



Ficure 1. A plot of the region of the sys —ru plane containing convex
contact forms, depicted in light red. The blue arc is the region occupied by
ellipsoids, and the green lines represent the sys = 1 bound and the sys = »

bound.
Sys = Sys = ;}/2
ru(Y) E :
Convex
Domains

sys(Y)

If the Ruelle invariant were also monotonic, then one could immediately acquire Propo-
sition 1.9 from (L.5) and (I.2). Unfortunately, this is not evidently the case.

The resolution of this issue comes from a beautiful formula (Proposition[3.10) relating
the second fundmantal form and local rotation of the Reeb flow on a contact hypersurface
Y in R*. This is due originally to Ragazzo-Salomao [67], albeit in different language
from this part of this thesis. Using this relation (§3.2), we derive estimates for the Ruelle
invariant in terms of diameter, area and total mean curvature. By standard convexity
theory (i.e. the theory of mixed volumes), these quantities are monotonic under inclusion
of convex domains. This allows us to compare the Ruelle invariant of X to that of its
sandwiching ellipsoids, and thus prove the result.

Remark 1.11 (ENHANCING ProP [1.9). In future work, we plan to investigate optimal
constants ¢ and C for Proposition[I.9} and to generalize the result to higher dimensions.

1.5. A counterexample. In order to prove Theorem 1.8 using Proposition we
explicitly find a dynamically convex contact form that violates the estimate (1.4). This is
the subject of our second new result.

Prorosition 1.12 (Prop [.1)). For every e > 0, there is a dynamically convex contact form
a on S3 with

vol(S3,a) =1 sys(S3,a)=>1—¢ Ru(S3,a) < e
y

The construction of these examples follows the open book methods of Abbondandolo-
Bramham-Hryniewicz-Salomao in [1]. Namely, we develop a detailed correspondence
between the properties of a Hamiltonian disk map ¢ : D — D and the properties of a
contact form & on S® constructed using ¢ via the open book construction (see Proposi-
tion [£.10). This includes a new formula relating the Ruelle invariant of ¢ in the sense
of [69] and the Ruelle invariant of (53, a).

We then construct a Hamiltonian disk map ¢ with all of the appropriate properties to
produce a dynamically convex contact form on S° satisfying the conditions in Proposition
The map ¢ is acquired by composing two maps ¢!’ and ¢pC. The map ¢ is a

4



counter-clockwise rotation by angle 27t(1 + 1/n) for large n. The map ¢© is compactly
supported on a disjoint union U of disks D, and rotates (most of) each disk D clockwise
about its center by angle slightly less than 47t. See Figure[2|for an illustration of this map.

Ficure 2. The map ¢ = ¢C o ¢! for n = 4. Here ¢! rotates D counter-
clockwise by 45 degrees and ¢C twists each disk D by roughly 720 degrees
clockwise.

o

7
0@568

o

(0]
0o

Applying Proposition we can show that the volume and Ruelle invariant of
(S%, &) are (up to negligible error) proportional to the following quantities.

vol(S°, @) ~ m* — 22 area(D)? Ru(S?, a) ~ 21 — 22 area(D)
D D

By choosing U to fill most of D and choosing all of the disks in U to be very small, we can
make the Ruelle invariant very small relative to the volume. This process preserves the
minimal action of a closed orbit (up to a small error) and dynamical convexity, producing
the desired example.

Remark 1.13. Our examples do not coincide with the ABHS examples in [1]. However,
we believe that improvements of Proposition may make our analysis applicable to
those examples.

Outline. This concludes the introduction The rest of this part is organized as
follows.

In we cover basic preliminaries needed in later sections: the rotation number
(§2.1)), the Conley-Zehnder index (§2.2)), invariants of Reeb orbits (§2.3) the Ruelle invari-

ant (§2.4).

In §3] we prove Proposition[I.9} We startby discussing the curvature-rotation formula
and some consequences (§3.2). We then derive a lower bound for a relevant curvature
integral (§3.3). We conclude by proving the main bound (§3.4).

In §4, we prove Proposition We first discuss general preliminaries on Hamil-
tonian disk maps (§4.1), open books (§4.2) and radial Hamiltonians (§4.3). We then
construct a Hamiltonian flow on the disk (§4.4) before concluding with the main proof

(§4.5).
2. Rotation numbers and Ruelle invariant

In this section, we review some preliminaries on rotation numbers, Conley-Zehnder
indices and the Ruelle invariant, which we will need in later parts of this part.

5



2.1. Rotation number. Consider the universal cover §f)(2) of the symplectic group
Sp(2). We will view a group element ® as a homotopy class of paths with fixed endpoints
®:[0,1] —» Sp(2) with @(0) =1Id
Recall that a quasimorphism q : G — R from a group G to the real line is a map such that

there exists a C > 0 such that

(2.1) |7(gh) —q(g) —q(h)| <C  forallg, heG

A quasimorphism is homogeneous if g(g¥) = k - o(g) for any ¢ € G. Finally, two quasi-
morphisms g and g’ are called equivalent if the function |g — 4’| on G is bounded.

The universal cover of the symplectic group possesses a canonical homogeneous
quasimorphism, due to the following result of Salamon-Simon [72].

TreEOREM 2.1 ( [72], THM 1). There exists a unique homogeneous quasimorphism
p:5Sp2) - R
that restricts to the standard homomorphism p : U(1) — R on the universal cover of the unitary
group
(2.2) p(y)=1L on the path y : [0,1] — U(1) with y(t) = exp(2miLt)

DeriNtTiON 2.2. The rotation number p : §f>(2) — R is the quasimorphism in Theorem

21

The rotation number is often characterized more explicitly in the literature as a lift
of a map to the circle. More precisely, it is characterized as the unique lift

(2.3) 0: §f)(2) - R of 0:5p(2)—>R/Z such that a(Id) =0

where o is defined as follows. Let ® € Sp(2) have real eigenvalues A, A~ and let
W e Sp(2) have complex (unit) eigenvalues exp(+2mi0) for 0 € (0,1/2). Also fix an

arbitrary v € R?\0. Then
0 ifA>0 0 if (iv,dv) >0
(2.4) (D) = and o(V¥) = _
1/2 ifA <0 -0 if {iv,dv) <0

All of the elements of Sp(2) fall into one of the two categories above, and so ¢ is
determined everywhere by (2.4).

Lemma 2.3. The rotation number p : Sp(2) — R is the unique lift of o : Sp(2) — R/Z with
p(Id) = 0.

Proor. We verify the properties in Theorem The lift ¢ is a quasimorphism by
Lemmasand below. It is homogeneous since o(®*) = k - 6(®) mod 1, implying
the same identity on the lift. Finally, if y : [0, 1] — Sp(2) is given by y(t) = exp(2miLt)
then

coy:[0,1] > R/Z isgivenby coy(t)=Lt modleR/Z
This implies that the lift is f — Lt, so that () = L, and we have proven the needed
criteria. 0O

We will also need to utilize several inhomogeneous versions of the rotation number
depending on a choice of unit vector. These are defined a follows.

6



DeriNiTION 2.4. The rotation number ps : §f)(2) — R relative to s € S' is the lift of the
map
0s:Sp(2) > S D |Ds[7L.Ds e ST c R?

2mi6

via the covering map R — S! = C given by 0 > €270 . 5.

The rotation numbers relative to s € S! and the lift of ¢ all agree up to a constant
factor.

Lemma 2.5. The maps ps : %(2) — R and the lift ¢ : %(2) — R of o have bounded
difference. More precisely, we have the following bounds.

(2.5) lps —o|<1  and lps —pt| <1 forany pairs,t € S

Proor. First, assume that @ : [0,1] — Sp(2) is a path such that ®(¢) has no negative
real eigenvalues for any t € [0, 1]. Then

dgod(t) #1/2 and 05 0 D(t) # —s e S forany s e S'and t € [0, 1]

It follows that the relevant lifts of 0 o ® and o5 o @ to maps [0,1] — R remain in the
interval (—1/2,1/2) for all t. Thus

F@) e (~1/2,1/2) and  ps(®@) e (~1/2,1/2)

This clearly implies . Since ¢ induces an isomorphism 711 (Sp(2)) — 71(S?), we know
that for any pair ®, @’ € Sp(2) lifting the same element of Sp(2), we have

(@) =5(®)  implies O =@
In particular, the above analysis extends to any ® with ¢(®) € (—1/2,1/2). In the general

case, note that the path y : [0,1] — S! given by y(t) = exp(ni - kt) for an integer k € Z
satisfies

a(y)=ps(y) =k/2  G(@y)=0(®)+3(y)  ps(Py) = ps(®) +ps(y)
Any path W can be decomposed (up to homotopy) as @y where y is as above and
® :[0,1] — Sp(2) is a path with 6(®) € (—1/2,1/2). This reduces to the special case. O

This can be used to demonstrate that p; is a quasimorphism. As noted in the proof
of Lemma 2.3} this implies that J is a quasimorphism as well.

Lemma 2.6. The map ps : %(2) — R is a quasimorphism for any s € S. In fact, we have
(2.6) |ps (WD) — ps (W) — ps (D) <1 forany seS!

Proor. Let @ : [0,1] — Sp(2) and ¥ : [0, 1] — Sp(2) be two elements of §}3(2) viewed
as paths in Sp(2). Consider the product W® in the universal cover of Sp(2), represented
by the path

®(2t) for t € [0,1/2] and W2t —-1)®P(1) for t € [1/2,1]
By examining the path o5 0 W® : [0,1] — S! and the lift to R, we deduce the following
property.
27) ps(W®) = pa(s) (V) + ps(P)
Here ®@(s) is shorthand for the unit vector ®;(s)/|®1(s)|. Applying Lemma[2.5, we have

|ps (W) — ps (W) — ps(P)] < [pas) (V) — ps (V)] < 1
This proves the quasimorphism property. O



2.2. Conley-Zehnder index. Let Sp, (2) < Sp(2) denote the subset of ® € Sp(2) such
that @ — Id is invertible. The Conley-Zehnder index is a continuous map

CZ:5p,(2) > Z

Here é\f)* (2) is the inverse image of Sp, (2) under 7 : §}3(2) — Sp(2). The Conley-Zehnder
index can be written using the rotation number as follows.

(2.8) CZ(®) = [p(P)] + [p(P)]
There are several inequivalent ways to extend the Conley-Zehnder index to the entire

symplectic group. We will follow [37, §3] and [1, §2.2], and use the following extension.
ymp group g

ConveNTION 2.7. In this part of this thesis, the Conley-Zehnder index CZ : %(2) —Z
will be the maximal lower semi-continuous extension of the ordinary Conley-Zehnder
index.

The extension in Convention[2.7]can be bounded below in terms of the rotation number.
Lemma 2.8. Let @ € Sp(2). Then
(2.9) CZ(D) =2 [p(®)] -1

Proor. For @ € %*(2), is an immediate consequence of . In the other case,
note that the maximal lower semicontinuous extension is defined by the property that

CZ(®) = inf lim CZ(®;)  forany @ ¢ Sp,(2)
1—00

Here the infimum is over all sequences ®; € é\f)*(Z) with @; — ©. Any O ¢ é\f)* (2) has
eigenvalue 1, and so Lemma 2.3| implies that p(®) € Z. Since p is continuous, we find
that

CZ(®) = inf lim [p(®;)] + [p(P;)] = |p(P) = 1/2] + [p(®) = 1/2] =2 [p(P)] -1

i—00
This proves the lower bound in every case. |

2.3. Invariants of Reeb orbits. Let (Y, &) be a closed contact 3-manifold with ¢1(&) =
0 and let a be a contact 1-form on Y.

Under this hypothesis on the Chern class, £ is isomorphic as a symplectic vector-
bundle to the trivial bundle R?. A trivialization T of £ is a bundle isomorphism

7: &~ R? denoted by T(y): &y = R? satisfying T(y)*w =dals

Two trivializations are homotopic if they are connected by a 1-parameter family of bundle
isomorphisms. Given a trivialization 7, we may associate a linearized Reeb flow

(210) ®,:RxY —»Sp(2) givenby  ®(T,y) = 7(¢(T,y)) o dp(T,y) o (y)

Here ¢ : R x Y — Y is the Reeb flow, i.e. the flow generated by the Reeb vector field R.
The linearized flow lifts uniquely to a map

O, :RxY >Sp2)  with  Dloxy =1d e Sp(2)

We will refer to @, as the lifted linearized Reeb flow. Explicitly, it maps (y,T) to the
homotopy class of the path ®.(-, y)|j0,7]- Note that this lift satisfies the cocyle property

(211) &)T(S +T,y) = CT)T(T, $s(y)) 'qN)T(Sfy)

8



DeriNiTION 2.9. Let y : R/LZ — Y be a closed Reeb orbit of Y. The action of y is given
by

(2.12) Ay) = f)/*oz =L

Likewise, the rotation number and Conley-Zehnder index of y with respect to T are given
by

213)  p(y,7)i=pod(L,y)  CZ(y,1):=CZ(®(L,y))  wherey =y(0)

These invariants depend only on the homotopy class of 7, and if H(Y;Z) = 0 (e.g. if Y
is the 3-sphere) there is a unique trivialization up to homotopy. In this case, we let

(2.14) p(y)=ply, 1) and CZ(y) :=CZ(y, 1) for any

In §4] we will need the following easy observation, which follows immediately from
Lemma 2.8/and our way of defining CZ (see Convention[2.7).

Lemma 2.10. Let a be a contact form on S3 with p(y) > 1 for every closed Reeb orbit. Then
a is dynamically convex.

2.4. Ruelle invariant. Let (Y, &) be a closed contact 3-manifold with c¢i1(§) = 0
equipped with a contact form a and a homotopy class of trivialization [7] of . Here we
discuss the Ruelle invariant

Ru(Y,a,[t]) e R

associated to the data of Y, a and [7]. This invariant was originally introduced by Ruelle
in [69]

It will be helpful to describe a more general construction that subsumes that of the
Ruelle invariant. For this purpose, we also fix a uniformly continuous quasimorphism

9:5p(2) > R

Pick a representative trivialization 7 of [7] and let DY xR — é?)(Z) be the lifted
linearized Reeb flow. We can associate a time-averaged version of g over the space Y, as
follows.

Prorosition 2.11. The 1-parameter family of functions fr : Y — R given by the formula

o QNDT T,
(2.15) Frly) == q#(y)

converges in L} (Y; R) to a function f(a,q,7) : Y — R with the following properties.

(a) (Quasimorphism) If q and r are equivalent quasimorphisms, i.e. |q — r| is bounded,
then

fla,q,7) = f(a,r,7)
(b) (Trivialization) If o and t are homotopic trivializations of &, then
fla,q,0) = fla,q,7)

(c) (Contact Form) The integral F(a) of f(a, q,7T) over Y is continuous in the C>-topology
on QY(Y).



Proor. We prove the existence of the limit and the properties (a)-(c) separately.

Limit Exists. We apply Kingman’s ergodic theorem [52]. Fix a constant C > 0 for the
quasimorphism g satisfying (2.1). Let g7 denote the function on Y given by

gr=Tfr+C=god (-, T)+C

Note that g7 defines a sub-additive process, as described in [52, §1.3]. First, due to the
cocycle property (2.11) we have

(216) gs47 = oD (S+T, =)+ C < goDe(S, —) + g0 De(T, Pps(—)) +2C = g5+ pigr

We can analogously show that gsi1t > ¢s + ¢zgr — 2C. In particular, if T > 0 is a
sufficiently large time with T = n + S and S € [0, 1], then

n—1
(2.17) f gr-a Ada = ZJ q)Zgl-aAdaJrJ ¢n8s-anda—2CT = -AT
Y =0 Y Y
Here A is any number larger than 2C and larger than the quantity

—min{J gs-a nda : Se[O,l]}
Y

Since g satsifies (2.16) and (2.17), we may apply Kingman'’s subadditive ergodic theorem
[52, Thm 4] to conclude that there is a limiting function in L.

g LY(Y;R)
T

On the other hand, gT—T is Cauchy if and only if fr is Cauchy, and they have the same limit,
since

fla,q,7) e L'(Y;R)

38T C
_ o < =
Ifr =l < 7 - vol(Y, a)

This proves that fr converges in L1(Y;R) to f(a, g, 7).
Quasimorphisms. Let g and r be equivalent quasimorphisms, and pick C > 0 such
that |g — | < C everywhere. Then

~

o®; rod, C -vol(Y, a)
T T T

Taking the limit as T — oo shows that the limiting functions f(«, g, t) and f(a,r, 7) are
equal.

9
H

I <

Trivializations. Let 0 and 7 be two trivializations of £ in the homotopy class [7].
Then there is a transition map ¥ : Y — Sp(2) given by

Y(y):R*>R*>  with W(y)=1(y) o(y)™"

The linearized flows of ¢ and 7 are related via this transition map, by the following
formula.

(T, y) = V(H(T,y)) Po(T,y)- ¥~ (v)

The homotopy equivalence of 0 and 7 is equivalent to the fact that W is null-homotopic,
and in particular lifts to the universal cover of Sp(2). Thus we may write

(T, y) = W(H(T, ) Do(T,y) - P (y)
10



Here W:Y — §f)(2) is any lift of W. The quasimorphism property of p now implies that

qo®o(T,y) qoPu(T,y), _ 2C+suplqoP|+suplqgo P

Taking the limit as T — oo shows that f(a, q,0) = f(a, g, 7).

-vol(Y, a)

Contact Form. Fix a contact form a and an ¢ > 0. Since g is a quasimorphism, there
exists a C > 0 depending only on g such that

n—1

lp o . (nT, y) — Z p o D (T, ¢§(y))| < Cn forany n,T >0
k=0

We can divide by nT and rewrite this estimate in terms of fr to see that

1n—1 C
IfnT—EZfTO(Pﬂé? for any n,T > 0
k=0

integrate over Y and take the limit as n — oo to acquire

(2.18) |F(a) —J fr-andal = lim |f (far — fr) - @ A da
Y n—w - Jy
n—1
, 1 P C - vol(Y, a)
<nl1_r}c}o|fy(fnT—;]§)fTo¢T)-a/\doc| <

Next, fix a different contact form 5. Let ‘TIT be the lifted linearized flow for g, and let
_4ce \IJT(T, —)

B T

Due to 1) we can fix a T > 0 such that, for all § sufficiently C O_close to @, we have

(2.19) |P(a)—LfT-aAda|<§ and |F(ﬁ)—JygT-ﬁAdﬁ|<%M<§

gr:Y - R where gr(y)

Furthermore, we can choose p sufficiently C2-close to a so that CT)T and \T’T are C%-close
onY x [0, T] for any fixed T > 0. Thus, for § sufficiently close to a in C3, we have
(2.20)

[ freanda= | gropadl<fr = grlco-vol(Y, )+ 20frlco-  vol(¥, a) ~vol(Y, p)

< cf| P = W co
T
Adding (2.19) and (2.20), we find that for 8 sufficiently C?-close to a, we have |F(a) —
E(B)| < &, which proves continuity.

vol(Y, &) + 2|/ fr|lco - | vol(Y, a) — vol(Y, B)| < %

This concludes the proof of the existence and properties of f(«, g, 7), and of Proposition

211 O

Proposition allows us to introduce the Ruelle invariant as an integral quantity,
as follows.

11



DeriNiTiON 2.12 (RUELLE INVARIANT). The local rotation number rot, of a closed contact
manifold (Y, a) equipped with a (homotopy class of) trivialization 7 is the following
limit in L.

. . p° &)T(T/ -)
(2.21) rot; : Y - R given by rot; := lim ————=
T—o0 T

Similarly, the Ruelle invariant Ru(Y, a, 7) is the integral of the local rotation number over
Y,i.e.

1 -
(2.22) Ru(Y,a, 1) = J rot; -a A da = lim —f pod;-anda

We will require an alternative expression for the Ruelle invariant in order to derive
estimates later in this part.

The Reeb flow ¢ on Y preserves the contact structure, and so lifts to a flow on the
total space of the contact structure &. Since this flow is fiberwise linear, it descends
to the (oriented) projectivization PE. A trivialization 7 determines an identification
P& ~Y x R/Z, and so a flow

(223) D:RxYxR/Z->Y xR/Z generated by a vector field R on Y x R/Z
Let 0 : Y x R/Z — R/Z denote the tautological projection.

DerintTiON 2.13. The rotation density o, : Y x R/Z — R is the Lie derivative
(2.24) 0c == R(0)

Lemma 2.14. The Ruelle invariant Ru(Y, a, T) is written using the rotation density o, as

T
Ru(Y,a,t) = lim 1 (J O o.(—,8)-a nda)dt  forany fixed s € R/Z
Y

T—ow T 0

Proor. By comparing Definition 2.4 with the formula (2.23), one may verify that
0s0®(T,y) and Ood(T,y,s)—s areequalin R/Z

Therefore, these formulas define a single map R x Y x R/Z — R/Z, admitting a unique
lifttoamap F : RxY xR/Z — R that vanishes on 0 x Y x R/Z. The first formula implies
that

(2.25) F(T,y,s) = ps o ®(T, y)
On the other hand, let t be the R-variable of F and 6 o ®. Then the t-derivative of F is
dF d

=71 = 7 (00 @)lr = O} (L(6))|r = Do

Integrating this identity and combining it with (2.25), we acquire the formula

~ T -
(226) peo BT, ) = F(T,0,5) = | [Bic:)(v,s) - d

Now, since ps and p are equivalent by Lemma we can apply Proposition a) to
see that
0 D (T, )

(2.27) Ru(Y, a,7) = lim P

ca Ada
T—oo Jy T

12



We then apply (2.26)) to see that the righthand side is given by

T T
(2.28) lim %f f Pio(—,s) @ Anda = lim 1 (f Qro(—,s) a A da)dt
Y Jo Y

T—o T—o0 0

Combining the formulas and (2.28) finishes the proof. O

3. Bounding the Ruelle invariant

Let X = R* be a convex domain containing 0 in its interior, and let (Y, 1) be the
contact boundary of X. In this section, we derive the following estimate for the Ruelle
ratio.

Prorosrrion 3.1. There exist positive constants ¢ and C independent of Y such that
c <ru(Y,A)-sys(Y,A) <C

The proof follows the outline discussed in the introduction.

We begin ( with a review of the geometry of standard ellipsoids E(a, b) in C*,
including a variant of John’s theorem (Corollary[3.6). We then present the key curvature-
rotation formula (§3.2) and use it to bound the Ruelle invariant between two curvature
integrals (Lemma [3.1I). We then prove several bounds for one of these curvature
integrals in terms of diameter, area and total mean curvature (. We collect this
analysis together in the final proof (§3.4).

NortaTtion 3.2. We will require the following notation throughout this section.

(a) g is the standard metric on R* with connection V, and dvolg = %a)2 is the
corresponding volume form. We also use (i, v) to denote the inner product of
two vectors u, v € R*.

(b) v is the outward normal vector field to Y and v* is the dual 1-form with respect
to g.

(c) o is the restriction of ¢ to Y and dvol, is the corresponding metric volume form.
The volume form A A dA and dvol, are related (via the Liouville vector field Z
of R*) by

2
(3.1) AAdA = LZ(%M — 1z(dvolg |y) = tz(v* A dvol,) = (Z,v)dvol,

(d) S is the second fundamental form of Y, i.e. the bilinear form given on any
u,weTY by

S(u,w) :={Vyv,w)

(e) H is the mean curvature of Y. It is given by

1
H := 3 trace S

3.1. Standard ellipsoids. Recall that a standard ellipsoid E(ay,...,a,) < C" with
parameters a; > O fori =1, ..., n is defined as follows.

(3.2) E(ay,..., a,) = {z = (z;) e C" : Z iz < 1}

aij
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For example, E(a) < C is the disk of area a, and E(a,...,a) < C" is the ball of radius
(a/m)"2.

We beginn this section with a discussion of the Riemannian and symplectic geometry
of standard ellipsoids in C2. All of the relevant geometric quantities for this section can
be computed explicitly in this setting. Let us record the outcome of these calculations.

Lemma 3.3 (ELLipsoip Quanrities). Let E = E(a, b) be a standard ellipsoid with0 < a < b.
Then

(a) The diameter, surface area and volume of E are given by

. 2 - 4712 p241/2 _ p1/2,2 _ab
diam(E) = =y b area(JE) = 3 - vol(E) = 5
(b) The total mean curvature of OE (i.e. the integral of the mean curvature over OE) is given
by
H -dvol; = 2n (b+a+ _ab_ -log(b/a))
OE 3 b—a

(c) The minimum action of a closed orbit on OE and the systolic ratio of OE are given by

c(CE) =a sys(0E) = %

(d) The Ruelle invariant of OE is given by
Ru(GE) =a+b

The area, total mean curvature and volume are straightforward but tedious calculus
computations, which we omit. The Ruelle invariant is computed in [47, Lem 2.1 and 2.2],
while the minimum period of a closed orbit is computed in [32, §2.1].

Any convex boundary in R?" can be sandwiched between a standard ellipsoid and
a scaling of that ellipsoid by a factor of 2n, after the application of an affine symplecto-
morphism. To see this, first recall the following well-known result of John.

THaeorReM 3.4 (Joun Erripsomp). Let X < R"™ be a convex domain. Then there exists an
ellipsoid E centered at some c € X such that

EcXcc+n(E—-c)

Any ellipsoid E is carried to a standard ellipsoid E(a, b) by some affine symplectomor-
phism T. Furthermore, note that we have the following elementary result, which can be
demonstrated using a Moser argument.

Lemma 3.5. Let ¢ : (Y, A) — (Y, A') be a diffeomorphism such that ¢*A" = A + df. Then
¢ is isotopic to a strict contactomorphism.

Since R?" is contractible, T*A = A + df automatically on R?". Thus, T carries any star-
shaped hypersurface Y = 0X to a strictly contactomorphic T(Y) by Lemma [3.5, and we
conclude the following result.

CoroLLaRy 3.6. Let X < R?" be a convex domain with boundary Y. Then Y is strictly
contactomorphic to the boundary 0K of a convex domain K with E(ay,...,a,) € K < 4 -
E(ai, ..., ap).

When a convex domain in R* is squeezed between an ellipsoid and its scaling, we
can estimate many important geometric quantities of X in terms of the ellipsoid itself.

14



Lemma 3.7. Let X < R* be a convex domain with smooth boundary Y such that
(3.3) E(a,b)c X cc-E(a,b) forsomeb =a>0andc >0

Then there is a constant C > 0 dependent only on ¢ such that

(3.4) b? < diam(X) < C-b'?  ba'/? < area(Y) < C - ba'/?
(3.5) béJH-dvolgéc-b %évol(X)gC-ab

Y
(3.6) a<cX)<C-a C_l-%<sys(Y)<C-%

Remark 3.8. The optimal constants in the estimates (3.4)-(3.6) are not important to
the arguments below. They could be explicitly computed in the following proof.

Proor. First, note that ¢ - E(a, b) is also a standard ellipsoid. More precisely, we know
that

c-E(a,b) = E(c*-a,c* b)
We now derive the desired estimates from Lemma and the monotonicity of the
relevant quantities under inclusion of convex domains.

The diameter diam(X) and volume vol(X) are monotonic with respect to inclusion
of arbitrary open subsets, and so from Lemma 3.3(a) we acquire

2c ab ct
1/2 1 —_— 1/2 —_— —_—
b/ < diam(X) < 172 b and < vol(X) < ab

The surface area and total mean curvature are monotonic with respect to inclusion of
convex domains, since

J H dvol; =4 - V,(X) and area(Y) =4 - V3(X)
Y

Here V;(X) is the ith cross-sectional measure [11, §19.3], which is monotonic with respect to
inclusions of convex domains by [11, p.138, Equation 13]. Furthermore, when0 <a < b
(and in the limit as b — a), one may verify that

2.1/2 _ p1/2.2
b”b_Z “ <3ba'?  and b<b+a+%-log(b/a)<3b

Thus, by applying the monotonicity property, (3.7) and Lemma [3.3(a)-(b), we have

(37) ba'? <

ba'/? <area(Y) <3c®-ba'?  and b < J H -dvol, <3c*-b
Y

Finally, the minimum orbit length ¢(X) coincides with the 1st Hofer-Zehnder capacity

c{{Z (X) on convex domains, and is thus monotonic with respect to symplectic embed-

dings. Thus by Lemma [3.3(a) and (c), we have

2
40 (X

ALY a
b~ 2vol(X)

b
This concludes the proof, after choosing C larger than the constants appearing above. O
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3.2. Curvature-rotation formula. Identify R* with the quaternions H'! via
R* 5 (x1,y1, %2, y2) — x1 + y1l + xo] + 12K € H?
This equips R* with a triple of complex structures.
[:TR* - TR* J:TR*->TR* K:TR*- TR*

We can utilize these structures to formulate an explicit representative of the standard
homotopy class of trivialization 7 : & ~ R2.

DerintTioN 3.9. The quaternion trivialization T : & ~ Y x C is the symplectic trivializa-
tion given by

m q!
7:&{—>0Q—YxC

Here Q < TY is the symplectic sub-bundle span(Jv, Kv), m : & — Q is the projection
map from & to Q along the Reeb direction, and g : Y x C — Q is the bundle map given
onz =a+ibby

(3.8) qp(z) :=z-Jvp = (a +1b) - Jv,

The key property of the quaternion trivialization is the following relation of the
rotation density (see Definition 2.13) to extrinsic curvature, originally due to Ragazzo-
Salomao (c.f. [67]).

ProrositioN 3.10 (CurvaTURE-ROTATION). [15, Prop 4.7] Let X < R* be a star-shaped
domain with boundary Y transverse to the Liouville vector field Z of R* and let T be the
quaternion trivialization. Then

1

(39) QT(y,S) = m

(S(Ivy,Ivy) +S(s - Jvy,s - Jvy))

As an easy consequence of (3.9), we have the following bound on the Ruelle invariant of
Y.

LemmMma 3.11. The Ruelle invariant Ru(Y') is bounded by the following curvature integrals.
1 3
. — < NPl
(3.10) o L S(Iv,Iv)dvol; < Ru(Y) o L H dvol,

Proor. By Lemma we have the following integral formula for the Ruelle invari-
ant.

(3.11) Ru(Y) = lim 1 U [@Fo:](—,8)- A A d/\) dt
Y

T—ow T 0

By the curvature-rotation formula in Proposition we can write the integrand as
1

Z,v)

Tobound the righthand side of (3.12), note that Iv, s-Jv and s-Kv form an orthonormal
basis of TY with respect to the restricted metric gy, so that

(3.12) [@F0:)(—,5) = Bf (5 (S(Iv, Iv) + S(s - Jv,5 - J7)))

S(Iv,Iv) +S(s - Jv,s - Jv) + S(s - Kv,s - Kv) = trace(S) = 3H
16



Furthermore, since Y is convex, the second fundamental form S is positive definite.
Therefore by (3.12)), we have the following lower and upper bound.

- (S(Iv,Iv) = . -.( H
(3.13) D} (W) < [@for](—,s) <3 (m)

To simplify the two sides of (3.13), let F : Y x §' — R be any map pulled back from a
map F : Y — R. Since the flow @; on Y x S! lifts the Reeb flow ¢; on Y, and ¢; preserves
A, we have

éj(<;v>) -AAdA:qb;*(@FT) -/\Ad/\quf(F-/zZAj?) = ¢; (F-dvol, )

Since the integral of ¢} (F - dvol,) over Y is independent of ¢, we have

(3.14) %LT (L <T>Z‘(<Zi>) A A d)\) dt = %LT (LF : dvolg> dt = LF - dvol,

By plugging in the estimate (3.13) to the integral formula (3.11) and applying (3.14)
to the functions S(Iv, Iv) and H on Y, we acquire the desired bound (3.10). O

3.3. Bounding curvature integrals. We now further simplify the lower bound of the
Ruelle invariant in Lemma by estimating (from below) the integral

f S(Iv,Iv) - dvol,
Y

using the geometric quantities (e.g. area and diameter) appearing in This will help
us to leverage the sandwich estimates in Lemma [3.7|in the proof of the Ruelle invariant

bound in

Recall that X = R* denotes a convex domain with smooth boundary Y. Let ¢ :
R x Y — Y be the flow by Iv. Let St and Hr denote the time-averaged versions of
S(Iv,Iv) and H, respectively.

1 (T 1 (T

(3.15) St = —J S(Iv,Iv) o Y dt Hr = —f H o ydt
T 0 T 0

We will also need to consider a time-averaged acceleration function At on Y. Namely,

lety : R — Y be a trajectory of Iv with y(0) = x. Then we define

T T
(3.16) AT = %J Vi Iv| o i, dt or equivalently  Ar(x) = %J |y |dt
0 0

The first ingredient to the bounds in this section is the following estimate relating
these three time-averaged functions.

Lemwma 3.12. Forany T > 0, the functions At, Hr and St satisfy A% < 3-Hr - St pointwise.

Proor. In fact, the non-time-averaged version of this estimate holds. We will now
show that

(3.17) Vi, Iv|*> < 3H - S(Iv, Iv)
To start, we need a formula for Vy, Iv in terms of the second fundamental form, as follows.
Vilv =v, Vi lvyv + v, Vi Ivylv + {Jv, Vi Iv)]v + (Kv, V,Iv)Kv

= —(Iv,Vpvv — <12v, Viv)lv —dJv,VpvyJv — IKv, Vi, v)Kv
17



Applying the quaternionic relations I 2= _1,I] = Kand IK = —], we can rewrite this as
—Iv,Vpvyv + v, Vpvilv — (Kv, Vpv)Jv + {Jv, V,v)Kv
Finally, applying the definition of the second fundamental form we find that
ViIv = =S(Iv,Iv)v — S(Iv, Kv)Jv + S(Iv, Jv)Kv

To estimate the righthand side, we note that S(u, v)? < S(u, u)S(v, v) for any vectorfields
u and v by Cauchy-Schwarz, since S is positive semi-definite. Thus we have

Vi Iv|P? < S(Iv,Iv)2 +S(Iv, Iv)S(Jv, Jv) + S(Iv, Iv)S(Kv, Kv) = 3H - S(Iv, Iv)
This proves (3.17) and the desired estimate follows immediately by Cauchy-Schwarz.

1 1 1

(3.18) A% = (—J Vi Iv| ogbtdt)2 <3 —J H oyt - —f S(Iv,Iv)oydt = 3Hr - ST
T Jo T Jy T Jy

This concludes the proof of the lemma. m|

As a consequence, we get the following estimate for the curvature integral of interest
in terms of area, total mean curvature and the time-averaged acceleration Ar.

Lemma 3.13. Let ¥ < Y be an open subset of Y and let T > 0. Then

area(X)?

" miny(A7)?
31, Havol, (A7)

(3.19) J S(Iv,1v) - dvol, =
Y

Proor. We first note that v preserves the volume form dvol,, since
L1,(dvoly) = dig, dvol, = dig(A A dA) =d*A =0

Here R is the Reeb vector-field on Y. Thus, time-averaging leaves the integral over Y
unchanged.

f Ht dvol, = f H dvol, and J St dvol, = J S(Iv, Iv) dvol,
Y Y Y Y
We can thus integrate the estimate A% < 3Hr7 - St to see that

2 2
min(Ar)? - area(X)? < (f At - dvolg> < (\@ : J H;/Z : S;/Z : dvolg>
T z

<3 j Hr - dvol, J St -dvol, <3- f H - dvolg-f S(Iv, Iv) - dvol,
z z Y Y
After some rearrangement, this is the desired estimate. m|

Every quantity on the righthand side of can be controlled using the estimates
in Lemma 3.7, with the exception of the term involving the time-averaged acceleration
Ar. However, we can bound Ar in terms of diam(X)~1, using the following general fact
about curves of unit speed.

Lemma 3.14. Let y : [0, 0) — Y be a curve with |y| = 1 and let C satisfy 0 < C < 1. Then

f |y |dt d1am( ] forallT » 0
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Proor. Let T satisfy T > CT + 2 - diam(Y). Then by Cauchy-Schwarz, we have

T T T T
620)  diam(X) | [plar= [l s |G| | G

On the other hand, by integration by parts we acquire

T T
(3.21) | J G| = ” [y Pdt =y, )| = T — 2 diam(X) > CT
0 0
Combining the estimates (3.20) and (3.21) yields the claimed bound. m|

In particular, Lemma implies that A7 > C - diam(X)™! for all C < 1 and
sufficiently large T. Combining this with Lemma and taking C — 1, we acquire the
following corollary.

CoroLLAry 3.15. Let X < R* be a convex domain with smooth boundary Y. Then
area(Y)?

3 - diam(X)? - {, H dvol,

We will use Corollary in the proof of the main Ruelle invariant bound later in

We will also need a less crude estimate on the time-averaged acceleration that uses
the geometry of vector-field Iv, but requires the hypothesis that X has small systolic
ratio.

(3.22) J S(Iv,Iv)dvol, >
Y

Lemma 3.16. Suppose that X satisfies E(a,b) ¢ X < 4-E(a,b) and let . < Y be the open
subset

L=YnC xint(E(b/2))
Then thereisan ¢ > Oand a C > 0 independent of a, b and X such that, ifa/b < e and T = b'/?,
then
Ar=C-a7 2 on % and area(X) > C -area(Y)

Proor. To bound Ar, the strategy is to show that the projection of Iv to the 2nd
C-factor is bounded along Z by (a/b)"/2. Thus, a length T = b'/2 trajectory y of Iv stays
within a ball of diameter roughly a'/2, and a variation of Lemma implies the desired
bound.

To bound area(X), the strategy is (essentially) to use the monotonicity of area under
the inclusion E(a,b) < X to reduce to the case of an ellipsoid. We can then use the
estimates in Lemmas[B.3land B.Zlto deduce the result.

Projection Bound. Let 7; : R* ~ C? — C denote the projections to each C-factor for
i = 1,2. We begin by noting that there is an A > 0 independent of X, a and b such that
(3.23) My 0 Iv(x)| = [maov(x)| < A-(a/b)?  if  ma(x) € E(3b/4)

To deduce (3.23), assume that x € Y satisfies mp(x) € E(3b/4) and that 71 o v(x) # 0. Let
z € 0 x 0E(b) be the unique vector such that 72(z — x) is a positive scaling of 2(v). Note
that z € X since

0x E(b)<cE(a,b)cX
Furthermore, since X is convex, we know that (v(x), w —x) < 0 for any w € X. Therefore
(3.24) 0=(x),z—x)=|mov(x))||m(z—x)|+{(miov(x),mi(z —x))
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Now note that since 7;(x) € E(3b/4) and m»(z) € JE(b), we know that
1-(3/4)"
7l/2

Likewise, 11 (X) < 4-E(a) so that |1 (z—x)| < 4a/2/m'/2. Finally, |1 ov(x)| < [v(x)] = 1.
Thus, we can conclude that

Im2(z — x)| = . pY/?

mov() mz—x)| 4
-0l S1-gan @

Acceleration Bound. Now let T = b'/? and let y : [0,T] — Y be a trajectory of Iv
with y(0) € X. Since m2(y(0)) € E(b/2), we know that there is an interval [0, S| < [0, T]
where 12 0 ([0, S]) = E(3b/4). Thus, by (3.23), we know that for t € [0, S| we have

t
625 OO - yO)] < | [maolvoyld <A (a/h)2 1 < Al
0

72 0 v(x)] <

By picking ¢ > 0 small enough, we can ensure the following inequality.

3b b
12 ~ (29\12 P e
A < ()7 = (50)
With this choice of ¢, (3.25) implies that 7 (y(t) — (0)) € E(3b/4) if 0 < t < T. In fact,
(3.25) implies that y is inside of a ball, i.e.
y(t) € E(16a) x E(mA%*-a) + p = B-E(a,a) +p where p:=0 x m1p(y(0))

Here B := (16 + 1A?)'/2. The diameter of the ball B - E(a,a) is 2B - (a/7)'/2. Therefore,
by applying (3.20) and (3.21) we see that

2Bal/? diam(B - E(a,a)) (T . 2diam(B - E(a, a)) 4B 1
. — / . > 1— 4 -1 . /2
We now choose C > 0 and ¢ > 0 independent of a, b and X, such that
n'/2 1/2 1/2 1/2
Ar(x) 2 (5 =2+ (a/b) 2y g7 2> Ca 2 if ab<e

This proves the desired bound on time-averaged acceleration.

Area Bound. Let U denote the convex domain given by the intersection X n (C x
E(b/2)). Note that we have the following inclusion.

E(a/2,b/2) c E(a,b) n (C x E(b/2)) c U
Furthermore, the boundary of U decomposes as follows.
oU=XuX where X :=Xn(CxdEDb/2))
Since X < 4 - E(a,b), we have ¥’ ¢ R where R is the hypersurface
R:=4-E(a,b) n(C x 0E(b/2)) = E(31a/2) x 0E(b/2)

Combining the above facts and applying the monotonicity of surface area under inclusion
of convex domains, we find that

area(X) = area(dU) — area(X’) > area(dE(a/2,b/2)) — area(R)
By Lemma[3.7]and direct calculation, we compute the areas of dE(a/2,b/2) and R to be
31a

area(0E(a/2,b/2)) = 27%%.ba'?  area(R) = T-(27119)1/2 — 31-(1/2)"%-(a/b)"/?-ba'/?
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Now let B < 2752 and choose ¢ > 0 small enough to that if a/b < ¢ then
2732 31 (/)2 (a/b)'/* > B

By applying this inequality and the upper bound for area in Lemma 3.7 we find that for
some C > 0 independent of X, 4 and b and an ¢ > 0 as above, we have

area(X) = (272 =31 (/)Y - (a/b)"?) - ba'? = C - ba'/? > area(Y)
This yields the desired ara bound and concludes the proof of the lemma. O

By plugging the bounds for Ar and area(X) from Lemma into Lemma we
acquire the following variation of Corollary

Cororrary 3.17. Let X be a convex domain with smooth boundary Y, such that E(a,b) <
X c4-E(a,b). Then there exists a C > 0 and ¢ > 0 independent of X, a and b such that

area(Y)?

a - {y Hdvol, ¥oafb<e

J S(Iv,Iv) -dvol, = C
Y

3.4. Proof of main bound. We now combine the results of §3.113.3| to prove Propo-
sition3.1]

Proor. (Proposition By Lemma [3.6, we may assume that X is sandwiched be-
tween standard ellipsoid E(a, b) with 0 < a < b and a scaling.

E(a,b) c X =4-E(a,b)

We begin by proving the lower bound, under this assumption. By Lemma we have

(3.26) Ru(Y) > % : JS(IV,IV) dvol,
Y

By applying the lower bound in Corollary and using the estimates for diameter,
area, total curvature, volume and systolic ratio in Lemma we see that for some C > 0
we have

area(Y)?
67 - diam(Y)? - {, H dvol,

(3.27) JS(IV,IV) -dvol, >
Y

> C-a > vol(X)? . sys(Y)1/

On the other hand, suppose that § « 1. Due to Lemma [3.7 this is equivalent to
sys(Y) « 1. By Corollary and the estimates in Lemma [3.7, there are constants
A, B,C > 0with

Y 2
area(¥) >B-b>C-vol(X)/?. sys(Y)~1/2

3.28 S(Iv, Iv)dvoly > A - ——om ) o
(3:28) J(V vydvols = A o el

Y

By assembling the estimate (3.26) with the two estimates (3.27) and (3.28), we deduce
the following lower bound for some C > 0.

(3.29) Ru(Y) = C - vol(X)V? - sys(Y) /2

After some rearrangement, this is the desired lower bound.
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The second inequality is easier to show. By using the upper bound in Lemma
and the estimate for the mean curvature in Lemma we see that for some A,C > 0
we have

(3.30) Ru(Y) < JHdVOlg <A-b<C -Vol(X)l/2 -sys(Y) 12
Y

This implies the desired upper bound, and concludes the proof. |

4. Non-convex, dynamically convex contact forms

In this section, we use the methods of [1] to construct a dynamically convex contact
form with systolic ratio and volume close to 1, and arbitrarily small Ruelle invariant.

ProrosiTioN 4.1. For every € > 0, there exists a dynamically convex contact form a on S3
with
vol(S°,a) =1 sys(S°,a)=1—¢  Ru(S%a)<e

4.1. Hamiltonian disk maps. We begin with some notation and preliminaries on
Hamiltonian maps of the disk that we will need for the rest of the section.

Let D = R? denote the unit disk in the plane with ordinary coordinates (x, y) and
radial coordinates (7, 0). We use A and w to denote the standard Liouville form and
symplectic form.

A= %erG = %(xdy — ydx) and w:=rdr AdO =dx A dy

Let ¢ : [0,1] x D — D be a the Hamiltonian flow (for ¢ € [0, 1]) generated by a time-
dependent Hamiltonian on D vanishing on the boundary; i.e.

H:R/ZxD—>R with Hlp=0

We let Xy denote the Hamiltonian vector field and adopt the convention that tx,,w = dH.
The differential of ¢ defines a map @ : R x D — Sp(2) with ®|oxp = Id, which lifts
uniquely to a map

4.1) O:RxD— é?)(Z) satisfying DS +T,z) = D(T, qbs(z))&)(S,Z)

There are two key functions on D associated to the family of Hamiltonian diffeomor-
phisms ¢. First, there is the action and the associated Calabi invariant.

DEeriNiTiON 4.2. The action oy : D — R and Calabi invariant Cal(D, ¢) € R of ¢ are
defined by

1
(4.2) Op = f ¢; (txyA + H) - dt and Cal(D, ¢) = f 0 @

0 D
The action measures the failure of ¢ to preserve A, as captured by the following formula.
(4.3) PiA— A =dog

Next, there is the rotation map and the associated Ruelle invariant. To discuss these
quantities, we require the following lemma.
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LemMma 4.3. Let ¢ : [0,1] x D — D be the flow of a Hamiltonian H : R/Z x D — D with
0¢ > 0. Then the sequences r, : D — R and s, : D — R given by

1 n—1

ra(z) = %p o P(n, z) and Sn(z) := - Z O © *(2)
k=0

converge in L' (D) to r¢ and s, respectively. The map sk_1 also converges to s;l in LY(D).

Proor. We apply Kingman’s sub-additive ergodic theorem [52] to themap g, = r,,+C
for sufficiently large C > 0. Applying and the quasimorphism property of p, we
find that

Sm+n < §m + &n O(;Dm
By Kingman’s ergodic theorem, this implies that 5;—” has a limit 7, in L'(D). Since
|gn — 7|11 is bounded, we acquire the same result for 7,,.

By Birkhoff’s ergodic theorem, s, converges to a limit s, € L}(D). Note that for some

¢ > 0, we have

g 0y < ¢ and therefore cl<s, <c

Thus 54, > 0 pointwise almost everywhere and s is well-defined almost everywhere.
Since |s,| ™' < ¢, we can apply the dominated convergence theorem to conclude that s ;'
is integrable and s, — s;! in L!. A similar argument applies to r,, /s,,, which converges
to 7on /S oo O

DEeriNiTION 4.4. The rotation ry : D — R and Ruelle invariant Ru(D, ¢) € R of ¢ are
defined by

(4.4) re = nlgxc}o n and Ru(D, ¢) = le e w
RemaRrk 4.5. Our Ruelle invariant Ru(D, ¢)of a symplectomorphism of the disk agrees
with the one introduced by Ruelle in [69].

The action, rotation, Calabi invariant and rotation invariant depend only on the homo-
topy class of ¢ relative to the endpoints, or equivalently the element in the universal
cover of Ham(D, ¢).

We conclude this review with a discussion of periodic points and their invariants.

DerintTION 4.6. A periodic point p of ¢ : D — D is a point such that ¢*(p) = p for
some k > 1. The period £(p), action A(p) and rotation number p(p) of p are given,
respectively, by
(4.5)

. £(p)-1 ‘
L(p)i=min{j > 09/(p) =p}  A(p) = 2, do0'(p)  p(p)i=po®(L(p).p)
i=0
Note that the rotation number can also be written as p(p) = L(p) - 74 (p).

4.2. Open books of disk maps. We next review the construction of contact forms
on S? from symplectomorphisms of the disk, using open books.

Construction4.7. LetH : R/ZxD — R be a Hamiltonian with flow ¢ : [0,1]xD — R
such that
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(i) Near oD, H is of the form H(t,r,0) = C - (1 — r?) for some C > 0.
(ii) The action function oy of the Hamiltonian is positive everywhere.

We now construct the open book contact form a on S® associated to (D, ¢). We proceed
by producing two contact manifolds (U, @) and (V,f), then gluing them by a strict
contactomorphism.

To construct U, we consider the contact form dt + A on R x D. Due to the identity
doy = ¢p7A — Ain (4.3), the map f defined by

f:RxD->RxD f(t,Z)Z(t—qu(Z),(]bl(Z))
is a strict contactomorphism. Thus, we can form the manifold U as the following quotient
space.
U=RxD/~ defined by (t,z) ~ f(t, z)
The contact form dt + A descends to a contact form a on U. Note that a fundamental
domain of this quotient is given by

Q={(t,z)[0 <t <o0p(z)}

To construct V, we choose a small € > 0 and let

V:=R/nZ x D(¢) B = (1—r?)dt + %erQ
Here D(¢) < C is the disk of radius ¢, t is the R/nZ coordinate and (r, 0) are radial
coordinates on D(¢). There is a strict contactomorphism ® identifying subsets of U and
V, given by

V:V\(R/nZ x0) - U with Y(t,r,0):= (% -0,V/1—7r2,2t —CO)

We now define Y = int(U) uy V as the gluing of the interior of U and V via @, and «a as
the inherited contact form. Since ¢ is Hamiltonian isotopic to the identity, the resulting
contact form (Y, a) is contactomorphic to standard contact S°.

In order to relate various invariants associated to (S%, a) and its Reeb orbits to cor-

responding structures for (D, ¢), we need to introduce a certain trivialization of & over
u.

ConstructioN 4.8. Let (U, &|iy) be as in Construction 4.7] We let T denote the con-
tinuous trivialization of &|; defined as follows. On the fundamental domain Q, we
let
(4.6)

7:Q — Hom(&|y, R?) given by T(t, z) := exp(2mit/oy(z)) o D(t/0¢(z),z) o Ip
Here ©@ : [0,1] x D — D is the differential d¢ of the flow ¢ : [0,1] x D — D and

Ilp : & — TD denotes projection to the (canonically trivial) tangent bundle TD of D.
Note also that o denotes composition of bundle maps.

To check that T descends to a well-defined trivialization on U, we must check that it
is compatible with the quotient map f : R x D — R x D. Indeed, we have

T(0¢(z),2z) = D(1,z) ollp = 7(0, P1(2)) 0 dfs(z),2
This precisely states that projection commutes with the isomorphism identifying tangent
spaces in the quotient, so 7 descends from Q to U.
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Lemma 4.9. Let 1 : &|y — R? be the trivialization in Construction Then

(a) The restriction |k of T to any compact subset K < int(U) of the interior of U is the
restriction of a global trivialization of & on S°.

(b) The local rotation number rot, : U — R of (U, a|u) with respect to T agres with the
restriction of the local rotation number rot : S3 — R of (S, &) with respect to the global
trivialization.

Prook. Let V = R/nZ x D(¢) and W be as in Construction 4.7} For any 6 < ¢, we let
V(6) € Vand U(6) < U denote

V() =R/mZxD(©)cV and  U(9):=int(U)\int(W(V(0)))
The sets U(6) are an exhaustion of int(U) by compact, Reeb-invariant contact sub-

manifolds.
To show (a), we assume that K = U(6). The homotopy classes of trivializations T of
& over U(0) are in bijection with H'(U(6); Z) ~ Z. A map to Z classifying elements of T
is given by
T—7Z givenby ow—sl(y, o)
Heresl(y, o) is the self-linking number (in the trivialization o) of the following transverse
knot.

y:R/2nZ — U(9) y(0) =W¥(0,¢,0) = (%,\/1 —¢2,-C0)

The knot y bounds a Seifert disk & = 0 x D(¢) in V < S3. The foliation & n X has a single
positive elliptic singularity, so the self-linking number of the boundary y with respect
to the global trivialization is sl(y) = —1.

To compute sl(y, ), we push y into X along a collar neighborhood to acquire a
nowhere zero section n : R/2nZ — & and then compose with 7 to acquire a map
ton: R/2nZ — R?\0. Up to isotopy through nowhere zero sections, we can compute
that

Ton(0) =efeC =R
On the other hand, the self-linking number can be computed as the negative of the
winding number of this map.

sl(y,7) = —wind(ton) = —1

This proves that 7 agrees with the restriction of the global trivialization.

To show (b), note that since U (6) is compact, we can choose a global trivialization of
EonS3
0:&~R? such that olue) = Tlu)

By Proposition c), rot, = rot on S% and so the local rotation numbers satisfy

rot |u(5) = rot, |u(5) = rot; |U(6)

Since this holds for any 6, this shows (b) on all of int(U). Note that we assiduously
avoided extending 7 itself from int(U) to S? in this argument. O

ProposrTion 4.10 (Open Book). Let H and ¢ be as in Construction[d.7} Then there exists
a contact form a on S3 with the following properties.
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(a) (Surface Of Section) There is an embedding 1 : D — S° such that (D) is a surface of
section with return map ¢1 and first return time o, and such that v = (*da.

(b) (Volume) The volume of (S®, &) is given by the Calabi invariant of (D, ¢), i.e.
vol(S?, a) = Cal(D, ¢)

(c) (Ruelle) The Ruelle invariant of (S°, a) is given by a shift of the Ruelle invariant of

(D, ¢).
Ru(S%, a) = Ru(D, ¢) + =

(d) (Binding) The binding b = 1(dD) is a Reeb orbit of action 1 and rotation number
1+1/C.
(e) (Orbits) Every simple orbit y < S3\b corresponds to a periodic point p of ¢ that satisfies

k(y,b) =L(p) AQ)=Alp) ply)=pp) +L(p)

Proor. We prove each of these properties separately.

Surface Of Section. Define the inclusion ¢ : D — S? as the following composition.
(:D=0xD->RxD5Y=8

The surface 0 x D is transverse to the Reeb vector field ¢; of R x D and intersects every
flowline R x z. Also, (R x z) n Q has action 04(z) and ends on (0¢(z),z) ~ (0, $1(z)).
Thus (D) = 7(0 x D) is a surface of section with return time 04 and monodromy ¢.
Finally, note that

t"(da) =d(dt + AN|oxp = @
This verifies all of the properties of ¢ : D — Y ~ S3 listed in (a).

Calabi Invariant. This property follows from a simple calculation of the volume
using the fundamental domain Q.

vol(Y, a) :J aAdazf thd/lzj 0y - = Cal(D, ¢)
Y Q D

Ruelle Invariant. Letrot : S*> — R be the local rotation number of (S, @). By Lemma
the restriction of rot to the (open) fundamental domain Q < S® coincides with rot;.
Since S3\Q) is measure 0 in S®, we thus have

4.7) Ru(S®, a) = J

S3
Here (* rot; denotes the pullback of rot; via the map ( : D — S3 from (a). We have used
the Reeb invariance of rot,, i.e. the fact that rot, (¢, z) = * rot,(z).

rot-a A da :J

rot; -dt A w = f t*rot; -0y
Q

D

To apply this alternative formula for Ru(S3, a), let Ty denote the kth positive time
that the Reeb trajectory y : [0,00) — S intersects the surface of section (D). Then

. _ po®(Tx, —) poci(k Stk ret1
t*rot; = lim ——= = lim =
k—o0 Tk k—0 Zz 0060 (Pl S¢

Here the maps ry and s, are the averaged rotation and action maps constructed in
Lemma 4.3, By construction, these maps are invariant under pullback by ¢. Thus

ro +1 J ro +1 Jr¢+1 i L
Oy = — 1%( OpW) = S, where s, =— 00
J 59 ¢ Z o) b s¢ " n1§¢¢
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By Lemma we know that s, — s, in L'(D). Thus, by combining the above formula
in the n — oo limit with (4.7), we acquire the desired property.

Ru(S? B re +1 B re +1 B . _ Ru(D
u(S’, a) = T Ogrw= sp-w=| (ro +1)-w =Ru(D, ¢) + 7
D S¢ D S¢ D

Binding. Let b = ((0D) be the binding which coincides with R/nZ x 0 in V. First

note that the Reeb vector field is given on (V, ) by the following formula.
2
(4.8) R‘3 =0 + Eag
Thus b is a Reeb orbit. Since b bounds a symplectic disk ((D) = S® of area 7, the action
is . To compute p(b), note that there is a natural trivialization of &|y = ker(B) given by
v:i&ly c TV 5 TD(e) = R?
The Reeb flow ¢ : R x V — V and the linearized Reeb flow @, : R x V' — Sp(2) with
respect to v can be calculated from (&.8), as follows.
Gi(s,z) = (s +1t,e¥/C.2)  D(ts,2)=¥/C

Thus the rotation number p(b, v) of b in the trivialization v is 1/C. Finally, to compute
the rotation number p(b) = p(b, T) with respect to the global trivialization 7 on &, we
note that

p(b,7) — p(b,v) = u(tov ) = c1(&lypy, 1) — c1(&lipy, v) = —c1(Eli@), v)
Here p : m1(Sp(2)) — Z is the Maslov index and c1(¢|,p), —) is the relative Chern class
of &|,(p) with respect to a given trivialization over ((0D), which vanishes for 7.

On the other hand, the trivialization v is specified by the section of &|,p) given by
pushing (D) into (D) along a collar neighborhood. Thus, —c1(&|,(p), v) is precisely
the self-linking number sl(b) of b. This number can be calculated as a signed count of
singularities of the foliation & n (D), which has 1 elliptic singularity. Thus sl(b) = —1
and p(b) =1+1/C.

Orbits. An embedded closed orbit y : R/LZ — Y of a that is disjoint from the
binding b is equivalent to a closed orbit of (U, a|i7). The orbit y intersects the surface of
section (D) transversely at n > 1 times Tp = 0,Ty,...,T, = L. Let

preD be such that tpx) = y(Tx) n (D)

Since (D) is a surface of section, we have p;11 = ¢(p;) and since y is closed, p, = po.
Thus p = po is a periodic point of period
L(p) =n = wu[D]-[y] =k(y,b)

Next, note that on the interval [T;, T;41], y restricts to a map [T;, Ti+1] — Q given by
y(t) = (¢, t(pi)), from which it follows that

n—1 a(pk) n—1 L
Pldtra)= 3 [ dt= 3 oo ghp) - Ap)
k=00 k=0
Finally, due to Lemmaf4.9we may use the trivialization 7 to compute the rotation number.

For the purpose of abbreviation, we adopt the notation

yi=upi)=y(T) Li=Tqu—T =0epi)
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Note that the lifted linearized Reeb flow with respect to 7 at time L can be written as

(4.9) (NDT (L/ )/(O)) = &)T(Ln—lz yn—l)&)T (Ln—2r yn—Z) cen (NDT (LO/ ]/0)

The linearized Reeb flow @ (L;, y;) takes place along a trajectory connecting (0, p;) to
(0¢(pi), pi) in the fundamental domain Q. We may be directly compute from that

(4.10) @(t,y;) = exp(2mit /oy (pi)) o D(t/0p(z),pi) andso D (Li,y:) =E- (1, p;)

Here Z is the unique lift of Id € Sp(2) with p(&) = 1. This is a central element of §f>(2),

so combining and we have
O (L, y(0)) = E"- (1, 0" (p)) - D(1,¢"2(p)) --- (1, p) = E" - D(n, p)
Since p(i W) =1+ p(\ff) for any e §f)(2), we can conclude that
p(y) = pode(L,y(0)) = po®(n,p) +n = p(p) + L(p)

This completes the proof of (e), and the entire proposition. m|

4.3. Radial Hamiltonians. A Hamiltonian H : R/Z x D — R that is rotationally
invariant will be called radial. In other words, H is radial if it can be written as

H(t,r,0) = h(t,r) for a map h:R/Zx[0,1] - R
We will require a few lemmas regarding radial Hamiltonians.

Lemma 4.11. Let H : D — R be an autonomous, radial Hamiltonian with H = h or. Then
W(r)
2mr

(4.11) og(r,0) = h(r) — %rh’(r) and  ry(r,0) = —

Proor. We calculate the Hamiltonian vector field Xy and the action function oy as
follows.

rh

(r) 1.
> +h(r))-dt = h(r)—irh (r)

Here we use the fact that the Hamiltonian flow ¢ preserves any function of r. Next, we
note that the differential ® : R x D — D of the flow ¢ is given by

! it(rh" — W !
D(t,z)v = exp( rh it)o + iHrh” 1) - exp( rh

1
Xy = —7'56 and and op(r,0) = J ¢y (—
0

2 -it)z - dr(v)
Note that if we use s = iz/|z|, then dr(v) = 0. Thus, if ®: R x D — §f)(2) denotes the
lift of @, and ps denotes the rotation number relative to s (see Deﬁnition@) then

—n ~ —hn
(r) - it)s and thus pso®(T,z) =T - (r)

(4.12) D(t, z)s = exp(— 2mr

Since ps : S’&J)(Z) — Rand p: é\IJ)(Z) — R are equivalent quasimorphisms (Lemma ,
we have

L po®(T,5) o ®(T,-)  —Wor
ro = fim = lim ————=—"—  inlD)
This concludes the proof of the lemma. O
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More generally, a Hamiltonian H : R/Z x D — R is called radial around p € D if H is
invariant under rotation around p, i.e. if H can be written as

H(t,x,y) = h(t,ry) for a map h:R/Z x[0,1] - R
Here r, : D — R be the distance from p, i.e. 7,(z) = [z — p|.

Lemma 4.12. Let H : D — R be an autonomous Hamiltonian that is radial around p =
(a,b) € D, with H = h o 1y, in a neighborhood U of p. Then on U, we have

hl(”p)
B 27er

1 "
(4.13) op = h(ry) — Erph’(rp) +up —Pju,  and 1y =

Here the map uy : D — R is given by uy(x,y) = (bx —ay)/2.

Proor. Let A, be the radial Liouville form on (D, w) centered at p. Thatis, A, is given
by

Ap = %((x —a)dy — (y —b)dx) = A + du,

Let 7 : D — R be the function decribed in (#.13). Then by Lemma .11} we know that on
U we have

dt = (p7Ap — Ap) + (P1dup —up) = P14 — A = dog
Thus it suffices to check that o4 (p) = 7(p). Since rh'(p) = 0 and u, (p) = up(P1(p)) =0,
we see that 7(p) = h(0) = H(p). On the other hand, Xp(p) = 0, we see that

1 1
2o(p) = || 61A) + H)de = | h(O)dt = <(p)
0 0

Thus o4(p) = 1(p). The formula for ry follows from identical arguments to Lemma

O

4.4. A special Hamiltonian map. We next construct a special Hamiltonian flow
¢ :[0,1] x D — D whose corresponding contact form will provide our counterexample.
We define ¢ as a product

¢ = e "
Here ¢¢ : [0,1] x D — D and ¢ : [0,1] x D — D are autonomous flows generated
by G and H, and the product occurs in the universal cover of the group Ham(D, w) of
Hamiltonian diffeomorphisms of (D, w). We denote the Hamiltonian generating ¢ by

H#G:R/Z xD — R

To construct G and H, we must fix the following setup (which will be used for the rest
of §4.4).

Setup 4.13. Fix an integer n > 10 and let S(n, k) < D for 0 < k < n — 1 be the sector
of points with angle 2nk/n < 6 < 2n(k +1)/n.

Let U < D be a finite union of disjoint disks in D such that each of the component
disks D < U is contained in one of the sectors S(n, k) and such that for every D < U
the disk e?™/" . D is a component disk of U as well. Finally, let 56 > 0 be a constant that
is smaller than the radius of each disk D, smaller than the distance between any two of
the disks D and D’, and smaller than the distance between D and the boundary of any
of the sectors S(n, k).

29



For any subset S ¢ D, we use the notation
N(S) :={z € D||z — p| < 0 for some p € S}
The neighborhoods N (D), N(D), N(U) and N (oU) will be of particular importance.
We now introduce the two Hamiltonians H and G in some detail.

ConstrucTiON 4.14. We let H : D — R denote the radial Hamiltonian given by the
formula

1
(4.14) H(r, 6) = @ (1-1?)
The Hamiltonian vector field Xy = 271(71—“) - 0p and so the Hamiltonian flow is given by
2 +1
(4.15) P RxD—->D  with  ¢fl(t,z) = exp(% Jit) -z

In particular, the time 1 flow is rotation by 2% and preserves the collection U.

ConstrucTION 4.15. We let G : D — R denote a Hamiltonian that is invariant under
rotation by angle 27t/n and that vanishes away from N(U). That is

(4.16) G(z) = G(e*™/" . 2) and Glp\ww) =0

Furthermore, let D be a component disk of U that is centered at p € D and with radius
s. Then we also assume that G is radial about p in the neighborhood N (D) of D, i.e.

(4.17) Glnmy=8o1yp for a function  ¢:[0,s+06] > R
Finally, we assume that the function g satisfies the following conditions.
(4.18) g(r)=—m-(2-0)-(s*—r? ifr <s—0o

(4.19) g<0 0<g¢'<2n-(2-0)-(s—0) ifs—0<r<s+9o

Note that (4.18)) specifies G on the region D\N(dD) and (#.19) specifies G on the region
N(oD).

A crucial fact that we will use later without comment is that ¢ and ¢ commute as
elements of the universal cover of Ham(D, ). That is
PC o o = pH 0 $C and G#H = H#G up to isotopy in ¢ relative to 0, 1

The remainder of this section is devoted to calculating properties of the action,
rotation and periodic points of the map ¢.

Lemma 4.16 (ActioN oF ¢). The action map o : D — R and Calabi invariant Cal(D, ¢)
satisfy

(4.20) 0y = —2 > area(D)- xp +O(5)  on D\N(U)
DclU
(4.21) /2 <oy <27 onallof D
(4.22) Cal(D, ¢) = 2(1 + —2 ) area(D)* + O(6)
DcU



Proor. Since q‘)G and quH commute, we have og o qbf = og and therefore

Uq):GGOQb{I-i-GH:GG-FGH

Thus we must compute the action map of G and H. First, we note that H is radial by

(4.14). Thus we apply Lemma to see
(4.23) og =1(l+ %) onall of D

Next we compute the action map of G. Let D be a component disk of U centered at p
and of radius s. We can apply Lemma to see that

oG = —2ms” + 8 - (—2ms?) + (up — [q)lG]*up) = —2area(D) + O(6) on D\N(2D)

Here the u;, — [q)f]*up isan O(0) term because qblc is a rotation of angle 6 on D\N (D).
Since o = 0 outside of N(D), we thus acquire the formula

(4.24) oc=-2 ) area(D)- xp + O(5) onD\N(oU)
DcU

Adding (4.23) and (4.24) yields the desired formula (4.20) and implies (¢.21) away from
N(oU). On the neighborhood N (0U ), we have the formula

0] < 13(rp) — 58'(1)| + O(6) < 4ns +O(3) < 5 on N(aU)

By adding this to the formula (4.23) for oy, we immediately acquire (4.21) on N(oU).
Finally, since N (0U ) has area O(0), the Calabi invariant agrees with the integral of (4.20)
over D\N (0U) up to an O(0) term. This proves (4.22). O

Lemma 4.17 (RotaTion oF ¢). The rotation map ry : D — R and the Ruelle invariant

Ru(D, ¢) satisfy

1
(4.25) ro=(0+-)-2 Y xp+0(5) on D\N(U)
DcU
1 1
(4.26) —1+E+6<r¢<1+z onallof D
(4.27) Ru(D, ¢) = n(1 + —2 > area(D) + O(6)
DcU

Proor. In the universal cover of Ham(D, ¢), the time k flow ¢* of G#H can be factored
in terms of the time 1 flow ¢ : [0, 1] x D — D of G and the time 1 flow ¢ : [0, 1] xD — D
of H, as follows.

¢F = (¢ 0 ¢O) = @M e 9T 0 9 0.0 M 0 ¢
This factorization is inherited by the lifted differential @ : RxD — §f)(2) ofp : RxD - D
due to the cocycle property of D.
(4.28) D(k,z) = D (1, 90" (2))e D (1, ¢*1(2)) 0D (1, 9 0" 2(2))e- - -0 D (1, 2)

To apply this, we note that the differential ® : [0,1] x D — Sp(2) of the flow of H is
given by

(4.29) D (t,z) = exp(2r(1 + 1/n) - it) foranyzeD
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Likewise, the differential ®C : [0, 1] x D — Sp(2) of the flow of G is given by the formula
(4.30)
P (t,z) = exp(—2(2 — 6)mt - it) if z € U\N(aU) and ®C(t,z) = Id if z € D\N(D)

By combining (4.29) and (4.30) with the decomposition (4.28), we acquire the following

formula.

431)  pod(kz) —k-(1+ % 2% xp(x)+0(0) i zeD\WN(U)

By dividing (4.31) by k and taking the limit as k — oo, we acquire the first formula (4.25).

Next, we examine the rotation number in the region N (0D). Fix a component disk
D < U centered at p and a point z € N(0D). Let S « N(éD) be a circle centered at p
with z € S, and let u € T, S be a unit tangent vector to S at z. Finally, let

Si=¢'(S) zi=¢'(z) wi=¢%¢(z) wi=0>,z)u v =D, (2))P(,z)u

Note that these points and vectors satisfy z; € S;, w; € S;, u; € T,,S; and v; € T, S; for
each i. By applying the decomposition (4.28) and the additivity property (2.7) of ps, we
see that

k=1 k=1
(4.32) pu(®(k, 2)) = 3 pu (DO (L,20))) + D po, (D (1, wy)
i=0 i=0

Since ¢ is just an orthogonal rotation, we can use (4.29) to immediately conclude that

(4.33) pu (®C(1,21))) = 1+ %

On the other hand, since v; is tangent to the circle S;, we may use the formula (4.12) to
see that

8'(rp(2))

(4.34) Do, (&)H(l,zi))) = — 2, (2)

Here g is the function such that G|yp) = g o rp. By our hypotheses, we know that

2-8)-0) __gmE) _.
s+0 T 2mrp(z)

By plugging in the formulas 1) and 1 , we can estimate p, o ®(k, z) as follows.

k-(—1+%+6)<puo&)(k,z)<k-(1+%)

—2+0< -

We can therefore estimate r. Since p, and p are equivalent (Lemma we find that

D(k, 1 1
rq,(z):kli_r)?omoT(z) and thus —1+;+6<r¢,(z)<1+;

Finally, since N (dU) has area O(6), the Ruelle invariant agrees with the integral of
(4.25) over D\N (U ) up to an O(0) term. This proves (4.27). O
Lemma 4.18 (Periopic Points oF ¢). The periodic points of ¢ : D — D satisfy

(4.35) Alp)=zn and  p(p)+ L(p)>1
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Proor. First, consider the center ¢ = 0 € D, where ¢ = ¢!. This periodic point has
period £(c) = 1. Thus, due to Lemmas and the action and rotation number
are given by

Ae) = ogle) = (14 1) p(e) = rglc) =1+
Any other periodic point p of H has per10d L(p) = n, since ¢ rotates the sector S(n, k)
to the section S(n, k 4 1). Since n > 2 and o > 71/2 (by Lemma , the action of p is
lower bounded, as follows.
L(p)—1

A(p) = 3, 0@ (p) = 5 - L(p) = m
i=0

Likewise, we apply Lemma to see that the rotation number of p is lower bounded
as follows.

1
plp) =L£(p) - 1o(p) = £(p) - (=1 + — +0) > ~L(p) +1+5
In particular, the rotation number satisfies p(p) + £(p) > 1. O

4.5. Main construction. We conclude this construction by proving Proposition [4.1}
The result will be an easy consequence of Proposition and the properties of the
special flow ¢ of

Proor. (Proposition[d.I) Let ¢ > 0. Choose an integer 7, a union of disks U < D and

a number 6 > 0, satisfying the properties of Setup Additionally, choose a k > 0
and suppose that the component disks D < U satisty

(4.36) T—K < Z area(D) < m and area(D) < mx
DclUu

Let ¢ : [0,1] x D — D be the associated family of Hamiltonian diffeomorphisms from
By direct calculation and Lemma we know that

G#H = nt(1 + %) - (1 — r?) near 6D and gy >0

Therefore we can associate a contact form a on S3 to ¢ via Construction @ We now
show that (a scaling of) this contact form has all of the desired properties.
First, by Proposition b) and Lemma the volume of (S3, @) is given by the
formula
vol(S®, @) = Cal(D, ¢) = n*(1 + -2 Z area(D 0(0)
DcUu
Thus, by applying the inequalities in (4.36), we acquire the following estimates for the
volume.

1
(1 + ;) + 0(0) > Vol(S3,ac) > m2(1 —2x) + O(5)
Next, by Proposition c) and Lemma {417} the Ruelle invariant of (S, a) satisfies

Ru(S%, a) = Ru(D, ¢) + 7 = m(2 + -2 Z area(D) + O(0)

Again, we can then use the inequalities in (4.36) to acquire estimates for the Ruelle
invariant. - -
—+ 2K+ 0(0) > Ru(S3, o) > —+0(0)
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Last, by Proposition d) the binding b = ((dD) in S? has action and rotation number
given by

Ab) =mn p(b) =1+ > 1

1+1/n
Due to Proposition e) and Lemma every periodic orbit of (S3, a) other than b
satisfies

Ay)zm  ply)>1
In particular, « is a dynamically convex contact form. To conclude the proof, we now
note that by choosing 6 and « sufficiently small, and choosing n sufficiently large, we
can guarantee that

Ru(S3, a) _ ni/n + 2k + O(0)

< < d
wol($, )2 “m—2c+ 02 "
¥, a) min{A(y)|y is an orbit of a}> - 2 o1
sys(Y,a) = > _
y vol(S?, ) 21+ 1/n + 0(0)) ‘

By scaling a so that vol(Y,a) = 1, we arrive at a contact form satisfying all of the
properties of Proposition This finishes the proof and the main construction of this
section. O
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CHAPTER 2

Computing Reeb Dynamics On 4d Convex Polytopes

1. Introduction and main results

This part of this paper is about computational methods for testing Viterbo’s conjecture
and related conjectures, via combinatorial Reeb dynamics.

1.1. Review of Viterbo’s conjecture. We firstrecall two different versions of Viterbo’s
conjecture. Consider R2" = C" with coordinates z; = x; ++/ —1ly;fori =1,...,n. Define
the standard Liouville form

/\0 = Z (xi dyl — Vi dx,-) .
i=1

N =

Let X be a compact domain in R?* with smooth boundary Y. Assume that X is “star-
shaped”, by which we mean that Y is transverse to the radial vector field. Then the
1-form A = Ap|y is a contact form on Y. Associated to A are the contact structure
& = Ker(A) < TY and the Reeb vector field R on Y, characterized by dA(R,-) = 0 and
A(R) = 1. A Reeb orbit is a periodic orbit of R, i.e. amap y : R/TZ — Y for some T > 0
such that y/(t) = R(y(t)), modulo reparametrization. The symplectic action of a Reeb
orbit y, denoted by A(y), is the period of y, or equivalently

(1) Aly) = fwy*Ao.

Reeb orbits on Y always exist. This was first proved by Rabinowitz [66] and is a
special case of the Weinstein conjecture; see [43] for a survey. We are interested here in
the minimal period of a Reeb orbit on Y, which we denote by Apin(X) € (0, ), and its
relation to the volume of X. For this purpose, define the systolic ratio

-Amin (X ) "
X)=—%~.
sys(X) n!vol(X)
The exponent ensures that the systolic ratio of X is invariant under scaling of X; and the
constant factor is chosen so that if X is a ball then sys(X) = 1.

Conjecture 1.1 (WEAK VITERBO CONJECTURE). Let X = R%" be a compact convex domain
with smooth boundary such that 0 € int(X). Then sys(X) < 1.

Conjecture [1.1|asserts that among compact convex domains with the same volume,
Amin is largest for a ball. Although the role of the convexity hypothesis is somewhat
mysterious, some hypothesis beyond the star-shaped condition is necessary: it is shown
in [3] that there exist star-shaped domains in R* with arbitrarily large systolic rati

1Tt is further shown in [1] that there are star-shaped domains in R* which are dynamically convex
(meaning that every Reeb orbit on the boundary has rotation number greater than 1, see Proposition[T.9a)
below) and have systolic ratio 2 — ¢ for ¢ > 0 arbitrarily small.
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One motivation for studying Conjecture [1.1is that it implies the Mahler conjecture in
convex geometry [7].
To put Conjecture [I1.1]in more context, recall’| that a symplectic capacity is a function
¢ mapping some class of 2n-dimensional symplectic manifolds to [0, 0], such that:
e (Monotonicity) If there exists a symplectic embedding ¢ : (X, w) — (X', @),
then ¢(X, w) < ¢(X/, ).
¢ (Conformality) If ¥ > 0 then ¢(X, rw) = rc(X, w).
Of course we can regard (open) domains in R?" as symplectic manifolds with the re-
striction of the standard symplectic form w = >.!'_; dx; dy;. Conformality for a domain
X < R?" means that c(rX) = r?c(X).
Following the usual convention in symplectic geometry, for » > 0 define the ball

B(r) ={zeC" | n|z|* <r}
and the cylinder
Z(ry={zeC"| n|z1 ) <r}.
We say that a symplectic capacity c is normalized if it is defined at least for all compact
convex domains in R?" and if

c(B(r)) =c(Z(r)) =r.

An example of a normalized symplectic capacity is the Gromov width cg,, where
cer(X, w) is defined to be the supremum over r such that there exists a symplectic
embedding B(r) — (X, w). It is immediate from the definition that cc, is monotone and
conformal. Since symplectomorphisms preserve volume, we have cg(B(r)) = r; and
the Gromov nonsqueezing theorem asserts that cc.(Z(r)) = r.

Another example of a normalized symplectic capacity is the Ekeland-Hofer-Zehnder

capacity, denoted by cgnz. If X is a compact convex domain with smooth boundary such
that 0 € int(X), then

(1.2) cgHz(X) = Amin(X).

This is explained in [8, Thm. 2.2], combining results from [23,38].

Any symplectic capacity which is defined for compact convex domains in R** with
smooth boundary is a CY continuous function of the domain (i.e., continuous with
respect to the Hausdorff distance between compact sets), and thus extends uniquely to
a C? continuous function of all compact convex sets in R?".

CoNjECTURE 1.2 (STRONG VITERBO CONJECTURKY). All normalized symplectic capacities agree
on compact convex sets in R>".

Conjecture [I.2]implies Conjecture [1.1] because if Conjecture [I.2]holds, and if X is a
compact convex domain with smooth boundary and 0 € int(X), then

Amin(X)" = cenz(X)" = car(X)" < n!vol(X).

2The precise definition of “symplectic capacity” varies in the literature. For an older but extensive
survey of symplectic capacities see [18].

3The original version of Viterbo’s conjecture from [77] asserts that a normalized symplectic capacity,
restricted to convex sets in R?" of a given volume, takes its maximum on a ball. (This follows from
what we are calling the “strong Viterbo conjecture” and implies what we are calling the “weak Viterbo
conjecture”.) Viterbo further conjectured that the maximum is achieved only if the interior of the convex
set is symplectomorphic to an open ball; cf. Questionbelow.
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Here the second equality holds by Conjecture[1.2} and the inequality on the right holds
because if there exists a symplectic embedding B(r) — X, then r"/n! = vol(B(r)) <
vol(X).

There are also interesting families of non-normalized symplectic capacities. For
example, there are the Ekeland-Hofer capacities defined in [24]; more recently, and
conjecturally equivalently, positive S'-equivariant symplectic homology was used in [33]
to define a symplectic capacity c,fl for each integer k > 1. Each equivariant capacity
c]fl (X) is the symplectic action of some Reeb orbit, which when X is generic (so that A
is nondegenerate) has Conley-Zehnder index n — 1 + 2k (see below). Some other
symplectic capacities give the total action of a finite set of Reeb orbits, such as the ECH
capacities in the four-dimensional case [44], or the symplectic capacities defined by Siegel
using rational symplectic field theory [70].

Conjectures [1.1)and [1.2] are known for some special examples such as S!-invariant
convex domains [35], but they have not been well tested more generally. To test Conjec-
ture and as a first step towards computing other symplectic capacities and testing
conjectures about them, we need good methods for computing Reeb orbits, their ac-
tions, and their Conley-Zehnder indices. The plan is to understand Reeb orbits on a
smooth convex domain in terms of “combinatorial Reeb orbits” on convex polytopes
approximating the domain.

1.2. Combinatorial Reeb orbits. Let X be any compact convex set in R?* with 0 €
int(X), and let y € 0X. The tangent cone, which we denote by Ty+X , is the closure of the
set of vectors v such y + €v € X for some ¢ > 0. For example, if 0X is smooth at y, then
TjX is a closed half-space whose boundary is the usual tangent space T, 0X.

Also define the positive normal cone

NfX ={veR™|{x—y,v)<0 VxeX}.

If 0X is smooth at y, then N; X is a one-dimensional ray and consists of the outward
pointing normal vectors to 0X at y.
Finally, define the Reeb cone

+y _ T+ A NAs
RyX =T X niN,/X

where i denotes the standard complex structure on C" = R?". If X is smooth near v,
then R; X is the ray consisting of nonnegative multiples of the Reeb vector field on 0X
at y. Indeed, in this case we can write

T,0X ={ve R2" | (v,v) =0}
where v is the outward unit normal vector to 0X at y; and the Reeb vector field at y is
given by
iv
vy

Suppose now that X is a convex polytope (i.e. a compact set given by the intersection
of a finite set of closed half-spaces) in R*" with 0 € int(X). Our convention is thata k-face
of X is a k-dimensional subset F c 0X which is the interior of the intersection with X
of some set of the hyperplanes defining X. For a given k-face F, the tangent cone Ty+X ,

(1.3) R, =2
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NtX N X

Ficure 1. We depict the tangent, normal and Reeb cones for two points
p,q € X in a polytope X R2.

the positive normal cone N ; X, and the Reeb cone R;X are the same for all y € F. Thus
we can denote these cones by T X, NI X, and R} X respectively.
We will usually restrict attention to polytopes of the following type:

DerintTion 1.3. A symplectic polytope in R* is a convex polytope X in R* such that
0 € int(X) and no 2-face of X is Lagrangian, i.e., the standard symplectic form wy =
212:1 dx; dy; restricts to a nonzero 2-form on each 2-face.

Symplectic polytopes are generic, in the sense that in the space of polytopes in R* with
a given number of 3-faces, the set of non-symplectic polytopes is a proper subvariety.

ProrosiTioN 1.4. (proved in If X is a symplectic polytope in R*, then the Reeb cone
R;X is one-dimensional for each face F.

Derinrion 1.5. Let X be a symplectic polytope in RY. A combinatorial Reeb orbit for
X is a finite sequence y = (I'y, ..., I’t) of oriented line segments in ¢X, modulo cyclic
permutations, such that foreachi =1,..., k:

¢ The final endpoint of I'; agrees with the initial endpoint of I'; 11 mod -
e There is a face F of X such that int(I';) = F, the endpoints of I'; are on the
boundary of (the closure of) F, and I'; points in the direction of R} X.
The combinatorial symplectic action of a combinatorial Reeb orbit as above is defined by

k
Acomb(y) = ZJ /\O-
i=1v4i

To give a better idea of what combinatorial Reeb orbits look like, we have the following
lemma.

Lemma 1.6. (proved in Let X be a symplectic polytope in R*. Then the Reeb cones of
the faces of X satisfy the following:

e If E is a 3-face, then R} X consists of all nonnegative multiples of the Reeb vector field
on E.
e If F is a 2-face, then R;X points into a 3-face E adjacent to F, and agrees with RZIX .

e If L is a 1-face, then one of the following possibilities holds:
— R X points into a 3-face E adjacent to L and agrees with RY X. In this case we say
that L is a good 1-face.

- RZLX is tangent to L, and does not agree with REX for any of the 3-faces E adjacent
to L. In this case we say that L is a bad 1-face.
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o If P is a O-face, then R} X points into a 3-face E or bad 1-face L adjacent to F and agrees
with REX or RZFX respectively.

Remark 1.7. The reason we assume that X has no Lagrangian 2-faces in Deﬁnition
is that if F is a Lagrangian 2-face, then R} X is two-dimensional and tangent to F. In fact,
6R;X = R;X U REZX where E1 and E; are the two 3-faces adjacent to F. In this case we
do not have a well-posed “combinatorial Reeb flow” on 0X.

DermnitioN 1.8. A combinatorial Reeb orbit as above is:

e Type 1 if it does not intersect the 1-skeleton of X;

o Type 2 if it intersects the 1-skeleton of X, but only in finitely many points which
are some of the endpoints of the line segments I';;

e Type 3 if it contains a bad 1-face.

Ficure 2. We depict sub-trajectories of the three types of orbits, in red.
Each cube above represents a 3-face of a hypothetical 4-polytope.

It follows from the definitions that each combinatorial Reeb orbit is of one of the
above three types. Type 1 Reeb orbits are the most important for our computations.
We expect that Type 2 combinatorial Reeb orbits do not exist for generic polytopes; see
Conjecture[I.24below. Type 3 combinatorial Reeb orbits generally cannot be eliminated
by perturbing the polytope; but we will see in Theorem [I.11[(iii) below that they do not
contribute to the symplectic capacities that we are interested in. See Remark[5.§|for some
intuition for this.

1.3. Rotation numbers and the Conley-Zehnder index. Let X be a compact star-
shaped domain in R* with smooth boundary Y. Let ®; : Y — Y denote the time ¢ flow
of the Reeb vector field R. The derivative of ®; preserves the contact form A, and thus
for each y € Y defines a map

dq)t : éy — 5®t(y)

which is symplectic with respect to dA.
We say that a Reeb orbit y : R/TZ — Y is nondegenerate if the “linearized return

77

map
(1.4) dPr : &y 0) — Ey(0)

does not have 1 as an eigenvalue. The contact form A is called nondegenerate if all Reeb
orbits are nondegenerate.
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Now fix a symplectic trivialization 7 : & — Y x R2. If y is a Reeb orbit as above, then
the trivialization 7 allows us to regard the map (1.4) as an element of Sp(2). Moreover,
the family of maps

"L'_1 dq)t T
{Rz — &0 & — RZ}
te[0,T]
defines a path in Sp(2) from the identity to the map (1.4). As we review in Appendix|[7]
this path has a well-defined rotation number, which we denote by

p(y) e R.

This rotation number does not depend on the choice of global trivialization 7.
If y is nondegenerate (which holds automatically when p(y) is not an integer), then
the Conley-Zehnder index of y is defined by

(1.5) CZ(y) = e +lpy)l € Z.

ProrosiTion 1.9. Let X be a compact convex domain in R* with smooth boundary Y and
with 0 € int(X). Then:

(a) Every Reeb orbit v in'Y has p(y) > 1. In particular, if y is nondegenerate then
CZ(y) =z 3.

(b) There exists a Reeb orbit y which is action minimizing, i.e. A(y) = Amin(X), with

p(y) <2

If y is also nondegenerate then the inequality is strict, so that CZ(y) = 3.

Prookr. (a) was proved by Hofer-Wysocki-Zehnder [37].

(b) follows from the construction of the Ekeland-Hofer-Zehnder capacity and an
index calculation of Hu-Long [41]. In fact, it was recently shown by Abbondandolo-
Kang [2] and Irie [50] that cguz(X) agrees with a capacity defined from symplectic
homology, which by construction is the action of some Reeb orbit y with p(y) < 2, with
equality only if y is degenerate. m|

Suppose now that X is a symplectic polytope in R*. As we explain in Deﬁnition
each Type 1 combinatorial Reeb orbit y has a well-defined combinatorial rotation number,
which we denote by pcomb () € R. There is also a combinatorial notion of nondegeneracy
for y, which automatically holds when pcomb()) ¢ Z. When y is a nondegenerate Type
1 combinatorial Reeb orbit, we can then define its combinatorial Conley-Zehnder index by

analogy with as

(1.6) CZeomb(Y) = [Peomb ()] + [Peomb (7)1 -

The combinatorial rotation number and combinatorial Conley-Zehnder index of a Type 2
combinatorial Reeb orbit are not defined; and although we do not need this, it would be
natural to define the combinatorial rotation number and combinatorial Conley-Zehnder
index of a Type 3 combinatorial Reeb orbit to be +oo.
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1.4. Smooth-combinatorial correspondence. Let X be a convex polytope in R?". If
¢ > 0, define the e-smoothing of X by

(1.7) X, ={z e R*" | dist(z, X) < ¢} .

The domain X, is convex and has C!-smooth boundary. The boundary is C* smooth
except along strata arising from the boundaries of the faces of X; see for a detailed
description.

Our main results are the following two theorems, giving a correspondence between
combinatorial Reeb dynamics on a symplectic polytope in R?*, and ordinary Reeb dy-
namics on ¢-smoothings of the polytope.

There is a slight technical issue here: since 0X, is only C! smooth, the Reeb vector
field on 90X, is only C, so that for a Reeb orbit y, the linearized Reeb flow might not
be defined. If y is transverse to the strata where 0X, is not C* (which is presumably true
for all y if X and ¢ are generic), then the Reeb flow in a neighborhood of y has a well-
defined linearization; we call such orbits linearizable. It turns out that a non-linearizable
Reeb orbit y on 0X still has a well-defined rotation number p(y), defined in §5.4]

The following theorem describes how combinatorial Reeb orbits give rise to Reeb
orbits on smoothings. See Lemma [6.1| for a more precise statement.

Tueorem 1.10. (proved in Let X be a symplectic polytope in R*, and let v be a
nondegenerate Type 1 combinatorial Reeb orbit for X. Then for all ¢ > 0 sufficiently small, there
is a distinguished Reeb orbit v, on 0X, such that:

(i) y. converges in C° to y as ¢ — 0.
(ii) lime—0 A(Ve) = Acomb())-
(iii) y. is linearizable and nondegenerate, p(y¢) = Peomb(y), and CZ(ye) = CZcomb(y)-

The following theorem describes how Reeb orbits on smoothings give rise to combi-
natorial Reeb orbits.

TraeOREM 1.11. (proved in Let X be a symplectic polytope in R*. Then there are
constants cp > 0 for each 0-, 1-, or 2-face F of X with the following property.

Let {(¢&i, vi)}i=1,.. be a sequence of pairs such that ; > 0; y; is a Reeb orbit on 0X,,; and
¢i — 0as i — oo. Suppose that p(y;) < R where R does not depend on i. Then after passing to
a subsequence, there is a combinatorial Reeb orbit y for X such that:

(i) y; converges in C? to y as i — oo.
(i) lim; o0 A(Vz) = Acomb (7/)
(iii) 'y is either Type 1 or Type 2.
(iv) If v is Type 1, then for i sufficiently large, y; is linearizable and p(yi) = peomb (V) If
y is also nondegenerate, then for i sufficiently large, y; is nondegenerate and CZ(y;) =
CZcomb (7/)

(v) Let Fy, ..., Fy denote the faces containing the endpoints of the segments of the combi-
natorial Reeb orbit y. Then

(1.8) Z cr, < R.



RemAaRrk 1.12. One can compute explicit constants cr — see for details — and the
resulting bound is crucial in enabling finite computations. For example, combi-
natorial Reeb orbits with a given action bound could have arbitrarily many segments
winding in a “helix” around a bad 1-face. However the bound ensures that com-
binatorial Reeb orbits with too many segments will not arise as limits of sequences of
smooth Reeb orbits with bounded rotation number.

Theorem allows one to compute the EHZ capacity of a four-dimensional polytope
as follows:

Cororrary 1.13. Let X be a symplectic polytope in R*. Then
(19) CEHZ (X) = min{‘Acomb(y)}

where the minimum is over combinatorial Reeb orbits y with Y ; cr, < 2 which are either Type 1
with peomb(Y) < 2 or Type 2.

Remark 1.14. If the coordinates of the vertices of X are rational, then the combinatorial
action of every combinatorial Reeb orbit is rational. It follows from Theorem [1.11]
that in this case, cgnz(X), as well as the other symplectic capacities mentioned in QE
determined by actions of Reeb orbits, are all rational.

To explain why Corollary follows from Theorem we need to recall a result
of Kiinzle [53] as explained by Artstein-Avidan and Ostrover [8].

Derintrion 1.15. If X is any compact convex set in R?" with 0 € int(X), a generalized
Reeb orbit for X isamap y : R/TZ — 0X for some T > 0 such that y is continuous and
has left and right derivatives at every point, which agree for almost every ¢, and the
left and right derivatives at t are in R;L( t)X . If y is a generalized Reeb orbit, define its

symplectic action by (I1.1).

Provrostrion 1.16. [8, Prop. 2.7] If X is a compact convex set in R*" with 0 € int(X), then
cprz(X) = min{A(y)}
where the minimum is taken over all generalized Reeb orbits.
Proor or Cororrary [L.13] Pick a sequence of positive numbers ¢; with lim;_,o ¢; = 0.
For each i, by equation (1.2), we can find a Reeb orbit y; on 0X,, with A(y;) = cgaz(Xe,).
By Proposition [1.9(b), we can assume that p(y;) < 2. By Theorem it follows that

after passing to a subsequence, there is a combinatorial Reeb orbit y for X, satisying the
conditions in Corollary such that

Acomb(y) = im A(y;) = lim cpnz(Xe,) = cerz(X)-
Here the last equality holds by the C 0 continuity of cgxz. We conclude that
cenz(X) = min{Acomp(y)}

where the minimum is over combinatorial Reeb orbits ) satisfying the conditions in
Corollary

The reverse inequality follows from Proposition[1.16] because by Definitions 1.5 and
every combinatorial Reeb orbit is a generalized Reeb orbit. (For a symplectic poly-
tope in R?, a “generalized Reeb orbit” is equivalent to a generalization of a “combinatorial
Reeb orbit” in which there may be infinitely many line segments.) O
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Remark 1.17. Haim-Kislev [36, Thm. 1.1] gives a different formula for cgpz of a convex
polytope, which is valid in R2" for all n. That formula implies that in the minimum (1.9),
we can also assume that y has at most one segment in each 3-face.

1.5. Experiments testing Viterbo’s conjecture. If X is a convex polytope in R?",
define its systolic ratio by
cgrz(X)"
sys(X) = n!vol(X)"
Note that cgpz is translation invariant, so we can make this definition without assuming
that 0 € int(X).

Since every compact convex domain in R?* can be C° approximated by convex
polytopes, it follows that the weak version of Viterbo’s conjecture, namely Conjecture[L.1}
is true if and only if every convex polytope X has systolic ratio sys(X) < 1. The
combinatorial formula for the systolic ratio given by Corollary[1.13|allows us to test this
conjecture by computer when n = 2. In particular, we ran optimization algorithms over
the space of k-vertex convex polytopes in R* to find local maxima of the systolic rati
In the results below, when listing the vertices of specific polytopes, we use Lagrangian
coordinates (x1, X2, Y1, J2).

5-vertex polytopes (4-simplices). Experimentallyf, every 4-simplex X has systolic
ratio

sys(X) < 3/4.
The apparent maximum of 3/4 is achieved by the “standard simplex” with vertices
(0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1).

Remark 1.18. Corollary [I.13| does not directly apply to (a translate of) this polytope
because it has some Lagrangian 2-faces. For examples like these, we find numerically that
a slight perturbation of the polytope to a symplectic polytope (to which Corollary [1.13]
does apply) has systolic ratio very close to the claimed value. One can compute the
systolic ratio of a polytope with Lagrangian 2-faces rigorously using a generalization of
Corollary[I.13] For the particular example above, one can also compute the systolic ratio
by hand using [36, Thm. 1.1].

We have found families of other examples of 4-simplices with systolic ratio 3/4,
including some with no Lagrangian 2-faces. An example is the simplex with vertices

(0,0,0,0), (1,—1/3,0,0), (0, —1/3,1,0), (—=2/3,—1,2/3,0), (0,0,0,1).

6-vertex polytopes. We found families of 6-vertex polytopes with systolic ratio equal
to 1. An example is the polytope with vertices

(0,0,0,0),(1,0,0,0),(0,0,1,0),(0,0,0,1),(0,-1,1,0), (-1,-1,0,1).

This was somewhat of a surprise, since previously the simplest known polytope with
systolic ratio equal to 1 was a Hanner polytope, the Lagrangian product of a square and
a diamond, with 16 vertices. (This polytope corresponds to the equality case of Mahler’s

4This is a somewhat involved process; convergence to a local maximum becomes very slow once one
is close. It helps to mod out the space of polytopes by the 15-dimensional symmetry group generated
by translations, linear symplectomorphisms, and scaling. To find exact local maxima, one can look at
symplectic invariants, such as areas of 2-faces, and guess what these are converging to.

5Perhaps this could be proved analytically using the formula in [36, Thm. 1.1].
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conjecture in two dimensions under the reduction from the Mahler conjecture to the
weak Viterbo conjecture in [7].)

7-vertex polytopes. We also found families of 7-vertex polytopes with systolic ratio
1. One example has vertices

(0,0,0,0),(1,0,0,0),(0,0,1,0),(0,0,0,1),
(1/3,-2/3,2/3,0), (-1,-1,0,1/2), (0,0,1/3,—1/3).

Presumably there exist k-vertex polytopes in R* with systolic ratio equal to 1 for every
k = 6.

The 24-cell. We also found a special example of a polytope with systolic ratio 1: a
rotation of the 24-cell (one of the six regular polytopes in four dimensions). See §2.4] for
details.

We have heavily searched the spaces of polytopes with 7 or fewer vertices and have
not found any counterexamples to Viterbo’s conjecture. For polytopes with 8 vertices,
our computer program starts becoming slower (sometimes taking minutes per polytope
on a standard laptop instead of seconds), and we have not yet searched as extensively.

Towards a proof of the weak Viterbo conjecture? Let X be a star-shaped domain in
R* with smooth boundary Y. Following [3], we say that X is Zoll if every point on Y is
contained in a Reeb orbit with minimal action. Note that:

(a) If X is strictly convex and a local maximizer for the systolic ratio of convex
domains in the C° topology, then X is Zoll.

(b) If X is Zoll, then X has systolic ratio sys(X) = 1.

Part (a) holds because if X is strictly convex and if y € Y is not on an action mimizing
Reeb orbit, then one can shave some volume off of X near y without creating any new
Reeb orbits of small action. Part (b) holds by a topological argument going back to [78].
Of course, these observations are not enough to prove Conjecture since we do not
know that the systolic ratio for convex domains takes a maximum, let alone on a strictly
convex domain. But this does suggest the following strategy for proving Conjecture [L.1]
via convex polytopes.

DerinrioN 1.19. Let X be a convex polytope in R* with 0 € int(X). We say that X is
combinatorially Zoll if there is an open dense subset U of 0X such that every point in U
is contained in a combinatorial Reeb orbit (avoiding any Lagrangian 2-faces of X) with
combinatorial action equal to cgrz(X).

We have checked by hand that the above examples of polytopes with systolic ratio
equal to 1 are combinatorially Zoll. This suggests:

Conyecture 1.20. Let X be a convex polytope in R* with 0 € int(X). Then:
(a) If X is combinatorially Zoll, then sys(X) = 1.

(b) If k is sufficiently large (k = 6 might suffice) and if X maximizes systolic ratio over
convex polytopes with < k vertices, then X is combinatorially Zoll.

Part (a) of this conjecture can probably be proved following the argument in the
smooth case. Part (b) might be much harder. But both parts of the conjecture together
would imply the weak Viterbo conjecture (using a compactness argument to show that
for each k the systolic ratio takes a maximum on the space of convex polytopes with < k
vertices).
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Question 1.21. If a convex polytope X in R* is combinatorially Zoll, then is int(X)
symplectomorphic to an open ball?

1.6. Experiments testing other conjectures. One can also use Theorems and
to test conjectures about Reeb orbits that do not have minimal action. For example,
if X is a convex domain with smooth boundary and 0 € int(X) such that Ag|px is
nondegenerate, and if k is a positive integer, define

(1.10) Ar(X) = min{A(y) | CZ(y) = 2k + 1},

where the minimum is over Reeb orbits y on ¢X. In particular A;(X) = Amin(X) by
Proposition [T.9(b).
Conjecture 1.22. For X as above we have A»(X) < 2A1(X).

This conjecture has nontrivial content when every action-minimizing Reeb orbit has
rotation number at least 3/2. (If an action-minimizing Reeb orbit has rotation number
less than 3/2, then its double cover has Conley-Zehnder index 5 and thus verifies the
conjectured inequality.) To explain how to test this, we need the following definitions.

Derinition 1.23. Let X be a symplectic polytope in R%. Let L > 0. We say that X is
L-nondegenerate if:

¢ X does not have any Type 2 combinatorial Reeb orbit y with Acomp(y) < L.

¢ Every Type 1 combinatorial Reeb orbit y with Acomp()) < L is nondegenerate,
see Definition [2.23]

It follows from Theorem that if a symplectic polytope X is L-nondegenerate,
then for all ¢ > 0 sufficiently small, all Reeb orbits on 0X, with action less than L are
nondegenerate.

Conyecture 1.24. For any integer k and any real number L, the set of L-nondegenerate
symplectic polytopes with k vertices is dense in the set of all k-vertex convex polytopes containing
0, topologized as an open subset of R**.

DerintioN 1.25. Let k be a positive integer and let X be a symplectic polytope in R*.
Suppose that X is L-nondegenerate and has a combinatorial Reeb orbit y with A(y) < L
and CZ.omb(y) = 2k + 1. By analogy with (1.10), define

AL (X) = min {Acomb (1) | CZeomb(7) = 2k + 1}

where the minimum is over combinatorial Reeb orbits y with combinatorial action less
than L.

Conjecture is now equivalenff] to the following:

ConjecTure 1.26. Let X be a symplectic polytope in R*.  Assume that Aiomb(X ) and
Agomb(X ) are defined. Then
b b
AL™(X) < 2A%Mb(X).
¢More precisely, by Theorem 1.1OI if X is a polytope as above for which Aiomb(X ) and A;"mb(X ) are
defined, and if Agomb(X ) > 2A5°™M°(X), then Conjecture fails for (nondegenerate C* perturbations of)

e-smoothings of X for ¢ sufficiently small. Thus Conjecture implies Conjecture If Conjecture([1.24]
is true, then one can conversely show, by approximating smooth domains by L-nondegenerate symplectic

polytopes, that Conjecture implies Conjecture m
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One can use Theorems and to compute Aiomb (X). One can then test Conjec-

ture by using optimization algorithms to try to maximize the ratio Agomb (X)/ (2A§°mb (X)).
So far we have not found any example where this ratio is greater than 1.

1.7. The rest of this part. In §2| we investigate Type 1 combinatorial Reeb orbits in
detail, we define the combinatorial rotation number, and we work out the example of
the 24-cell. In §3] we establish foundational facts about the combinatorial Reeb flow on a
symplectic polytope. In §4 we review a symplectic trivialization of the contact structure
on a star-shaped hypersurface in R* defined using the quaternions. We explain a key
curvature identity due to Hryniewicz and Salomao which implies that in the convex
case, the rotation number of a Reeb trajectory increases monotonically as it evolves. In
§5 we study the Reeb flow on a smoothing of a polytope. In §6|we use this work to prove
the smooth-combinatorial correspondence of Theorems and In the appendix,
we review basic facts about rotation numbers that we need throughout.

2. Type 1 combinatorial Reeb orbits

Let X be a symplectic polytope in R%. In this section we give what amounts to an
algorithm for finding the Type 1 combinatorial Reeb orbits and their combinatorial sym-
plectic actions, see Proposition (Our actual computer implementation uses various
optimizations not discussed here.) We also define combinatorial rotation numbers and
work out the example of the 24-cell.

2.1. Symplectic flow graphs. We start by defining “symplectic flow graphs”, which
keep track of the combinatorics needed to find Type 1 Reeb orbits.

DeriNtTION 2.1. A linear domain is an intersection of a finite number of open or closed
half-spaces in an affine space, or an affine space itself.

DerintTION 2.2. The tangent space TA of a linear domain A is the tangent space T, A
for any x € A; the tangent spaces for different x are canonically isomorphic to each other
via translations.

DeriNiTioN 2.3. Let A and B be linear domains. An affine map ¢ : A — B is the
restriction of an affine map between affine spaces containing A and B. Such a map
induces a map on tangent spaces which we denote by T¢ : TA — TB.

DeriniTioN 2.4. Let A and B be linear domains. A linear flow from A to B is a triple

® = (D, ¢, f) consisting of:

o the domain of definition: a linear domain D < A.

e the flow map: an affine map ¢ : D — B.

o the action function: an affine function f : D — R.
We sometimes write @ : A — B. In the examples of interest for us, ¢ is injective, and
f=0.

DeriNiTION 2.5. Let @ = (D, ¢, f) be a linear flow from A to Band let ¥ = (E, ¢, g)
be a linear flow from B to C. Their composition is the linear flow W o ® : A — C defined
by

Wod=(¢p"'(E), Yo, f+go0p)
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Remark 2.6. Composition of linear flows is associative, and there is an identity linear
flow 14 : A —> A givenby 14 = (A,ida,0). If ®; = (D;, ¢;, fi) is a linear flow from A;_
toA;jfori=1,...,k,andif ® = (D, ¢, f) is the composition Dy o - - - o Py, then for x € D,
we have

k
(2.1) f@) = fillgimr o0 p1)(x)).
i=1

DerintTION 2.7. A linear flow graph G is a triple G = (I', A, @) consisting of:
o A directed graph I' with vertex set V(I') and edge set E(I').
e For each vertex v of I, an open linear domain A,.

e For each edge e of I from u to v, a linear flow @, = (D,, ¢¢, f) : Ay — Ap.
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Ficure 3. Anexample of a flow graph with 4 nodes and 4 edges. The linear
domains and flows are depicted above their corresponding nodes and
edges.

Let G = (I, A, @) be a linear flow graph. If p = ey ... ek is a pathin I from u to v, we
define an associated linear flow

D, = (Dp, dp, fy) : Ay — Ay

by
Dy =D 00Dy, .

DerINITION 2.8. A trajectory v of G is a pair y = (p, x), where p is a path in I" and
x € D,.
14

DerINITION 2.9. A periodic orbit of G is an equivalence class of trajectories y = (p, x)
where p is a cycle in I and x is a fixed point of ¢,, i.e. ¢,(x) = x. Two such trajectories
y = (p,x) and n = (g, y) are equivalent if there are paths r and s in I" such that p = s,
q = sr, and ¢,(x) = y. We often abuse notation and denote the periodic orbit by
y = (p, x), instead of by the equivalence class thereof.
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Derintrion 2.10. The action of a periodic orbit y = (p, x) is defined by f(y) = f,(x).

DeriNiTION 2.11. A periodic orbit y = (p, x), where p is a cycle based at u, is degenerate
if the induced map on tangent spaces T¢, : TD, — TD, has 1 as an eigenvalue.
Otherwise we say that y is nondegenerate.

DeriNiTION 2.12. An 2n-dimensional symplectic flow graph G is a quadruple G =
(T, A, w, D) where:
o (I', A, @) is a linear flow graph in which each linear domain A, has dimension
2n.
e w assigns to each vertex v of I' a linear symplectic form w, on T A,.
We require that if e is an edge from u to v, then ¢;w, = w,.

2.2. The symplectic flow graph of a 4d symplectic polytope.

DeriniTion 2.13. Let X be a symplectic polytope in R*. We associate to X the two-
dimensional symplectic flow graph G(X) = (I', A, w, @) defined as follows:
e The vertex set of I is the set of 2-faces of X. The linear domain associated to a
vertex is simply the corresponding 2-face, regarded as a linear domain in R*. If
F is a 2-face, then the symplectic form wr on TF is the restriction of the standard
symplectic form wp on R*.

e If F1 and F; are 2-faces, then there is an edge e in I' from F; to F; if and only if
there is a 3-face E adjacent to F; and F», and a trajectory of the Reeb vector field
REg on E from some point in F; to some point in F». In this case, the linear flow

(De:(Dez(Pe/fe):Fl—’F2

is defined as follows:
— The domain D, is the set of x € F; such that there exists a trajectory of Rg
from x to some point y € F».

— For x as above, ¢.(x) = y, and f.(x) is the time it takes to flow along the
vector field R from x to y, or equivalently the integral of Ay along the line
segment from x to y.

In the above definition, note that ¢, and f, are affine, because the vector field Rg on
E is constant by equation (1.3). A simple calculation as in [37, Eq. (5.10)] shows that the
map ¢, is symplectic.

ProrosrTion 2.14. Let X be a symplectic polytope in R*. Then there is a canonical bijection
{periodic orbits of G(X)} «— {Type 1 combinatorial Reeb orbits of X}.
If (p, x) is a periodic orbit of G(X), and if  is the corresponding combinatorial Reeb orbit, then

(2-2) f(p/ x) = -Acomb(y)'

Proor. Suppose (p = e; - - - e, x) is a periodic orbit of G(X). Let E; denote the 3-face
of X associated to ¢;. There is then a combinatorial Reeb orbit y = (L, ..., Lx), where
L; is the line segment in E; from ¢o_1 0 - 0 (e, (X) t0 g, © - - - © P, (x). It follows from
Definitions [1.5{and that this construction defines a bijection from periodic orbits of
G(X) to combinatorial Reeb orbits of X. The identification of actions follows from
equation (2.1)). O
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By Proposition to find the Type 1 Reeb orbit{]] of X, one can compute the
symplectic flow graph G(X) = (T', A, w, @), enumerate the cycles in the graph I, and for
each cycle p, compute the fixed points of the map ¢, in the domain D,,. In order to avoid
searching for arbitrarily long cycles in the graph I' in the cases of interest, we now need
to discuss combinatorial rotation numbers.

2.3. Combinatorial rotation numbers.

DeriNtTion 2.15. A trivialization of a 2n-dimensional symplectic flow graph G =

(I', A, w, D) is a pair (7, ¢) consisting of:
¢ For each vertex u of I', an isomorphism of symplectic vector spaces

7, (TA,, w,) —> ([RZ",Q)O).
e For each edge e in I from u to v, a lift qgm € §f)(2n) of the symplectic matrix
Ty 0T o1, ' € Sp(2n).

Here w denotes the standard symplectic form on R*", and é\f)(Zn) denotes the universal
cover of the symplectic group Sp(2n). We sometimes abuse notation and denote the
trivialization (7, ¢) simply by .

Ifp=e1...e4isapathinT from u to v, we define

Gpie = Penc © 0 Peye € Sp(21).

DeriNtTION 2.16. Let G = (I', A, w, @) be a 2-dimensional symplectic flow graph, let
T be a trivialization of G, and let p be a path in I'. Define the rotation number of p with
respect to T by

pe(p) = p(dp) € R,
where the right hand side is the rotation number on é?)(Z) reviewed in Appendixlﬂ

Suppose now that X is a symplectic polytope in R*. We now define a canonical
trivialization 7 of the symplectic flow graph G(X) which has the useful property that if
(p, x) is a periodic orbit of G(X), and if y is the corresponding combinatorial Reeb orbit
on X from Proposition then the rotation number p.(p) is the limit of the rotation
numbers of Reeb orbits on smoothings of X that converge to y.

Fix matrices i, j, k € SO(4) which represent the quaternion algebra, such that i is the
standard almost complex structure. It follows from the formula wo(V,W) = GV, W),
together with the quaternion relations, that the matrices i, j, and k are symplectic. In
examples below, in the coordinates x1, x2, y1, ¥2, we use the choice

-1 -1 -1

"When testing Viterbo’s conjecture and related conjectures, although all Type 1 orbits of X are detected
by the flow graph G(X), in view of Corollary 1.13 we must also account for Type 2 orbits. One can do
this by either (1) extending G(X) to a flow graph that includes the lower-dimensional faces of X or (2)
working with a flow graph G(X) whose linear domains Ar are the closures of the 2-faces, rather than
2-faces themselves. We use the first strategy in our computer program.
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DerinTioN 2.17. Let X be a symplectic polytope in R%. We define the quaternionic

~

trivialization (7, ¢) of the symplectic flow graph G(X) as follows.
e Let F be a 2-face of X. We define the isomorphism
1 : TF =5 R?

as follows. By Lemmal(L.6} there is a unique 3-face E adjacent to F such that the
Reeb cone R} consists of the nonnegative multiples of the Reeb vector field RE,
and the latter points into E from F. Let v denote the outward unit normal vector

toE. If V € TF, define
(2.3) (V) = ((V,jv),{V, kv)).

o If e is an edge from F; to F;, define q;m € §f)(2) to be the unique lift of the
symplectic matrix

(2.4) g, 0 Tohe © T;f e Sp(2)
that has rotation number in the interval (—1/2,1/2].
The following lemma verifies that this is a legitimate trivialization.

Lemma 2.18. Let X be a symplectic polytope in R*. If F is a 2-face of X, then the linear map
Tr in is an isomorphism of symplectic vector spaces.

Proor. Let E and v be as in the definition of tr. Then {iv, jv, kv} is an orthonormal
basis for TE. We have wy(iv,jv) = wo(iv,kv) = 0 and wo(jv,kv) = 1. If V and
W are any two vectors in TF < TE, then expanding them in this basis, we find that
a)()(V,W) = CL)Q(TF(V),TF(W)). O

Remark 2.19. An alternate convention for the quaternionic trivialization would be to
define an isomorphism

1 : TF — R?

as follows. Let E’ be the other 3-face adjacent to F (so that the Reeb vector field Rg/ points
out of E along F), and let v/ denote the outward unit normal vector to E’. Define

(V) = (V,j¥).(V, k)).

This is also an isomorphism of symplectic vector spaces by the same argument as in
Lemma2.18

Derinrrion 2.20. If X is a symplectic polytope in R* and F is a 2-face of X, define the
transition matrix

Yr = 1r o (17) ! € Sp(2).

Lemma 2.21. If X is a symplectic polytope in R* and F is a 2-face of X, then the transition
matrix P is positive elliptic (see Definition[7.7).

Proor. We compute that

G, vy
<i1///V>11/,k1/ - <iv’,v>w .
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To simplify notation, write a1 = (v/,v), ax = {iv/,v), az = v/, v), and as = v/, v). It
then follows from and that

. 2 2
IPF_i(alaz a3ay a; a4)

- 2 2
ar a, + az ai1a; + asaq

Then Tr(yF) = 2(v/,v) € (=2, 2), so Y is elliptic. Moreover a, > 0 by Lemma [3.9/below,
so 1 r is positive elliptic. m|

Cororrary 2.22. If E is a 3-face of X, if F1 and F are 2-faces of X, and if there is a trajectory
of the Reeb vector field on E from some point in Fy to some point in Fy, then ¢, . has rotation
number in the interval (0,1/2).

Proor. It follows from the definitions that the map (2.4) agrees with the transition ma-
trix ir,. By Lemma[2.21] this matrix is positive elliptic. It then follows from Lemma(7.8
that its mod Z rotation number is in the interval (0, 1/2). ]

DerniTion 2.23. Let X be a symplectic polytope in R*. Let y be a Type 1 combinatorial
Reeb orbit for X.

o We define the combinatorial rotation number of y by

Peomb(Y) = p(p),

where (p, x) is the periodic orbit of G(X) corresponding to y in Proposition2.14}
and 7 is the quaternionic trivialization of X.

e We say that y is nondegenerate if the periodic orbit (p, x) is nondegenerate as in
Definition In this case we define the combinatorial Conley-Zehnder index of
y by equation (1.6).

Remark 2.24. By Corollary the combinatorial rotation number is the rotation
number of a product of elements of Sp(2) each with rotation number in the interval
(0,1/2). A formula for computing the rotation number of such a product is given by

Proposition[7.9

2.4. Example: the 24-cell. We now compute the symplectic flow graph G(X) =
(I', A, w, D) and the quaternionic trivialization 7 for the example where X is the 24-cell
with vertices

(+1,0,0,0), (0,+1,0,0), (0,0, +1,0), (0,0,0, +1), (+1/2, +1/2, +1/2, +1/2).

The polytope X has 24 three-faces, each of which is an octahedron. The 3-faces are
contained in the hyperplaces

txitx=1,dtxty1 =1, tx1ty =1, Txo+y1 =1, o+ =1, ty1 £y = 1.

There are 96 two-faces, each of which is a triangle; thus the graph I" has 96 vertices. It
follows from the calculations below that none of the 2-faces is Lagrangian, so that X is
a symplectic polytope.

To understand the edges of the graph I, consider for example the 3-face E contained
in the hyperplane x1 + y1 = 1. The vertices of this 3-face are

(1,0,0,0),(1/2,+1/2,1/2,+1/2),(0,0,1,0).
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The unit normal vector to this face is

v =-—(1,0,1,0).

Sl

The Reeb vector field on E is

0 0
Re=2 (7 v o)

Thus the Reeb flow on E flows from the vertex (1,0, 0, 0) to the vertex (0,0, 1,0) in time
1/2. Each of the four 2-faces of E adjacent to (1,0, 0, 0) flows to one of the four 2-faces of
E adjacent to (0,0, 1,0), by an affine linear isomorphism.

For example, let F; be the 2-face with vertices (1,0,0,0), (1/2,1/2,1/2,+1/2), and
let F; be the 2-face with vertices (0,0,1,0), (1/2,1/2,1/2, +1/2). Then F; flows to Fy, so
there is an edge e in the graph I' from F; to F>. More explicitly, we can parametrize F as

1_t1+t2 ti+1t 1+t t1 — 1
2 72 7 2 72

), t1,thp >0, t1 +tr < 1,

and we can parametrize F, as

i+t t1+1 1_t1+t2 t1 — o
2 72 2 72

), t1,tp >0, t1 +tr < 1.

With respect to these parametrizations, the flow map ¢, is simply

Qbe (tll tZ) = (tll tZ)
The domain D, of ¢, is all of Fi, and the action function is

11—t —t
fe(t1,t2) = %

It turns out that for every other 3-face E’, there is a linear symplectomorphism A of
R* such that AX = X and AE = E'. In fact, we can take A to be right multiplication by
an appropriate unit quaternion. It follows from this symplectic symmetry that the Reeb
flow on each 3-face behaves analogously. Putting these Reeb flows together, one finds
that the graph I' consists of 8 disjoint 12-cycles. (This example is highly non-generic!)
Further calculations show that for each 12-cycle p, the map ¢, is the identity, so that
every point in the interior of a 2-face is on a Type 1 combinatorial Reeb orbit. Moreover,
the action of each such orbit is equal to 2. In particular, X is “combinatorially Zoll” in
the sense of Definition Also, the volume of X is 2, so X has systolic ratio 1.

To see how the quaternionic trivialization works, let us compute qgm for the edge ¢
above. For the 2-face F; above, the isomorphism 7r, is given in terms of the unit normal
vector v to E. We compute that

_ L _ 1
V2 V2

It follows that in terms of the basis (&4, &,) for TF;, we have

_ 101
Tpl—ﬁlo.
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For the 2-face F; above, the isomorphism 7r, is given in terms of the unit normal vector
to the other 3-face adjacent to F». This other 3-face is in the hyperplane x> 4+ y; = 1 and

so has unit normal vector

1
Y — 0,1,1,0).
7 )

We then similarly compute that in terms of the basis (¢, ¢,) for TF,, we have

_1 (10
N A

Therefore the matrix (2.4) for the edge e is

-1
_ -1 0 01 0 -1
TFzOT¢eOTF11:(1 1><1 o> :(1 1)'

This matrix is positive elliptic and has eigenvalues e™/3. Tt follows that its lift de,T in

§f)(2) has rotation number 1/6.
For one of the other three edges associated to E, the matrix (2.4) is the same as above,

>, whose lift also has

1
and for the other two edges associated to E, the matrix is <1 0

rotation number 1/6. It then follows from the quaternionic symmetry of X mentioned
earlier that for every edge e’ of the graph I, the lift qb?eQT is one of the above two matrices
with rotation number 1/6. One can further check that for each 12-cycle in the graph,
one obtains just one of the above two matrices repeated 12 times, so each corresponding
Type 1 combinatorial Reeb orbit has rotation number equal to 2.

3. Reeb dynamics on symplectic polytopes

The goal of this section is to Proposition [1.4 and Lemma describing the Reeb
dynamics on the boundary of a symplectic polytope in R*.

3.1. Preliminaries on tangent and normal cones. We now prove some lemmas about
tangent and normal cones which we will need; see for the definitions.
Recall that if C is a cone in R", its polar dual is defined by

C'={yeR"|{(x,y)y<0VxeX}.
Lemma 3.1. Let X be a convex set in R™ and let y € 0X. Then
N;X = (T;rX)", Ty+X = (N;X)O.
Proor. If C isa closed cone then (C?)° = C, soitsuffices to prove that Ny X = (T, X)°.
To show that N;X c (Ty+X)°, let v e N;X and w € Ty“LX; we need to show that
(v, w) < 0. By the definition of T;X , there exist a sequence of vectors {w; } and a sequence
of positive real numbers {¢;} such that y + ¢;w; € X for each i and lim;_,, w; = w. By
the definition of N;X we have (v, w;y < 0, and so (v, w) < 0.

To prove the reverse inclusion, if v € (T;X )°, then forany x € X wehavex—y € Ty+X,
50 (v, x —y) < 0. It follows that v € N,/ X. O

If X is a convex polytope in R™ and if E is an (m — 1)-face of X, let vg denote the
outward unit normal vector to E.
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Lemma 3.2. Let X be a convex polytope in R™ and let F be a face of X. Let Eq, ..., Ex denote
the (m — 1)-faces whose closures contain F. Then

(3.1) T-X ={weR" | {(w,vgy<0 Vi=1,...,k},
(3.2) N;FX = Cone (Vg,, ..., VE,) -

Proor. Let y € F, and let B be a small ball around y. Then B n X = n;(B n H;)
where {H;} is the set of all defining half-spaces for X whose boundaries contain F.
The boundaries of the half-spaces H; are the hyperplanes that contain the (m — 1)-faces
Eq,...,Ex. It follows that B n X is the set of x € B such that (x — y, vg,» < 0 for each
i =1,...,k. Equation follows. Taking polar duals and using Lemma 3.1| then

proves (3.2). O
Lemma 3.3. Let X be a convex polytope in R"™ and let F be a face of X. Let v € NI X\{0}

and let w € T X\{0}. Then (v, w) = 0 if and only if there is a face E of X with F < E such that
ve N} Xandwe TE.

Here if E # F then T;E denotes the tangent cone of the polytope E at the face F of E;
if E = F, then we interpret T;E =TF.

Proor or LEMMmaA Asin Lemma letEy, ..., Ex denote the (m —1)-faces adjacent
to F.

(=) By the definitions of N X and T;" X, if v € N/ X and w € T, X then (v, w) < 0.
Assume also that v and w are both nonzero and (v, w) = 0. Then we musthavev € N ;r X
and w € é‘T;X ; otherwise we could perturb v or w to make the inner product positive,
which would be a contradiction.

Since w € 0T/ X, it follows from that (w, vg;) = 0 for some i. By renumbering
we can arrange that (w, vg,y = 0if and only if i < | where 1 < I < k. Let E = n!_ E;.
Then E is a face of X adjacentto F, and w € T;E.

We now want to show that v € N;X. By , we can write v = Zle a;vg; with
a; = 0. Since (v, w) = 0 and {(w,vg,) = 0 for i < [ and {(w,vg,) < 0 for i > I, we must
have a; = 0 for i > I. Thus v € Cone(vg,, ..., VE,), so by again, v € N;'X.

(<) Assume that there is a face E adjacent to X such that v € N/ X and w € T;E.
We can renumber so that E = mf.zlEi where 1 <! < k. Then v € Cone(vg,, ..., V), and
(w,vg,)=0fori<I,so{v,w)=0. O

1

3.2. The combinatorial Reeb flow is locally well-posed. We now prove Proposi-
tion [1.4} asserting that the “combinatorial Reeb flow” on the boundary of a symplectic
polytope in R* is locally well-posed. This is a consequence of the following two lemmas:

Lemma 3.4. Let X be a convex polytope in R*, and let F be a face of X. Then the Reeb cone
+ N +
Ry X =iN; X nT;X
has dimension at least 1.

Note that there is no need to assume that 0 € int(X) in the above lemma, because the
Reeb cone is invariant under translation of X.

Lemma 3.5. Let X be a symplectic polytope in R* and let F be a face of X. Then the Reeb
cone RIJ_fX has dimension at most 1.
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Proor or Lemma 3.4 The proof has four steps.
Step 1. We need to show that there exists a unit vector in R X. We first rephrase this
statement in a way that can be studied topologically.
Define
B={(v,w)e NI X x TFX | o]l = lw| =1, {v,w) =0}.
Define a fiber bundle 7 : Z — B with fiber S? by setting
Ziowy ={ueR*| Jul| =1, (u,v)=0}.

Define two sections
50,851 - B— Z

by
so(v, w) = iv,

s1(v, w) = w.

To show that there exists a unit vector in R; X, we need to show that there exists a point
(v, w) € Bwith so(v, w) = s1(v, w).
Step 2. Let
By = {w e dT7X | |w| =1}.
The space By is the set of unit vectors on the boundary of a nondegenerate cone, and
thus is homeomorphic to S2. Recall from the proof of Lemma [3.3|that if (v, w) € B then
w € By. We now show that the projection B — By sending (v, w) — w is a homotopy

equivalence.
To do so, observe that by Lemma [3.3] we have

(3.3) B=J{oeNyX|[o] =1} x {we T[FE | Jw] = 1}.
FcE

If F is a 3-face, then in the union (3.3), we only have E = F; there is a unique unit
vector v € N7 X, and so the projection B — By is a homeomorphism.

If F is a 2-face, then in (3.3), E can be either F itself, or one of the two three-faces
adjacent to F, call them E; and E;. The contribution from E = F is a cylinder, while
the contributions from E = E; and E; are disks which are glued to the cylinder along
its boundary. The projection B — By collapses the cylinder to a circle, which again is a
homotopy equivalence.

If F is a 1-face, with k adjacent 3-faces, then the contribution to from E = F
consists of two disjoint closed k-gons. Each 2-face E adjacent to F contributes a square
with opposite edges glued to one edge of each k-gon. Each 3-face E adjacent to F
contributes a bigon filling in the gap between two consecutive squares. The projection
B — By collapses each k-gon to a point and each bigon to an interval, which again is a
homotopy equivalence.

Finally, suppose that F is a 0-face. Then E = F makes no contribution to (3.3), since
TF = {0} contains no unit vectors. Now By has a cell decomposition consisting of a
k-cell for each (k + 1)-face adjacent to F. The space B is obtained from By by thickening
each O-cell to a closed polygon, and thickening each 1-cell to a square. Again, this is a
homotopy equivalence.

Step 3. The S?-bundle Z — B is trivial. To see this, observe that Z is the pullback of a
bundle over N ;“ X\{0}, whose fiber over v is the set of unit vectors orthogonal to v. Since
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N7 X\{0} is contractible, the latter bundle is trivial, and thus so is Z. In particular, the
bundle Z has two homotopy classes of trivialization, which differ only in the orientation
of the fiber. We now show that, using a trivialization to regard sg and s; as maps B — s2,
the mod 2 degrees of these maps are given by deg(sp) = 0 and deg(s1) = 1.

It follows from the triviality of the bundle Z that deg(sgp) = 0.

To prove that deg(s1) = 1, we need to pick an explicit trivialization of Z. To do so, fix
avector vy € int(T X). Let S denote the set of unit vectors in the orthogonal complement
vé'. LetP:R* — v& denote the orthogonal projection. We then have a trivialization

Z-=>BxS

sending
((v,w), u) — ((v,w), Pu/|Pul)).

Note here that for every (v, w) € B, the restriction of P to vl isan isomorphism, because
otherwise v would be orthogonal to vy, but in fact we have (v, vy) < 0.

With respect to this trivialization, the section s; is a map B — S which is the compo-
sition of the projection B — By with the map By — S sending

w — Pw/|Pw].

The former map is a homotopy equivalence by Step 2, and the latter map is a homeo-
morphism because v is not parallel to any vector in 5TF+X . Thus deg(s1) = 1.

Step 4. We now complete the proof of the lemma. Suppose to get a contradiction that
there does not exist a point p € B with so(p) = s1(p). It follows, using a trivialization of
Z to regard sp and s; as maps B — S2, that s is homotopic to the composition of sp with
the antipodal map. Then deg(s1) = —deg(so). This contradicts Step 3. O

ReMARK 3.6. It might be possible to generalize Lemma [3.4] to show that if X is any
convex set in R?" with nonempty interior and if z € X, then the Reeb cone R X is at
least one dimensional.

We now prepare for the proof of Lemma 3.5

Lemma 3.7. Let X be a convex polytope in R*". Then for every face F of X, there exists a face
E with F < E such that
R}X < TE.

Proof. Let {Ei}f\]: , denote the set of faces whose closures contain F. By Lemma we
have

N
(34) RiX < | JTFE:

i=1

Let V denote the subspace of R*" spanned by R} X. Note that since the latter set is

a cone, it has a nonempty interior in V. We claim now that V < TE; for some i. If not,
then V n TE; is a proper subspace of V for each i. But by (3.4), we have

REX = (UTFE) nREX < (UTE) A V.

This is a contradiction, since the left hand side has a nonempty interior in V, while the
right hand side is a union of proper subspaces of V.
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Since V < TE;, it follows that RI}LX c TF+Ei, because by (3.4) again,
R;{X = R;X NV = R;X N TE;

< TE; <UTF+E]~> = TrE;, O

]

Lemma 3.8. Let X be a convex polytope in R?", and let F be a face of X. Let v € R;X.

Suppose that v € int(T;E) for some (2n — 1)-face E whose closure contains F. Then v is a
positive multiple of ivg.

Proor. LetE = Eq, ..., Ey denote the (2n —1)-faces whose closures contain F, and let
vi denote the outward unit normal vector to E. Since v € int(TF+E), we have (v, v1) =0
and (v, v;y < 0fori > 1. Since —iv € N ;r X, it follows from Lemmathat we can write

N
—iv = Z a;vi
i=1

with a; > 0. Since (v, iv) = 0, we conclude that a; = 0 for i > 1. Thus —iv = ajv;, and
ap > 0. O

Proor or Lemma B.5l Suppose vg, v1 are distinct unit vectors in RIJ_fX . By Lemma@
there is a 3-face E such that vy and v are both in TF+E_ . In particular, v1 and v, are linearly
independent.

Since vy and v are both in the cone R;X, it follows that if t € [0, 1] then the affine
linear combination (1 — t)vg + tv; is also in this cone. Since vg and v; are linearly
independent, these affine linear combinations cannot be in the interior of T;E, or else
this would contradict the projective uniqueness in Lemma Consequently vy and v4
are both contained in T;? for some 2-face E’ on the boundary of E.

We now have

(v, v1) = {vg, —iv1) <0,
where the inequality holds since v € T;X and —iv1 € N F+ X. By asymmetric calculation,
w(v1,v9) < 0. It follows that w(vg,v1) = 0. Since vy and v; are linearly independent
vectors in TE', this contradicts the hypothesis that w|rs is nondegenerate. |

3.3. Description of the Reeb cone. We now prove Lemmal(L.6} describing the possi-
bilities for the Reeb cone of a face of a symplectic polytope in R*.

Lemma 3.9. Let X be a convex polytope in R* and let F be a 2-face of X. Let Eq and E, denote
the 3-faces adjacent to F, and let v; denote the outward unit normal vector to E;.
(a) If (iv1,v2) < O, then every nonzero vector w in the Reeb cone R}J:f1 points into Eq from
F, that isw € int(TF+E_1).
(b) If (iv1, va) > 0, then every nonzero vector w in the Reeb cone Rgl points out of E1 from
F, that isw € int(—TF+E_1).
(c) If (iv1,v2) = 0, then F is Lagrangian.
Proor. Let 1) denote the unit normal vector to F in TE; pointing into E1. The vector 7]

must be a linear combination of v1 and v, (since it is normal to F), it must be orthogonal
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to v1 (since it is tangent to E1), and it must have negative inner product with v (since it
points into Ej). It follows that

—vy + {v1, Vo)1

3.5 _ _
(35 EP SR

The vector w points into E; if and only if (, w) > 0, and the vector w points out of
E, if and only if (n, w) < 0. For w in the Reeb cone of E;, we know that w is a positive
multiple of ivi. By equation (3.5), we have

—<i1/1, 1/2>
— vy +{v1, vov|

M, iv1) = ]

Thus if (iv1, v2) is nonzero, then it has opposite sign from {1, w). This proves (a) and (b).
If (ivy,v2) = 0, then w(ivy,iv2) = 0, but ivq and iv; are linearly independent tangent
vectors to F, so F is Lagrangian. This proves (c). O

Lemma 3.10. Let X be a convex polytope in R* and let F be a 2-face of X. IFTF AREX # {0},
then F is Lagrangian.

Proor. If w e TF n R;X, then for any other vector u € TF, we have
w(w,u) ={w,uy=20
since —iw € N} X. If we also have w # 0, then it follows that F is Lagrangian. O

Proor oF Lemma [L8 If F is a 3-face, then by the definition of the Reeb cone, R} X
consists of all nonnegative multiples of ivr; and ivr is a positive multiple of the Reeb
vector field on F by equation (1.3).

Suppose now that F is a k-face with k < 3, and that w is a nonzero vector in the Reeb
cone RfX. Applying Lemma to v = —iw and w, we deduce that there is a face E of

X with F ¢ E such that —iw € N Er Xand w € T;E. In particular,
(3.6) w e TE n REX.

By Lemma [3.10/and our hypothesis that X is a symplectic polytope, E is not a 2-face.

If F is a 2-face, we conclude that w is in the Reeb cone R;X for one of the 3-faces E
adjacent to F. By Lemma w must point into E.

If F is a 1-face, then E is either a 3-face adjacent to F, or F itself. In the case when
E = F, the vector w cannot be in the Reeb cone of any 3-face F3 adjacent to F. The reason
is that if F, is one of the two 2-faces with F = F, < F3, then by Lemma the Reeb cone
of F3 is not tangent to F», so it certainly cannot be tangent to F.

If F is a O-face, then E is adjacent to F and is either a 3-face or a 1-face. If E is a 1-face,
then it is a bad 1-face by (3.6). O

4. The quaternionic trivialization

In this section let Y = R* be a smooth star-shaped hypersurface with the contact
form A = Ap|y and contact structure £ = Ker(A). We now define a special trivialization
7 of the contact structure &, and we prove a key property of this trivialization.
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4.1. Definition of the quaternionic trivialization. The following definition is a
smooth analogue of Definition 2.17}

DerintTioN 4.1. Define the quaternionic trivialization
(4.1) T:& Y xR?

as follows. If y € Y and V € T,Y, let v denote the outward unit normal to Y at y, and
define

(V) = (y,(V,jv),V, kv)).
By abuse of notation, for fixed y € Y we write 7 : &, —=> R? to denote the restriction of
to &, followed by projection to R2.

From now on we always use the quaternionic trivialization 7 for smooth star-shaped
hypersurfaces in R*.

Lemma 4.2. The quaternionic trivialization T is a symplectic trivialization of &.
Proor. Same calculation as the proof of Lemma 2.18(a). O

RemARk 4.3. The inverse
Yy xR S5 &
is described as follows. Recall from that the Reeb vector field at y is a positive
multiple of iv. Then t7'(y, (1,0)) is obtained by projecting jv to &, along the Reeb
vector field, while 771 (y, (0, 1)) is obtained by projecting kv to &, along the Reeb vector
field.

4.2. Linearized Reeb flow. We now make some definitions which we will need in
order to bound the rotation numbers of Reeb orbits and Reeb trajectories.

DeriNiTioN 4.4. If y € Y and t > 0, define the linearized Reeb flow ¢(y, t) € Sp(2) to be
the composition

@2) R 8, 12 g 0 R

where @; : Y — Y denotes the time t flow of the Reeb vector field, anfgl/ 7 is the
quaternionic trivialization. Define the lifted linearized Reeb flow ¢(y,t) € Sp(2) to be
the arc

(4.3) Sy, 1) = {9y, 5)}sepo -

Note that we have the composition property

~ ~ ~

Py, t2+t1) = P(Pr(y), t2) o Py, t1).

Next, let P& denote the “projectivized” contact structure
P& = (E\Z)/ ~

where Z denotes the zero section, and two vectors are declared equivalent if they differ

by multiplication by a positive scalar. Thus P¢ is an S'-bundle over Y. The Reeb vector

field R on Y canonically lifts, via the linearized Reeb flow, to a vector field R on PE&.
The quaternionic trivialization 7 defines a diffeomorphism

T:P& =Y x S,
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Let

o:P&—S!
denote the composition of T with the projection Y x S — S1.

DerintTiON 4.5. Define the rotation rate

r:PéE —R

to be the derivative of 0 with respect to the lifted linearized Reeb flow,
r = Ro.

Define the minimum rotation rate

min: Y — R
by

Fmin(y) = mingepz, ().

It follows from and that we have the following lower bound on the rotation
number of the lifted linearized flow of a Reeb trajectory.

Lemma 4.6. Let y be a smooth star-shaped hypersurface in R*, let y € Y, and let t > 0. Then

p(ﬁg(y, t) = JO rmin(q)s(y))dS.

4.3. The curvature identity. We now prove a key identity which relates the lin-
earized Reeb flow, with respect to the quaternionic trivialization 7, to the curvature of Y.
This identity (in different notation) is due to U. Hryniewicz and P. Saloméao [40]. Below,
let S: TY ® TY — R denote the second fundamental form defined by

S(u,w) =<{V,v,w),

where v denotes the outward unit normal vector to Y, and V denotes the trivial connec-
tion on the restriction of TR* to Y. Also write S(u) = S(u, u).

Prorosition4.7. Let Y be a smooth star-shaped hypersurfacein R*, let y € Y, let 0 € R/27Z,
and write 6 = 0/21 € R/Z. Then at the point T (y, o) € P&, we have

~

(4.4) Ro =

< (S(iv) + S(cos(0)jv + sin(6)kv)) .

Proor. It follows from the definitions that
2nRo = (LR ((cos B)jv + (sin O)kv), (sin 0)jv — (cos O)kv)
(4.5) = — (cos® 0)(LRjv, kv) + (sin? 0){Lrkv,jv)
+ (sin 0 cos O)((LRrjv, jv) — (Lrkv, kv)).
We compute

(Lrjv, kv) = (Vgjv — V;,R, kv)

= @’Lw ((Vivjv, kv)y — (Vjuiv, kv))
- <v,2y> (—(Vipv, iv) = (Vjyv, jv))
2

(4.6) -

gy S =S,
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Here in the second to third lines we have used the fact that multiplication on the left by
a constant unit quaternion is an isometry. Similar calculations show that

2
4.7) Lrkv,jv) = (S(iv) + S(kv)),
(exder, ) = 72 (5(0v) + S(0c)
2
(4.8) Lrjv,jv) = —(Lrkv, kv) = S(jv, kv).
Lrjv,jv) = = )= Ty Uv k)
Plugging (4.6), (4.7) and into proves the curvature identity ([@.5). O

RemMark 4.8. Since the second fundamental form is positive definite when Y is strictly
convex, and positive semidefinite when Y is convex, by Lemma we obtain the fol-
lowing corollary: If Y is a convex star-shaped hypersurface in R* then Ro > 0 everywhere,
S0 (;3 (y,t) has nonnegative rotation number for all y € Y and t = 0. If Y is a strictly convex
star-shaped hypersurface in R* then Ro >0 everywhere, so %(y, t) has positive rotation number
forally e Y andt > 0.

5. Reeb dynamics on smoothings of polytopes

In and we study the Reeb flow on the boundary of a smoothing of a
symplectic polytope in R%. In and §5.4| we explain some more technical issues
arising from the fact that the smoothing is only C!, and in particular how to make sense
of the “rotation number” of Reeb trajectories. In §5.5we derive important lower bounds
on this rotation number.

5.1. Smoothings of polytopes. If X — R is a compact convex set and ¢ > 0, define
the e-smoothing X, of X by equation ([.7). Observe that X, is convex. Denote its
boundary by Y, = 0X.. We now describe Y. more explicitly, in a way which mostly does
not depend on ¢. We first have:

Lemma 5.1. If X is a compact convex set then
Y, = {y € R" | dist(y, X) = €}.

Proor. The left hand side is contained in the right hand side because distance to
X is a continuous function on R™. The reverse inclusion holds because given y € R"
with dist(y, X) = ¢, since X is compact and convex, there is a unique point x € X
which is closest to y. By convexity again, X is contained in the closed half-space
{z e R" | {(z,y — x) < 0}. It follows that dist(f(y — x), X) = et for t > 0, so that
y € 0Xe. m|

DeriNtTiON 5.2. If X < R™ is a compact convex set, define the “blown-up boundary”
Yy = {(y,v) |y€dX, veNSX, |v] = 1} c X x S"L,
We then have the following lemma, which is proved by similar arguments to Lemma

Lemma 5.3. Let X < R™ be a compact convex set and let € > 0. Then:
(a) There is a homeomorphism
Yo — Y,
sending (y,v) — y + €v.
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(b) The inverse homeomorphism sends y + (x, e~ (y — x)) where x is the unique closest
point in X to y.

(c) Fory €Y, if x is the closest point in X to y, then the positive normal cone N; X, is the
ray consisting of nonnegative multiples of y — x.

Suppose now that X < R is a convex polytope and ¢ > 0.

DeriNtTiON 5.4. If F is a face of X, define the e-smoothed face
Fe ={xe Y, |dist(x, F) = ¢}.
By Lemma/5.3] we have

Y. =| |Fe
F

and
Fe=F+{veNIX||v| = e}

In particular, it follows that Y, is a C! smooth hypersurface, and it is C* except along
stratof the form oF + {v € NJ X | |[v| = €}.

5.2. The Reeb flow on a smoothed symplectic polytope. Suppose now that X is
a symplectic polytope in R* and ¢ > 0. As noted above, Y, = 0X, is a C! convex
hypersurface, and as such it has a well-defined CY Reeb vector field, which is smooth
except along the strata of Y, arising from the boundaries of the faces of X. We now
investigate the Reeb flow on Y, in more detail, as well as the lifted linearized Reeb flow
qg from Deﬁnition

General remarks. By Lemma a point in Y, lives in an e-smoothed face F, for a
unique face F of X, and thus has the form y + v where y € F and v € N/ X is a unit
vector. By equation and Lemma 5.3(c), the Reeb vector field at y + v is given by

2iv
oyt e

Lemma 5.5. The Reeb vector field (5.1)) on the e-smoothed face F., reqarded as amap F, — R,
depends only v € N X and not on the choice of y € F.

(5-1) Ry+ev =

Proor. This follows from equation (5.I), because for fixed v € Nf X and for two
points y, y' € F, by the definition of positive normal cone we have (v, y — y’) = 0. m|

Smoothed 3-faces. The Reeb flow on a smoothed 3-face is very simple.

Lemma 5.6. Let X < R* be a symplectic polytope, let ¢ > 0, and let E be a 3-face of X with
outward unit normal vector v.

(a) The Reeb vector field on E., regarded as a map E. — R*, agrees with the Reeb vector
field on E, up to rescaling by a positive constant which limits to 1 as ¢ — 0.
(b) If y : |0, t] — E; is a Reeb trajectory, then (5(7/(0), ty=1¢€ éT)(Z).
(c) If y € OE, then at the point y + ev € Y, the Reeb vector field on Y, is not tangent to
6E€-
8We do not also need to mention strata of the form F + d{v € N ;r X | |[v] = €}, because any point in
0N/ X is contained in N" X where E is a face with F ¢ JE.
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Proor. (a) This follows from equation (5.1).

(b) For s € [0, t], the Reeb flow ®; : Y, — Y, is a translation on a neighborhood of
7(0). Consequently the linearized Reeb flow d®s : &, () — &, (s) is the identity, if we
regard &,y and &,,(s) as (identical) two-dimensional subspaces of R*. The quaternionic
trivialization 7 : R? — &) likewise does not depend on s € [0,¢]. Consequently

¢(y,s) =1foralls € [0,t]. Thus (?)(y, t) is the constant path at the identity in Sp(2).

(c) It is equivalent to show that the Reeb vector field on E at y is not tangent to JE. If
the Reeb vector field on E at y is tangent to JE, then it is tangent to some 2-face F c JE.
By Lemma the face 2-face F is Lagrangian, contradicting our hypothesis that the
polytope X is symplectic. O

Smoothed 2-faces. Let F be a 2-face. Let E; and E; be the 3-faces adjacent to F. By
Lemma we can choose these so that Rg, points out of F; and a similar argument
shows that then Rg, points into F. Let v; and v, denote the outward unit normal vectors
to Eq1 and E; respectively. By Lemma the normal cone N consists of nonnegative
linear combinations of v; and v,. Let {v,w} be an orthonormal basis for F 1 such
that the orientation given by (v, w) agrees with the orientation given by (v, v;). For
i = 1,2 we can write v; = (cos 0;)v + (sin 6;)w where 0 < 6, — 61 < . We then have a
homeomorphism

F x [01,0.] — F,,

(5.2) :
(y,0) — y + &((cos B)v + (sin O)w).

In the coordinates (y,0), the Reeb vector field R on F. depends only on 0 by
Lemma and has positive dg coordinate for both 0 = 0; and 0 = 0, by our choice
of labeling of E; and E;. By equation (5.I), Lemma and our hypothesis that the
polytope X is symplectic, the dg component of the Reeb vector field is positive on all of
F..

Let Ur,, = F denote the set of y € F such that the Reeb flow on Y, starting at
(y, 01) € F; staysin F, until reaching a pointin F x {0}, which we denote by (¢r (y), 02).
Thus we have a well-defined “flow map” ¢r . : Ur, — F.

Lemma 5.7. Let F be a two-face of a symplectic polytope X = R*. Then:
(a) The flow map ¢r, : Ur,e — F above is translation by a vector Vp . € TF.
(b) |Vee| = O(e) and lim,—,o Ur,. = F.

(c) Let y € Ur,. and let t be the Reeb flow time on F. from y + evy to ¢r,(y) + €va.
Then ¢(y,t) € Sp(2) agrees with the transition matrix g in Definition and

~ ~

O (y,t) € Sp(2) is the unique lift of Yr with rotation number in the interval (0,1/2).

Proor. (a)If y, y" € Ur ., then it follows from the translation invariance in Lemma
that ¢r . (y) —y = ¢r,c(y') — V', so ¢r . is a translation.

(b) It follows from equation that for each v, the Reeb vector field R+ ¢,, regarded
as a vector in R*, has a well-defined limit as ¢ — 0, which by Lemma dis not tangent
to F. Since 0y, regarded as a vector in R*, has length ¢, it follows that the flow time of the
Reeb vector field on F, from F x {01} to F x {02} is O(¢). Consequently the translation
vector Vr . has length O(¢), and the complement F\UF . of the domain of the flow map
is contained within distance O(¢) of JF.
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(c) Write y1 = y + ev1 and y2 = ¢r,(y) + evo. By part (a) and the translation
invariance in Lemma the time t Reeb flow ®; on Y, restricted to Up . + €vy is a
translation in R*. Hence the derivative of ®; on the full tangent space of Y, namely

dq)t . Ty1Yg — TyZYg,

restricts to the identity on TF. We now have a commutative diagram

TI

&y TF — R?
dd, l 1 l l yr
Ey TF — R2

Here the upper left horizontal arrow is projection along the Reeb vector field in T, Y,
and the lower left horizontal arrow is projection along the Reeb vector field in T;,Y.. The
right horizontal arrows were defined in Definition[2.17jand Remark[2.19 The left square
commutes because d®; preserves the Reeb vector field. The right square commutes
by Definition The composition of the arrows in the top row is the quaternionic
trivialization 7 on ¢&,;, and the composition of the arrows in the bottom row is the
quaternionic trivialization 7 on &,,. Going around the outside of the diagram then
shows that ¢(y, t) = r.

To determine the lift 5 (y,t), note that this is actually defined for, and depends
continuously on, any ¢ > 0 and any pair of hyperplanes E; and E, that do not contain
the origin and that intersect in a non-Lagrangian 2-plane F. Thus we can denote this
lift by qg(El, Ey ¢e) € %(2) Now fixing E1, F, and ¢, we can interpolate from E; and E;
via a 1-parameter family of hyperplanes {E;}c[1,2] such that 0 ¢ Es and Eq n Es = F for

1 < s < 2. The rotation number p : Sp(2) — R then gives us a continuous map

f:(1,2] — R,
S—>p (QE(ELES/ 3))

We have lim\; gg(El,ES, e) = 1, so limg\ 1 f(s) = 0. On the other hand, for each
s € (1,2], the fractional part of f(s) is in the interval (0,1/2) by Lemma2.21} It follows
by continuity that f(s) € (0,1/2) for all s € (1,2]. Thus f(2) € (0,1/2), which is what we
wanted to prove. O

Smoothed 1-faces. The Reeb flow on a smoothed 1-face is more complicated, but we
will not need to analyze this in detail. We just remark that one can see the difference
between good and bad 1-faces in the Reeb dynamics on their smoothings. Namely:

Remark 5.8. If L is a bad 1-face, then by definition, there is a unique unit vector
veN L+ X such that iv is tangent to L. The line segment L + ¢v < L, is then a Reeb
trajectory. On the complement of this line in L, the Reeb vector field spirals around the
line, with the number of times that it spirals around going to infinity as ¢ — 0. This
gives some intuition why Type 3 combinatorial Reeb orbits do not correspond to limits
of sequences of Reeb orbits on smoothings with bounded rotation number.

By contrast, if L is a good 1-face, then the Reeb vector field on L, always has a nonzero
component in the N Z“ X direction.
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Smoothed 0-faces. If P is a O-face, then by Lemma P, is identified with a
domain in S®. By equation (5.1), the Reeb vector field on this domain agrees, up to
reparametrization, with the standard Reeb vector field on the unit sphere in R*.

5.3. Non-smooth strata. We now investigate in more detail how Reeb trajectories on
Y, intersect the strata where Y, is not C*.

Let X denote the subset of Y, where Y is not locally C*. By the discussion at the end
of we can write

Y=XY1uXo123
where:

e Y is the disjoint union of sets
(5.3) P+{veN X||v]=¢}

where P is a vertex of X, and L is a 1-face adjacent to P.

e Y is the disjoint union of sets
(5.4) L+{veNiX||v]=¢}

where L is a 1-face, and F is a 2-face adjacent to L.

e Y3 is the disjoint union of sets
F+ev

where F is a 2-face, and v is the outward unit normal vector to one of the two
3-faces E adjacent to F.

Lemma 5.9. Let X < R* be a symplectic polytope, let ¢ > 0, and let y : [a,b] — Y, be a Reeb
trajectory. Then there exist a nonnegative integer k and real numbersa < t; <t <--- <t <b
with the following properties:

(a) y(ti) € L for each i.

(b) Foreachi =0,...,k, one of the following possibilities holds:
(i) v maps (t;, ti+1) to Y, \X. (Here we interpret to = a and tyy1 = b.)

(ii) y maps (t;, ti+1) to a Reeb trajectory in a component of X1. (Each component of
Y1 contains at most one Reeb trajectory of positive length.)

(iii) y maps (t;, tiy1) to a Reeb trajectory in a component of Lo. (This can only happen
when the corresponding 2-face F is complex linear, and in this case the component
of Ly is foliated by Reeb trajectories.)

Proor. We need to show that a Reeb trajectory intersects X in isolated points, or in
Reeb trajectories of the types described in (ii) and (iii).

We have seen in that the Reeb vector field is transverse to all of 3. Thus the
Reeb trajectory y intersects X3 only in isolated points.

Next let us consider the Reeb vector field on a component of Y, of the form (5.4). As
in let E; and E; denote the 3-faces adjacent to F, with outward unit normal vectors
v1 and v, respectively. The smoothing F, is parametrized by (5.2). This parametrization
extends by the same formula to a parametrization of F, by F x [61,02]. The latter

65



parametrization includes the component (5.4) of X as the restriction to L x [01, 62]. By
equation (5.I), at the point corresponding to (y, 0) in (5.2), the Reeb vector is given by
2

(5.5) R = {(cos 0)0 & (5in 0)w, 75 & gi((cos 0)v + (sinO)w).

This vector is tangent to the component if and only if the orthogonal projection of
i((cos 0)v + (sin O)w) to F is parallel to L.

If the projections of iv and iw to F are not parallel, then this tangency will only happen
for isolated values of 6, and since the Reeb vector field on F, always has a positive dg
component, a Reeb trajectory will only intersect the component in isolated points.

If on the other hand the projections of iv and iw to F are parallel, then there is a
nontrivial linear combination of iv and iw whose projection to F is zero. This means that
there is a nonzero vector v perpendicular to F such that iv is also perpendicular to F.
This means that F* is complex linear, and thus F is also complex linear. Then iv and iw
are both perpendicular to F, so in the parametrization , the Reeb vector field vector
field is a just a positive multiple of Jp.

The conclusion is that a Reeb trajectory will intersect each component of Xp
either in isolated points, or (when F is complex linear) in Reeb trajectories which, in the
parametrization (5.2), start on L x {61} and end on L x {0,}, keeping the L component
constant.

Finally we consider the Reeb vector field on a component of ¥X1. The set of
vectors v that arise in (5.3)) is a domain D in the intersection of the sphere |v| = ¢ with
the hyperplane L. As we have seen at the end of the Reeb vector field on Y, at
a point in agrees, up to scaling, with the standard Reeb vector field on the sphere
|v| = ¢, whose Reeb orbits are Hopf circles. There is a unique Hopf circle C contained
entirely in L*. All other Hopf circles intersect L1 transversely. Thus any Reeb trajectory
in Y, intersects the component in isolated points and/or the arc corresponding to
C n D, if the latter intersection is nonempty. |

5.4. Rotation number of Reeb trajectories. Suppose y : [4,b] — Y; is a Reeb trajec-
tory. Let D < Y, be a disk through y(a) tranverse to y, and let D’ < Y, be a disk through
y(b) transverse to y. We can identify D with a neighborhood of 0 in &,,(;), and D’ with
a neighborhood of 0 in &,;), via orthogonal projection in R*. If D is small enough, then
there is a well-defined map continuous map ¢ : D — D’ with ¢(y(a)) = y(b), such that
for each x € D, there is a unique Reeb trajectory near y starting at x and ending at ¢(x).

Lemma 5.10. Let X be a symplectic polytope in R*, let ¢ > 0, and let y : [a,b] — Y. be a
Reeb trajectory. Then there is a unique (independent of the choice of D and D') homeomorphism
Py s &y@) — &y
such that:

(a)

x)—P,(x
(5.6) lim P00 —Py(x) _ 0.
=0 x|
(b) Py is linear along rays, i.e. if x € &,,(y) and ¢ > 0 then Py (cx) = cPy(x).
This map Py, has the following additional properties:
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(c) If y does not include any arcs as in Lemma [b.9(ii)-(iii), and in particular if y does not
intersect any smoothed 0-face or smoothed 1-face, then P, is linear.

(d) For t € (a,b) we have the composition property

Py, = P7’|[t,b] © P)/l[u,f]'

(e) Fort € [a, b], the homeomorphism R* — R? given by the composition

2 1! Pyl ag T o2
R — <&y — &y — R

is a continuous, piecewise smooth function of t.

Proor. Uniqueness of the homeomorphism P, follows from properties (a) and (b).
Independence of the choice of D and D’ follows from properties (a) and (b) together
with continuity of the Reeb vector field. Assuming existence of the homeomorphism
P,, the composition property (d) follows from uniqueness.

We now need to prove existence of the homeomorphism satisfying properties (a),
(b), (c), and (e). Leta < t; < tp < --- < tx < b be the subdivision of the inteveral [a, b]
given by Lemma Fori =0,...,k, lety; denote the restriction of y to [t;, t;+1], where
we interpret to = a and t; = b. It is enough to prove existence of a homeomorphism

Pyt &y — Syttin)
with the required properties for each i. The desired homeomorphism P, is then given
by the composition Py - - - Py.

For case (i) in Lemma a homeomorphism P,, with properties (a), (b), and (e) is
given by the usual linearized return map on the smooth hypersurface Y, \X from ¢; + 6
to ti11 — 9, in the limit as 6 — 0. Since P,, is linear, we also obtain property (c).

For case (ii) or (iii) in Lemma the existence of P, with the desired properties
follows from the fact that y; is on a smooth hypersurface separating two regions of Y,
on each of which the Reeb vector field is C*. m|

Remark 5.11. In case (ii) or (iii) above, the description of the Reeb flow in allows
us to write down the map P,, quite explicitly. Namely, for a suitable trivialization, Py, is
given by the flow for some positive time of a continuous, piecewise smooth vector field
V on R?, which is the derivative of a shear on one half of R%, and which is the derivative
of a rotation or the identity on the other half of R?. For case (ii), the vector field has the
form

B —Y 0Oy, x =0,
(5.7) Vix,y) = { X3, — yox, x <0.

For case (iii), the vector field has the form
B xéy, x =0,
(5.8) Vix,y) = { 0, x<o0

Since the map Py : Ey(a) — Ey(b) sends rays to rays, it induces a well-defined map
P&, ) — P&, ). It follows from Lemma c),(d) and equations (5.7) and that

the latter map is C!. Similarly to (£.2), we obtain a C! diffeomorphism of S! given by the
composition
-1 P,
S = PE ) = PEp) — S
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Stealing the notation from Definition[4.4} let us denote this map by ¢ (y, t) where y = y(a)
and t = b — a. By analogy with (4.3), we define

Gy, 1) = {p(y, 5)}se[o,r) € Diff(SY).

This then has a well-defined rotation number, see Appendix [/}, which we denote by

~

p(y) =p(oy,t)) e R.

5.5. Lower bounds on the rotation number. We now prove the following lower
bound on the rotation number.

Lemma 5.12. Let X be a symplectic polytope in R*. Then there exists a constant C > 0,
depending only on X, such that if ¢ > 0 is small, then the following holds. Let y : [a,b] — Y;
be a Reeb trajectory, and assume that if t € (a,b) and E is a 3-face then y(t) ¢ E.. Then

p(y) = CeTH(b —a).

Proor. Define a function
as follows. A point Y, can by uniquely written as y + ¢v where y € Y and v is a unit
vector in N ; X. Then define

(5.9) r™M(y + €v) = mingeg 2z o L (S(iv) + S(cos(0)jv + sin(0)kv)).

@ y)+e)
Here S : TY, — Ris the single-argument version of the second fundamental form, which
is well-defined, even though along the non-smooth strata of Y, there is no corresponding
bilinear form.

More explicitly, T, ., Y., regarded as a subspace of R*, does not depend on . A
tangent vector V € Ty, ., Y, can be uniquely decomposed as

(5.10) V=Vr+Vy

where Vr € T;,0X is tangent to a face F such that y € Fandve N If X,and Vy € TUN; X
is perpendicular to v. We then have

(5.11) S(V) = e vy~
Lemma [4.6|and Proposition 4.7 carry over to the present situation to show that

b N
6.12 p) = | ().

a
In (5.9), by compactness, there is a uniform upper bound on (v,y) for y € ¢X and
veE N; X a unit vector. Thus by (5.11) and (5.12), to complete the proof of the lemma, it
is enough to show that there is a constant C > 0 such that

(5.13) |(iv)n|* + |(cos(0)jv + sin(0)kv)n|* = C

whenever y € 0X, v e N; X is a unit vector, 0 € R/2nZ, and y + €v is not in the closure
of E; where E is a 3-face. To prove this, it is enough to show that for each k-face F with
k < 3, there is a uniform positive lower bound on the left hand side of forally € F,
all unit vectors v in N X that are not normal to a 3-face adjacent to F, and all 6.

If k = 2, then we have a positive lower bound on |(iv)y/|* by the discussion of
smoothed 2-faces in
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If k = 1, denote the 1-face F by L. If v is on the boundary of N;"X, then we have a
positive lower bound on |(iv)y|? as in the case k = 2 above. Suppose now that v is in the
interior of N LJ,F X. We have a positive lower bound on |(iv)n|? when ivy is away from the
Reeb cone of L. This is sufficient when L is a good 1-face. If L is a bad 1-face, then we
have to consider the case where iv is on or near the Reeb cone RZ“X . If iv is in the Reeb
cone, then all vectors in V' € Ty ;. ¢, Y, that are not in the real span of the Reeb cone RELX
have Viy # 0. Since the vectors cos(0)jv + sin(6)kv are all unit length and orthogonal to
iv, we get a positive lower bound on |(cos(0)jv + sin(0)kv)n | for all 6 when iv is on or
near the Reeb cone.

Suppose now that k = 0. If v is on the boundary of N;"X, then the desired lower
bound follows as in the cases k = 1 and k = 2 above. If v is in the interior of N ; X, then
we have |(iv)y[*> = 1. O

We now deduce a related rotation number bound. Let y : [4,b] — Y, be a Reeb
trajectory. By Lemma 5.3} we can write

y(#) = y(t) + ev(t)

where y(t) € 0X and v(t) is a unit vector in N;(t)X for each t.

Lemma 5.13. Let X be a symplectic polytope in R*. Then there exists a constant C > 0,
depending only on X, such that if € > 0 is small and y : |a,b] — Y, is a Reeb trajectory as
above, then

b
p) = C [ [o'(s)lds
a
Proor. By Lemma it is enough to show that there is a constant C such that
[0/(s)] < Ce™L.

To prove this last statement, observe that by equation (5.1), in the notation (5.10) we have

p 2e71
YO ey e e
Thus »
O —
COROET:

If ye X and v € N;' X is a unit vector, then (v,y) > 0 because X is convex and
0 € int(X). By compactness, there is then a uniform lower bound on (v, y) for all such

pairs (v, v). O
6. The smooth-combinatorial correspondence

We now prove Theorems and

6.1. From combinatorial to smooth Reeb orbits. We first prove Theorem In
fact we will prove a slightly more precise statement in Lemma 6.1 below.

Let X be asymplectic polytopein R*andlety = (L1, ..., L) bea Type 1 combinatorial
Reeb orbit. This means that there are 3-faces E1, ..., Ex and 2-faces Fy, ..., Fx such that
F;is adjacent to E;_1 and E;, and L; is an oriented line segment in E; from a point in F; to
a point in F; 11 which is parallel to the Reeb vector field on E;. Here the subscripts i — 1
and i + 1 are understood to be mod k. Below we will regard y as a piecewise smooth
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parametrized loop y : R/TZ — X, where T = Aqomb()), which traverses the successive
line segments L; as Reeb trajectories.

Lemma 6.1. Let X bea symplectic polytopein R*, and lety = (L1, ..., L) beanondegenerate
Type 1 combinatorial Reeb orbit. Then there exists 6 > 0 such that for all ¢ > 0 sufficiently
small:

(a) There is a unique Reeb orbit y. on the smoothed boundary Y, such that
e = Vlco <0

(b) ye converges in CY to y as € — 0.

(c) y. does not intersect F, where F is a 0-face or 1-face.

(d) y. is linearizable, i.e. has a well-defined linearized return map.

(e) A(ye) — Acomb(y) = O(e).

(f) ye is nondegenerate, p(y¢) = peomb()), and CZ(y¢) = CZeomb())-

Proor. Setup. Fori =1,...,k,let p; denote the initial point of the segment L;. Using
the notation E;, F; above, let D; denote the set of points y € F; such that Reeb flow along
E; starting at y reaches a point in F;;1, which we denote by ¢;(y). Thus we have a
well-defined affine linear map

¢;:D;i — Fiy1.

and by definition ¢;(p;) = pi+1. In particular, the composition

¢ro---opr:F1 — F

is an affine linear map defined in a neighborhood of p; sending p; to itself. For V e TF;
small, this composition sends

p1+Vi—p1 +AV,

where A is a linear map TF; — TF;. Since the combinatorial Reeb orbit y is assumed
nondegenerate, the linear map A does not have 1 as an eigenvalue.

By Lemma a), the Reeb flow along the smoothed 2-face (F;), induces a well-
defined map

(61) (PF,-,{;' : uFi,S - Fi

which is translation by a vector VF, ..
Proof of (a). If € > 0 is sufficiently small, then p; is in the domain Up, . for each i, and
Reeb orbits on Y, that are C° close to y correspond to fixed points of the composition

(6.2) OF e 0 Pro---0Pr0PF, 0P : F1 — F1.
It follows from the above that for V € TF; small, the composition (6.2)) sends
(6.3) pr+Vi—p1 + AV + W,

where W, € TF; has length O(¢). Since the linear map A — 1 is invertible, the affine
linear map has a unique fixed point p1 + V for some V € TF;. If ¢ is sufficiently
small, this fixed point will also be in the domain of the composition , and thus will
correspond to the desired Reeb orbit y..

Proof of (b). This holds because for the above fixed point, V has length O(¢).

70



Proof of (c). The Reeb orbit y. does not intersect F, where F is a O-face or 1-face, by
the definition of the domain of the map (6.1).

Proof of (d). This follows from Lemma C).

Proof of (e). The symplectic action of the Reeb orbit y, is the sum of its flow times
over the smoothed 2-faces (F;),, plus the sum of its flow times over the smoothed 3-faces
(Ei)e. The former sum is O(¢) as explained in the proof of Lemma[.7|b). The latter sum
is (1 4+ O(¢)) times the sum of the corresponding flow times over the 3-faces E;, and the
latter differs from Aqomb()) by O(¢), because the fixed point of has distance O(¢)
from p.

Proof of (f). Let T. denote the period of y,, and let y. be a point on the image of
ye in Ex. If F is a 2-face, let {f € §15(2) denote the lift of the transition matrix ¢r in
Definition with rotation number in the interval (0,1/2). By Lemmas [5.6(b) and
@c), the lifted return map ¢ (y., T.) is given by

(6.4) a(ysrTe) :QIEFkO"'OQZFl'

Nondegeneracy of the combinatorial Reeb orbit y means that the projection

¢We, Te) = Yr, 0+ oPr, € Sp(2)

does not have 1 as an eigenvalue, so ). is nondegenerate. Moreover, it follows from (6.4)
and the definition of combinatorial rotation number in Definition that pcomb(y) =
p(ve)- This implies that CZcomp(y) = CZ(y¢). O

6.2. From smooth to combinatorial Reeb orbits.

Proor or THeorEM [LLI1l We proceed in four steps.
Step 1. We claim that for each i, the Reeb orbit y; can be expressed as a concatenation
of a finite number, k;, of arcs such that:

(a) Each endpoint of an arc maps to the boundary of E., where E is a 3-face.

(b) For each arc, either:
(i) There is a 3-face E such that the interior of the arc maps to E;,, or

(ii) No point in the interior of the arc maps to E,, where E is a 3-face.

The above decomposition follows from parts (a) and (b)(i) of Lemmal5.9} because the
boundary of E., where E is a 3-face is contained in the singular set X.. (Note that the
decomposition into arcs in Lemmal[5.9)is a subdivision of the above decomposition into
arcs. Moreover, if k; > 1, then k; is even and the arcs alternate between types (i) and (ii).)

Step 2. We claim now that there is a constant C > 0, not depending on i, such that
if y : [a.b] — Y,, is an arc of type (ii) above, then if we write y(t) = y(t) + &v(t) for
y(t)e 0X and v(t) € N;(t)X a unit vector, then we have

b
(6.5) J [0’(s)ds| = C.
a

To see this, note that by (a) above, there are 3-faces E and E’ such that y(a) € E,

and y(b) € E_’gl Then v(a) = vg, where vg denotes the outward unit normal vector to
E, and likewise v(b) = vp. If E # E’, then the integral in (6.5) is bounded from below
by the distance in S3 between vr and v/, and this distance has a uniform positive lower
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bound because X has only finitely many 3-faces, each with distinct outward unit normal
vectors.

We now consider the case where E = E’. The proof of Lemma shows that there
is a neighborhood U of vg in S3, and a constant C > 0, such that for any point y + &;v €
Y \E; with v € U, with respect to the decomposition (5.10), we have |(iv)n|? = C. By
shrinking the the neighborhood U, we can replace this last inequalty with {(iv)n, ve) > 0.
Since v/(t) is a positive multiple of (iv(t))n, it follows that the path [a,b] — S® sending
t — ov(t) must initially exit the neighborhood U before returning to v¢. So in this case,
we can take the constant C in to be twice the distance in S® from v to oU.

Step 3. We now show that we can pass to a subsequence so that the sequence of Reeb
orbits y; on Y, converges in C° to a Type 1 or Type 2 combinatorial Reeb orbit y for X.

By Lemma and our hypothesis that p(y;) < R, we must have k; > 1 when i is
sufficiently large. Then, by Lemma and Step 2, there is an i-independent upper
bound on k;. We can then pass to a subsequence such that k; is equal to an even constant
k.

By compactness, we can pass to a further subsequence such that the endpoints of the
k arcs from Step 1 for y; converge to k points in the 2-skeleton of X. By Lemma the
k/2 arcs of type (i) converge to Reeb trajectories on 3-faces of X. On the other hand, by
Lemma for each arc of type (ii), the length of its parametrizing interval converges
to 0. A compactness argument also shows that there is an upper bound on the length of
the Reeb vector field on Y,. It follows that each arc of type (ii) is converging in C° to a
point. Then y; converges in C° to a Type 1 or Type 2 combinatorial Reeb orbit consisting
of the line segments on 3-faces given by the limits of the k/2 arcs of type (i).

Step 4. To complete the proof, we now prove that the subsequence and limiting orbit
constructed above satisfy all of the requirements (i)-(v) of the theorem.

We have proved assertions (i) and (iii). Assertion (ii) follows from the proof of
Lemma e). Assertion (iv) follows from the proof of Lemma d),(f). Assertion (v)
follows from Lemma and Step 2. (To get explicit constants Cr, one only needs to
consider the case E # E’ in Step 2.) O

7. Appendix: Rotation numbers

Let §f)(2) denote the universal cover of the group Sp(2) of 2 x 2 real symplectic
matrices. Let Diff(S!) denote the group of orientation-preserving C! diffeomorphismﬂ
of S' = R/Z, and let ﬁf(sl) denote its universal cover. In this appendix, we review two
invariants of elements of §f)(2), and more generally [’);ff(S 1): the rotation number p and
the “minimum rotation number” r. The former is a standard notion in dynamics and is
a key ingredient in Theorem [1.11} and we use the latter to bound the former. We also
explain how to use rotation numbers to efficiently compute certain products in %(2),
which is needed for our algorithms.

7.1. Rotation numbers of circle diffeomorphisms. We can identify the universal

cover Diff(S1) with the group of C! diffeomorphisms @ : R — R which are Z-equivariant
in the sense that ®(t + 1) = O(t) + 1 for all t € R. Such a diffeomorphism of R descends

For the most part we could work more generally with orientation-preserving homeomorphisms.
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to an orientation-preserving diffeomorphism of S!, and this defines the covering map
Diff(S') — Diff(Sh).

Derintrion 7.1. Given o € S!, we define the rotation number with respect to o, denoted
by
ry : Diff(S!) — R,
as follows. Let @ be a Z-equivariant diffeomorphism of R as above. Let t € R be a lift of
o € R/Z. We then define

(7.1) rs (@) = D) — ¢.

DerINITION 7.2. Given @ € Diff(S!), we define the rotation number

(7.2) o(®) — Tim <P

n—00 n

cR

where ¢ € S!. This limit does not depend on the choice of . Equivalently,

n(Ey —

73) (@) = lim T
where t € R.

Note that we have the Z-equivariance property
(7.4) p(@+1)=p(P)+1.

We can bound the rotation number as follows.

DerinitioN 7.3. We define the minimum rotation number r : f)\i?f(Sl) — R by
(7.5) r (@) = mingeg 74 (P) .

Alternatively, if ® e ]_f)\lff(S 1) is presented as a piecewise smooth path {¢;}e[o,1] in
Diff(S!) with ¢ = idg1, then

1
r(®P) = min s j iqbs(o)ds.
0 ds

In particular, it follows that

1
(7.6) r(®) = j min,eg <i¢s(a)) ds.
0 dS
It follows from the definitions that
(7.7) p(®) = r(D).

7.2. A partial order.

DeriniTION 7.4. We define a partial order > on f)\iff(Sl) as follows:
(7.8) ® > W if and only if 74(®) = (W) for all s € S'.
Equivalently, ®(t) > W(t) forall t € R.

Lemma 7.5. The partial order = on f)\i]Jﬁ‘(Sl) is left and right invariant.
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Proor. Let ®,¥,0 € ]5\i?f(51), and suppose that ® > P, i.e.
(7.9) D(t) = W(t)
for every t € R. We need to show that PO > WO and ©0 > OW.

Since ® : R — R is an orientation preserving diffeomorphism, it preserves the order
on R, so it follows from (7.9)) that

O(d(t) = ©(V(h))
for every t € R, so @D > OW.
On the other hand, replacing by ©(t) in the inequality (7.9), we deduce that
(O(t) = W(O())
for every t € R, so PO > V0. m|
Lemma 7.6. If D, W € Diff(SY) and ® > W, then p(®) = p(¥).

Proor. By (7.3), it is enough to show that given t € R, we have ®"(t) > W"(t) for
each positive integer n. This follows by induction on 7, using the fact that ® preserves
the order on R. O

7.3. Rotation numbers of symplectic matrices. There is a natural homomorphism
Sp(2) — Diff(S'), sending a symplectic linear map A : R* — R? to its action on the set of
positive rays (identified with R/Z by the map sending t € R/Z to the ray through e2™).
This lifts to a canonical homomorphism STf)(Z) — f)\iff(Sl). Under this homomorphism,
the invariants r;, r, and p defined above pull back to functions §f)(2) — R, which by
abuse of notation we denote using the same symbols.

We can describe the rotation number p : §f)(2) — R more explicitly in terms of the
following classification of elements of the symplectic group Sp(2).

DeriNiTION 7.7. Let A € Sp(2). We say that A is
e positive hyperbolic if Tr(A) > 2 and negative hyperbolic if Tr(A) < —2.
e a positive shear if Tr(A) = 2 and a negative shear if Tr(A) = —2.
e positive elliptic if —2 < Tr(A) < 2 and det(()[v, Av]) > 0 for all v € R?\{0}.
o negative elliptic if —2 < Tr(A) < 2 and det(()[v, Av]) < 0 for all v € R?\{0}.

By the equivariance property (7.4), the rotation number p : é\f)(Z) — R descends to a
“mod Z rotation number” p : Sp(2) — R/Z.

Lemma 7.8. The mod Z rotation number p : Sp(2) — R/Z can be computed as follows:

0 if A is positive hyperbolic or a positive shear,

A Iif A is negative hyperbolic or a negative shear,
PA) =1 ¢ if A is positive elliptic with eigenvalues e*2™° for 6 € (0, 1),
—0 if A is negative elliptic with eigenvalues e*2™% for 6 € (0, 3).

Proor. In the first two cases, A has 1 or —1 as an eigenvalue. This means that there
exists s € S! which is fixed or sent to its antipode, and one can use this s in the definition

72).

In the third case, A is conjugate to rotation by 20. One can then lift A to an element
of Sp(2) whose image in Diff(S!) is a Z-equivariant diffeomorphism ® : R — R such
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that |®"(t) —t — n6| < 1 for each t € R. It then follows from that p(®) = 6. The
last case is analogous. m|

7.4. Computing products in Sp(2). Observe that Sp(2) can be identified with the
set of pairs (A r), where A € Sp( )and r € R is a lift of p(A) € R/Z. The identification
sends a lift A to the pair (A, p(A A)).

For computational purposes, we can keep track of the lifts of A using less information,
which is useful when for example we do not want to compute p(A) exactly. Namely, we
can identify a lift A with a pair (A, r), where r is either an integer (when A has positive
eigenvalues), an open interval (1, nn +1/2) for some integer n (when A is positive elliptic),
a half-integer (when A has negative eigenvalues), or an open interval (n —1/2, n) (when
A is negative elliptic).

The following proposition allows us to compute products in the group §}5 (2) in terms
of the above data, in the cases that we need (see Remark .

ProposiTion 7.9. Let A, B € 379(2) Suppose that p(AV) € (0,1/2). Then
~ ~ ~ 1
p(B) < p(AB) < p(B) + 5.
To apply this proposition, if for example B is described by the pair (B, (m, m +1/2)),
then it follows that AB is described by either (AB, (m,m + 1/2)), (AB,m + 1/2), or
(AB, (m +1/2,m +1)). To decide which of these three possibilities holds, by Lemma7.§|

it is enough to check whether AB is positive elliptic, has negative eigenvalues, or is
negative elliptic.

Proor ofF ProrosiTioN[Z9 Let @ and W denote the elements of D1ff(51) determmed
by A and B respectively. Let ©® : R — R denote translation by 1/2. By Lemma [7
projects to a positive elliptic element of Sp(2). It follows that with respect to the part1a1
order on [r)\lgf(S 1), we have

idp <P <0O.
By Lemma 7.5 we can multiply on the right by W to obtain
¥ <OV < OV.

Using Lemma [7.6] we deduce that
p(Y) < p(@Y) < p(OY).

Since W comes from a linear map, it commutes with ®, so we have

pOW) = p(W) + 5.

Combining the above two lines completes the proof. m|
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CHAPTER 3

ECH Embedding Obstructions For Rational Surfaces

1. Introduction

A symplectic embedding of symplectic manifolds (X, w) — (X', w’) of the same
dimension is a smooth embedding ¢ : X — X' that intertwines the symplectic form, i.e.
p*w’ = w. The study of symplectic embeddings has been a major topic in symplectic
geometry ever since Gromov proved his eponymous non-squeezing theorem, stating
that

B*"(r) symplectically embeds into B*(R) x C"! <= r<R
Symplectic capacities provide the primary tool for obstructing symplectic embeddings.
Roughly speaking, a symplectic capacity c is a numerical invariant associated to a sym-
plectic manifold (usually in a restricted class, e.g. exact) such thatc(X) < ¢(X') whenever

X symplectically embeds into X’. The most famous example is the Gromov width of X,
defined by

(1.1) cc(X) := sup{nr® : B(r) symplectically embeds into X}

Capacities like cg have been used to great effect to provide complete solutions to many
symplectic embedding problems.

One family of capacities that have been applied with particular success in dimension
4 are the ECH capacities CECH (one for each integer k > 1) introduced by Hutchings
in [44]. These capacities are defined using embedded contact homology (or ECH for
short), a version of Floer homology for contact 3-manifolds with a deep connection to
Seiberg-Witten theory. They also provide sharp embedding obstructions for several 4-
dimensional symplectic embedding problems, such as ellipsoids into ellipsoids [59] and
(more generally) of concave toric domains into convex toric domains [20]. This part of

this thesis is about symplectic embedding obstructions derived using ECH.

1.1. ECH capacities via algebraic geometry. Our present story begins with the work
of Wormleighton (the second author of this part of this thesis) in [80], which we now
review in some detail.

Recall that a toric domain X, is the inverse image u~'(Q) of a compact subset Q <
[0, 0)? with open interior under the standard moment map on C2.

u:C? - R? (z1,22) — (|z1)?, 7t|22[%)

The region Q is called the moment image. A toric domain Xg, is convex if Q = K n [0, 0)?
where K = R?is a convex setand 0 € K. Likewise, Xq is concave if Q = C n [0, c0)? where
[RZ\C is convex and 0 € C. Finally, a rational toric domain is a convex toric domain where
Q is the convex hull of finitely many rational points in [0, oo)z.

The ECH capacities of toric domains have been studied extensively (c.f. [17,20,45,46]).
For rational toric domains, the ECH capacities can be combinatorially computed using
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the moment polytope (), and these computations bear a remarkable resemblance to
calculations arising in the algebraic geometry of Q-line bundles over toric surfaces.
This observation was first leveraged (for ellipsoids) in the work of Cristofaro-Gardiner—
Kleinman [22]. In [80], Wormleighton formalized it as a theorem.

To state this theorem we observe that, given a moment polytope (), there is in addition
to Xq, an associated projective algebraic surface Yo described by the inner normal fan
of Q). This surface can be singular, and may alternately be viewed as a toric, symplectic
orbifold with moment polytope €. It comes equipped with a canonical ample R-divisor
AQ on YQ.

Tueorem 1.1 ( [80, Tum. 1.5]). Let Xq be a rational toric domain and (Yo, Aq) be the
corresponding polarized toric surface. Then
(1.2) cf M (Xq) = Dengfl(fyg)@{l) A :h'(D) =k +1}
Here the infimum is over all nef Q-divisors in Y. For the more symplectically minded
reader, a nef divisor may be thought of as a homology class that is represented by a
disconnected J-curve, and which has non-negative intersection with any other J-curve.
For example, in P? this is every non-negative multiple of the hyperplane class [P!], while
in P! x P! this is every non-negative combination of [P! x pt] and [pt x P!].
Theorem|[I.T|allows one to leverage the computational tools developed for toric geom-
etry to perform calculations, and implies a number of nice results about the asymptotics
of the ECH capacities as k — oo. See [80] for more results.

1.2. Geometric explanation. The proof of Theorem [1.1|in [80] is largely combina-
torial, and amounts to checking that the two quantities agree using previously known
explicit formulas. Thus, it is natural to wonder if there is some deeper geometric phe-
nomenon at play. We now sketch a heuristic argument suggesting that this is indeed the
case.

To start, given a moment polytope ), we observe that the surface with divisor
(Yo, Aq) and domain X, are related. Indeed, the interior X3 of Xq and the complement
Yo\Aq are equivariantly symplectomorphic and one can write down a “collapsing map”
1 : 0Xqo — Aq whose fibers are generically circles. If Yq is smooth, we can (roughly
speaking) write

(1.3) Yo = Xa uz Nao

where Nq is a very thin neighborhood of Aqg and Z is the boundary of Ng. Thus we

havg the (U QWG RIS Y Siscussion of capacities. Dissecting the construction of CECH,
we find that the 1st ECH capacity of Xq is (again, roughly speaking) computed as the

minimum area of certain disconnected holomorphic curves u in Z = R x Z satisfying
some conditions. First, each component C of u is embedded, cylindrical at +oo and
comes with an integer weight nc € Z. Second, u must pass through a point p € Z (fixed
for all u). The kth ECH capacity of Xq is given by sequences u; of k such curves with
matching ends at +oo.

One way that sequences u; of this form arise naturally is by neck stretching Yo along
the hypersurface Z. Namely, a disconnected curve D — Yo with embedded components
that is equipped with integer weights on its components and that passes through k
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Ficure 1. The relationship between Y, and Xq.

Q locally near boundary

collapsing 0X¢ to Ag

—

generic points in Yo will (if it survives the stretching process) produce a sequence u; as
above.

Ficure 2. Neck stretching divisors to acquire ECH curves.

SFT neck stretching

—

The curve D is essentially an effective, integral Weil divisor. If D passes through k points,
then we expect the moduli of divisors Mp in the class of D to satisfy dim(Mp) > 2k.
Furthermore, the area of D in Yq is given by Aq - D since Aq is Poincare dual to the
Kahler form on Yq.

The above discussion leads us to expect an inequality of the following form, which
strongly resembles one direction of the equality (T.2).

CECH(XQ) < min{Aq - D | effective divisors D with dim(Mp) > 2k + more (?))}

Note that, in the above discussion, we did not reference the fact that X and Yo arose
via toric geometry or that Xg = Yo\Aq. In fact, the entire argument seems sensible if
(Y, A) is an arbitrary projective surface with ample divisor and X < Y is an embedded
exact symplectic sub-domain.

Remark 1.2. A more precise perspective on the curve D in Y is that it arises in
the moduli space count used to define the Gromov-Taubes invariant of a symplectic 4-
manifold [58,73]. This neck stretching phenomenon is, morally speaking, the reason
that ECH is the Floer theory categorifying the Gromov-Taubes invariants.

In practice, this fact is formalized using the isomorphism of ECH with a variant of
Seiberg-Witten-Floer homology [76], and the equivalent of the Gromov-Taubes invariants
with the Seiberg-Witten invariants [75]. In order to make the discussion of this section
(§1.2) rigorous, we will make use of these equivalences via a result of Hutchings (see
Theorem in §2.6).
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1.3. Main results. We are now ready to state the main theorem of this part of this
thesis, which formalizes the discussion of First we recall the notion of algebraic
capacity from [80-82].

DerintTION 1.3 (DEFINITION . The kth algebraic capacity cilg(Y, A) of a rational pro-
jective surface Y with ample R-divisor A is

alg .
Y, A) = f D-A:x(D)>=k
c,°(Y,A) DeI\II?f(Y)Z{ x(D) =k + x(Oy)}

Here Nef(Y)z denotes the set of nef Z-divisors on Y.

Recall that a star-shaped domain X < C? is a codimension 0 sub-manifold with bound-
ary possessing a point p € X with the property that any other point g € X is connected
to p by a line segment in X. We do not require X to have smooth boundary.

Tueorem 1.4. (Theorem[3.5) Let X — Y be a symplectic embedding of a star-shaped domain X
into a smooth rational projective surface (Y, wa) with a ample R-divisor A with [wa] = PD|A].
Then

(%) cECH(X) < ¢IB(Y, A)

Remark 1.5. Methods of algebraic geometry have been applied extensively to sym-
plectic embedding problems for rational and toric surfaces, and our result is just one
more perspective on this story. We refer the reader to the work of McDuff [60], McDuff-
Polterovich [65], Anjos-Lalonde-Pinsonnault [6], Casals-Vianna [13] and Christofaro-
Gardiner-Holm-Mandini-Pires [21] for just a few examples. Likewise, rationality is
a key assumption in many embedding results (even those that use purely symplectic
methods). See, for example, the work of Buse-Hind [12] and Opshtein [64]. Note that
our references here are not at all exhaustive.

RemARk 1.6. The formula (%) provides a new computational tool for studying the ECH
capacities of star shaped domains living within divisor complements. Indeed, the nef
cones of surfaces are very well studied and many structural results exist which may be
brought to bear while studying c¥“H via Theorem Furthermore, the nef cone is often
polyhedral, and thus methods from convex optimization can be utilised to compute 8.
We hope to explore the combinatoral and computational implications of (x) in future
work.

Although we were originally motivated to prove Theorem in order to study
non-toric surfaces, many interesting implications appear even in the toric setting. In
particular, [80, Thm. 1.5] implies that the inequality in Theorem is an equality for
certain divisor complements, and this is key to our applications. We will now discuss the
three results on symplectic embeddings into smooth toric surfaces that we will prove.

For our first application, we prove that these obstructions are sharp for embeddings

of concave toric domains into toric surfaces.

THeoreM 1.7. ( Theorem Let X be a concave toric domain with interior X3 < X, and
let (Ya, Aq) be a smooth toric surface. Then

X} symplectically embeds into Yo =~ <= CECH(XA) < Czlg(YQ,AQ)
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This result uses a similar result of Christofaro-Gardiner in [20], for embeddings of
concave domains into convex domains. Theorem [1.7] essentially shows that the extra
freedom provided by gluing the divisor Aq into X7, makes no difference for embeddings
of concave domains.

For our next application, we prove the following result that includes a folk conjecture
about the Gromov width. Let E be the moment polygon of a concave toric domain and
define the E-width by

cz(X) := sup{r : X,z symplectically embeds in X}

When E is the triangle with vertices (0, 0), (1,0), (0, 1) the E-width cz is just the Gromov
width cg.

Tueorem 1.8. (Corollary + Corollary [£.15) Let E be the moment polygon of a concave
toric domain. Suppose Q) < A is an inclusion of moment polytopes of smooth toric projective
surfaces. Then

cz(Ya) < cz(Ya)

In particular, the Gromov widths satisfy
c(Ya) < cc(Ya)

In fact, we prove Theorem|1.8|(and Theorem(1.7) for all projective surfaces (even singular
ones) that possess a smooth fixed point. Note that any smooth symplectic toric 4-
manifold is a smooth projective toric surface (c.f. [55]) so Theorem [1.8| may be stated in
those terms as well.

Remark 1.9. There have been previous results (c.f. [21, Thm. 1.2]) indicating that a
ball (or more generally, ellipsoid) embeds into a toric domain if and only if it embeds
into the corresponding toric surface. These results are related to Theorem and can
actually be used to recover some cases. See for more discussion.

Finally, we prove an estimate of the Gromov width of a toric surface in terms of the
lattice width of its moment polygon. This result is [9, Conjecture 3.12].

DerintrioN 1.10. The lattice width w(€)) of a moment polytope is defined by

w(Q) := i, (ﬁgg dp- q>)

Tueorem 1.11. (CorollaryE.19) Let Q) be a moment polygon with a smooth vertex. Then
cG (YQ) <w (Q)
In particular, this holds when () is Delzant or, equivalently, when the toric surface Yq is smooth.

Theorem follows from Theorem [1.8/and a rigorous version of a heuristic argument
from [9].

Remark 1.12. The assumption that the moment polytope has a smooth vertex in

Theorems and is an technical assumption that may be removable with
different methods.
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1.4. Future directions. There are a number of interesting research directions along
the lines of [80] and this part of this thesis that are worth exploring. We will comment
on these now.

First, Theorem [1.1|in [80] gives an equality for the ECH capacities, and it is natural
to ask when Theorem [3.5 can be upgraded to an equality as well. Here is a guess along
those lines.

Conjecture 1.13 (ECH oF pivisor cOMPLEMENTS). Let (Y, wa) be a rational projective
surface with an ample R-divisor A such that sing(Y) < supp(A) and suppose Y\ supp(A) is
deformation-equivalent to a ball. Then,

cECH(Y\ supp(A)) = ¢} B(Y, A)

Note that Y\A can still be viewed as the interior of a star shaped domain with corners
X. Proving Conjecture would require either a clever argument for packing X or a
very delicate understanding of the ECH and Reeb dynamics of smoothings of X.

Beyond the ECH capacities, there are finer obstructions defined (by Hutchings in
[46]) for embeddings of convex toric domains into other convex toric domains. These
invariants are still poorly understood. The hope is that they could help solve some of
the more obstinate embedding problems, such as the problem of embedding polydisks
into ellipsoids.

QuestioN 1.14. Let A and () be rational moment polytopes. Is there a framework
for treating the obstructions of [46] to embeddings Xa — Xq in terms of the algebraic
geometry of YA and Yq?

Finally, our proof of Theorem for the Gromov width requires only a family of
capacities that provide sharp obstructions for embeddings of the ball into convex toric
domains, and an extension of these invariants to closed toric surfaces satisfying a set of
axioms (see Proposition [£.9). It is interesting to ask if the proof of Theorem [1.8| can be
ported to higher dimensions using another family of holomorphic curve based capacities,
such as the S!'-equivariant symplectic homology capacities of Gutt-Hutchings [32] or the
rational SFT capacities of Siegel [71].

Outline. This concludes §1, the introduction. The rest of this part of this thesis is
organized as follows.

In §2, we cover preliminaries in Seiberg-Witten theory and embedded contact
homology (2.5). We then prove an important estimate of the ECH capacities of a star-
shaped domain in terms of a minimum area over Seiberg-Witten non-zero classes. We
should note that this is where the “neck stretching” part of the argument is made formal.

In §3, we discuss the algebraic capacities in earnest (§3.1). We then prove Theorem
[1.4using the results of §2 and methods from algebraic geometry (§3.2).

In §4, we discuss the applications to toric surfaces. We start with a review of toric
surfaces and toric domains [#.2). We then show that the algebraic capacities of a
(possibly singular) surface satisfy a set of nice axioms (4.3). Finally, we apply the axioms
to prove Theorems|1.7H1.11
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2. ECH capacities and Seiberg—Witten theory

In this section, we review some aspects of Seiberg-Witten theory (§2.1) and embedded
contact homology (§2.5). Our goal is to prove an estimate for the ECH capacities in terms
of the Seiberg-Witten invariants in

2.1. Seiberg-Witten invariants. The Seiberg—Witten invariant of a closed 4-manifold
X with b*(X) = 1 and a spin-c structure s is an integral smooth invariant denoted by

SWx(s) e Z

A symplectic manifold X has a canonical spin-c structure sx. Since spin-c structures on
X are a torsor for Hy(X; Z), SWx in the symplectic setting can be viewed as map

2.1) SWyx : Ho(X;Z) > Z A SWx(A) :=SWx(sx + A)

In later sections (e.g. §3.2), we will often refer to the set of mod 2 Seiberg-Witten non-zero
classes

(2.2) SW(X):={Ae H*X;Z) : SWx(A) =1 mod 2} c H*(X;Z)
In this section, we discusss several properties of the these invariants that we will apply
in later sections. See [57,61] for a more detailed review.

Let us briefly recall the construction of SWx for X symplectic and spin-c structure
s = sx +A. Choose a metric ¢ and a self-dual 2-form u. Given this data, we can consider
the Seiberg-Witten equations for a pair (a, 1) of a spin-c connection 4 on s and a spinor
Y eT(ST).

(2.3) Dsp =0 Fi+o(y) =u

ProrositioN 2.1. For generic (g, u), the moduli space M(A) of pairs (a, ) modulo a natural
C®(X; S1) action is a closed manifold of dimension

(2.4) I(A) = c1(X) - A + A?

The Seiberg-Witten invariant SWx(A) is acquired by integrating a certain natural top-
dimensional cohomology class over M(A). It is independent of the choice of (g, ) if
bH(X) = 2.

2.2. Wall-crossing. When b (X) = 1, two different Seiberg-Witten invariants arise
depending on the choice of (g, i). More precisely, we have invariants

(2.5) SWx(A) if (g, u) satisfies ij uAte>[w]-A
Y

(2.6) SWi (A) if (g, u) satisfies LJ Aty <lw]-A
21 Y

Here 7, is the unique self-dual, g-harmonic 2-form satisfying [7,] = [w] in H*(Y), and if
g is compatible with w then 7, = w. We refer to the space of data satisfying as as the
symplectic chamber and the other space of data as the non-symplectic chamber (cf. [74, p.
463]).

The two invariants SWx and SW are related by a well-known wall-crossing formula.
Here is a simple version of this formula that we will use momentarily (cf. Li-Liu [56, Prop
1.1]).
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Tueorem 2.2 (WaLL CrossING). Let X be a closed symplectic 4-manifold with b1(X) = 0
and b*(X) =1, and let A € Hy(X) satisfy [(A) = 0. Then

(2.7) SWx(A) = SW(A) £ 1

2.3. Gromov-Taubes. There is a deep alternate formulation of the Seiberg-Witten
invariants using J/-holomorphic curves due primarily to Taubes [74,75], who introduced
the Gromov-Taubes invariants

GI‘X :H2(X) — 7 AHer(A)

Given a choice of compatible complex structure | on X, Grx(A) is a signed count of
points in a certain 0-dimensional moduli space M4(J) of disconnected J-curves C in
homology class A that pass through k = I(A)/2 generic points of X. Of course, | must
be chosen so that M4(]) is transversely cut out in an appropriate sense.

Taeorem 2.3 (Tausgs). The Seiberg-Witten and Gromov-Taubes invariants agree, i.e. SWx =
er.

Theorem [2.3|is extremely powerful and has a number of surprising consequences.
For example, we have the following effectiveness result.

ProrosiTioN 2.4 (ErrecTive Crassgs). Let Y be a smooth projective surface. Then every
Seiberg-Witten non-zero class is effective, i.e. SW(Y) < NE(Y).

Proor. Let | be the projective complex structure on Y. Any J-holomorphic map
u: X — Y from a closed (possibly disconnected) Riemann surface X is, of course,
algebraic. If A € H>(Y) is non-zero and non-effective, then no such curve can exist. In
particular, the Gromov-Taubes moduli space M4(J) is empty (and thus transverse), so
SWY(A) = GI'y(A) = 0.

There is a slight technical point when A = 0. In this case, the empty curve is counted
as the unique J-curve of homology class 0, so Gry(0) = 1. This covers the statement in
that case. O

2.4. SW for rational surfaces. We can use Proposition and the wall-crossing
formula in Theorem [2.2 to compute the mod 2 Seiberg-Witten invariants of a rational
surface. This calculation is key to §3}

ProrosITION 2.5 (RATIONAL SURFACES). Let Y be a smooth rational surface. Then
SW(Y) = {Ae NE(Y) : I(A) =0}

The proof is a direct generalization of the calculation for P?, and requires the follow-
ing lemma.

Lemma 2.6. Every smooth, rational, projective surface X admits a psc (positive scalar curva-
ture) metric.

Proor. Every minimal rational surface M has a psc metric [54, Thm 1], e.g. P2 In
particular, P? also has a psc metric. Thus by the work of Gromov-Lawson [31, Thm 1],
the connect sum X = M#kP? has a psc metric for any k > 0. This covers all rational
surfaces. O
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Prook. (Proposition[2.5) Let Y be the smooth rational surface above with Kahler form
w. Every rational projective surface Y satisfies b*(Y) = 1 and b1(Y) = 0.

By Proposition 2.4} every Seiberg-Witten non-zero class A is effective. Furthermore,
every such class A must satisfy I(A) since the moduli space M(A) must have dimension
I(A) = 0. Thus

SW(Y) < {AeNE(Y) : I(A) =0}
We thus must prove inclusion in the other direction.

Thus let A € Hx(Y) be an effective class with I(A) > 0. Let (g, 1) be a pair of a psc
metric and a C%small self-dual 1-form u. The pair is in the non-symplectic chamber.
Indeed, [w] - A > 0 since w is ample and A is effective, while {u A 74 ~ 0. The p-
perturbed Seiberg-Witten moduli space is empty since g has psc [63, Cor 2.2.6 and Cor
2.2.18]. Thus the Seiberg-Witten invariant SW™(A) in this chamber vanishes. By the
wall-crossing formula of Theorem 2.2} we thus conclude that

SWI(A) =SW,(A)+1=1 mod 2
This concludes the proof. O
Here are a few examples of the above calculation for specific rational surfaces.

ExampLE 2.7 (ProjecTive PLaNE). The homology Ha(P?) is generated by the hyperplane
class H and the effective classes are NE(P?) = Cone(H ). Furthermore, the anti-canonical
is —K = 3H so

I(kH) = kH -3H + kH - H = (k* + 3k)
Thus I(A) > 0 for any effective class and so by Proposition SW(P?) = Cone(H).

ExampLi 2.8 (Line Tives LiNg). The effective cone NE(P! x P!) is generated by the
two classes D1 = [P! x p] and D, = [p x P!]. These intersect as follows.

Di1-D1 =Dy -Dy=0 D1-Dy=1

The anti-canonical divisor —K is 2D; + 2D,. This is an ample class, so again I(A) = 0 for
any A and we acquire SW(P! x P!) = Cone(D1, Dy).

2.5. Embedded contact homology. Here we review embedded contact homology as
a symplectic field theory, as presented in [42] (also see [45]).

DerintTION 2.9. A contact 3-manifold (Y, &) is a 3-manifold Y with a 2-plane bundle
& < TY that is the kernel & = ker(a) of a contact form. A contact form « is a 1-form
satisfying
anda >0 everywhere
The Reeb vector-field R of « is the unique vector-field satisfying «(R) = 1and da(R, -) =0,
and a Reeb orbit is a closed orbit (modulo reparametrization) of R.

The embedded contact homology, or ECH for short, of a closed contact 3-manifold (Y, &)

is a Z/2-graded Z/2-module denoted by
ECH(Y,&) = P  ECH(Y,&[I))
[MeH1(Y;2)
The ECH group comes equipped with a degree —2 U-map and a distinguished empty set
class.
U : ECH(Y,¢; [I']) — ECH(Y, &; [I]) (] € ECH(Y, &;[0])
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The Z/2 grading on ECH(Y, &; [0]) can be canonically enhanced to a Z/2m-grading where
[#] has grading 0 and m is defined by

m = min{{c1(&); [Z]) : [Z] € Ha(Y;Z)}
The simplest example of ECH groups are those of the 3-sphere.

ProrosrTion 2.10. (c.f. [45]) The embedded contact homology BECH(S3, &) of the 3-sphere is
given by
ECH(S3, &) = z2[u™
as a Z/2[U]-module, where |U ™| = 2 and U acts in the obvious way.

Given a choice of contact form a for (Y, &), one can enhance the ECH groups of Y
to a family of filtered ECH groups ECHE(Y, a; [I']) parametrized by L € [0, «0) equipped
with natural maps
(2.8)

(K ECHM(Y, a;[T]) —» ECHY(Y, a;[T]) and u : ECH(Y, a;[T]) — ECH(Y, & [T7)

Each filtered ECH group comes equipped with a U-map and empty set class, and these
structures are compatible with the maps (2.8).
ut: ECHL(Y, a;[T]) — ECHL(Y, o; [T])  [@]* € ECHE(Y, &;[0])

Furthermore, the inclusions LIL< respect composition and the ordinary ECH is the colimit

of the filtered ECH groups via the maps (1.

We can give a simple definition of the ECH capacities in terms of the formal structure
of ECH described above.

DerintrioN 2.11. The k-th ECH capacity c(Y, «) of a closed contact 3-manifold is
defined by

ck(Y,a) = min{L . [@] = UX o 11 (0) for o € ECHY(Y, a; [0])}

The k-th ECH capacity cx(X, A) of a Liouville domain (X, A) is the k-th ECH capacity of
its boundary (90X, A|sx) as a contact manifold.

The ECH capacities are (non-normalized) capacities on the category of Liouville
domains.

ProrositioN 2.12. The ECH capacities ck(-) satisfy the following axioms.
(a) (Inclusion) If X — X' is a symplectic embedding of Liouville domains, then ci(X, ) <
Ck (XI, A/).
(b) (Scaling) If (X, A) is a Liouville domain then cx(X,C - A) = C - cx(X, A) for any
constant C > 0.

The ECH groups are the homology of an ECH chain group ECC(Y,, a, J) depending
on a choice of non-degeneratdl| contact form a and a complex structure | on the sym-
plectization of Y satisfying certain conditions. The chain group is freely generated over
Z/2 by orbit sets

I'={(yi, m,-)}i“:l y; is an embedded Reeb orbit and m; € Z

1A non-degenerate contact form is one where the differential of the Poincare return map along any
orbit has no 1-eigenvalues.
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satisfying the condition that m; = 1 if the orbit y; is hyperbolic. Given an element x of
ECC(Y, a, ]) and an orbit set I', we denote the I'-coefficient of x by {x,I'). The differential

0:ECC(Y,a,]) — ECC(Y, a,])

is defined by a holomorphic curve count. More precisely, if I'y = {()/i,m,')}ll‘ and
. ={(n;, ni)}l1 are admissible orbit sets, then the I'_-coefficient of JI'; is given by

<ar+/ F—> = #My (Y/ ])/R

Here #M;(Y, J)/R is a count of (possibly disconnected) holomorphic curves in the sym-
plectization of Y that have ECH index 1 with positive ends at I'; and negative ends at
I'_. The ECH index I(C) of a homology class in C € Hy(Y,I'; uTI'_) is defined by

km,-

I n;
2.9) I(C) = {ee(£),C) + Qe(C,C) + >, Y CZe(y)) = >, 2, CZe(n)

i=1j=1 i=1j=1
Here ¢ (&) is the relative 1st Chern class, Q.(C, C) is the relative intersection form and

CZ. is the Conley-Zehnder index (all relative to a trivialization 7 of the contact structure).

Embedded contact homology has a vaguely TQFT-like structure, whereby certain
types of cobordisms between contact manifolds induce maps on the (filtered) ECH
groups.

DerintTION 2.13. A strong symplectic cobordism X between contact manifolds Y3 with
contact form, denoted by

(X, w): (Ya, a4) = (Y=, a-)

is a symplectic manifold (X, w) with oriented boundary 0X = Y, — Y_ such that w|y, =
+da+. The area class [w, a+] € H*(X,0X) of (X, w) is the class of the relative de Rham
cycle

(w, a4y —a_)e PX)@Q (Y, u-Y)

We use [X] : [['+] — [['-] to denote a relative class in H>(X, 0X) whose image under
the boundary map 0 : Hy(X, 0X) — H1(0X) is given by

[[+]@[T-] € Ha(Ys) ® Ha(Y-) ~ H(2X)

For convenience, we use p[X] — R denote the pairing of [X] with the area class [w, a+].
Explicitly, we have the formula

plX] = L W — L+z at + L_Z a_

With the above notation, we can state the following result of Hutchings regarding the
functoriality of ECH with respect to strong symplectic cobordisms.

TaeEOREM 2.14 (HutcHINGS [42]). A strong symplectic cobordism X : Yy — Y_ and let
[X] : [T4+] — [I=] be a class in Hy(X, 0X). Then there is a canonical, ungraded map

(2.10) ECH!(X;[Z]) : ECH (Y, ay; [T1]) — ECHMPIEN(Y_, o [T_])

(2.11) ECH(X; [£]) : ECH(Y,, & [T4]) — ECH(Y_, &_;[T_])

These maps are compatible with composition, and satisfy the following axioms.
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(a) (Curve Counting) There exists a chain map @ inducing ECH(X; [Z]), of the form
@l - ECCL(Yy, ay; [T4]) —» ECCEPEN (Y o _;[T_])
that “counts curves” in the following sense: if I+ are orbit sets in Yy such that
(@a(T4),T-)=1
then there is a holomorphic currenf’] C of ECH index 1 asymptotic at +oo to T'..

(b) (Filtration) The maps commute with the inclusion maps lIL< and i, e.g.

ECH! (X;[Z])

ECHN (Y, ay; [T4]) s ECHMPE (Y, 0 ;[T_])

l !

K(y.
ECHX (Y, ava; [T1]) — BN o pepkeel=l iy o r_])

(c) (U-Map) The maps commute with the U-maps, e.g.
ut+elE o ECHY(X; [£]) = ECHE(X; [£]) o UL

(d) (Seiberg—Witten) Let (P, &) be a contact 3-manifold. Consider a pair of strong symplectic
cobordisms and their composition, denoted by

N:g—P X:P—>g and Y=NuzX:J—>
Fix homology classes [A] € Hy(N, Z) and [B] € H2(X, Z) with 0|A] = 0|B]. Then

ECH(X, [B]) o U* o ECH(N, [A]) = > SWy([C])
[Cles

Here S ¢ Hy(X) is shorthand for the set of homology classes satisfying
[C] "N = [A] [C]nX =[B] and I([C]) =2k

The analogue functoriality result for exact symplectic cobordisms is well established
[48, Theorem 1.9] and has been used extensively, e.g. to define the ECH capacities [44].
Non-exact cobordisms and the foundations provided by [42] have been used to define
Gromov-Taubes invariants for non-symplectic manifolds [27,28].

Remark 2.15 (Proor oF THeoreM [2.14). Since a detailed treatment of Theorem
has yet to appear in the literature outside of [42], we include a brief discussion of its
proof. It is similar to the exact case in [48] with some small modifications.

The basic strategy of [48] and [42] is to establish a filtered version of the Taubes iso-
morphism between filtered ECH and an energy filtered version of Kronheimer-Mrowka'’s
monopole Floer homology (MFH) groups [48, §3]. Cobordism maps on filtered ECH
can then be defined so that they intertwine the analogous maps on filtered MFH via these
isomorphisms [48, §5.1]. Theorem [2.14(c)-(d) follow more or less immediately from this
strategy [48, Cor 5.3].

The proof in [48, §6] of the analogue of Theorem [2.14(a)-(b) uses a well-known
argument for producing instantons counted in MFH cobordism maps from holomorphic
curves [48, §6.2] and an SFT/Gromov compactness argument [48, §6.4]. In the non-exact
setting, the required compactness can be guaranteed by only considering cobordism
maps MFH(X, s) in MFH induced by a symplectic cobordism (X, w) equipped with a

2This is a formal positive integer combination of embedded holomorphic curves.
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specific spin-c structure s, determined by a fixed relative homology class [Z] : [I'4] —
[[_]with s = s, +PD[X]. The energy of the instantons and holomorphic curves involved
in MFH(X, s) obey a uniform bound in terms of the actions of the ends I't and p[Z].
In particular, the moduli space of curves admits a compactification in the SFT topology
and the arguments of [48, §6] can be slightly modified to handle this case.

2.6. From ECH to SW. We now conclude the section by applying the formal structure
of the ECH groups in to estimate for the ECH capacities of a star-shaped domain
embedded into closed symplectic manifolds.

ProrosiTioN 2.16. Let (X, ) = R* be a star-shaped domain with restricted Liouville form
A and let (Y, w) be a closed symplectic 4-manifold. Fix an embedding

(X, dA) - (Y, w)
Then the ECH capacities of X satisfy

(2.12) ce(X)< inf (w2 ¢ I(Z]) > 24)

Remark 2.17. This result is based on the proofs in [42, §2.2].

Proor. Let (Z, @) be the contact boundary of (X,A) and let [X] € Hy(Y) be any
Z-homology class satisfying the constraints laid out in (2.12).

SWy([Z]) =1 mod 2 and I([Z]) = 2k
It suffices to demonstrate the following inequality for any such [Z].
ce(X) < A:={w, [Z])

Since cx(X) < ¢;j(X) for j = I([X])/2, we can assume that k = j = I([Z])/2. Furthermore,
it is equivalent to show that for all ¢ > 0 sufficiently small, there exists a class

(2.13) ne ECHAY¢(Z,&[0]) with U*ian = [@] € ECH(Z, &;[0])

To find an 7 that satisfies (2.13), we consider the splitting of Y into X (or rather, the
image (X)) and N = Y\X. If we denote the contact boundary of X by (Z, &), we can
interpret this as pair of strong symplectic cobordisms

N:g—>Z7Z X:Z->y
Since X is diffeomorphic to a 4-ball, the pair of maps

Hy(Y) =25 Hy(X,0X) and  Ha(Y) =25 Hy(P, oP)

are, respectively, the 0 map and an isomorphism. Let [S] = [X] n X be the intersection
of [Z£] with X. Note that we have

A = ([@], [E]) = plS] + p[0] = p[S]
Now we let ¢ > 0 be small and arbitrary, and define the desired class 1 by
n = ECHA(P;[S])[@] € ECHAY¢(Z,&;[0]) where [@] € ECHE(5;[0]) =~ Z/2[]

We would like to show that U144 = [F]. To start, pick a chain map lifting the
ECH cobordism map as in Thm. 2.14(a). That is,

®:7/2 > ECC*t4(Z,a;[0]) with [®()] =1
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If I_ is any orbit set such that (®(¢¥),T_) = 1, then by Theorem [2.14(a) we know that
there is a holomorphic current C of ECH index 0 with empty positive boundary and
negative boundary I'_. If we let C’ < Z be a surface with positive boundary I'_, so that
IT_| = I(C'), then by the additivity of the ECH index we have

2k = I([Z]) = I(C) + I(C) = I(C) = |T_|

Thus we know that 71 is homogenous of grading 2k, and so U* o t44.(n) is grading 0. In
particular, by Proposition 2.10, we have

Uria4:n € ECHy(Z, & [0]) ~ ECHo(S%; [0]) = Z/2[&]
On the other hand, by Theorem [2.14(b) and (d), we know that
ECH(X;[0]) o U* o ta4+.n = ECHA(X;[0]) o U* o ECH(X; [S])[@] = ¢

Here ¢ € Z/2 is the sum over [C]| with [C] n X = [0] and [C] n P = [S] of SWy([C])
mod 2. Since [X] is the unique such class and SWy([X]) =1 mod 2, we find that c = 1.
Thus, UX 144 ¢7 is non-zero and we must have

Uriagen = (@]

This proves that for every ¢, there is a class 1 € ECHA*¢(Z, &;[0]) satisfying (2.13), and
thus concludes the proof. |

Remark 2.18. The proof of Proposition generalizes immediately to Liouville
domains (X, A) that satisfy the following criteria.

(a) The map Hp(0X) —*> Ha(X) is 0.
(b) The contact manifold (X, &) has torsion chern class, i.e. ¢1(&) = 0 € H(6X; Q).
(c) The empty set [F] is the unique class of ECH grading 0 in the image of the
U-map.
The conclusion of Proposition must be appropriately modified so that (2.12) is a
minimum over all classes [Z]| such that [Z] n X = 0. In practice, the most difficult
criterion to verify is (c). This holds, for instance, when [(J] is the unique ECH index 0

class. It is also believed to hold for circle bundles over a 2-sphere (c.f. the unpublished
thesis of Ferris [25] and the forthcoming work of Nelson-Weiler [62]).

3. Algebraic capacities and birational geometry
We now construct of the algebraic capacities (§3.1) and prove Theorem 3.5(§3.2).

Conventions 3.1. In this section, all surfaces will be projective normal algebraic
surfaces over the complex numbers, not necessarily smooth, unless otherwise specified.

Let K € {Z,Q,R}. We work in the Néron-Severi group NS(Y) < H?(Y,Z) of Weil
Z-divisors regarded up to algebraic equivalence. We denote NS(Y )i := NS(Y) ®z K.
We say that a Z-divisor D on a surface Y is Q-Cartier if some integer multiple of D is
Cartier; that is, the sheaf O(D) is a line bundle. Y is said to be Q-factorial if every Weil
Z-divisor on Y is Q-Cartier. Every toric surface is Q-factorial. A @-Cartier R-divisor D
onY isnef if D - C = 0 for all curves C < Y. Denote by Nef(Y)i the classes in NS(Y)k
corresponding to nef divisors.
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3.1. Construction of algebraic capacities. Let Y be a Q-factorial projective surface
and let A be an ample R-divisor on Y. We recall the optimisation problems of [80-82]
that are designed to emulate ECH capacities in the context of algebraic geometry.

DeriniTion 3.2 ( [80, §4.5] or [81, Der. 2.2]). The kth algebraic capacity of (Y, A) are
given by

alg .
1 Y, A):= f {D-A:x(D)=>k O
(3.1) ¢, (Y, A) DeI\lIIelf(Y)Z{ x(D) =k + x(Oy)}

Remark 3.3. Note that it follows from Kleiman’s criterion for nef-ness that this infi-
mum in (3.1)) is always achieved.

The index of a Z-divisor D on Y is given by I(D) := D - (D — Ky). When Y is smooth
or has at worst canonical singularities [68] we have Noether’s formula

(3.2) x(D) = x(Oy) + %I(D)

Furthermore, if w4 is the Kahler class induced by A via the embedding into PH?(kO(A))
for k » 0 (which is defined because A is ample) we may write

(3.3) D-A=<a)A,D>=J WA

D
In these cases, we can alternatively write the algebraic capacities as
3.4 (Y, A) = inf ,D) : I(D) > 2k
64 GF(Y,A)= | inf  {(@s,D) : I(D) > 2%}

which is very similar to the upper bound for cECH in Propositionm

3.2. Relating ECH capacities and algebraic capacities. We seek to prove the follow-
ing result.

Tueorem 3.4. Suppose Y is a smooth rational surface, and let A be an ample R-divisor on Y.
Then

al
inf {D-A:I1(D)>2k}= inf {D-A:I(D)>2k}=:¢c,2(Y, A
pemt (D) =2k} = jnf 1 (D) 2 2k} =: ¢, °(Y, A)
By combining Proposition the formula and Theorem [3.4, we immediately
acquire the main result, which we state again for completeness.

THaeOREM 3.5. Suppose that X — Y is a symplectic embedding of a star-shaped domain X
into a smooth rational projective surface Y with a ample R-divisor A and symplectic form wa
satisfying [wa]| = PD[A]. Then

(*) cFM(X) < 3 ¥(Y, A)

RemMark 3.6. We only require an upper bound of the Seiberg-Witten quantity by cilg
for the purposes of this part of this thesis. However, Theorem [3.4]is satisfying because
it demonstrates that the algebraic capacities are (as obstructions) just as sensitive as the
Seiberg-Witten theoretic quantities.
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We treat the case of smooth rational surfaces using the Minimal Model Program. To
begin, recall that the nef cone is contained within the effective cone, i.e.

Nef(Y)z < NE(Y)

We calculated the Seiberg-Witten theory of a rational surface in Proposition That
calculation implies the inequality of Theorem

inf {D-A:1(D)>2k}= inf {D-A:I(D)=>=2k
o (D AID) =26 = nf (DA I(D) 2K

This immediately implies that we have an inequality in one direction.

3.5 inf {D-A:I(D)>2k}< inf {D-A:I(D)=>=2k
33 oy (DA I(D) 22K} < inf, (DA< 1(D) > 28)

For the converse inequality, we will show for that each Seiberg—Witten nonzero divisor
there is anef divisor thatis “preferable’ from the perspective of the optimisation problems
above. For this purpose, we adopt the following terminology.

DeriniTioN 3.7. Let Y be a Q-factorial surface. We say that a Weil Q-divisor Dy is
(a) index-preferable to another Weil Q-divisor D if I(Dy) = I(D) and
(b) area-preferable D if Dy - A < D - A for all ample R-divisors Aon Y.
A Weil Q-divisor Dy that is both area- and index-preferable will simply be called prefer-
able. Note that Dy is area-preferable to D if and only if D — Dy is effective.

To construct preferable divisors in general we will use the isoparametric transform IPy
of [10]. This takes an effective divisor D to a new divisor IPy(D) given by
D - D;
2
D;

(3.6) IPy(D):=D— >’ D;

D-D;<0

Here the sum is over prime divisors D; with D - D; < 0 and, in particular, IPy(D) = D if
D is nef. We denote by IP} (D) the result of iterating IP}, n times. In [10], the following
result is proven.

Tueorem 3.8 ([10, Tam. 1.1 + 1.2]). For any effective divisor D on a smooth surface Y we
have

h°(D) = h°(IPy(D))
Then for all sufficiently large n » 0, we have IPY(D) = IPY (D) for some nefIPY (D) € Nef(Y)z.

We will need to know what IPy does to area and index. For area, the answer is quite
simple.

Lemma 3.9. Let D be effective and A be ample. Then A -1Py(D) < A - D.

Prookr. If D; is a prime divisor with D; - D < 0 and D is effective, then Dl.2 < 0. Thus
the coefficients of the sum in are positive. Since A is ample, A - D; < 0. These two
facts imply the result. m|

The answer for the index is more complicated. For this, we need the following lemma.
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Lemma 3.10. Let Y be a smooth surface with D an effective divisor on'Y. Suppose Cq, ..., Cy,
is a collection of curves intersecting D negatively. Then either one of the C; is a (—1)-curve or

D.C;

2
i

n
I(D') > (D) where D'=D— )]
i=1

Ci

In particular, I(IPy(D)) = I(D) if no (—1)-curve intersects D negatively.
Proor. Suppose n = 1 so that there is only one curve C. If C2 = —1 we are done, so
let C2 = —rforr >2. Let D - C = —{ so that
l

D’:D—HC::D—mC

Let 7: Y — Y be the contraction of C to the singular surface Y. We can compute

I(D") = (D -mC)- (D —mC — Ky)
=I1(D)—-2mD -C 4+ (—mC) - (—mC — Ky)
2—r

= I(D) 4+ 2ml + (—mC) - (=mC — n*Ky — C)

= I(D) +2ml —m?r — (2 —r)m

Now observe that 1 > m — % > 0 by definition and so ¢ + r > rm. Furthermore, r > 2

and m > 1. Using these facts, we can compute the following lower bound.

)

2—r

2ml — mr(m + 27‘;7) >2ml — (€ +r)(m +

-2
:m€+€-r7—mr+r—2>mﬁ—r(m—l)—2>(m—1)€—2>—2

In particular, I(D’) > I(D) — 2. However I(-) is even and so we must have I(D’) = I(D).
Now induct on the number of curves. Suppose the formula holds for a set of n

curves meeting an effective divisor negatively. Suppose curves Cy, ..., C,, C intersect D

negatively. If any of the curves is a (—1)-curve then we are done. Assume not. Notate

n—1
DC.ZC} =m and F = Z m;C;

D-C=-{, C*=-r, [
i=1

so that D’ = D — F — mC. Compute

I(D—F—mC) =
— (D — F) + 2mF - C — 2mD - C + I(—mC)
>1(D —F)+2ml —mr(m + ;r)
I(D—F)+ (m—1)¢—2
>I(D—F) -2

where we used that F - C > 0 since F is effective and supported away from C. By

inductive assumption I(D — F) > I(D) and so we have I(D’) > I(D) — 2. Since I(-) is

even we can conclude that I(D’) = I(D) as desired. O
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Proor or Tam. 3.4 We simply need to show that for any divisor in SW(Y'), there exists
a preferable nef divisor. In other words, we must construct a map

Nyi SW(Y) — Nef(Y)Z

taking a Seiberg-Witten nonzero divisor to a preferable nef Z-divisor. We now construct
these maps by induction on the number of blow ups necessary to make Y from a minimal
surface.

For minimal rational surfaces the existence of an Ny is clear. In the cases of P? and
P! x P!, we have SW(Y) = Nef(Y)z. Hirzebruch surfaces, on the other hand, have no
(—1)-curves. Thus we can set Ny (D) = IP}(D) for n » 0. Lemmas and [3.9imply
that the result is preferable.

Now assume that such a function exists for all rational surfaces expressible as b — 1
blowups of a minimal rational surface. Let Y be a surface expressed as b blowups of
a minimal rational surface, and for any (—1)-curve E < Y denote the contraction by
ne: Y — Yg. We define Ny (D) by the following procedure.

(@) If D - C = 0 for all curves C < Y then D is nef and we define Ny (D) = D.

(b) If D - E < 0 for some (—1)-curve E, write D = nzﬁ + mE for some D € SW(YE)
and for some m > 0. The inductive hypothesis implies that there exists a nef
Z-divisor Dy preferable to D. Define N(D) = ;. Dj.

(c) If D-E > 0Oforall (—1)-curves Eon Y but D - C < 0 for some (—r)-curve C with
r = 2, recursively apply (a)-(c) to IPy(D) instead of D and define Ny (D) as the
result.

=
<

This procedure terminates: if IPy (D) eventually intersects a (—1)-curve negatively then
(b) outputs a nef divisor. If IP} (D) does not intersect a (—1)-curve nonpositively for any
n then after a finite number of steps we reach IPY (D) € Nef(Y)z by Theorem which
is returned by (a). Note that the application of Theorem [3.8]is valid by Proposition 2.4}

We claim that Ny (D) is nef and preferable to D. Indeed, all three steps (a)-(c) only
improve the area and index constraints. This claim is trivial for (a) and follows from
Lemmas and 3.10| for (c). (b) produces a preferable nef Z-divisor since n;D is

preferable to D = nZB + mE from direct calculation (noting that m > 0), and then 71250

is nef and preferable to nzﬁ since Dy is preferable to D. m|

4. Toric Surfaces

We now apply Theorem 3.5]to the study of embeddings into projective toric surfaces.
We begin with a review of toric surfaces (§4.I) and toric domains (§4.2). We then
demonstrate that the algebraic capacities on toric surfaces are uniquely characterized by
a set of axioms (§4.3). Finally, we discuss the main applications: obstructing embeddings
of concave toric domains into toric surfaces, and monotonicity of the Gromov width
under inclusion of moment polygons (§4.4).

4.1. Toric varieties. We start with a brief review of toric varieties. Our main reference
is [19].
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DerintTION 4.1. A (projective normal) toric variety Y of dimension n over C is a projective
normal variety with a (C*)"-action acting faithfully and transitively on a Zarisiki open
subset of Y.

Every toric variety Y can be described (uniquely, up to isomorphism) by either a fan
Y < R" [19, Def 3.1.2 and Cor 3.1.8] or a moment polytope Q3 = R" [19, Def 2.3.14]. A fan
Y for Y can be recovered from a moment polytope Q for Y by passing to the inner normal
fan £(Q)) of Q [19, Prop 3.1.6]. We will focus on the polytope perspective, since it will be
more important in this part of this thesis.

DeriniTION 4.2. A moment polytope () — R" is a convex polytope with rational vertices
and open interior. We denote the corresponding toric variety by Yq.

Note that given a scalar S > 0 in Q or an affine map T : Z> — Z2, we can scale Q to SQ or
apply T to acquire TQ). There are naturally induced isomorphisms of varieties Yso ~ Yo
and YTQ o~ YQ.

DeriniTION 4.3. A smooth vertex v € (O of a moment polytope is a vertex such that
there exists a neighborhood U < R of 0, a neighborhood V < Q of v, a scaling 5 and
a Z-affine isomorphism T such that ST(U) = V and ST(v) = 0. Otherwise a vertex is
singular.

On a projective toric variety, each face F < Q determines a Q-Cartier divisor Dr.
Every torus invariant divisor is in the span of these divisors Dr, and every divisor class is
represented by a torus-invariant divisor [19, 4.1.3]. Furthermore, every moment polytope
Q) for a toric variety Yq is associated to a natural divisor Ag given as a combination of
these face divisors.

DeriNtTION 4.4. The associated divisor A of the moment polytope € is defined as

AQ = Z apDF
F

Here for each face F — ), we define ur € Z" and ar € Q by the following conditions.
{up,xy = —ap forx e F ur is primitive in Z", inward to Q and normal to F
Note that the equation {(ur, x) = —ar defines a hyperplane that we denote by I1f.

Lemma 4.5. The associated divisor Aq of a moment polytope Q) has the following properties.

(a) (Ample) Aq is an ample divisor, and so defines an projective embedding to projective
space.

(4.1) kDq| : Yo — PH°(Yq, kAq) fork » 0
(b) (Translation/Scaling) Let T € GL,(Z), V € Z" and S € Q. Then
Drg=Da  Daiv=Da+Pv  Dsa=5-Dqg
Here Py is a principle divisor depending on V.

Proor. For (a), see [19, Prop 6.1.10]. For (b), see [19,§4.2, Ex 4.2.5(a)] for the translation
property. The scaling and linear map properties follow from Definition 4.4} O
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More generally, any T"-equivariant Q-divisor D = ) arDr is associated to a half-
space arrangement consisting of the half-spaces Hr and a (possibly empty) polytope Pr
given by

Hr = {x eR: <Mp, x> = —ap} Pr = nrllf

The dimension of the space of sections h%(D) is given by the number of lattice points
|Pr N Z"| [19, §7.1, p. 322]. A divisor is ample if and only if 0Hr n Pp is an open subset
of 0HF for each F, and nef if 0Hr n Pp is non-empty for each F.

We are primarily interested in toric surfaces , i.e. projective toric varieties of complex
dimension 2. In this case, the embedding gives Y the structure of a symplectic
orbifold by restriction of the Kahler form on PN. Every toric surface is an orbifold [19,
Thm. 3.1.19] since every two-dimensional fan is simplicial (dually, every polygon is
simple).

4.2. Toric domains. We next review the theory of toric domains. Let wsq denote the
standard symplectic form on C" and let u denote the standard moment map

p:C" — RE, (z1,...,20) = (m|z1)?, ..., 7T|za]?)

DErINITION 4.6. A toric domain (Xq, @) is the inverse image u~!(Q) of a closed subset
Q < [0, o0)? with open interior, equipped with the symplectic form w4 |x, and moment
map fix,-

A toric domain Xq is convex if 3 = Cn [0, oo)” where C < C" is a convex and contains
0 in its interior, concave if the compliment R2 2\Q is convex in C" and free if Q is convex
and contained in R} < RZ (i.e. disjoint from the coordinate axes). Finally, Q) is rational
if it is a moment polytope in the sense of Definition £.2] (i.e. a polytope with rational
vertices).

A fundamental fact in this part of this thesis is that a convex rational domain X can
be compactified to toric surfaces Y by collapsing the boundary 0Y so that it becomes the
associated ample divisor A of Y. More precisely, we have the following result.

Lemma 4.7. Let Q be a rational, convex domain polytope with toric variety (Yo, Aq) and
toric surface Xq. Then there is a T"-equivariant symplectomorphism

Yo\ supp(Aq) =~ X7,

Proor. Let u: Yo — IR’;O andv: Xq — IR’;O denote the moment maps of Yq and Xq.
Define Q° to be the complement Q\(0Q n R’} ). First note that O° is the moment image
of both Yo\supp(Aq) under p and X, under v. For XQ this is clear, and true for any
convex domain.

For Yq, write the associated ample divisor as Aqg = > rar - Dr. By examination of
Definition [4.4] we see that ar = 0 if and only if F is on a plane passing through 0. Since
Q K nRE, for some convex K, we know that () intersects each coordinate hyperplane

= {xe [R{” |x; = 0} along a single face F; and every other face F; is not contained in a
plane containing the origin (essentially by convexity). Thus af, = 0 for each i and ar # 0
for MNiewy thittewddeave. SRowanYhetlop @hd) Yo \supIAq ) have the same moment images,

we just apply an open version of Delzant’s theorem, e.g. the result of Kershon-Lerman
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Ficure 3. Moment polytopes for Yo and Yo\Dq

[51, Thm 1.3]. Note that, in that result, there is a homological obstruction o to the
equivalence of two spaces with the same moment image

DE HZ(XB;R) = HZ(YQ\SUPP(AQ);R)

for some abelian group R. This obstruction necessarily vanishes since X¢, is contractible.
O

Note that (essentially by definition) a moment polytope (O < R" is equivalent to a
convex, rational polytope RY by scalings and GL,(Z)-affine maps if and only if Q) has a
smooth vertex.

ExampLE 4.8. Considering ellipsoids Xq = E(a,b) and the corresponding toric vari-
eties P(1, a, b), we recover the (well-)known compactifications

P\H = B(1)° and P(1,a,b)\H = E(a, b)°
where H = O(1) is a hyperplane section in each variety respectively.

4.3. Axioms of ¢ for toric surfaces. This section is devoted to proving that the
algebraic capacities of toric surfaces satisfy a set of important formal properties.

THaeOREM 4.9. Let Yq be a projective toric surface with moment polytope () and associated
ample divisor Aq. Then the kth algebraic capacity satisfies the following axioms.

(a) (Scaling/Affine Maps) If S > 0 is a constant and T : 7> — Z? is an affine isomorphism,
then
1 1 1 1
Cig(YSQ,ASQ) =S. Cig(YQ,AQ) and ng(YTQ,ATQ) = CZg(YQ,AQ)

(b) (Inclusion) If QO < A'is an inclusion of moment polytopes, then

1 1
¢, 2 (Yo, Aq) < ¢, °(Ya, An)

(c) (Blow Up) If  : Y — Yq is a birational toric morphism with one exceptional fiber E
and associated ample divisor Ay = 1*Aq — €E for ¢ > 0 small, then

Cilg(Y@,Aﬁ) < Cilg(YQ, Ag)
(d) (Embeddings) If X = R* be a star-shaped domain that symplecically embeds into Yq,
then
cFCH(X) < ¢¥(Yo, Aq)

(e) (Domains) If Q) is a (convex or free) domain polytope and Xq is the associated toric
domain, then

1
CECH(XQ) = Ci g(YQ, AQ)

Furthermore, axioms (a)-(e) uniquely characterize the algebraic capacities c; & on toric surfaces.
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Proor. We will need some of these properties to prove the others, so we must proceed
in a particular order. We first prove (a), (c) and (e) which are mutually independent. We
then apply these properties to acquire (b) and apply Theorem [3.5]to acquire (d).

(a) - Scaling/Affine Maps. First, note that a toric domain transforms as Ysq = Yq and
the divisor transforms as Asq = S - Aq. So the scaling axiom follows from Definition
5.2

Next, we must show invariance if T is either linear or a translation. If T € GLy(Z) is
linear, then T is an automorphism on the Lie algebra R? ~ t? of T2 induced by a group
automorphism of T?2. Thus (Yo, Aq) and (Y7o, Arq) are identical after pulling back by
this automorphism, and the algebraic capacities must agree. If T is a translation then
Yo = Yrq and Aq = Arq + R where R is a principle divisor determined by T. On the
other hand, Ag - D for a divisor D depends only on the divisor class of Ag, and so
invariance follows from Definition 3.2

(c) - Blow Up. Let D be a nef Q-divisor on Y that achieves the optimum defining
cTB(Y, A), ie.
¢™®(Y,A)=D-Aand x(D) > k + 1
Consider the proper transform n*D of D on Y, which is nef. This has y(n*D) = x(D) >
k + 1. Therefore, the algebraic capacities satisfy
Cilg(Yﬁ,Aﬁ) <n*D -Aé =n*D - (R*AQ — EE) =D-Ag = Cilg(YQ,AQ)

(e) - Domains. This is simply a restatement of Theorem 4.15 and Theorem 4.18 of [80],
which state that if Q is is a convex domain polytope or a convex free polytope, then

4.2 ECHx V=  inf {D-Aqg:h' D)=k +1
(4.2) ¢ (Xa) Denlelf}yg)@{ a:h’(D) + 1}

This result is phrased in terms of Q-divisors, and also uses global sections instead of the
Euler characteristic. However, since Yg, is toric we have Demazure vanishing.

Lemma 4.10 ([19, Tam. 9.3.5.]). Suppose Y is a toric surface and D is a nef Q-divisor. Then
h?(D) =0forallp > 0
Thus 1°(D) = x(D). Moreover, we have the following Lemma (see [81, Lem. 2.1]).

Lemma 4.11. Let D be a nef Q-divisor on Yq,. Then there exists a nef Z-divisor with
WD =h"D) Aq-D'<Aq-D

Proor. Without loss of generality assume D is a torus-invariant divisor and let D =
Y, arDr. Consider the round-down of D, defined by

|D] := > lar]Dr
which is a Z-divisor with Pp n Z" = P|p| n Z". The difference D — | D] is effective and
so |D|-A < D - A. Unfortunately, | D| may not be nef.

To fix this, we modify |D| to a nef divisor D’ by translating some of the hyperplanes
Hr = {x|{ur,x) = —|ar|} (see for |D| inwards if necessary. (Here we are using
the nef criterion discussed in §4.1]) This is equivalent to subtracting some integer
multiple of the prime divisor Dr and hence only reduces the area. We must also
translate each hyperplane only until it meets a lattice point in P|p| for |[D], so that
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ho(D") = h%(|D|). Note that every lattice point in Z" is in one of the translates of
HF, for each F, so we can always perform this translation process while ensuring that
PprnZ" = Pp nZ" = P|p| n Z". In particular, ho(D') = k(D). ]

Lemmas and together imply that the following two infima are equal.

inf {D-Aqg:h°(D)>k+1'= inf (D -Aq:x(D)=>k O
DEnle?(yQ)@{ o:h’(D) + 13 Denlerfl%)z{ a:x(D) + x(Oy)}

In view of 1} and Definition we conclude that CECH(XQ) = cilg(Yg, AQ).

(b) - Inclusion. Let Q) = A be an inclusion of moment polytopes. By the application of
an affine transformation T : Z> — Z? to both Q and A, we may assume that Q and A are
in (0,0)2 = R?, and thus are convex free polytopes. By (e) and the fact that X < Xa,
we have

1 1
¢, *(Ya, Ag) = c;M(Xa) < i M(Xa) = ¢ 5(Ya, Aa)

(d) - Embeddings. Let X — Yq be a symplectic embedding of a star-shaped domain.
If Yo has no singularities (i.e. no singular fixed points), this is simply Theorem
Otherwise, since X is a smooth and compact, its image misses the singular fixed points.
Thus we can take a toric resolution 7 : Yy — Yo, where Qis acqurired from Q by cutting
off small triangles from the singular corners. For sufficiently small cuts, Y inherits an
embedding X — Y and thus we have

1 I
C]I::CH(X) < Cig(yﬁ’Aﬁ) < CZg(YQ/ AQ)

Here we apply either the blow up axiom (c) or the inclusion axiom (b).

Uniqueness. Finally, to argue that these axioms uniquely determine Cilg, let dilg
be another family of numerical invariants satisfying axioms (a)-(e). The blow up and

inclusion axioms imply that chg and dilg agree if and only if they agree on all polytopes
Q such that Yg, is non-singular. Any such polytope is equivalent to a domain polytope
by scaling and affind transformation, so by (a) we merely need to check those polytopes.
Then (e) implies that the invariants must agree for those polytopes. |

Remark 4.12. Theorem[3.5and the blow up property (c) can be used together to give
an indendent proof of the upper bound of the ECH capacities by the algebraic capacities
in Theorem 4.15 of [80]. However, we are not aware of a proof that establishes a lower
bound which is not essentially equivalent to the one provided in [80]. A fundamentally
different proof could potentially shed light on an approach to Conjecture [1.13]

4.4. Embeddings to toric surfaces. We now prove the main applications of this part,
which are easy consequences of the axioms in Theorem[4.9} We start by showing that the
algebraic capacities are complete obstructions for embeddings of the interiors of concave
toric domains into a toric surfaces, in terms of cE°H and ¢?18.

Tueorem 4.13. Let Xa be a concave toric domain and let (Yo, Aq) be a projective toric
surface with a smooth fixed point. Then

X} symplectically embeds into Yo <= CECH(XA) < Czlg(YQ,AQ)
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Proor. Suppose that X — Yq is a symplectic embedding, and let X; be an exhaustion
of X} by star-shaped domains. Then

. |
;M (Xp) = lim i M (Xi) < ¢} B(Ya, A)

On the other hand, suppose that CECH(XA) < C;lg(YQ, Ag). Since Yq has a torus fixed
point, we can scale by an S > 0 and apply an affine map T : Z?> — Z? so that TS(Q) is a

convex domain polygon for convex toric domain Xrsq). Applying axioms (a) and (e) of
Theorem 4.9} we acquire

crM(Xsa) < Cilg(YTS(Q)zATS(Q)) = ;M (Xrs(q))
Now we apply a well-known result [20, Thm. 1.2] of Cristofaro-Gardiner stating that a
concave toric domain Xsa embeds into a convex toric domain Xrg(q) if and only if the
ECH capacities of Xsa are bounded by those of Xt5(q). Thus we acquire a symplectic
embedding
Xsa = X7s) € Yrs@) = Ysa

Since scaling the moment image merely scales the symplectic form accordingly, we thus
acquire a symplectic embedding X3 — Yq. O

CoroLLARy 4.14. Let Q) < A be an inclusion of moment polygons, each of which has a smooth
vertex. Then the Gromov widths satisfy

cc(Ya) < cg(Ya)

In particular, cg is monotonic with respect to inclusions of the moment polytope for smooth toric
surfaces.

Proor. Let B(r) — Yq be asymplectic embedding of a closed ball of symplectic radius
r. Then by the embedding axiom and inclusion axiom in Theorem @4.9| we have

al al
CECH(B(r)) < Ckg(YQ,AQ) < ckg(YA,AA)

Thus by Theorem[4.13] we have an embedding B°(r) — Y, of the open ball of symplectic
radius r, so ¥ < cg(Ya). Taking the sup over all such embeddings B(r) — Yq yields
CG(YQ) < CG(YA). O

In fact, we can prove a more general result than Corollary Namely, given a

moment image E for a concave toric domain and a symplectic manifold Y, define the
E-width cz(Y) by

cz(Y) :=sup{r : X,z embeds symplectically into Y}
Then by the same argument as in Corollary .14 we have the following result.

Cororrary 4.15. Let QO < A be an inclusion of moment polygons, each of which has a smooth
vertex. Then
cz(Ya) < cz(Ya)

RemARK 4.16. It seems that one can also execute the proof of Corollary[.15using only
the fact that a ball B(r) embeds into Xq if and only if it embeds into Yq, (see [21, Thm 1.2])
and the inclusion axiom (b) of Theorem[£.9] However, this would not cover any singular
surfaces, and furthermore the stronger Corollary [f.15 requires the results of this part of
this thesis.
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A consequence of Theorem is that the E-width of a convex toric domain Xq
where Q) has rational slopes agrees with the E-width of the toric surface Yq.

CoroLLARyY 4.17. Suppose € is a convex domain with rational slopes. Then
CE(XQ) = CE(YQ)

4.5. Gromov width and lattice width. We use Corollary to provide a combi-
natorial upper bound for the Gromov width of a toric surface as conjectured in [9]. We
recall the definition of the lattice width.

DerintTioN 4.18. The lattice width w(€)) of a moment polytope is defined by

0(©) = min (max 1p—q))

CoroLLARY 4.19. Let Q be a moment polygon with a smooth vertex. Then cg(Xa) < w(Q).

Proor. We implement the heuristic argument in [9, Rmk 3.13] rigorously. Let ! € Z*\0
be the vector such that

w(Q) = sup (I, p —g)l
p,q€Q

We can choose an element A € GL,(Z) such that (AT)71(I) = e
vector. This implies that

e, Alp —q)y ={(A™N'L AW —q)) =d,p— ) = w(Q) = w(AQ)
Thus the lattice width of AQ is achieved in the direction of e. We can thus fit AQ in a
rectangle R of width a; = w(Q) and very large height a, » a;. Since AQ < R, we apply
Corollary [f.19to acquire the inequality
cc(Ya) = cc(Yaa) < cc(Yr)

On the other hand, Yg ~ P!(a1) x P'(a,) and since a, » a1, we have that cg(Yg) = a1 =
w(€). O

(1,0) is the x-basis
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