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Abstract

Aging is associated with conduit artery stiffening that is a risk factor for and can precede 

hypertension and ventricular dysfunction. Increases in mitochondria DNA (mtDNA) frequency 

have been correlated with aging. Mice with a mutation in the encoding domain (D257A) of a 

proof-reading deficient version of mtDNA polymerase-γ (POLG) have musculoskeletal features of 

premature aging and a shortened lifespan. However, few studies using these mice have 

investigated the effects of mtDNA mutations on cardiovascular function. We hypothesized that the 

proof-reading deficient mtDNA POLG leads to arterial stiffening, hypertension, and ventricular 

hypertrophy. Ten to twelve month-old D257A mice (n=13) and age- and sex-matched wild-type 

controls (n=13) were catheterized for hemodynamic and ventricular function measurements. Left 

common carotid arteries (LCCA) were harvested for mechanical tests followed by histology. Male 

D257A mice had pulmonary and systemic hypertension, arterial stiffening, larger LCCA diameter 

(701 ± 45 vs. 597 ± 60 μm), shorter LCCA axial length (8.96 ± 0.56 vs. 10.10 ± 0.80 mm), and 

reduced hematocrit (29.1 ± 6.1 vs. 41.3 ± 8.1; all p<0.05). Male and female D257A mice had 

biventricular hypertrophy (p<0.05). Female D257A mice did not have significant increases in 

pressure or arterial stiffening, suggesting that the mechanisms of hypertension or arterial stiffening 

from mtDNA mutations differ based on sex. Our results lend insight into the mechanisms of age-

related cardiovascular disease and may point to novel treatment strategies to address 

cardiovascular mortality in the elderly.
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Introduction

As an increasing portion of US society approaches old age, understanding the mechanisms 

of age-related cardiovascular disease will be critical. Age-related arterial stiffening is 

associated with hypertension and ventricular dysfunction and can be an important predictive 

index for cardiovascular disease (Lee and Oh, 2010). One mechanism for this relationship is 

mechanical; arterial stiffening can increase systolic blood pressure via an early return of the 

reflected pressure waves generated from ventricular ejection (Safar et al., 2003). The 

resulting increased pressures cause endothelial and smooth muscle cell (SMC) dysfunction 

and arterial collagen accumulation (Eberth et al., 2010; Lee and Oh, 2010) and subsequently 

increased ventricular afterload (Kelly et al., 1992), which can eventually lead to heart 

failure.

At the molecular level, aging has been correlated with increased damage and higher 

mutation frequency of mitochondria DNA (mtDNA) (Dai et al., 2010; Khaidakov et al., 

2003; Trifunovic et al., 2004; Wallace, 2010), leading to the hypothesis that mtDNA 

mutations contribute to mammalian aging (Kujoth et al., 2005) and may play a role in 

vascular aging. Elevated levels of mtDNA mutations have been documented in transgenic 

mice that have an alteration in the mitochondria polymerase-γ (POLG) which is responsible 

for mtDNA replication (Zhang et al., 2000). For example, mice with a homozygous mutation 

in the encoding domain (D257A) of a proof-reading deficient version of mtDNA POLG 

have musculoskeletal features of premature aging including kyphosis and sarcopenia as well 

as a shortened lifespan (~13 months) (Kujoth et al., 2005). These transgenic animal studies 

demonstrated that the accumulation of mtDNA mutations can be pathogenic (Zhang et al., 

2000; Zhang et al., 2003). However, effects of mtDNA mutations on cardiovascular function 

in D257A mice have not been fully investigated.

Here, we sought to investigate cardiovascular performance, in particular, hemodynamics, 

ventricular function, and arterial biomechanics in male and female D257A and wild-type 

(WT) mice. We hypothesized that the mitochondrial defect in the mtDNA POLG causes 

arterial stiffening and adverse hemodynamic effects. To test this, we measured 

hemodynamics and ventricular function in vivo and measured both structure and function of 

carotid arteries ex vivo, including frequency-dependent dynamic mechanical properties, 

which provide a more accurate representation of physiological loading and viscoelastic 

behavior (Wang et al., 2013b). Our results lend insight into the mechanisms of age-related 

cardiovascular performance, which may point to novel clinical treatment strategies to 

address cardiovascular mortality in the elderly.
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Materials and Methods

Animal handling

Twenty-six mice (male WT n=7, male D257A n=7, female WT n=6, female D257A n=6), 

10-12 months old, were obtained from an established colony (Kujoth et al., 2005). All 

procedures were approved by the University of Wisconsin-Madison Institutional Animal 

Care and Use Committee.

Echocardiography

Body weight (BW) was measured, and then mice were anesthetized with isofluorane (1%) 

and maintained at 37°C via a heated platform. Transthoracic echocardiography was 

performed with a 30-MHz transducer (RMV 707B, Visual Sonics, Toronto) (Brody et al., 

2012; Harris et al., 2002). Two-dimensionally guided M-mode and Doppler images were 

acquired at the tip of the papillary muscles in the left ventricle (LV) to assess ventricular 

function. From these images, LV and septum (S) mass was estimated (LViv+S, in vivo) and 

the common carotid artery blood flow velocity and length were measured. Diastolic function 

was assessed by isovolumic relaxation time (IVRT). Systolic function was evaluated by 

endocardial fractional shortening (%FS). All parameters were obtained over at least three 

consecutive heartbeats.

Hemodynamic measurements

Mice were anesthetized via urethane (1.6 mg/g body weight, i.p.), and the chest was opened 

for pressure-volume (PV) measurements using a 1.2 F admittance catheter (Schreier et al., 

2013; Tabima et al., 2010). LV function was measured at baseline, and then the PV catheter 

was placed into the right ventricle (RV) to assess RV function at baseline. For LV and RV 

measurements, the inferior vena cava was occluded at least three times to alter preload. 

Synchronized pressure and volume waveforms were recorded by commercial software 

(Notocord, Croissy Sur Seine, France). Analysis included at least 10 consecutive cardiac 

cycles.

Cardiac output (CO), stroke volume (SV), heart rate (HR), and RV, LV, and aortic pressures 

were quantified. Systolic function was assessed via the ejection fraction (EF) and the 

maximum derivative of pressure (dP/dtmax) (Joho et al., 2007); diastolic function by the 

minimum derivative of pressure (dP/dtmin) and relaxation factor τ (Tabima et al., 2010); 

vascular function by effective arterial elastance (Ea) (Kelly et al., 1992); and ventricular 

contractile function by load-independent indices including end-systolic elastance (Ees), 

preload recruitable stroke work (PRSW), and dP/dtmax-Ved (Pacher et al., 2008).

Tissue harvest

After in vivo measurements, animals were euthanized, and a blood sample was drawn to 

measure hematocrit (Hct). The left common carotid arteries (LCCA) were excised, 

submerged in saline, and placed on ice. The RV free wall, LV free wall and septum were 

weighed to calculate the Fulton index (FI=RV/(LV+S)), an index of RV hypertrophy 

(Ciuclan et al., 2011; Wang et al., 2013b). The LV mass-to-BW ratio ((LV+S)/BW) was 

calculated as an index of LV hypertrophy (Ding et al., 2000; Mazzolai et al., 2000).
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Isolated vessel mechanical test

The LCCA was mounted in a vessel chamber in pH-adjusted physiological saline solution 

(PSS) as previously described (Wang and Chesler, 2012; Wang et al., 2013b). The LCCA 

was stretched 150% axially to mimic in vivo length (Tian et al., 2013; Wang et al., 2013a), 

pressurized to 90 mmHg, and allowed to equilibrate at 37°C for 30 minutes. Sinusoidal 

pressure cycles of 90-120 mmHg at 1 Hz were applied for pre-conditioning to achieve a 

consistent mechanical response (Fung et al., 1979).

Active state

U46619 (Cayman Chemical, Ann Arbor, MI), a thromboxane analog, was added to the 

superfusate to induce vasoconstriction (concentration of 1.5×10−7M). The outer diameter 

(OD) at 90 mmHg was recorded at several time points between 0 and 30 minutes after drug 

infusion. Then, vasoactivity was calculated as the percent change in diameter as done 

previously (Ooi et al., 2010):

(1)

where ODt is the OD at time τ and ODi is the initial OD before U46619 addition

Passive state

After active-state testing, the superfusate was replaced with Ca2+-and Mg2+-free 

physiological buffer solution (PBS), and the vessel was equilibrated and preconditioned 

using the same conditions. Wall thickness (h) and OD were measured optically at 120 

mmHg and 5 mmHg with the latter taken as the no-load state (Ooi et al., 2010). For static 

mechanical testing, the vessel was initially pressurized to 90 mmHg. Then, the pressure was 

increased in 5 mmHg increments and held for a minimum of 30 seconds up to 120 mmHg 

with OD recorded at each pressure. Dynamic testing was performed at 90-120 mmHg at 

0.01, 0.1, 1, 3, 5, 8, and 10 Hz.

Mechanical property analysis

The arteries were assumed to be incompressible, and results are reported using 

measurements with PBS perfusion. Wall thickness as a function of pressure was calculated 

assuming conservation of mass and no axial extension (Faury et al., 1999; Ooi et al., 2010):

(2)

where OD120 and h120 are the OD and h measured at 120 mmHg, respectively.

The stretch ratio (Ooi et al., 2010) was calculated as:

(3)
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where ODp is the OD measurement at each pressure step, and OD5 is the OD measurement 

at 5 mmHg under PBS. Circumferential stress (cr) was calculated using the thin-walled 

assumption as done previously for carotid arteries (Dye et al., 2007; Tian et al., 2013):

(4)

where P is the transmural pressure and h and r are respectively the arterial wall thickness 

and the inner radius. 2nd Piola-Kirchhoff stress (S) and Green strain (E) were calculated as:

(5)

(6)

where λ is the stretch ratio. From the stress-strain data, elastic modulus was calculated by 

the slope of the line best-fit to the Kirchhoff stress-Green strain hysteresis generated by 

loading and unloading cycles. Damping was quantified by the ratio of dissipated to stored 

energy using the hysteresis area as done previously (Wang and Chesler, 2012; Wang et al., 

2013b).

Histology and immunohistochemisty

After mechanical testing, the LCCA was stored in 10% formalin. The vessels were 

embedded in paraffin, sectioned, and stained with picrosirius red (SR). Images were 

captured using an inverted microscope (TE-2000-5, Nikon, Melville, NY) and analyzed 

using MetaVue (Optical Analysis Systems, Nashua, NH). For the SR stains, the area 

containing collagen was identified by color thresholding in a representative field of view 

(containing the entire vessel) by an observer blinded to the experimental condition. The 

collagen area was then divided by the total tissue area to calculate collagen percent in the 

arterial wall.

To measure eNOS expression in LCCAs, immunohistochemistry was performed following 

standard protocols using primary antibodies for eNOS (Thermo Scientific, PA1-037) at a 

dilution of 1:100. The secondary antibody used was a goat anti-rabbit IgG (Life 

Technologies, A-21244). Staining was imaged and then quantified with a Nikon Eclipse Ti 

inverted microscope. For quantification, the eNOS expression level was represented by the 

relative area positive for eNOS normalized by the area positive for DAPI using NIH 

software (ImageJ 1.48).

Western blot

Quantification of angiotensin-II type 1 receptor was performed via western blotting. 

Ventricular tissue specimens were homogenized using Abcam western blot tissue 

homogenization protocols. Tissue was weighed and added to RIPA buffer with inhibitors 

and homogenized using a handheld tissue homogenizer (Fisher Scientific). The tissue was 

then kept in 4°C with constant agitation for 2 hours, centrifuged, and stored in −20°C. Gel 
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electrophoresis and blotting were performed as described previously (Rodriguez et al., 

2014). Briefly, 20 ug of each sample was loaded onto a gel (NuPAGE, Life Technologies) 

and run at 220 V for 50 minutes. After transferring the proteins, membranes were intubated 

with primary antibodies (Anti-angiotensin-II type 1 receptor, AbCam, 18801), an antibody 

against GAPDH (Cell Signaling. 2118L), and a secondary antibody goat anti-rabbit (Li-Cor, 

IRDye 800CW). The blot was imaged using Li-Cor technology, and band intensity was 

determined using NIH software (ImageJ 1.48).

Statistics

Results are reported as mean ± SD. Statistical significance was assessed using a two-way 

ANOVA for sex and strain (R, Foundation for Statistical Computing, USA, version 3.0.1), 

and significance was taken at a two-sided p-value less than 0.05. Tukey multiple 

comparisons were used for post hoc analysis (R).

Results

Tissue weights, arterial dimensions, and hematocrit

We evaluated differences in tissue weights, hematocrit, and arterial geometry caused by 

mtDNA mutations and sex. All D257A mice had lower body weight (Figure 1A) and higher 

FI and LV+S to BW ratios, demonstrating biventricular hypertrophy (Figure 1B-D). The 

larger diameter and lower axial lengths indicate carotid artery geometric changes (Figure 

1E-H). However, wall thickness was not different between any of the groups (data not 

shown). Finally, we observed a lower hematocrit in D257A mice (Figure 1I).

Vasoactivity, morphology, and protein expression

Ex vivo, LCCAs exhibited significant constriction in response to U46619 (male WT −25 ± 

9%; male D257A −31 ± 12%; female WT - 33 ± 13%; female D257A −35 ± 13%; p<0.05 

vs. normal SMC tone). Vasoactivity was not different between male WT and male D257A 

nor between female WT and female D257A mice. Representative Sirius red-stained images 

of arteries of male mice are illustrated in Figure 2A (left, WT; right, D257A). Quantitative 

analysis of collagen staining indicated that only male D257A carotid arteries had higher 

collagen content compared to WT mice (Figure 2B). H&E staining demonstrated intact 

endothelial and smooth muscle cells as well as defined elastic layers in the media for all 

mice (data not shown). Expressions of eNOS in the carotids and angiotensin-II type 1 

receptor in the ventricles were not different between WT and D257A mice (data not shown).

Hemodynamics and ventricular function

Hemodynamics and ventricular function were measured to determine the global 

cardiovascular consequences of the mtDNA mutation in mice. Aortic pressures, end-systolic 

pressures, and LCCA blood flow velocity were only significantly higher in male D257A 

mice (Figure 3). Table 1 shows that mitral valve velocity and load-independent and load-

independent indices were only higher for male D257A mice. These results indicate that the 

mtDNA mutation had a sex-dependent effect since the differences were not significant in 

female mice.
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Arterial mechanics

Since arteries are viscoelastic, we measured mechanical properties in static and dynamic 

conditions. In static tests, we observed a larger elastic modulus in male D257A mice (Figure 

4A). In dynamic tests, all stress-strain curves exhibited a hysteresis, indicating energy 

dissipation. Modulus and damping exhibited little frequency dependence, and, while D257A 

mice modulus tended to be higher than WT at all frequencies for both sexes, no significant 

differences in modulus were observed between strains or sexes at any frequency (Figure 

4B).

Discussion

This study presents the first in-depth measurements of hemodynamics, ventricular function, 

and arterial stiffness in the POLG mouse model generated with mtDNA mutations. Our 

main finding is that mtDNA mutations led to sex differences in blood pressure, ventricular 

function, and carotid artery stiffness, which indicates a possible role of female hormones in 

mtDNA-mediated cardiovascular performance changes. D257A mice also had changes in 

carotid artery diameter, length, and collagen content. These results suggest that mtDNA 

mutations are involved in cardiovascular diseases such as hypertrophy and hypertension, and 

therapies may be tailored to target pathways related with mtDNA mutations.

Systemic and pulmonary hypertension were observed in this study, and this is consistent 

with biventricular hypertrophy and heart enlargement (Zhang et al., 2000; Zhang et al., 

2003) previously reported in mice with mtDNA mutations, but the prior studies did not 

examine changes in ventricular function or arterial pressure. Left and right ventricular 

hypertrophy (Figure 1B-D) was coincident with and likely caused by systemic (Figure 3A-

D) and pulmonary (Figure 3E) hypertension, respectively in D257A mice.

Our results also show that hematocrit was lower in D257A mice (Figure 1I). Although 

others have shown a decrease in hematocrit in D257A mice at 6 (Trifunovic et al., 2004), 9 

(Kujoth et al., 2005), and 10 (Dillon et al., 2012) months, we provide the first indication that 

this may have implications for hemodynamics. In particular, decreased hematocrit results in 

a lower blood viscosity at a given shear rate (Simmonds et al., 2013), which lowers wall 

shear stress. To maintain homeostasis, arteries likely underwent constriction and narrowing. 

Thus, the increased vascular resistance that likely increased blood pressure may have been 

stimulated by decreased hematocrit. This finding is also important considering altered blood 

rheology parameters are independent predictors of cardiovascular health (Feher et al., 2006). 

Future studies may help elucidate the pathogenic effect of mtDNA mutations on blood 

rheology.

The metrics of ventricular function derived from PV loops show that cardiac function was 

comparable between wild-type and D257A mice (Table 1). It is well known that the heart 

remodels to adapt to changes in loading conditions such as elevated pressure from exercise 

or hypertension (Borgdorff et al., 2013). In this case, ventricular hypertrophy likely occurred 

as a response to increased afterload as evidenced by a larger Ea. We speculate that the 

observed hypertrophy in female mice was adaptive and successfully compensated for the 

increased load quantified by the load-dependent metrics of ventricular function (Table 1). In 
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an experimental model of pulmonary hypertension, both placebo and estrogen-treated 

ovariectomized female mice had ventricular hypertrophy, but estrogen improved right 

ventricular contractility while limiting afterload and pulmonary vascular stiffening (Liu et 

al., 2014).

The absence of ventricular dysfunction in the D257A mice may be attributed to several 

factors. First, whereas there is evidence of significant musculoskeletal defects in D257A 

mice at 9 months of age (Kujoth et al., 2005), the rate of accumulation of mtDNA mutations 

may be lower in the heart compared to musculoskeletal and other tissues (Vermulst et al., 

2008). For example, Edgar et al. found that the magnitude of the reduction in the 

mitochondria electron transport complex activity was smaller in the heart compared to liver 

tissue in these mice (Edgar et al., 2009). Vermulst et al. found a higher mtDNA mutation 

frequency in the brain compared to that observed in the heart (Vermulst et al., 2007). 

Another explanation may be based on the concept of a mtDNA mutation threshold. The 

threshold effect theory holds that a minimum number of mtDNA mutations must be present 

before mitochondria dysfunction occurs and aging phenotypes become apparent (DiMauro 

and Schon, 2003). Our results suggest that cardiovascular tissue may have a higher threshold 

compared to musculoskeletal tissue. Therefore, the mild phenotypes we observed in the 

cardiovascular system may be a result of a lower rate of mtDNA accumulation and higher 

threshold for mtDNA mutations.

D257A mice exhibited several alterations in morphometric parameters in the systemic 

vasculature. We found that the in vivo axial carotid artery length was smaller in D257A mice 

(Figure 1G-H). Axial remodeling has been observed in mice with elevated pressures from an 

aortic banding procedure (Eberth et al., 2010). This length reduction may be a mechanism to 

compensate for the circumferential remodeling (Humphrey et al., 2009) or simply a result of 

the higher pressures that cause more circumferential than axial stretch due to known 

differences in circumferential and axial elastic moduli (Dobrin and Doyle, 1970; Guo and 

Kassab, 2003; Tanaka and Fung, 1974). Ex vivo, at the same transmural pressure, carotid 

artery diameter was higher in D257A mice (Figure 1E-F), and increased diameter has 

previously been observed to be an age-related phenotype (Hausman et al., 2012). The larger 

diameter in D257A mice may be a result of chronically increased pressure (Figure 3A-C), 

increased blood flow velocity (Figure 3F), which could cause flow-induced vasodilation and 

enlargement, or both. While these changes, like those in pressure and ventricular function, 

are mild, our data for the first time indicate that the accumulation of mtDNA mutations in 

the systemic vasculature results in carotid artery morphometric changes, which are 

implicated in remodeling from hypertension.

Arterial stiffening has long been associated with hypertension, either as a consequence of 

elevated pressures (Ooi et al., 2010) or a cause (Weisbrod et al., 2013), so we expected to 

see stiffer arteries in D257A mice. From static mechanical tests, we observed a significantly 

larger elastic modulus in male D257A compared to male WT mice (Figure 4A), which may 

be attributed to the higher collagen content in the LCCA (Figure 2B). Interestingly, the 

increase in static elastic modulus was not significant in female D257A mice. A trend of 

LCCA stiffening was observed in male and female D257A mice from the dynamic 

mechanical tests (Figure 4B), although the changes did not reach statistical significance. 
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Elastic modulus values were slightly higher in static compared to dynamic conditions, which 

is consistent with a previous investigation on rat carotid arteries where the slope of the static 

pressure-diameter curve was steeper than that in the dynamic condition (Glaser et al., 1995). 

The development of systemic hypertension with the stiffening observed here suggests that, 

at least in this mouse model, arterial stiffening may be a factor underlying the pathogenesis 

of hypertension. Given the hemodynamic, mechanical, and structural changes, this mouse 

model may be a useful addition into a meta-analysis of other murine models to further 

understand the effects of genetic mutations on the hemodynamics, structure, and 

biomechanics of blood vessels (Bersi et al., 2014).

Our findings indicate that the mtDNA mutation had a greater impact on males. Although the 

trends were the same in females, body weight and hematocrit were only significantly lower 

and arterial diameter was only significantly higher in male D257A mice (Figure 1). 

Similarly, aortic pressures, ventricular pressures, LCCA velocity, and Ea were only 

significantly higher in male D257A mice (Figure 3, Table 1), suggesting that female mice 

with this mutation were protected against premature aging phenotypes and hypertension 

resulting from mtDNA mutations. The development of hypertension in rodents induced via 

angiotensin-II (Xue et al., 2005), hypobaric hypoxia (Rabinovitch et al., 1981), a kidney 

wrap (Haywood and Hinojosa-Laborde, 1997), and a renal artery clip (Wolinsky, 1971) was 

less in females compared to males. Similarly, recovery in female rats was more pronounced 

than in male rats (Wolinsky, 1971). Moreover, as noted above, estrogen limited pulmonary 

arterial stiffening and improved ventricular contractility in a rodent model of pulmonary 

hypertension (Liu et al., 2014). These results indicate that hormonal factors may mediate the 

mechanisms causing hypertension.

To identify potential sex-dependent mechanisms of mtDNA mutation-induced systemic and 

pulmonary hypertension, we examined the expression of eNOS and angiotensin-II type 1 

receptor. Both the nitric oxide and angiotensin-II pathways are well known to be modulated 

by estrogen (Kim and Levin, 2006; Sudar et al., 2008). We found that expression levels of 

neither eNOS in the carotids nor angiotensin-II type 1 receptor in the ventricles were 

different between WT and D257A mice. We were not able to examine the circulating 

angiotensin expressions in the present study but it may be increased in the D257A mice 

despite equivalent levels of angiotensin-II receptors. Discovering the sex-dependent 

pathways by which mtDNA mutations contribute to hypertension will be the focus of future 

work.

Limitations

Distal systemic and pulmonary arteries were not examined in this study as the carotid 

arteries were the main focus, and distal artery mechanics in mice are difficult to study ex 

vivo due to their small size. Distal artery narrowing may be responsible for the systemic and 

pulmonary artery pressure increases found here and warrant future study. In addition, 

mitochondria are different in pulmonary versus systemic arteries (Dromparis et al., 2010), so 

the effects of mtDNA mutations may differ in the two circulations. Further research is 

necessary to quantify the heterogeneity of the effects and rates of mtDNA mutations in 

cardiovascular tissues.
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Conclusion

Mitochondrial defects are implicated in cardiovascular disease and our results show that 

mtDNA mutations cause systemic and pulmonary hypertension and biventricular 

hypertrophy. We observed sex differences, which suggest that sex hormones may affect the 

mechanisms that cause hypertension from mtDNA mutations. The relatively mild 

cardiovascular effects of these mutations, in contrast to previously reported dramatic 

musculoskeletal changes, suggest significant heterogeneity in the impact of mtDNA 

mutations and possibly in mitochondria function in different tissues with aging. The 

molecular mechanisms of difference in rates of cardiovascular aging and musculoskeletal 

aging are an important direction for future research.
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Figure 1. 
Body weight, ventricular hypertrophy indices, arterial diameters, and hematocrit for WT and 

D257A male and female mice. A: Body weight. B: RV/LV+S; Fulton index. C: LV+S to 

BW ratio (ex vivo tissue harvest). D: LV+S to BW ratio (in vivo). E: LCCA outer diameter at 

120 mmHg under PBS. F: LCCA inner diameter at 120 mmHg under PBS. G: Left common 

carotid artery length. H: Right common carotid artery (RCCA) length. I: Hematocrit. 

*p<0.05 vs. WT of the same sex, #p<0.05 vs. male of the same genotype.

Golob et al. Page 14

J Biomech. Author manuscript; available in PMC 2016 February 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Histological staining of WT and D257A mice. A: Representative cross sections of male WT 

(left) and male D257A (right) LCCA stained with SR. B: Collagen content by quantitative 

analysis of SR staining. *p<0.05 vs. WT of the same sex.
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Figure 3. 
Hemodynamics and ventricular function for WT and D257A male and female mice. A: 

Aortic systolic pressure. B: Aortic diastolic pressure. C: Mean aortic pressure. D: LV end-

systolic pressure. E: RV end-systolic pressure. F: Left common carotid artery velocity. 

*p<0.05 vs. WT of the same sex.
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Figure 4. 
Mechanical properties of LCCA for WT and D257A male and female mice. A: Static elastic 

modulus. B: Dynamic elastic modulus as a function of frequency obtained in SMC passive 

state. *p<0.05 vs. WT of the same sex.
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Table 1

Ventricular function metrics for WT male (M) and female (F) and D257A male and female mice.

Strain
Sex

WT
M

D257A
M

WT
F

D257A
F

Left Ventricle

Ventricular Function

HR [beats/min] 507 ± 49 479 ± 93 505 ± 63 521 ± 47

SV [μL] 16 ± 2 14 ± 2 16 ± 5 17 ± 4

CO [μL/min] 9010 ± 2413 6926 ± 1573 8277 ± 2644 8962 ± 2319

  Diastolic Function

dP/dtmin [mmHg/s] −4468 ± 1082 −6415 ± 813* −5100 ± 1177 −6631 ± 1032

τ [ms] 7.8 ± 1.3 6.8 ± 0.8 8.5 ± 3.1 5.8 ± 1.8

MVE [mm/s] 733 ± 80 949 ± 91* 674 ± 95 866 ± 84*

MVA [mm/s] 518 ± 41 624 ± 10* 509 ± 136 516 ± 29#

IVRT [ms] 19 ± 1 18 ± 3 19 ± 2 19 ± 2

MV E/A 1.42 ± 0.22 1.49 ± 0.23 1.49 ± 0.33 1.57 ± 0.03

  Systolic Function

EF [%] 61 ± 11 74 ± 7 66 ± 16 54 ± 7#

dP/dtmax [mmHg/s] 7298 ± 2042 9020 ± 984 7455 ± 1897 9166 ± 196

dP/dtmax-Ved

[mmHg/ μLs] 259 ± 90 474 ± 71* 211 ± 27 324 ± 101

FS [%] 33 ± 2 38 ± 10 32 ± 5 36 ± 4

  Vascular Indices

Ea 4.34 ± 0.77 6.23 ± 0.87* 4.02 ± 1.08 4.45 ± 0.86

    Contractility

Ees [mmHg/ μL] 5.5 ± 1.6 7.1 ± 3.7 7.2 ± 1.2 8.4 ± 2.2

PRSW [mmHg] 93 ± 26 108 ± 36 104 ± 59 105 ± 40

Right Ventricle

Ventricular Function

HR [beats/min] 493 ± 32 438 ± 71 522 ± 51 512 ± 63

SV [μL] 14 ± 2 13 ± 2 8 ± 6 11 ± 4

CO [μL/min] 6900 ± 1022 5442 ± 1285 4352 ± 2897 5574 ± 2063

  Diastolic Function

dP/dtmin [mmHg/s] −1540 ± 134 −1755 ± 325 −1429 ± 388 −2208 ± 119*

τ [ms] 5.3 ± 1.5 7.3 ± 2.1 4.0 ± 1.6 5.0 ± 2.8
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Strain
Sex

WT
M

D257A
M

WT
F

D257A
F

  Systolic Function

EF [%] 39 ± 5 37 ± 9 42 ± 20 36 ± 6

dP/dtmax [mmHg/s] 1885 ± 204 2108 ± 683 2055 ± 932 2662 ± 296

dP/dtmax/Ved 53 ± 7 42 ± 18 77 ± 32 72 ± 10

[mmHg/ μLs]

  Vascular Indices

Ea 1.44 ± 0.50 1.99 ± 0.85 2.82 ± 1.30 2.98 ± 0.85

    Contractility

Ees [mmHg/ μL] 0.9 ± 0.3 1.0 ± 0.3 1.5 ± 0.5 1.8 ± 0.5

PRSW [mmHg] 14 ± 7 17 ± 12 24 ± 16 18 ± 5

MVE=mitral valve velocity in early diastole; MVA=mitral valve velocity in late diastole; IVRT=isovolumic relaxation time; MV E/A=ratio of 
early to late diastolic filling velocities; Ea=effective arterial elastance; HR=heart rate; SV=stroke volume; EF=ejection fraction; CO=cardiac 
output; SW=stroke work; Ees=end-systolic elastance; PRSW=preload recruitable stroke work; FS=fractional shortening.

*
p<0.05 vs. WT of the same gender,

#
p<0.05 vs. male of the same genotype.
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