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The genomic landscape of Méniere’s disease: =

a path to endolymphatic hydrops

Kathleen M. Fisch"f, Sara Brin Rosenthal'f, Adam Mark', Roman Sasik!, Chanond A. Nasamran’,
Royce Clifford®* M. Jennifer Derebery”, Ely Boussaty?, Kristen Jepsen®, Jeffrey Harris> and Rick A. Friedman®"

Abstract

Background Méniere's disease (MD) is a disorder of the inner ear that causes episodic bouts of severe dizziness,
roaring tinnitus, and fluctuating hearing loss. To date, no targeted therapy exists. As such, we have undertaken a large
whole genome sequencing study on carefully phenotyped unilateral MD patients with the goal of gene/pathway
discovery and a move towards targeted intervention. This study was a retrospective review of patients with a his-

tory of Méniere's disease. Genomic DNA, acquired from saliva samples, was purified and subjected to whole genome
sequencing.

Results Stringent variant calling, performed on 511 samples passing quality checks, followed by gene-based filtering
by recurrence and proximity in molecular interaction networks, led to 481 high priority MD genes. These high priority
genes, including MPHOSPHS, MYO18A, TRIOBR, OTOGL, TNC, and MYO6, were previously implicated in hearing loss,
balance, and cochlear function, and were significantly enriched in common variant studies of hearing loss. Validation
in an independent MD cohort confirmed 82 recurrent genes. Pathway analysis pointed to cell-cell adhesion, extracel-
lular matrix, and cellular energy maintenance as key mediators of MD. Furthermore, the MD-prioritized genes were
highly expressed in human inner ear hair cells and dark/vestibular cells, and were differentially expressed in a mouse
model of hearing loss.

Conclusion By enabling the development of model systems that may lead to targeted therapies and MD screening
panels, the genes and variants identified in this study will inform diagnosis and treatment of MD.

Keywords Méniere's disease, Whole genome sequencing, Systems biology, Network analysis, Gene discovery

Background
Méniére’s disease (MD), first described by Prosper
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ing tinnitus, and fluctuating hearing loss. The disease
prevalence ranges between 3.5 per 100,000 and 513 per
100,000, has a female to male ratio of 1.89 to 1 [2], and is
most often sporadic but can occur in a familial form in
roughly 5% of cases [3]. Although the cause is unknown,
human temporal bone studies have linked MD symptoms
to elevated pressure within the inner ear—specifically,
the endolymphatic cochlear compartment (scala media)
and endolymphatic duct. It is believed that this endo-
lymphatic hydrops begins with derangement of the ionic
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composition of the scala media. The symptoms of the dis-
ease—tinnitus, vertigo, and hearing loss—are managed
with salt restriction, diuretics, vestibular suppressants,
and corticosteroids and possible surgical intervention in
incapacitating cases. Nonetheless, 60 percent of patients
progress to severe hearing loss and persistent disequilib-
rium. To date, the true etiology of the disease remains
unknown, and no targeted therapy exists.

The National Institute on Deafness and Other Com-
munication Disorders (NIDCD) estimates that there are
615,000 Americans with MD and the disease accounts for
45,500 patient visits each year. Although very little litera-
ture exists on the socioeconomic impact of MD, a study
from Sweden followed 19 patients over a 3-year period
to assess the impact on productivity [4]. It was concluded
that the costs to society and the patients were substantial,
with 1,536 days of sick leave requested by these 19 sub-
jects. In addition to these lost days, there is the tremen-
dous cost of surgery, lost productivity due to agoraphobia
and the impact of drop attacks on vocation, driving, and
the activities of daily living [5]. Another study found MD
to be one of the most debilitating diseases experienced by
people who survive any illness [6]. Taken together, these
data suggest that patients with this disease are in dire
need of therapeutics.

The genetic etiology of MD is supported by a preva-
lence of familial cases [7-10], an over-representation
of MD in people of Caucasian ancestry [11], and candi-
date gene studies [12-14]. We previously published a
genome-wide analysis of patients with MD disease and
demonstrated a clear ancestral predilection (Caucasians)
supporting the notion of a genetic etiology [11]. As a
result, we have undertaken the largest whole genome
sequencing study to date on carefully diagnosed unilat-
eral MD patients with the goal of gene/pathway discov-
ery and a move towards targeted interventions for this
disorder.

In this manuscript we present the first whole genome
sequence analysis for rare damaging genetic variants
associated with well-characterized classical MD con-
sisting of attacks of fluctuating unilateral low frequency
hearing loss, roaring tinnitus, and vertigo. Analysis of
rare damaging variants in this cohort reveals 481 high
priority MD genes, in which we find many prior associa-
tions with hearing loss, balance, and cochlear function.

Results

Recurrent rare variants observed in Méniére’s disease

In 511 MD individuals, we observed 16,790 distinct rare
damaging missense and loss of function (LOF) vari-
ants (Table S1). Of these variants, 11,209 (66.8%) were
observed at a frequency in the study population more
than 1.3-fold higher than the expected rate in the general
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population as observed in gnomad or were novel vari-
ants. These unusually frequent variants (UFVs) formed
the basis of our analysis. Single nucleotide polymor-
phisms (SNPs) constituted 97.7 of these UFVs (10,945),
with a small number of deletions (234) and insertions
(30) (Fig. 1A). Most variants were missense (10,132), with
a smaller number of nonsense variants (775), frame-shift
deletions (199), nonstop (41), in-frame deletions (31),
frame-shift insertions (22), in-frame insertions (6), and
splice site variants (3) (Fig. 1A). While ancestry infor-
mation was not available for the study cohort, we were
able to infer ancestry by aligning with 1000 Genomes [15]
(Figures S4A). We did not observe ancestry-specific dif-
ferences in number of variants per sample after filtering,
so we retained all samples in the analysis (Figures S4B-C).

The most recurrent UFV was a missense mutation in
the MPHOSPHS gene (rs75390100), with 52 occurrences
in the study population, corresponding to a study allele
frequency of (5.1%) (Fig. 1D). The study frequency is 1.3
fold increased over expectation (3.9% in gnomad data-
base). While this gene has not previously been charac-
terized in human hearing loss, heterozygous alteration
of MPHOSPHS8 in mouse results in abnormal auditory
brainstem response[16]. MYOI18A had many distinct
UFVs, with 9 separate UFVs observed, comprising a
total of 42 samples (Fig. 1C). The top 50 genes ranked by
total number of variants displayed a range of observed/
expected frequency (Fig. 1E). We note that these vari-
ants may represent an increased predisposition for the
disease, but are alone not specific enough for diagno-
sis. We defined a highly recurrent gene set, comprising
1098 genes with 4 or more UFVs. These highly recurrent
genes were significantly enriched in many gene ontology
pathways relevant to inner ear function, including ATP
binding [17], actin binding [18], cilium assembly, myosin
pathways, cytoskeleton organization, cell junctions [19],
and calcium signaling [20] (Fig. 1F; Table S2).

Prioritization of mutated genes with network analysis
identifies genes and pathways consistent with the MD
phenotype

In lieu of traditional gene burden testing [21], which
was not possible here because a control population was
not available, we aggregated gene-level scores based on
network-propagation [22] and recurrence of UFVs. Net-
work propagation serves as an amplifier of genetic asso-
ciations, by highlighting groups of genes from the input
set which have more connections than expected by
chance, and thus likely represent a biological pathway
which plays a role in the disease at hand. Genes which
have many variants, but are not highly connected to
other genes with variants, and may be false positives, are
down weighted. When the network propagation scores
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Fig. 1 Summary of variants in study population. A Bar chart displaying variants by type, after application of all filters. B Bar chart displaying variants
by function. C Bar chart displaying 35 most frequently mutated genes. D Bar chart displaying the 35 most recurrent variants. E Scatterplot showing
the top 50 most frequently mutated genes, with the number of impacted samples on the x-axis, and the ratio of observed frequency to expected
frequency on the y-axis. F Scatterplot showing select enriched GO terms in the set of genes with >=4 variants with obs/exp > 1.3 per gene, ranked
by -log(p) (hypergeometric test)

were integrated with recurrence scores (network z>3
and recurrence >=4, N=481 genes), the significantly
enriched pathways were similar to those identified from
recurrence alone, including ATP binding, myosin com-
plex, and cytoskeleton organization (Fig. 2A; Table S2).

To evaluate success at boosting the signal in the data
with network propagation, we turned to a public data-
base which connects mouse genotypes to resulting phe-
notypes[23]. Genes associated with relevant phenotypes
(related to hearing, balance, or auditory processes) were

(See figure on next page.)

Fig. 2 Network prioritization of candidate genes. A Barplot showing top GO pathways for recurrence +network gene set. B Scatterplot showing
the log odds ratio of enrichment between relevant terms in the mammalian phenotype ontology and MD genes filtered in one of three ways: 1)
Recurrence =gene has > =4 unexpected variants (unexpected =obs/exp > 1.3); 2) Network =netprop z> 3; 3) Recurrence + netprop=gene has>=4
unexpected variants & netprop z>3 (N=481 genes). C Barplot showing the highest frequency genes meeting filtering criteria which appear in 2

or more relevant pathways/phenotypes. Right axis (red dotted line) shows cumulative sum of % samples explained by variants in genes. D Subset
of the recurrence + netprop set of genes from selected terms and pathways most relevant to MD. Node color indicates the pathway(s) membership.
Node size indicates the number of unexpected variants per gene. Medium confidence STRING edges are shown. https://www.ndexbio.org/viewer/
networks/céb7c224-41ed-11ee-aa50-005056ae23aa
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evaluated for significant overlap with genes in our data.
We tested 3 filtering criteria: network alone (network
z>3; N=1,073 genes), recurrence alone (recurrence>=4,
N=1098 genes), and network +recurrence (network z>3
and recurrence >=4, N=481 genes). We found that all 3
filtering criteria resulted in significant enrichment for
cochleovestibular phenotypes (Fig. 2B; p<0.05). Increased
susceptibility to age-related hearing loss (p=7E-6),
impaired balance (p=1E-3), impaired hearing (p=2E-5),
abnormal motor coordination/balance (2E-5), and abnor-
mal cochlear inner hair cell morphology (p=2E-4) were
particularly highly enriched (Fig. 2B,C; Table S3, Table S4).
In general, the network+recurrence gene set performed
best (Fig. 2B), suggesting that the convergence of high
recurrence and network information yields the high-
est ratio of signal to noise. The enrichment results were
not sensitive to choice of threshold (Figure S2). This net-
work +recurrence gene set was used for further analysis.

To build an MD-prioritized gene network, we inter-
sected the network + recurrence prioritized set with genes
found in relevant pathways and phenotypes (Fig. 2C,D).
Some genes (MYO6, MYHY, ERCC6) were identified in
nearly every relevant phenotype and/or pathway, while
others (OTOGL, TRIOBE, COL11A2, COL4A3), have well
established connections to hearing disorders in the lit-
erature[24—27], yet they were not the most recurrently
mutated genes, with 12 or fewer samples having a quali-
fying variant. We suspect that these genes may be less
tolerant to variation, or that variants in these genes more
commonly result in other hearing disorders. Highly recur-
rent genes, such as MYOI8A, and KATNAL?2, impact both
ATP-dependent activity, and cytoskeleton organization,
but are not well characterized in relation to hearing and
balance disorders, and may represent novel MD genes.

Many genes in the myosin family were impacted in
the network+recurrence gene set(MYO9B, MYOSC,
MYOSB, MYH3, MYH14, MYH11, etc.; Fig. 2C,D). Genes
in the myosin family have well documented relation-
ships to hearing impairment, as they are instrumental in
development and maintenance of auditory hair cell ste-
reocilia [28, 29]. Variants in MYO18A had particularly
high recurrence in the study cohort, with 29 occurrences
of the missense mutation rs117024203, an additional 7
observations of the missense mutation rs76590796, 4
other rarer missense mutations observed a single time,
and one nonsense mutation. Variants in MYO18A have
previously been implicated in a study of Swedish MD and
tinnitus extreme phenotypes [30].

Validation of high priority variants and genes

in independent replication cohorts

We cross-referenced the network+recurrence prior-
itized genes for enrichment in publicly available human
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datasets. These include: 1. The OtoSCOPE v9 gene
panel, a diagnostic tool to evaluate presence of variants
in genes involved in non-syndromic and select types of
syndromic hearing loss [31] (otoscope); 2. Clinically
curated pathogenic variants in 142 human genes related
to hearing loss [32] (Clingen); 3. Variants identified from
UKBB MD (self-reported, exomes), from gene burden
tests on LOF variants (UKBB_LOF_sig), missense vari-
ants (UKBB_MIS_sig), or from single-variant gene tests
(UKBB_SV); and 4. Genes associated with variants iden-
tified from human GWAS on relevant phenotypes (hear-
ing loss, age-related hearing impairment, vertigo, and
motion sickness) from the GWAS catalog. Of these gene
sets, the network+recurrence gene sets were signifi-
cantly enriched for genes in the otoscope panel, ClinGen,
the UKBB_LOF_MD, UKBB MD single-variant analy-
sis, GWAS hearing loss, and GWAS age-related hear-
ing impairment. UKBB_MIS_MD, GWAS vertigo, and
GWAS motion sickness were not significantly enriched.
Similar to the results from the mouse variant database,
the network +recurrence gene set demonstrated the best
performance in recovery of human-relevant gene sets
(Fig. 3A-B; Table S4).

RABL6, ANK2, and MYH3 were highly recurrent, and
only found in the UKBB MD LOF set (Fig. 3A). These
genes may be specific/unique to MD, as compared to
the more general ‘hearing loss’ phenotype. A total of 82
recurrent genes were significant in the UKBB MD LOF
and/or SV set (Figure S4), representing genes most likely
to be MD-specific. The genes ARHGEF28, SYNJ2, and
ACAN have been previously implicated in common vari-
ant studies of hearing loss (GWAS). TRIOBP, MYO6, and
COL11A2 were found in both clinical gene sets (otoscope
and clingen), and common variant studies of hearing loss
(GWAYS) (Fig. 3A-B). TNC, and WFS1, were highly recur-
rent, and found only in the otoscope and clingen gene
sets. Taken together, these results illustrate the multifac-
eted and complex nature of MD; far from being a mono-
genic disease, MD may manifest from variation in many
different genes and/or pathways.

Predictive utility of MD-prioritized genes

Along with pointing to high priority therapeutic tar-
gets, the genes identified in this study represent a path
to improved diagnosis. 50% of the study cohort have
at least one qualifying variant in the top 11 out of 481
genes ranked by network +recurrence (Fig. 3C). How-
ever, we would expect 33% of a control population to
be identified as false positives using these same vari-
ants, assuming allele frequencies from the general
population (gnomad). We note that this estimate of
false positive rate is likely an underestimate, since the
variants selected for inclusion were chosen in part due
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variants

to their high ratio of observed to expected allele fre-
quency. In order to reduce the false positive rate, we
applied stricter inclusion criteria, by restricting the 481
genes to a subset of those that resulted in 33 genes that
had roles in relevant pathways and were replicated in
human gene sets (33 genes out of the 481 genes ranked

cochlear hair cells [33], and MPDZ,

ing panel for MD.

by network+recurrence). Here the fraction of study

cohort recovered decreased to 36%, but the expected
false positive rate is reduced to 12%, a marked decrease
(Fig. 3D). In addition to genes discussed previously
(ANK2, WFS1, TNC, TRIOBP, and OTOGL), this group

mouse inner ear cell types

includes LRBA, a gene required for maintenance of

a gene implicated

in autosomal recessive nonsyndromic hearing impair-
ment [34] This group of genes, with more conservative
selection criteria, may form the basis of a new screen-

Expression of MD-prioritized genes in hearing-impaired

To probe the functional relevance of genes prioritized
from the network and recurrence analysis, we turned to
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a model of age-related hearing impairment in mice [35],
since an analogous dataset does not exist for humans.
MD-prioritized genes (481 network+recurrent set)
were significantly differentially expressed in select cell
types in hearing impaired mice relative to healthy con-
trols (Fig. 4A,B). Specifically, the most dysregulation
was observed in celltypes within the modiolus, as well
as a subtype of the spiral ligament (Fig. 4A). MYO18A
was significantly downregulated in hearing impaired
mice in fibrocytes and smooth muscle cells in the spi-
ral ligament, an area associated with mediation of coch-
lear ion homeostasis. Genes in the collagen family were
also significantly downregulated in these cell types.
These include COL11A1, COL11A2, COL4A2, COL9A2,
and COL6A1, in which rare recurrent variants are seen
in 30 MD patients in the study cohort. SORBSI and
SORBS2, genes which are known to play a role in forma-
tion of actin stress fibers and cytoskeleton organization,
are significantly upregulated in hearing impaired mice
in a subtype of the organ of Corti. 11 rare and recur-
rent variants were identified in SORBSI and SORBS2
in the study cohort, and SORBSI was also significantly
associated with severe tinnitus in a recent study[30].
The dysregulation of MD genes in the model of hear-
ing impairment in mice provides additional support for
the functional relevance of these genes, and suggests
expression in specific inner ear cell types and relevant
areas of the cochlea to MD.
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Cell-type specificity of MD-prioritized genes in human
inner ear cell types
In a single cell atlas of human inner ear cell types [36],
some MD prioritized genes demonstrate high cell-type
specificity (Fig. 5A-E). TNC is highly expressed in hair
cells, while CACNA1D is highly specific to dark cells,
and OTOGL is localized to vestibular supporting cells.
In particular, many of the human-validated genes
were highly specific to hair cells (including TRIOBP,
MYO6, PRUNE2, LMO7) (Fig. 5E). Other genes were
highly specific to dark cells, and various vestibular/
supporting cells (CACNA1D, MYH9, OTOGL, ANK?2)
(Fig. 5E). Dark cells are epithelial cells which line the
endolymphatic space and utricle, and are involved
in the production of endolymph. As endolymphatic
hydrops is thought to be a major component of MD,
genes which are mutated in MD patients, and which are
expressed highly in dark cells or other endolymphatic
and vestibular supporting cells are of particular inter-
est. MERFISH spatial expression of OTOGL confirms
localization to the utricle and organ of Corti (Fig. 5G),
consistent with findings of Otogl and Otog expression
in the mouse cochlea using RNAscope from Jean et al.
2023 [37]. These data suggest localization to cell types
in which the effect of the MD genes and variants may
have the highest impact.

On the other hand, compared to a baseline of all
genes in the study cohort with at least one variant, MD
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expressed genes per otic cell type are shown in the heatmap, with red indicating upregulation in the hearing-impaired mice, and blue indicating
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network +recurrent prioritized genes were significantly
more highly expressed in most cell types (Fig. 5F; rank-
sum test, adj p<0.05). COL11A1, for instance, was
expressed widely throughout the cochlea (Fig. 5G). We
conclude from this high expression across many cell
types in the inner ear that the MD network + recurrent

prioritized genes may play key roles across the ear in
Méniere’s Disease, and that the disorder may be both
polygenic and poly-cellular. However, we acknowledge
that this dataset lacks broad representation of all cell
types in the human cochlea [38] and further study of a

representative single cell atlas is warranted.
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Discussion
The etiology of MD has eluded researchers for over a cen-
tury. What is known is that in approximately 5% of cases
there is a Mendelian pattern of inheritance. The diagnosis
of definite MD is based on clinical criteria and requires
the observation of an episodic vertigo syndrome associ-
ated with low- to medium-frequency sensorineural hear-
ing loss and fluctuating aural symptoms (hearing, tinnitus
and/or fullness), most often unilateral, in the affected ear.
In this manuscript, we demonstrate the polygenic nature
of this disease and posit potential genes and pathways
involved. The unilateral nature of the most common form
of MD suggests stochastic effects of gene/protein variants
likely influenced by environmental factors [39].
Endolymphatic hydrops, the swelling of the scala
media compartment of the cochlea, is a well described
pathological finding in patients with MD [40]. Literature
abounds regarding the possibilities of overproduction or
under resorption of endolymph being the primary mech-
anism for the hydrops seen in temporal bone specimens
of affected patients. Both our network and over-repre-
sentation analysis of recurrently mutated genes identify
cell junction assembly as a strongly enriched pathway,
leading us to the hypothesis that endolymphatic hydrops
may in fact be the result of “leaky” cell-cell and cell-
extracellular matrix contacts leading to an influx of ions/
fluids from the scala tympani and/or the scala vestibuli
into the scala media. This finding suggests that endolym-
phatic hydrops may have both genetic and environmental
factors that lead to alterations of ion and free water flow
resulting in changes in endocochlear potential. Initially,
this is reversible leading to fluctuating hearing loss. Ulti-
mately, however, this becomes permanent with resulting
sensorineural hearing loss and impaired vestibular func-
tion. In addition, the maintenance of the endocochlear
potential via the stria vascularis, a highly metabolically
active tissue, is critically dependent upon energy derived
from ATP. Our analysis demonstrates significant enrich-
ment in ATP-related pathways underscoring the likely
role of the lateral wall of the scala media in MD.
Prioritizing MD-related mutated genes by inclusion
of biological interaction networks to 481 genes points to
MPHOSPHS associated with transcriptional suppression,
MYOI8A associated with hair cell-cell junction proteins
[41], TRIOBP associated with human deafness and essen-
tial for thickening bundles of F-actin in rootlets, establish-
ing their mature dimensions and for stiffening supporting
cells of the auditory sensory epithelium [42], and OTOGL
associated with vertigo [43] and midfrequency hear-
ing loss [44], as key MD genes. In addition, disruptions
in genes instrumental to otic capsule and temporal bone
development may lead to sensorineural hearing loss, diz-
ziness, and vertigo; key symptoms of MD [45].
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Limitations of this project include lack of healthy con-
trol individuals screened negative for MD, which we have
attempted to overcome with rigorous statistical analyses
leveraging public datasets. However, due to the preva-
lence of MD in the population (1.2%), individuals with
MD or at-risk of developing MD may be included in
these public datasets. In addition, our sample population
is predicted to be of 96.6% European descent, limiting
the broad applicability of these results to other popula-
tions, which warrants further study to include individu-
als from diverse populations. Finally, this analysis is
focused on protein altering variants, which likely does
not encompass all of the potential molecular mechanisms
underlying the physiological changes driving the onset of
endolymphatic hydrops.

Conclusions

Méniére’s disease remains an enigma in the field with
very little known about the biology and thus, no targeted
therapy exists. This study, the first large scale sequencing
project on well-characterized unilateral MD, uncovers
new genes and pathways underpinning the complex poly-
genic disease. The genes and pathways we have impli-
cated in MD include known deafness and vertigo genes,
genes involved in cell-cell adhesion and the extracellular
matrix, stereociliary structure and function, and cellular
energy maintenance. Specifically, we hypothesize the dis-
ease is driven by abnormally porous cell junctions in the
organ of Corti and impaired potassium regulation within
the stria vascularis as demonstrated in our tissue specific
gene expression data and pathway analysis, and impaired
maintenance of the energy stores required for main-
taining the necessary tight control of the endocochlear
potential. Taken together, this molecular genetic analy-
sis supports several likely mechanisms leading to the
final common pathway we see as MD. In the age of pre-
cision medicine, these data can be used to create a gene
panel for the first objective diagnostic tool for MD. More
importantly, these data will allow the scientific commu-
nity to begin to develop model systems that will lead to
targeted therapies.

Subjects and methods

Study design & participants

This study was approved by the Institutional Review
Board (no. 01-041 and 10-035) of St. Vincent’s Medi-
cal Center. Subjects were chosen based on retrospective
chart review as having definite MD defined by fluctuating
low-frequency hearing loss on serial audiograms, roaring
tinnitus exacerbations prior to an attack of vertigo, and a
subsequent attack of vertigo lasting less than 24 h. Sub-
jects meeting the inclusion criteria were mailed informed
consent forms and saliva collection kits. A total of 1,200
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patients provided informed consent and returned saliva
collection kits for DNA extraction. 527 of these well
characterized and deidentified samples were used for the
analysis. Only patients with definite Méniere’s disease
according to the American Academy of Otolaryngology-
Head and Neck Surgery criteria were included.

Audiometric assessment by evaluation

Standard pure-tone audiometry and word recogni-
tion score (WRS) testing (NU-6 25-word lists) via ear-
phones were administered. Audiometric equipment was
calibrated yearly, per ISO 1910.95 standards. Pure-tone
average (PTA) threshold data were calculated from four
frequencies (0.5, 1, 2, and 3 kHz). The number of evalua-
tions ranged from one to 87 separate hearing tests for the
sample cases. Individuals with only one evaluation in the
data set were not included in the study. A sample of the
audiometric distribution was previously published[46].

Whole genome sequencing

Genomic DNA was acquired from saliva samples submit-
ted and purified according to Pure Gene (Qiagen) stand-
ard protocols. All samples were initially purified using
Ampure XP beads (0.8:1 sample to bead ratio). Genomic
DNA quality was assessed using Genomic DNA Screen
Tape on an Agilent 4200 (Agilent Technologies, Santa
Clara, CA, USA), and quantity using the Qubit dsDNA
HS (High Sensitivity) assay. Samples with DNA Integ-
rity Number (DIN) greater than 4.0 and at least 500
nanogram (ng) of DNA were selected for subsequent
processing. 500 ng of Genomic DNA from each sample
was fragmented by Adaptive Focused Acoustics (E220
Focused Ultrasonicator, Covaris, Woburn, Massachu-
setts) to produce an average fragment size of 400 base-
pairs (bp). Sequencing libraries were generating using
the KAPA Hyper Prep Kit (KAPA Biosystems, Wilming-
ton, MA, USA) following manufacturer’s instructions
using 3 cycles of amplification. The quality of the library
was assessed using High Sensitivity D1000 kit on a 4200
TapeStation instrument. Sequencing was performed
using the NovaSeq 6000 Sequencing System (Illumina,
San Diego, CA, USA), generating 150 bp paired-end
reads to obtain 30X average coverage.

Variant calling

Single nucleotide variants (SNVs) and small insertions
and deletions (IN/DELs) were called using bcbio, which
implements GATK 4.1.9 best practices pipeline for joint
genotyping on the hg38 reference [47]. A total of 511 out
of 527 samples passed quality control checks and were
included in the analysis. In order to remove false positives
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identified in the data following the first variant calling
step, we performed additional filtering (supplement).

Identifying recurrent rare variants

Variants were filtered by gnomad v3.1.2, ExAC, 1000
genomes, to exclude variants common in>5% of the
population. Variants deemed "benign" by Sift or Poly-
phen were removed, and only protein altering variants
were retained. We further filtered to variants of unusually
high frequency (observed frequency/gnomad expected
frequency>1.3). Sensitivity analysis was conducted to
verify that results were not highly sensitive to choice of
threshold (Figure S2). We filtered by observed/expected
ratio rather than a variant-level p-value computed from
allele counts in the study cohort and the gnomad control
cohort because the observed/expected filter strongly out-
performed the p-value filter in recovery of relevant mam-
malian ontology (MPO) terms (Figure S3).

Network analysis

The STRING molecular interaction network (version
11.5) was used, with all edges, in a weighted version of
network propagation with weights of edges given by con-
fidence [48]. Genes harboring rare damaging mutations as
described above were used as seeds for the network propa-
gation algorithm [22], to score all genes. We compared the
calculated propagation score to that of a null ensemble in
which mutations in each patient are uniformly random,
therefore unrelated to MD. We generated 10* independent
samples of 511 patients each from the null ensemble, with
numbers of mutations the same as observed in the MD
cohort for each patient. Genes were then sorted by z-score,
where genes with large positive z are of high interest.

Enrichment analysis

Pathway and gene ontology enrichment analysis was
conducted on filtered gene sets using the GProfiler tool
[49]. Gene sets tested were ‘recurrence’ (4 or more obs/
exp>1.3 frequency genes; N=1098 genes), network’ (net-
work propagation z-score>3; N=1037 genes), or ‘recur-
rence+network’ (4 or more obs/exp>1.3 frequency genes
and network propagation z-score > 3; N=481 genes).
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