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1 Introduction

As modern power grids tend towards greater levels of automation and communication, the
challenges of identifying and mitigating vulnerabilities to cyber-attacks are ones that are in-
creasingly demanding attention. Today’s power system has evolved to form the foundational
bedrock of modern society, and an attack on this infrastructure could prove disastrous. In
this project we were tasked to investigate the use of distribution synchrophasors as an inde-
pendent isolated sensor network with which we can corroborate, or flag potentially spoofed,
Supervisory Control And Data Acquisition (SCADA) data. We adapted an approach to
marry the underlying physical properties of power systems with the network communica-
tions used by power systems in order to offer insights unattainable by either data stream
in isolation. While the concept of intrusion detection systems (IDS) is well understood for
monitoring network traffic and traditional IT computing systems, the approach discussed
in this report is motivated by several key notions: first, current SCADA communications
alone presents an incomplete view of the grid. Second, the power grid, and the equipment
controlling it, is grounded by laws of physics. Given this, we leverage high-frequency phys-
ical grid measurements to understand the physical condition of the grid, and combine this
with SCADA. While high-frequency physical grid measurements and SCADA communica-
tion over Internet Protocol (IP) networks are fundamentally disparate information sources,
when collectively examined through appropriate lenses, they offer a much more nuanced
depiction of the grid. This concept follows our earlier work of leveraging insights regard-
ing the physical behavior and limitations of network-connected control systems to detect
cyber-attacks [MPS14].

Lawrence Berkeley National Laboratory (LBNL), in collaboration with Arizona State
University (ASU), the Electric Power Research Institute (EPRI), EnerNex, Power Stan-
dards Lab (PSL), and its utility partners, have been investigating such an approach whereby
physical grid measurements are analyzed in conjunction with SCADA captured traffic in
order to determine whether an adversary may have infiltrated a utility’s SCADA system.
Within the scope of this work, we have focused on using distribution phasor measurement
unit (PMU) data with high output sample rate alongside SCADA traffic to examine the
state of the distribution grid. The PMUs and computing infrastructure that analyze this
data would ideally be isolated from the potentially infiltrated SCADA network local to dis-
tribution systems, and would offer system operators and operations engineers a redundant
and independent view of the network.

Section 2 begins with an overview of the system architecture that facilitates the data
acquisition and processing. Section 3 outlines the specific algorithms developed and their
validation on both simulated and field data while Section 4 concludes with a summary of
the work performed and our industry engagement activities.
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2 System Architecture Overview

An overview of our system architecture, the LBNL Stream-Processing Architecture for near-
Real-time Cyber-physical Security (SPARCS), is shown in Fig. 1.

Figure 1: Stream-Processing Architecture Overview

The SPARCS architecture, which leverages open source tools, and is itself also open
source,1 is designed to support the collection, analysis, and storage of the high-frequency
power data and SCADA data that we use to detect cyberattacks against distribution grid
equipment.

The main novelty of our architecture lies in the hierarchical design, and the application of
“edge” computation where possible, so that unnecessary data need not be transported across
low-bandwidth (e.g., cellular) network connections from potentially very remote locations in

1SPARCS: https://github.com/lbnl-cybersecurity/sparcs
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the power distribution grid. This approach has multiple benefits: first, the local portion of
the data analysis allows for minimal latency to react on local events, even in situations where
wide area communications are not available, and could have protected against the attacks
described in, for instance [Smi14]. Furthermore, the paradigm of “edge” computing also
allows prioritization and annotation of data going upstream when anomalies are detected,
over the transmission of raw sensor data and SCADA heartbeats. If desired, data reduction
mechanisms can be applied, which is especially of interest when network capacity is limited
or when pay-per-use connections apply, such as over cellular. Additionally, since the “edge”
computing is directly attached to the sensor, it can effectively shield the sensor from the
network and therefore allows the sensor to become less reliant on security patches. This
is important, as sensors typically live longer than they are supported by the vendor with
timely (security) updates [HMCP04]. Instead, we only have a single, unified, local “edge”
computing device, that is inexpensive and easy to maintain and upgrade if needed.

The “edge” or “local” computing device that we currently use is the BeagleBone Black
(“BBB”) [Col13], although a variety of low-power, low-cost computing devices could be used
as long as the device has two network interface cards (NICs) to function as a bastion host
between the µPMU and the network connection to the Internet.

2.1 Data Acquisition

2.1.1 SCADA Data

In order to generate synthetic SCADA traffic, We use the openDNP3 library that implements
the DNP3 communication protocol for generating and communicating simulated SCADA
data [ope]. We then utilize the Bro network security monitor [Pax99] to analyze captured
DNP3 packets (e.g., via SPAN ports, port mirroring, etc..), and forward them to a SCADA
data analytic module that we have developed. This module leverages the DNP3 parser built
into the Bro Network Security Monitor. The analytic results from this module are then
correlated with µPMU data analytic results for anomaly detection in the power grid.

2.1.2 Synchrophasor data from µPMUs

Two methods are used to transfer synchrophasor data from a µPMU to a directly connected
BBB. The first method is using the IEEE C37.118.2 protocol that is commonly used for
synchrophasor data transfer for power systems. This method is used for live-streaming of
data; hence it cannot make up for missing data in the event of loss of communication.
Therefore, the second method (reading from the internal memory of the µPMU using FTP)
serves as a work around for missing data. In this method, the µPMU stores its sampled data
worth a certain time duration in its internal memory. When the BBB (any device consuming
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synchrophasor data from the µPMU) detects that data is missing, it retrieves the missing
data from the µPMU’s internal memory using the FTP protocol.

2.2 Messaging system & Field Site Computations

The result of local computations (and raw data if needed) are sent upstream to a decentral-
ized publish-subscribe messaging system (RabbitMQ), that distributes data to its individual
destinations, which can include other layers of edge/local-computing or central systems. In
our previous work [JSR+17a] we described a number of local data analyses currently running.
We term this collection of analyses the “µPMU fog” as it represents a collection of local,
edge computing and central and potentially cloud computing resources. These inference
rules are agnostic about infrastructure parameters, and use only local information to process
and label the data.

In our implementation of SPARCS, we did not adopt a fully-distributed messaging sys-
tem, such as ZeroMQ [Zer18], in order to maintain low network overhead. Instead, we
deployed one messaging system per field-site/area, each with their associated local security
analytics using the corresponding sensor feeds. We do this analysis of the data locally for
the same reasons as indicated earlier (latency, resilience, prioritization, data reduction), only
now with data from multiple sources available to the analytic process, which is required by
some analysis techniques. Next, data is sent to a central messaging system with multiple
systems attached to it as follows. These algorithms are described in section 3.1.

2.3 Central System

The central messaging system contains all historical data for both short and long term
storage. The access to historical data is a key feature of the central analysis, which allows
one to (re)evaluate historical measurements, which is especially useful for newly-developed
algorithms or configuration updates that can be tested and evaluated on a substantial corpus
of real data. And, for machine learning applications, historical data can be used to train the
necessary machine learning models.

For scalability, multiple intermediate aggregation systems can be deployed, which have
the same architecture as the field-site messaging systems. We archive the data in both short
and long term databases. The short-term database is intended to enable rapid searches
and complete queries, and stores the (compact) analysis reports from the various subsys-
tems and a set raw data for easy visualization. The long-term database stores raw data
loss-lessly encoded using Google’s Protocol Buffers [Var08] format, and compressed, using
Cassandra’s [Cas18] built-in compression, to 91% of its original raw data size. This database
includes descriptive metadata added to describe the raw data such as the unique identifier
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of the data source (e.g., sensor or network security monitor) and timestamps.

From this central messaging system we also allow export of data to third party systems
and software. We have deployed an OSISoft PI Server historian, a software commonly used
in both power utility companies and sensor control environments in general, and have also
tested the export of data to the Splunk SIEM, an industry standard for operational security
teams for storing and analyzing security data. The system supports the use of Elasticsearch
as a SIEM by default, because we use that as one of our native data storage systems already.

Finally, we have deployed a graphical front-end for public use at https://powerdata.

lbl.gov that allows visualization a web browser and also API access to both real-time data
feeds and also historical data.

3 Cyber-Physical Intrusion Detection Algorithms

The proposed architecture in section 2 is designed to receive physical data from µPMUs
and cyber packets mirrored by the packet sniffers from the SCADA to analyze and cross-
correlate the data based on a set of defined rules and decide whether SCADA data has been
compromised. The objective of these rules can classified as having three distinct approaches:

• The first of these approaches is the development of a suite of algorithms that, once
an attack has been initiated, rapidly detect an anomaly that has put the grid in the
transient regime, i.e., a a state whereby the grid cannot be characterized by a set of
memory-less algebraic equations or has placed it in an unallowed zone of operation.
These algorithms begin with localized analytics at the sensor level that flag potential
anomaly signatures. These data packets are then prioritized for communication to
a centralized layer where analysis is done across devices to corroborate behavior and
understand the attack. The aim of these algorithms is to filter out the deviation from
what is considered as “normal” in the power distribution grid. The cause of an anomaly
can be a cyber attack, or it can be a failure or fault. In either case, we desire to spot
this anomaly and further verify the root cause by looking at the monitored SCADA
cyber traffic. The detailed description of these algorithms will be covered in section
3.1.

• The second of these approaches is to identify signatures in the data which may in-
dicate that an intruder is performing a set of “reconnaissance” activities by testing
its controllability and reachability of the network. These types of attacks would be
structured such that the actions of the attacker would be verifiable in SCADA data by
the intruder but would not manifest themselves as transient regime in the data or will
not put the grid in an unallowed operating zone for the operator. An example of such
an attack could be altering the time delay on a tap changing transformer as long as the
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voltage is within the allowed limit. Another example is altering the Normally Open
(N.O.) switch between two transformers in a substation. The details of the associated
algorithms are given in section 3.2.

• In the third approach, we investigate the localization of faults using µPMU data, in
an operating regime where the number of µPMU sensors available to carry out the
inference is insufficient to have observability. We then show its application in the
forensic analysis of cyber-physical attacks to a distribution Fault Location, Isolation,
and Service Restoration (FLISR) system.

3.1 Anomaly Detection

The suite of algorithms we have developed for the anomaly detection layers have the following
advantages in comparison to the present state of the art: (1) due to the near-real-time
analysis, analytic results can be used to prioritize the traffic flow from the lower to higher
layer, pushing forward reports of anomalies faster than data that do not raise a flag and
need to simply be accrued for historical purposes; (2) it employs three-phase distribution
grid equations rather than the more commonly-used positive sequence solution, thus avoiding
the errors arising from this assumption; (3) a quasi steady-state condition is considered as
the normal regime of operation rather than the idealistic steady-state which assumes there
is no frequency drift.

3.1.1 Voltage Magnitude Changes:

During quasi steady-state operations, the magnitude of the voltage varies within a small
range as outlined in power quality standards [IEE09]. Therefore, any large deviation from
that range indicates an abnormal condition. Table. 1 lists the anomalies that can be ob-
served in the voltage magnitude labeled by their severity and duration, denoted by |v| and
τ , respectively and To denotes the period of a cycle.

Table 1: Voltage Magnitude Anomalies
anomaly signature 2

voltage sag 0.1 ≤ |v| ≤ 0.9, T0/2 ≤ τ ≤ 60s
voltage swell 1.1 ≤ |v| ≤ 1.8, T0/2 ≤ τ ≤ 60s
interruption |v| < 0.1, T0/2 ≤ τ ≤ 60s
sustained interruption |v| < 0.1, τ > 60s
undervoltage 0.1 ≤ |v| ≤ 0.9, τ > 60s
overvoltage 1.1 ≤ |v| ≤ 1.8, τ > 60s
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3.1.2 Current Magnitude, Active, and Reactive Power Changes

In addition to the voltage magnitude, suitable quantities to monitor for changes than can
be computed locally from the µPMU voltage and current phasor measurements are current
magnitude, active and reactive powers. Even when the voltage magnitude is within the safe
range discussed previously, changes in current and/or active and reactive power can still
happen due to the change of the load, affecting the magnitude of the current and/or the
phase angle between current and voltage phasors. Therefore, it is also of interest to track
fast-changes of these time-varying quantities. We are using the two-sided Cumulative Sum
(CUSUSM) in these algorithms when tracking a fast change is required. The details of this
method can be found in [Pag54, Lai95]. We label the anomalies related to fast changes in
this class of data with surge, drop, and oscillation for increasing, decreasing, and swinging
trends respectively by estimating the slope of the signal around the time of change.

While we are primarily concerned with fast state changing events in both the dynamic
and transient realms, we must also consider events in the steady state time frame, slower
changing yet also potentially critical. An example of this could include a line rating or
transformer load being slowly, but consistently, pushed beyond its maximum rating, leading
to accelerated aging and eventful failure. During the quasi steady-state, the three phase
current phasor magnitude flowing in each line should be less than or equal the line rated
current. We impose this constraint as feeder limit, and the violation is flagged as overcurrent.

3.1.3 Instantaneous Frequency Changes

For a µPMU at bus i, we estimate adaptively the instantaneous local frequency deviation
from the nominal frequency during the quasi-steady state, using the approach outlined in
[XDM12,XM12] that is tailored to three-phase distribution lines, to isolate abnormal changes
in the estimated frequency.

3.1.4 Quasi Steady-State Regime Validity

Fig. 2 shows the abstract one-line diagram of a circuit from one of our partner utilities
and the location of the installed µPMUs. The two feeders here are connected through the
subtransmission grid.

2The voltage magnitude is in p.u.
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Figure 2: Location of Installed µPMUs in Our Partner Utility Grid.

Fig. 3 shows the voltage magnitude change rule inspected on the data from these µPMUs
over a period of interest. The results of the fast change inspection on the current magnitude
of phase a and instantaneous local frequency at the substation bus of feeder 2 are illustrated
in Fig. 4 (a) and Fig. 4 (b), respectively. Observing the results of analysis, the Distribution
System Operator (DSO) can deduce that the cause of the event is most probably located on
feeder 2. Also, from the pre- and post-anomaly value of the current magnitude, the DSO can
conclude that some of the loads on this feeder tripped due to the voltage sag. We just showed
the results from some of the rules but other rules can also flag the existence of anomaly on
feeder 2. Now, we wish to demonstrate also some results obtained from simulating an IEEE
standard test case. We simulated the IEEE-34 bus test case [IEE] using then time-domain
simulation environment of DIgSILENT [MP09]. The sampling rate is selected to be equal
to that of Analog-to-Digital Converter (ADC) in a real µPMU. We then passed the time-
domain data to our phasor estimation algorithm that emulates a two-cycle, P-class algorithm
based on the IEEE C37.118.1 [IEE11]. The single-line diagram of the test case is shown in
Fig. 5. This case includes single-phase laterals, voltage regulators, and untransposed lines,
which all are modeled exactly in our admittance matrix. In this simulation, we tested our
rules for detecting an anomaly with respect to a Single-Line to Ground Fault (SLGF), which
is a very common type of short-circuit fault in the distribution grid. We introduce a SLGF
on “Phase a” of line (25,26), which then blows the fuse placed on the phase a of this line
near bus 25. Our three µPMUs are placed on buses, 9, 19, and 31 based on the optimal
placement criterion.

The results of the “voltage magnitude change” rule is shown in Fig. 6 for µPMUs 9, and
19. The rule inspects the data for large deviations, labels them accordingly, and finds the
start time and the end time of the event, marked with blue and red stars.

Fig. 7 illustrates the metric value for the specified lines that is inspected with M = 12 to
check whether the grid is in the quasi steady-state or not.3 The start time of the detected
changes are also marked, setting the CUSUM detector parameters fixed in all the three local

3The voltage and current data are first converted to per-unit system assuming Sb = 1 MVA.
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Figure 3: Voltage Magnitude Change Rule for Real Data.

engines corresponding to each µPMU. As can be observed, there are two periods in which the
grid manifests its dynamic: the first one corresponds to the occurrence of the fault and the
second matches with the fuse meltdown. In addition, based on the severity of the transient
that each µPMU measures, the number of detected changes via CUSUM varies. In this case,
considering the location of the µPMUs and the location and type of the fault, the most severe
change appears in the metric corresponding to measurements from line (19,20), while the
changes in metric for line (31,32) is very small. Therefore, based on the defined parameters
on the detector, CUSUM finds quite a number of change points in the former, while it is
not set to be sensitive to the changes in the order that appears in the latter. In fact, if the
detector is set to be too sensitive, it can increase “false alarms” in the system. Also note
that due to the two-cycle calculation of the phasor, and use of M samples to calculate the
correlation matrix, the event appears and disappears with a systematic delay. The other
local rules also capture the anomaly, though with different severity and behavior. In fact,
many of the local rules may detect the same event, though some rules are more informative
than others depending on the cause. Each triggered rule reports a start and an end time for
the event. Storing theses time-tags for eventful segments of data helps understanding their
relationship.

Although the corresponding rule at the local level is formulated irrespective to the grid
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Figure 5: IEEE 34-Bus Test Feeder Single-Line Diagram

parameters and the geographical location of the sensor for scalability purposes, the rules
at higher stages are set up incorporating the grid parameters. In particular, we use the
Kirchhoff’s Voltage and Current Law as the cornerstone of our analysis to establish our
rules in these stages. As we have previously shown [JSR+17b], the equation relating the
vector of three-phase voltage phasors to the vector of three-phase current injection phasors
over the grid through the admittance matrix only takes form of a memory-less algebraic
system of equations when the grid is in the steady-state, which can also be used for quasi
steady-state condition with a very good approximation. However, when a severe-enough
transient is induced by an event, these equations are no longer memory-less, and are in
the form of “differential algebraic equations” instead. We use this interpretation as the
basis for our rule to detect anomalies, which means that at higher levels of aggregations,
deviation from the quasi steady-state regime (memory-less algebraic equation) is a signature
of an anomaly for the perimeter that is monitored. If we have a large number of µPMUs
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(more than half the number of nodes), we can formulate a metric that is zero in the quasi
steady-state and is non-zero otherwise so we can simply spot the transient. However, as we
mentioned earlier, the challenge here is the limited number of µPMUs. We can still use a
similar metric, that approximates zero and varies smoothly during the quasi steady-state
and non-zero otherwise with fast changes otherwise. The schematic diagram of this rule is
illustrated in Fig. 8. The metric defined for our central engine is also illustrated in Fig. 9 for
the SLGF scenario, which indicate the successful performance of the metric in appearing the
anomaly and the detector to track these changes. The delay in appearing and disappearing
of the event in here is solely due to the two-cycle phasor calculation.

3.1.5 Discussion–Compromised Data

In this experiment we illustrate the resilience of our anomaly detection architecture to data
injection attacks. For this purpose, we investigate three data attacks scenarios happening
concurrently with the SLGF event discussed previously. We consider the case of the attacker
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0 0.2 0.4 0.6 0.8 1

Time (sec)

0

0.5

1

1.5

2

x

10-3 Central Rule Metric
Detected Changes

Figure 9: Central Rule Inspection for SLGF.

manipulating the data of µPMU 9 in the first case, and µPMU 19 in the second case, and
finally µPMU 9 and 19 at the same time in the third case. In all cases the data injected are
a replay of the last available data set before the anomaly starts. Setting the change detector
parameters fixed for all the three cases, Fig. 10 shows, for each case, the central rule and the
start time of the detected changes. As can be seen, since µPMU 19 is playing an important
role for this event, having µPMU 9 compromised will not affect our central rule significantly
(case-1). However, when the µPMU 19 is compromised, the number of detected changes
reduce significantly (case-2), and when both µPMU 9 and 19 are compromised and the only
healthy data is coming from µPMU 31, the detector does not pick any fast changes based
on the set parameters. This also reveals the importance of tuning the detector thresholds to
have a certain “false alarm,” while maximizing the “detection” probability. We note that the
local analytics that directly draw data from µPMU 19 will still flag the alarm, so buffering
locally at the site of the event these data can be an important way of helping understand
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what communications were compromised in an ex-post analysis.

3.1.6 Optimal µPMU Placement for Event Detection

We define our placement criteria with respect to our above-mentioned rule at higher levels
of data aggregation. Our criterion in this case is the minimum number of sensors as possible
during the quasi steady-state. This in turn means that the sensitivity of the rule with respect
to the anomalies increases. Therefore, we formulate our optimization as a min-max problem
aiming to minimize our metric for the maximum value that it can take over all the possible
available measurement set. The advantage of the inner maximization is that we are no longer
dependent on the measurements, and we are only dependent on the grid parameters.

To test our placement criterion, we first started with IEEE-34 bus standard test case.
To find the optimum set in here, we used an “exhaustive search” algorithm that evaluates
the objective function for all the possible combinations. Since this search is exponentially
complex, it therefore becomes intractable for larger cases with higher numbers of µPMUs.
Thus, we employ a “greedy search” algorithm as an alternative to reduce the time complexity
to polylog, but accept the results to be sub-optimal.

Table. 2 compares the objective value for a random placement, “Greedy Search” and
“Exhaustive Search”, and the time complexity of each solver, assuming that K = 3 µPMUs
are available. The objective value of the “Greedy Search” and the “Exhaustive Search,” and
the set of the selected buses are very similar, while the runtime of the “Greedy Search” is
102.206 times faster. Overall, it indicates that the “Greedy Search” can be a very good
choice to solve our optimal placement problem.
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Table 2: IEEE-34 Case Optimal µPMU Placement Result for K = 3

Random Greedy Exhaustive

Optimum Cost 2.4035 0.51477 0.51477
Buses with µPMUs {1,7,23} {7,19,31} {9,19,31}

Run Time – 2.84 s 290.266 s

The result of the optimal µPMU placement for the LBNL utility grid is shown in Fig. 11
assuming that 4 µPMUs are available. The placement algorithm places the µPMUs on both
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Figure 11: Optimally-Placed µPMUs in the LBNL Utility Grid.

feeders and on similar locations because they are approximately symmetric. Besides, it puts
µPMUs at substation and at the end of the longest line (1,6) to give the maximum coverage.

While the formulation of the placement is general, we can put the constraints that µPMUs
should be only placed at the three phase level not laterals since the events happening on
single-phase and two-phase lines can be captured by the µPMUs nearby at the three-phase
level or we can use the reduced model, where the laterals are all rolled up.
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3.2 Reconnaissance Activity Identification

As a motivation for the consideration of “reconnaissance attacks,” we consider the Ukrainian
power grid attack report [LAC16]. This report suggests that the attackers may have been
passively monitoring and potentially testing their controllability over the network for up to
6 months before initiating the main attack. This suggests the need to identify the points in
the grid that an attacker could test its controllability over switches in the network without
causing any damage to the grid or raising any alarms. Along with the identification of such
potential “reconnaissance attacks,” we have developed the tools to be able to detect such
activities in the grid before the adversaries move to the next stage, a potential large scale
attack. In particular, focusing on the security monitoring of the On Load Tap Changers,
auto-switched capacitor banks and N.O. substation switches as potential points that can
potentially be subject to a ‘reconnaissance’ activity, we briefly go over the developed tools
and accordingly describe how they can help us detecting such activities.

3.2.1 Learning Control Logic of Discrete Control Devices

Our work presented in [RSJ+19] gives an overview of the possible control logic schemes that
may be operational for regulators and controllers as well as outlines a suite of algorithms for
parameterizing these control schemes. To summarize how a regulator typically operates.

• It has an upper- and lower-threshold boundary outside of which the regulator will seek
to perform a tap operation to bring the voltage back within allowable bounds.

• These thresholds can be static, i.e. not related to how much active and reactive power
is being consumed, or they can be a function of the current power demand. The latter
is called Line Drop Compensation (LDC) where the regulator attempts to estimate
the voltage drop along the line to the main customer load center, and account for this
offset. Intuitively this means that if the regulator expects a higher voltage drop along
the line i will keep its local voltage higher to allow for the drop.

• Once the regulator has sensed that the voltage has exited its allowable range it begins
a countdown timer. If the voltage re-enters its allowable range before this countdown
timer expires then the timer is reset. Otherwise, once the timer has reached zero, the
regulator executes a control action, i.e. it changes its tap position to raise or lower the
voltage. This countdown timer can be static (i.e. 30 seconds for all tap change events)
or it can be inversely proportional to how far outside its allowable range the voltage
has deviated. The latter is called an inverse time delay. A simple example is that if
the voltage is 1.25 V above its target it will execute a control action is 20 seconds.
however if it is 5 volts above its target, it will execute a control action in 4 seconds.
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Within this work we seek to estimate both the upper- and lower-thresholds and associ-
ated time delay. Then, our algorithms can run online and passively monitor the operational
behavior of the device and alert the operator should it detect behavior inconsistent with its
historical behavior. The voltage generally exits its allowable range in one of two manners:
1) either via a gradual ramp-up or ramp-down in the net-load of the feeder or 2)a discrete
jump in the voltage caused by either a large change in net-load load or an event on the
transmission/subtransmission grid, e.g. a switching action or the actuation of subtransmis-
sion regulation equipment. It is the former which we seek to exploit in order to estimate a
regulators time delay. We will examine the difference between the individual PMU voltage
measurements using an approach similar to early-late gate from signal processing. This ap-
proach take a sample at time t and computes the difference between the mean of the next
n samples and the mean of the previous n samples. In this application we take n to be 01
second in order to filter out high frequency voltage fluctuations due to motor starts and other
short term voltage behavior. We denote the time instant immediately before the actuation
of a switching event i as tia and the time which the voltage time series exited its allowable
range as tic. Therefore, if the control device has a fixed time delay, this time delay is given
by tia− tic. If a device has a dynamic time delay, as a function of the deviation of the voltage
from the target voltage, we adapt a iterative approach to converge on this user set delay and
control scheme parameters. This methodology is detailed in [RSJ+19].

In order to validate our approach using real data we consider two OLTC transformers
at pilot site deployments whose secondary terminals are being measured my a distribution
PMU reporting at 120 Hz. Both locations are independent distribution feeders electrically
connected through a sub-transmission network. In order to identify operation of the OLTC,
both sensors were used to classify events as either global, i.e. originating from the transmis-
sion or subtransmission network, or local, i.e. OLTC transformers or downstream switched
capacitor banks. Following this, k−means clustering was employed to group events and dis-
tinguish between OLTC transformer actions and switched capacitor banks [ARAS17]. Once
a set of tap operations has been identified the control logic is identified and parameterized.
In both cases, the summation of the one second time series difference profiles exhibited one
distinct peak, as can be seen in 12, and correspondingly a value for the regulator time was
obtained and can be seen in Table 3.

Table 3: COMPARING PARAMETER ESTIMATIONS FOR UTILITY MEASURED
DATA

Target Voltage Controller Deadband Time Delay

OLTC 1
Estimate 119.1 V 2.6 V 32.3 s

Reported 119 V 3 V 30 s

OLTC 2
Estimate 120.13 V 2.7 V 33s

Reported 120 V 3 V 30 s
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Figure 12: Estimating the regualotr time delay via sum of one second first discrete difference
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Figure 13: Estimated lower- and upper-thresholds

These estimation values along with those as reported by the utility are shown in Table
3. All estimated quantities for the optimal case were within the specified accuracy of the
controller with any minor discrepancies attributable to systematic error of their individual
instrumental transformers and controller measurement inaccuracy. In terms of monitoring
a devices behavior for cyber-physical security purposes, it is less critical that estimated pa-
rameters match the reported parameters but rather that the observed behavior is consistent
with the learned control logic. i.e. we are focused on detecting abnormalities in operational
behavior rather than minor discrepancies between estimated and reported values.

Specific considerations for feeders with Distributed Energy Resources (DERs):
An OLTC and/ or switched capacitor banks offers an attacker with a unique avenue through
which to disrupt the network operations. OLTC transformers are typically capable of regu-
lating the voltage at their secondary terminals with ± 10% of the voltage at their primary
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terminals. As per the revised IEEE voltage ride-through requirements [15418], smart in-
verters are required to trip offline after a minimum time period for V > 110% after the onset
of an event. Dependent on the voltage at the primary side of the transformer and the in-
stantaneous tap position, an attacker may be capable of utilizing an OLTC and/or capacitor
banks to push the voltage within these ranges as outlined in the revised IEEEE 1547 standrd
for DER [15418]. If a coordinated attack was carried out across multiple substations, this
may threaten the stability of the system. Therefore it is critical to monitor these assets and
rapidly detect erroneous operation.

3.2.2 Substation Normally-Open Switch

In this use case we assume that the substation connected to the distribution feeder is equipped
with a normally-open spare transformer parallel to the main transformer, to restore the de-
livery of the power to the feeder when the main transformer fails or requires maintenance.
Inserting the spare transformer into service, while the main transformer is also in service,
has no adverse effect on the delivery of the power to the feeder downstream. It is therefore
appealing for an attacker to try and test its ability to control the network through a com-
promised SCADA network, by changing the service status of the backup transformer switch
when the main transformer is in service. The attacker may then confirm the switching in
of this transformer via intercepting SCADA traffic and mask this control action by spoofing
the SCADA packets sent to the control center. The question we seek to answer is:“can we
detect such an activity with µPMU data?”

Let us assume that we have a µPMU placed at the head of distribution feeder as shown in
Fig. 14. In this circuit, the dominant term in the Thevenin source impedance would be due to
transformer impedance. Therefore, when the spare transformer switch is toggled maliciously,
while the main transformer is in service, the source impedance will roughly decrease by 50%
relative to its normal value. We track the fast changes in the estimated positive sequence of
the Thevenin source impedance. When a fast change is found, the magnitude of the change
can be extracted to determine whether it can be attributed to the spare transformer switch
or not. Fig. 15 shows the online tracking of the Thevenin impedance. As it can be observed,
when the switch gets closed, the estimated impedance is almost half of what it was before.
The dominant term in the source impedance is due to the transformer and such a change
cannot be the consequence of change in the transmission grid topology, the most plausible
cause is the event that the spare transformer switch was closed. Once such a change has
been detected the control center would be notified to determine where this was a scheduled
or unexpected switching operation, potentially a signature of malicious behavior.
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Figure 15: Online Tracking of the Thevenin Source Impedance using µPMU Measurements

3.3 Low-Resolution Fault Identification

Once an anomaly has been detected, the next step is determining the source of this anomaly
in order to prioritize forensic analysis of the corresponding SCADA packets. Using a statis-
tical approach, we first improve upon the state of the art and study the fault localization
problem with measurements that are too scarce for observability (we refer to it as the under-
sampled grid regime). Our main contribution is to show that in an under-sampled grid fault
location can be resolved reliably at a level of clusters that typically form connected sub-
graphs. These clusters depend both on the properties of grid admittance matrix as well as
the placement of the sensors. As a figure of merit, the cluster-level fault localization res-
olution can be measured in terms of the maximum size of all clusters in which the graph
is divided. Leveraging the insights from our analysis we propose a placement strategy that
achieves the highest localization resolution over the grid, by clustering the graph in a number
of connected components with clusters’ sizes as even as possible. In the paper, we also com-
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pare our method with [Bra11] to better highlight the benefits of our statistical approach.
We then apply the developed tool in the forensic analysis of cyber-physical attacks to a
distribution Fault Location, Isolation, and Service Restoration (FLISR) system [Ulu12].

In this section, we first corroborate our technical discussion and then showcase its appli-
cation in the forensic analysis of cyber attacks to FLISR systems.

3.3.1 Fault Localization Optimal Sensor Placement and Identified Communities

Before analyzing the results of the fault identification algorithm, we identify the optimal
greedy placement for the PMUs based on our envisioned optimal sensor placement for fault
localization. We highlight the clustering by showing the correlation metric among nodes to
highlight the set of nodes that are highly correlated in the fault localization sense and form
a cluster.

• IEEE-34 Bus Test Feeder: The one-line diagram of the test-case is shown in Fig. 16,
where a 100 kW generator is added at bus 848. This grid is unbalanced and radial
and has untransposed lines and one phase laterals. Also, without loss of generality,
only the nodes at the same voltage level have been considered. The placement is
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Figure 16: Reduced IEEE-34 Test Case with Added Generator.

done on the reduced network, where the laterals are rolled up to avoid putting a
PMU on a single phase node, thus avoiding the case where we only use using 1/3 of
its measurement channels. Assuming that there are 4 PMUs available i.e., P = 4,
Table. 4 shows the optimal location of the sensors and the random placement used as
a comparison. It is clear from the locations in Fig. 16 that are optimal according to
Table. 4 that the sensors are placed to cover the grid. Fig. 17(a) shows the thresholded
correlation coefficients corresponding to phase-A for the optimal placement in Table 4
and Fig. 17(b) is the same quantity that corresponds to the random choice. The clusters
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Table 4: PMU Locations for IEEE-34 Bus

Test Case #PMUs Optimal sites Random sites
IEEE-34 4 800-830-848-840 800-814-816-848

Table 5: Optimal Sensor Locations for IEEE-123 Bus

Test Case #PMUs Optimal Location
IEEE-123 10 149-81-61-56-105-250-86-151-72-57

of light gray values effectively represent fault locations that are hard to discriminate.
The larger the cluster, the lower the resolution. Hence, Fig. 17(b) clearly illustrates the
impact on the resolution of a bad sensor siting, when compared to the clustering that
emerges in Fig. 17(a). To corroborate our conjecture that the placement is affected
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Figure 17: Thresholded Correlation of Nodes for IEEE-34 Bus Case Related to Phase-A for
a) Optimal Location b) Non-Optimal Location

by the intrinsic topology of the graph and its clusters, in Fig. 18 we highlight the set
of buses that exhibit high correlation based on the optimal placement, by building
a graph adjacency matrix such that its entry is one if the corresponding correlation
coefficient is greater than a threshold and otherwise is zero. As we predicted, the highly
correlated nodes are those that are located in a neighborhood of each other.

• IEEE-123 Bus Test Feeder The analysis of the larger IEEE-123 test case, with an
optimal assignment of 10 PMUs, returns the results in Table 5. Once again, the
placement is done after rolling up the laterals and only nodes at the same voltage
level are analyzed. The one-line diagram and node numbering of this case can be
found in [Ker01]. The PMUs in this case also are spread over different areas of the
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grid topology to form communities of neighboring nodes of comparable sizes. The
thresholded heat-map given in Fig. 19 based on the optimal placement of Table 5,
highlights the balance across clusters.

3.3.2 Fault Localization Algorithm

The synthetic PMU data for this experiment were generated using the OpenDSS software
[Dug12]. The pre-fault data were first recorded using a power-flow snapshot and then a
fault was introduced in the dynamic mode to represent the behavior of the grid after a fault
occurs. It should be noted that the tap changers usually have a delay for 15-30 seconds in
order to respond to a change so the voltage and current data should be recorded before the
tap value changes, so that the admittance matrix stays the same before and after the fault.

• IEEE-34 Bus Test Feeder: Fig. 20 shows the value of the proposed metric for different
hypotheses when a single-phase to ground fault occurs at phase-A of bus 820. The
higher the value of the metric corresponding to a node is, there is a higher possibility
that the fault has happend there. As our analysis indicated, using the proposed metric
shown in Fig. 18 it becomes readily apparent that one can narrow down the location
of the fault up to a certain resolution, since a cluster of nodes return very close metric
value. These are also the nodes that are highly correlated with respect to the actual
location of the fault. To further test and verify the fault localization method, we
introduce different types of fault and show the results of the fault localization in Table
6 under the optimal placement.

• IEEE-123 Bus Test Feeder: The analysis of the fault localization algorithm has been
extended to IEEE-123 test case for different types of fault after the placement of
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Table 6: Identified Fault Locations for IEEE-34 Bus Case

Fault Type Exact Fault Location Possible Fault Locations

LLL 816 814,816,850
A-G 822 814,816,818,820,822,850

BC-G 852 832,852,858
AC-G 836 836,840,862
AB-G 808 800,802,806,808

the sensors on the optimal locations in Table 5. Fig. 21(a) shows the metric value
of different hypotheses for a three-phase fault at bus 160. Part of the correlation
coefficients heat-map that illustrates the correlation of the columns that have high
correlation with bus 160 is snipped out of Fig. 19 and is illustrated in Fig. 21(b). As
expected, the neighboring nodes that also have high correlation with bus 160 are those,
which have the closest metric value and can be mis-identified as the fault location.
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Figure 21: a) Metric Value for Three-Phase Fault at Bus 160 and b) Correlation of Nodes-
phase A.

Other types of faults and the potential locations are summarized in Table 7.

The faults are introduced at different locations of the grid and the results show that the
fault is identifiable up to the resolution of the clusters of neighboring nodes identified
with the correlation coefficients. An interesting case is the two-phase fault at node
57 (last row in Table 7), where the fault is identifiable with a high resolution. This
is consistent with our claims, since the correlation coefficients reveal that there is no
other node with very high correlation with this specific node.
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Table 7: Identified Fault Locations for IEEE-123 Bus Case

Fault Type Exact Fault Location Possible Fault Loca-
tions

LLL 42 40,42,44,47,48
A-G 108 105,108,109,300,110,

111,112,113,114
BC-G 89 86,87,89,91,93,95
AC-G 50 47,48,49,50,51,151
AB-G 57 57

• Comparison with the State of the Art: Our approach in using the pre and post-fault
samples and treating the fault as a current injection improves upon the work in [Bra11]
through its statistical underpinning. To show this, a two-phase fault is introduced at
bus 836-A-C and the results are shown in Fig. 22. The original method in [Bra11] is
designed as a minimization problem to find the fault location so we changed it to a
maximization by adding a negative sign to make a better visual comparison with our
method. The results clearly show that the proposed method can locate the fault more
accurately than the algorithm in [Bra11].
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Figure 22: Fault Localization for Fault at Bus 836-A-C Using a) Method in [Bra11] b)
Proposed Method.

Besides this improvement, investigating the reason behind this ambiguity is missing
in [Bra11], whereas this matter has been investigated theoretically and analytically in
our work. In addition, an optimal sensor placement strategy is proposed here to place
the sensors at nodes that would return the highest fault localization resolution.
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3.3.3 Application to Cyber-Physical Intrusion Detection

We leveraged the insights from this work to enhance our network intrusion detection system
testbed hosted at LBNL [Gen17, §4] [PGB+17] and incorporate additional rules to monitor
for cyber attacks that interfere with the normal operations of FLISR systems [Ulu12]. Our
testbed (see Fig. 23) is defined as hierarchical architecture to fast-detect the presence of
cyber-physical attacks by correlating analytic results from SCADA traffic (which includes
traces from fault detector communications) with PMUs deployed sparsely over a distribution
system [Gen17, §4] [PGB+17].
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Figure 23: The LBNL SPARCS hierarchical intrusion detection system used in our exper-
iments [Gen17, §4] [PGB+17]. Its components are: 1) a robust and open-source network
monitoring framework called Bro; 2) a publisher-subscriber messaging system called Rab-
bitMQ used to transfer PMU and SCADA analytics and data; 3) a NoSQL database system
called Cassandra, used for permanent archiving of all data; 4) a NoSQL database system
called Elasticsearch that records the analytics and receives events notifications in real time;
5) BeagleBoneBlack (BBB) devices that receive synchrophasor data at a rate of 120 sam-
ples/sec, and analyze 1 sec. worth of data to fast detect a cyber-physical event [JSP+16].

The FLISR System Operations and Vulnerabilities: FLISR systems detect the
location of a permanent fault in a feeder and automatically restore service to customers in
the healthy section of the feeder. To do so they employ directional fault detectors, installed
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at every line in a distribution feeder, that communicate the occurrence of a fault and its
direction to a distribution management system (DMS). The DMS analyzes these data and,
once the faulted section is identified, issues commands to a predetermined set of switches
to first isolate the faulted section and then restore service to the non-faulted areas [Ulu12],
so as to minimize the service disruption. Consider the one-line diagram of a sample radial
network shown in Fig. 24 to describe how FLISR works. The network is connected to a
substation at bus 1 and a distributed generation is connected to bus 6. Fault detectors and
normally-closed switches are connected at the end of every line. When a fault happens at
line 3− 4, all the fault detectors detect the presence of this fault such that fault detectors at
buses 1, 2 and 3 indicate that the fault is in their right side, whereas fault detectors at buses
4, 5 and 6 indicate the fault is to their left. Fault localization analysis at the DMS using this
information identifies the faulted section to be line 3− 4. The DMS, therefore, sends control
signals to automatically open switches to the right of bus 3 and to the left of bus 4 splitting
the network into two parts and restoring service to customers on both sections.

1  2  3  4  5  6 

DGsubstation

I65I12

Distributed generation DG Fault detector / Open/closed switch

Figure 24: Diagram of a Sample Radial Network with a Fault in Line 3− 4.

Fault detector data are transmitted to the DMS through a wide area network using
industrial protocols such as DNP3 [IEE12] or Modbus [Mod04] that are not secure by design.
Therefore, a dedicated attacker can tamper with fault detector data either remotely, through
a compromised network device (e.g., a router), or by physically connecting herself to an
exposed section of the communication network. For instance, the tampering can lead the
DMS analysis to pick the wrong location for an actual fault or completely hide the presence
of a fault.

Although such attacks can be partially prevented by enabling photographically authenti-
cated communication on top of the stated communication protocols, such a measure does not
prevent the whole spectrum of possible cyber attacks. Therefore, a more robust approach,
that does not merely rely on cryptographic solutions, is desired that is capable of detecting
the presence of an attacker. The analysis we carried out in this paper shows that, even with
a very limited number of sensors scattered in the systems, the PMU localization performed
using proposed metric enhances an operator’s confidence about the fault localization infor-
mation (or the lack of thereof) extracted from fault detectors data, by giving an additional
means to verify the trustworthiness of the SCADA messaging, albeit at a lower resolution.
In the next section we illustrate the effectiveness of the forensic analysis on FLISR attacks
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carried out by streaming simulated SCADA and PMU data to our LBNL testbed in Fig. 23.
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Figure 25: Output Mismatch as a Result of an Attack on SCADA data

In our simulation to demonstrate intrusion detection on fault detectors, we use the mod-
ified IEEE 34-bus system shown in Fig. 25. We introduce a two-phase AC-G fault at line
860− 836. Our PMU data analytic results correctly indicate the fault to be in Zone D. We
generate simulated SCADA data for each fault detector in the network using the openDNP3
library [G+12] that implements the DNP3 communication protocol. In our simulation, we
modify the packets from some of the fault detectors (those at buses 834 and 860) so that
the SCADA data analytics indicate the fault is at line 834 − 842, which is in zone C. The
inconsistent results from the PMU data analytics and the SCADA data analytics raise an
alarm about a possible cyber-attack on the fault detectors.

4 Summary

This project has developed a system for leveraging high-frequency power measurements, and,
either on its own or in concert with SCADA traffic, is able to detect a variety of attacks on
power distribution substation equipment, including transformer tap changes, capacitor bank
switches, and “reconnaissance” attacks involving probing and surreptitious manipulation.
This project builds on our earlier fundamental tenet around the notion that it is the physics
of the power grid and the equipment that controls the grid that gives us the most useful
insight in terms of how the grid is being manipulated, and what the consequences are.

This project has resulted in numerous peer-reviewed papers and academic conference
presentations. However, beyond scholarly output, the primary goal of this work has always
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been to develop this technology to the point that it could be sufficiently demonstrated to
the power industry such that the power industry could adapt our work to enhance their own
environments by implementing the security improvements that we have developed.

To that end, we have done several things. First, we have developed a robust platform,
SPARCS, for collecting, ingesting, analyzing, visualizing and storing relevant power mea-
surement and SCADA data, open sourced it, and made it publicly available online. Second,
we have developed a robust set of analytics for detecting numerous classes of attacks against
power distribution grid substations, SPARCS-Analytics, and also made that freely available
for non-commercial use, and licenseable for commercial use.

Third, we have promoted our work significantly to industry by leveraging our industry
partners to give talks at industry events, and present to and meet with potential users of our
technology. The result of these discussions is that significant interest has been expressed.
We note that one current limitation of our current implementation is that relatively few PSL
µPMUs have been installed in U.S. distribution grid. However, adoption is growing, and
international adoption, in particular, is very strong. Given this trend, and the interest in
our approach we have strong reason to believe that either our technology in specific, or our
technique in general will be adapted going forward as a method for detecting cyber attacks
against distribution grids.
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