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On Adding a Mean Structure to a Covariance Structure Model

Abstract

 The vast majority of structural equation models contain no mean structure, that is,
the population means are estimated at the sample means and are then eliminated from
modeling consideration.  Generalized least squares methods are proposed to estimate
potential mean structure parameters and to evaluate whether the given model can be
successfully augmented with a mean structure.  A simulation evaluates the performance of
some alternative tests.  A method that takes variability due to estimation of covariance
structure parameters into account in the mean structure estimator, as well as in the weight
matrix of the generalized least squares function, performs best.  In small samples, the F-
test and Yuan-Bentler adjusted  test perform best.�

�
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On Adding a Mean Structure to a Covariance Structure Model

 In regression, path analysis, confirmatory factor analysis and general structural
equation systems, it is possible to consider models whose parameters reproduce the
covariance matrix of the variables, or, a more difficult challenge, to consider a model
whose parameters reproduce not only the covariance matrix but also the means of the
measured variables.  Although structured means models were introduced into the literature
about 30 years ago (e.g., Sörbom, 1974), extended technically in various ways (e.g.,
Meredith & Tisak, 1990), and have become popular in specialized contexts such as growth
curve modeling (e.g., Duncan & Duncan, 1996) and multiple sample models, they are
rarely invoked in single sample modeling practice.  Certainly such models can be hard to
fit, that is, they often are too restricted to accurately reproduce real data.  Perhaps because
of this, structural modeling analyses are typically limited to covariance structure analysis
(e.g., Bentler & Dudgeon, 1996; Bollen, 1989; Hoyle, 1995).  In this note, covariance
structure analysis is proposed to be augmented with a post-modeling estimator of
structured means and a test that can help a researcher evaluate whether it might make
sense to consider adding a mean structure to the covariance structure model.  For
simplicity, the confirmatory factor analysis model is used for illustration.

The Factor Model

 Consider the  model for a random vector  of  factor  observed variablesk- p%
 
  =  +  + ,        (1)% � $� �

where  is a constant vector,  is a factor loading matrix,  is the vector of common� $ �p x k 
factors, and  is the vector of unique or error factors.  In the standard application of�

confirmatory factor analysis, the common and unique factor means are taken to be zero,
that is,  ( )=0 and ( )=0.  Then, taking expectations leads toE E� �

 ( ) =  .         (2)    E % �

In general, the covariance structure of the data is given as

 (  ( ) ( ) ,   (3)' $)$ *~ % c % ³²% c % ³ ~ bE E E Z Z

where  is the covariance matrix of the observed variables ,  is the covariance matrix' )%
of the , and  is the covariance matrix of the .  Although  is a parameter of the model,� * � �

in standard models it is not very interesting and is treated as a nuisance parameter.  As a
result, (2) is estimated at the sample mean  and is subsequently ignored.  Modeling is%c

based on the sample covariance matrix .  The free parameters of the structure (3) are:

estimated by some general method such as maximum likelihood to yield , , and .^ ^
$ ) *V

Conceptually, we may collect all the free parameters into a vector , and, when evaluating�

the significance of parameters, base this on the asymptotic distribution of the estimator ,�̂
given by
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 � ²
�

�          (4)�̂ � � +
B

c ³ ¦ ²�Á ³À

With normal data and an asymptotically efficient parameter estimator,  is the inverse of+

the information matrix.  Typically, a chi-square test also is used to evaluate the model
structure (3).  With normal data and maximum likelihood, this is the likelihood ratio test.
Computations of these statistics completes the technical part of the usual covariance
structure analysis.  The meaning of the parameters and the model as a whole is the focus
of subsequent evaluation by subject-matter specialists.

 The structured means model does not require the assumption that ( ) = 0, andE �

replaces (2) with the structure

 ( ) =  ,       (5)    E % b� $��

where is a vector of factor means.  In a single sample, this model is not identified, since��

there are p p k observed means on the left side of (5) but  plus  means on the right side of
(5).  Hence, to achieve identification, the convenient assumption  = 0 is made, so that�

  ( ) =  .        (6)    E % $��

This is the standard structured means modeling hypothesis.  Under this hypothesis, the
observed variable means are a linear combination of the factor means, with weights given
by .  However, the parameters  are not available when the covariance structure model$ ��

(3) is estimated.  Stated differently, when only (3) is modeled, the structured means
hypothesis (6) cannot be evaluated.  It will be seen that a small amount of added effort can
provide information about (6).

The Distribution of a Residual

 The problems of obtaining an efficient estimator of  and also of obtaining a test��

statistic that can be used to evaluate the hypothesis (6) are closely related.  We approach
these problems using standard asymptotic statistical theory, based on the large sample

distribution of  .  First we decompose this expression into two components^
� ²

�

� % c ³c  $��

      (7)^ ^
� ² � ² � ²

� � �

� � �% c ³ ~ % c ³ c c ³Àc c  $� $� $� $�� � � �

The distribution of the first part on the right is well known under the null hypothesis (6).
It is just the distribution of the sample mean, that is,

  ,      (8)� ²
�

� % c ³ ¦ ²�Á ³c  $� � '
B

�

which is asymptotically normal with covariance matrix  for an appropriately large sample'

of size .  The second part can be rewritten as�
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 ^ ^
� ² � #��²

� �

� �$� $� � $ $� � �c ³ ~ c ³
i

where  and the  operator vectorizes the subsequent matrix. The� �
i Z

�� �~ n 0 ³ #��²

asymptotic distribution of this expression depends on the distribution of the elements of $
that are free parameters.  If the vector of free parameters is denoted as , then covariance�

structure analysis under model (3) already has provided their asymptotic distribution as

 ,� ²
�

� � � � +
BV c ³ ¦ ²�Á ³��

where  is the appropriate submatrix of .  Since  contains the free parameters+ + $�� #��² ³

� as well as some fixed or known elements that have no variance, the distribution of

  ,^
� #��²

�

� $ $ � +
B

c ³ ¦ ²�Á ³
i

��

where  is the matrix  augmented by appropriate rows and columns of zeros+ +i

�� ��

corresponding to the fixed parameters in .  Thus the asymptotic distribution of the#��² ³$

second right-hand part of (7) is given by

 � #��²
�

�� $ $ � � + �
B

i i i iZ

� � �� �
^     (9)c ³ ¦ ²�Á ³À

 The results in (8) and (9) can now be combined.  In this paper it will be assumed
that the mean parameters in (8) and the function of the factor loadings (9), derived from
the covariance matrix, are asymptotically independent.  This will occur in the important
special case that the data are multivariate normally distributed.  As a result,  

  )      (10)^
� ²

�

� % c ³ ¦ ²�Á
c  $� � (

B
�

where This provides the basis for factor mean estimation and a test( ' � + �~ ² b ³À
i i iZ

� �� �

of the mean structure hypothesis.

Factor Mean Estimator and Mean Structure Test

 In order to obtain an estimator of , an obvious procedure is to minimize the��

generalized least squares function

     ,^ ^
�² ²% c ³ > % c ³c c$� $�� �

Z

using some logical choice for the weight matrix . An optimal choice would be>

> ~ V V( ( ( (
c�

, where  is a consistent estimator of .  However,  depends on the unknown
� �� �.  In order to make progress, we will obtain an initial consistent estimator of , and
then use an optimal updating method to obtain a final fully efficient estimator.  See, e.g.,
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Bentler and Dijkstra (1985) for a discussion of two-step estimators in the context of
structural modeling.  In the first stage, the simplest procedure would be to use ,> ~ 0

yielding the simple least squares estimator for  as .  A more efficient choice^ ^^
� $ $ $� ² Z c� Z³ %c

is to consider , using the covariance structure estimator for .  This yields the^> ~ ' '
c�

quadratic form

     ,     (11)^ ^^; ~ % c ³ % c ³c c�² ²$� ' $�� �
Z

c�

which, when minimized with respect to , yields the estimator��

 .      (12)~ ^ ^^
� $ $ $� ~ ²

Z c� Z
' '
^ ^  c� c�³ %c

This is a consistent estimator of the factor means, based only on the estimated covariance
structure model and the sample means.  It is interesting to note that if   were replaced by%c

a particular score vector  in (12), the generalized least squares factor score estimator%
developed by Bentler and Yuan (1997) is obtained.  However, in general  is not fully~��

efficient, since (11) is based on a misspecified weight matrix, that is, is not consistent'̂

c�

for .  However, in contrast to the least squares estimator, it will be efficient if the(
c�

asymptotic covariance matrix in (9) is degenerate.  This occurs, for example, when $
contains no free parameters.  While rare, this is not an unheard of modeling situation, since
it will occur with specialized models such as the intraclass correlation model or standard
growth curve models with fixed growth coefficients.  In such a case, based on;V

substituting (12) in (11) will have an asymptotic  distribution, where �
�

�c�
� is the number

of factors.  In general, however, the distribution of ;V  can be represented by a mixture of
chi-square variates (e.g., Satorra & Bentler, 1994), but this is difficult to deal with and can
be circumvented.

 In the second stage, a consistent estimator for  based on (12) is specified, and the(

updated final estimator  is obtained.  Specifically,  and  from the covariance� ' +V V V
� ��

i

structure analysis, along with  from the first stage analysis, are used to obtain the~��
consistent estimator

 ,      (13)^ ~ ~( ' � + �~ ² b ³V Vi i

i
Z

� ���

where  is used to generate .  This allows specification of the generalized least squares~ ~� �� �
i

function

     ,    (14)^ ^^; �² ²� '| ~ % c ³ % c ³c c$� ( $�� �
Z

c�

 
which is minimized to yield the final factor score estimator
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  .      (15)^ ^^ ^^
� $ ( $ $ (V ~ ³ %c� ² Z c� Z

c� c�

The corresponding test statistic

         (16)^ ^^ ^^; �² ²^
� '| ~ % c ³ % c ³c c$� ( $�� �

Z
c�

is, under the null hypotheses of a correctly specified covariance structure model (3) and
the structured means model (5), asymptotically distributed as , where ��

�c�
� is the number

of factors.  This can be shown using the usual minimum chi-square arguments (see, e.g.,

Ch. 23 of Ferguson, 1996).  When is large compared to degrees of freedom, the;̂ � '|

structured means hypothesis (5) can be rejected, but if the probability associated with the
�
� is not too small, the structured means hypothesis is plausible.  In that case, an

investigator may consider the simultaneous estimation of the mean and covariance
structure model to obtain an overall model test.

 In principle, the estimator (15) could be used to update the estimated asymptotic
covariance matrix (13), and the process (13)-(15) could be cycled through repeatedly until
some convergence criterion is reached.  Conceivably this might be helpful in very small
samples, but, as noted for example by Bentler and Dijkstra (1985), asymptotically there is
no advantage to doing so.  Furthermore, at some point the computations become so heavy
that one may as well directly and simultaneously estimate the covariance as well as mean
structure.  The whole point of the current development is to have a simple way to evaluate
whether this might be worthwhile.

Alternative Test Statistics

 The form of  is suspiciously like that of a Hotelling variate, for which;� '| ; �

typical practice is to use the sample covariance matrix S in place of .  Substituting this'̂

consistent estimator in (11) and (13), for example, is permissible and yields a closely 
related test statistic that has the same large sample properties as It also follows; ;� � '| |:  .  
that it may be useful to evaluate the null hypothesis (5) using the transformed variate

 (    (17)-̂ ~ � c � b �³�| |' � '; °¸²� c �³²� c �³¹^  

referred to the distribution.  In the context of covariance structure analysis,-²�c�³Á(�c�b�³

the  test performs very well (Yuan & Bentler, in press), but because of the lower degreesF
of freedom in this mean structure context, any advantage over evaluating  using the;� '|
�
�
�c�  distribution may be minimal.  And of course may be used in (17) in place of;�|S 

;� '| |S, yielding the comparable  statistic .F -�

Simulations
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 The four variable covariance matrix with means, given in Table 1, can be generated
by a one-factor model as specified in (1), (3) and (5).  The factor loading parameters for
the variables in sequence are 1.0 (fixed), .6, .7, and .8, and all unique variances are 1.  The
factor mean is 3, and its variance is 1.  Four sets of simulations were done with this model,
each based on 500 repeated drawings of a given sample from a normal population having
the parameters described in Table 1.  The process was repeated at each of five sample
sizes, 100, 200, 400, 800, and 1600.

 .  This study evaluates the two-stage estimation process thatSimulation 1
culminates in the factor mean estimator (15) and the test statistic (16).  Since there are
four sample means, and there is one factor mean, the test statistic should be distributed as
a chi-square variate with 3 degrees of freedom.  Results of the simulation are given in
Table 2.  Each row gives the results for samples of a given sample size.  The columns give
the number of rejections of the null hypothesis at =.05 across the 500 replications, the�

mean and standard deviations of the statistic , and then the corresponding information;̂
� '|

based on the F-test .  The number of rejections should be approximately 25 to show-̂ �|'

nominal performance.  There is a slight tendency to overreject the structured means
hypothesis at the smallest sample size, but asymptotic performance certainly can be seen
with 800 observations.    Since the mean of a  variate is the degrees of freedom, the�

�

sample means of  should be approximately 3, while the standard deviation should be;̂ � '|

l
=2.449.  The means as well as standard deviations across the 500 replications are
somewhat too large at smallest sample sizes, but performance on these measures is also
good with 800 or more observations.

 At the smallest sample size, the performance of the -test is superior to that of theF
�
� variate in terms of number of rejections, but at the larger sample sizes it is virtually

identical.  Improved small sample performance by the -test is similar to that observed forF
covariance structure model tests by Yuan and Bentler (in press).  More specifically, the
mean and variance of an -variate are given byF

  and  ,,²- ³ ~ = ��²- ³ ~� Á� � Á�
�

� c� � ²� c�³ ²� c�³

�� ²� b� c�³

� � � �

� �

� � � �

�
� �

�

respectively.  For sample sizes 100, 200, 400, 800, and 1600, these formulas yield means
and standard deviations of , respectively as:F�Á�c�

 ,²-³ ~ �À���Á �À���Á �À��	Á �À���Á �À���

 :!�²- ³ ~ À�	
Á À��	Á À��	Á À���Á À��
À

Comparing these theoretical values to the empirical results shown in the right part of Table
2, at the smaller sample sizes both the empirical means and standard deviations are a little
bit larger than those of the theoretical -distribution.  Similar performance for an -testF F
was found in a different modeling context by Yuan and Bentler (in press).
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 Simulation 2.  Although the simulation results of Table 2 verify that our ��

approach seems to be asymptotically valid, in small samples the test means and standard
deviations are too large.  Such a bias to a test statistic has been observed for the
asymptotically distribution free covariance structure test statistic.  Yuan and Bentler
(1997) proposed a simple correction to this test statistic that works substantially better
than the uncorrected statistic in realistic sized samples.  In the current context, this
requires computing the modified statistic�

�

 ; ; ; °�¹i^ ^ ^=
� ' � ' � '| | |  ,      (18)°¸� b

and referring it to the reference ��

�c�
 distribution.  It will be seen that as , this� ¦ B

becomes equivalent to (16), i.e., it is a small sample correction.  As can be seen from
Table 3, at the small sample sizes, this modified statistic improves on the original statistic
in terms of number of rejections, while at the larger sample sizes it performs the same.  It
also has means and standard deviations that are closer to those expected from the
reference  distribution.  In fact, the test (18) performs equivalently to the �

� F-test in the
smallest samples (compare to Table 2).

 Simulation 3.  In order to get some idea of the importance of taking into account

the variability in  to the accurate estimation of $̂ ��  and testing a mean structure, the

estimator ~��  given in (12) and the associated test statistic derived from (11) were;̂  
studied under identical conditions as in the previous studies.  Perhaps if the variability

given by � + �~ ~  is relatively small, it could be ignored without much worry.  Thei i

i
Z

� ���
V

results, given in Table 4, are dramatic.  At all sample sizes, the true null hypothesis is
overwhelmingly -- almost always -- rejected.  There is no evidence that �� and  referenceF
distributions can be used to describe the empirical behavior of these test statistics.

 .  The results of Simulation 3 could be due to use of an inappropriateSimulation 4
weight matrix  or else a poor choice of estimator of  In order to shed some light onW �� À

these alternatives, the simulation was repeated with use of the estimator  given in (12),��
~

applied to the generalized least squares function (14).  Thus the weight matrix is
asymptotically correct, based on (13), but the factor mean estimator is the first stage
estimator that does not use an asymptotically correct weight matrix.  The results are given
in Table 5.  The true structured means model is rejected about 40% of the time at all
sample sizes when using both  and  reference distributions.  While this is an �� F
improvement over that of Simulation 3, it still provides a radical contrast to the two-stage
approach given in Simulations 1 and 2.  Evidently, both the factor mean estimator and the

quadratic form test statistic must be based on the consistent estimator  of ( (
^  given in

(13) to obtain approximately nominal performance.

Discussion
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 Although developed in the context of the confirmatory factor analysis model, with
the specific factor score hypothesis (5), the proposed two-stage approach to evaluating
potential mean structures is obviously general.  The Bentler-Weeks model (e.g., Bentler,
1995) describes the relation among variables  � � � !� using the relation  =  + , where B B
and  are coefficient matrices,  is a vector of independent variables, and  contains  as! � � �

well as dependent variables .  The corresponding covariance structure is given by�

  = (   ) (   ) ,     (19)' !)!G I B I B Gc c
c� Z c� Z Z

where  is a known matrix selecting observed variables  from the  and  isG % variables � )

the covariance matrix of the  variables.  The corresponding mean structure can be taken�

as

 (   )E( ) =       20% À ² ³G I Bc
c�

!��

Clearly, the theory developed above is directly applicable to such generalized models.  The
covariance structure model is estimated using (19) rather than (3), and the mean structure
hypothesis is given by (20) rather than (5).  As can be seen from the latter comparison, the
expression  in the technical development, with theG I B(   )  has to replace c

c�! $

asymptotic covariances of free elements of   whenB and ! being used instead of those of $

obtaining the asymptotically correct estimator .   is similarly replaced in (15) and (16)(̂ $

when obtaining the factor means and test statistics.

 The simulations verified the critical nature that the proposed consistent estimator

( (
^  of  plays in these analyses.  It will be obvious that the factor mean estimator (15)

immediately implies a new factor score estimator  .  A more^ ^ ^^ ^^
� $ ( $ $ (~ ³ %²

Z c� Z

c� c�

classical estimator, analogous to (12), was given by Bentler and Yuan (1997) as

� $ $ $
^ ^ ^^ ;  this is equivalent to the well-known Bartlett estimator under~ ²

Z c� Z' '
^ ^  c� c�³ %

standard regularity conditions.  However, the Bartlett, regression, and related factor score
estimators all have been derived under the assumption that  is known.  In our$

application, this is clearly a dangerous assumption, and it is quite likely also to be
problematic in factor score estimation.  That is, it also may be important in factor score
estimation to take into account sampling variability due to the fact that  is not known$

and needs to be estimated.  This is a topic we will discuss in detail elsewhere.

 While our simulations with a small structured means factor model showed that our
proposed new tests seem to perform reasonably well under the null hypothesis, further
thorough simulation studies are needed to evaluate power, to find the limitations of the
proposed methodology, as well as to provide better evidence on the relative performance
of the alternative and  tests.  Finally, it should be noted EQS 6 computes the two-�� F
stage statistics described here.  The implementation is quite simple, as was shown, and
could be incorporated into any structural modeling program.
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Table 1
Population Covariances and Means for Simulation

Covariance Matrix
2.00
  .60      1.36
  .70        .42      1.49
  .80        .48        .56      1.64
Means
3.00      1.80      2.10      2.40
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Table 2
Simulation Results Based on Chi-Square (Eq. 16) and F (Eq. 17) Tests

                                    ^

Sample Size Rejections Mean Std Dev Rejections Mean Std Dev
100 48 3.646 3.184 40 1.191 1.040
20

;̂
� ' '| |- �

0 36 3.390 2.799 35 1.119 0.924
400 40 3.340 2.704 39 1.108 0.897
800 27 3.157 2.522 27 1.050 0.838
1600 24 2.983 2.363 22 0.993 0.787
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Table 3
Simulation Results Based on Modified Chi-Square (Eq. 18) Test

                  

Sample Size Rejections Mean Std Dev
100 39 3.431 2.814
200 34 3.297 2.645
400 39 3.295 2.635
800 27 3.137 2.489
1600 22 2.974 2

;
i^
� '|

.348
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Table 4

Simulation Results Based on and  Tests^
;̂  -

                                    ^

Sample Size Rejections Mean Std Dev Rejections Mean Std Dev
100 478 62.496 57.054 475 20.411 18.634
20

;̂ -

0 480 58.789 49.857 480 19.399 16.452
400 469 58.837 48.250 469 19.514 16.003
800 468 55.512 44.684 468 18.458 14.857
1600 471 52.962 43.617 470 17.632 14.521
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Table 5
Simulation Results Based on ��~  Applied in ;

� '|

                   (                   (^

Sample Size Rejections Mean Std Dev Rejections Mean Std Dev
100 204 11.500 17.515 1

;̂
� '| � �� �

~ ~) ) -

97 3.756 5.720
200 193 10.144 12.317 190 3.347 4.065
400 204 10.035 11.626 202 3.328 3.856
800 193 9.041 9.556 192 3.006 3.177
1600 190 8.858 9.935 189 2.949 3.308




