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Melanocytes do not migrate directionally
in physiological DC electric fields

JENNIFER C. GRAHN, BSa; DEBRA A. REILLY, MDb,*; RICHARD L. NUCCITELLI, PHDc;
R. RIVKAH ISSEROFF, MDa

Wounding skin generates an endogenous electric field of 100–200 mV/mm in the immediate vicinity of the wound.
When keratinocytes are exposed to direct current electric fields of this magnitude, they exhibit galvanotaxis, or
directional migration toward the cathode, suggesting that wound-generated electric fields provide migrational
cues that contribute to wound healing. Because melanocytes must also migrate into the healing wound to
repigment it, their motility in response to electric fields of physiologic magnitude was examined. Human skin–derived
melanocytes, either exposed to 100 mV/mm direct current electric fields or nonexposed controls, both exhibited
motility rates of 9 lm/hour, significantly (three- to five-fold) lower than the motility rates of keratinocytes under
identical conditions. However, in sharp contrast to keratinocytes, melanocytes exhibited no directional migration in
the electric field. Additionally, neither the number of primary dendrites per cell, nor the orientation of the dendrites
with respect to the field vector, nor the average length of the dendrites was significantly different in melanocytes
exposed to the electric field as compared to nonexposed controls. Thus, in marked contrast to keratinocytes, human
skin–derived melanocytes do not respond to direct current electric fields of physiologic magnitude with either
directional migration or reorientation of dendrites. This may account for the delay in repigmentation that often
accompanies wound reepithelialization. (WOUND REP REG 2003;11:64–70)

Regeneration of wounded skin requires that the cell types

normally present in skin migrate from the wound periphery

to repair the defect and reconstitute the newly regener-

ating tissue. Although many physical processes and

biochemical factors are involved in stimulating and guiding

this migratory response,1 one of the earliest migratory cues

is the electric field generated within skin immediately upon

wounding.2,3 DC electric fields of physiological magnitude

(100 mV/mm) can direct keratinocyte migration toward

the cathode.4 Because melanocyte migration into the

healing wound is required for restoration of normal

pigmentation, we turned our attention to these cells,

asking the question of whether human dermal melanocytes

would respond to applied DC electric fields with direc-

tional migration as do human skin–derived keratinocytes.

A logical prediction was that they would. Xenopus neural

crest cells and their melanocyte derivatives exhibit gal-

vanotaxis when exposed to an electric field.5 Other

dendritic cells of neural crest origin, such as nerve cells,

respond to an electric field by turning their dendrites

toward the cathode (galvanotropism),6–11 and immature

amphibian melanocytes show cathodal migration in DC

electric fields.5 Thus, our unexpected finding of an absence
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of a directional response in melanocytes and absence of

redistribution of their dendrites when exposed to an

applied DC field is novel and shows that the galvanotaxis

response varies with species and with cell type.

MATERIALS AND METHODS
Normal human epidermal melanocytes (NHM) were isola-

ted from primary keratinocyte cultures derived from

neonatal foreskins, obtained with an approved protocol

from the University Institutional Review Board. The initial

isolation of the keratinocytes is the same procedure that we

have reported previously.12 Briefly, foreskins were trimmed

of excess subcutaneous tissue, cut into small pieces, and

trypinized overnight at 4 �C. Epidermis was scraped from

the dermis, dispersed into a single-cell suspension, and

plated onto a mitomycin C Treated 3T3 feeder layer, as

previouslydescribed.13 After thecells incultureformed6–12

cells per colony, the medium was changed to keratinocyte

growth medium (KGM, Cascade Biologics Inc., Portland,

OR). Once the cell culture reached 20% confluency, the

melanocytes were isolated by selective trypinization14 and

plated onto new dishes in melanocyte growth medium

(MGM, Cascade Biologics Inc.), an M154-based medium

supplemented with penicillin-G, streptomycin, amphoteri-

cin B, bovine pituitary extract, fetal bovine serum, bovine

insulin, bovine transferrin, basic fibroblast growth factor,

hydrocortisone, heparin, and phorbol 12-myristate 13-

acetate. After cultures reached about 70% confluency, cells

were treated with 100 lg/ml G418 sulfate (Geneticin�,

Gibco BRL, Grand Island, NY) for 3–5 days to selectively

eliminate any fibroblast contamination.15 To test the purity

of melanocyte cultures, cells were recovered, passed onto

collagen I–coated glass coverslips, and probed with the

NK1/beteb antibody (Caltag Laboratories, Burlingame, CA)

specific to melanocytes.16 Cultures were only used if they

were free of contaminating keratinocytes and fibroblasts.

Cells were maintained at 37 �C/5% CO2. Cultures between

passage 4–12, were derived from two separate donors,

tested separately, and the data were averaged.

Immunostaining of NK1/beteb
NHM were plated on glass type I collagen (Vitrogen,

Cohesion Technologies, Palo Alto, CA) coated coverslips.

Collagen coating was done by immersing coverslips in

60 lg/ml collagen diluted in Medium 154 at 37 �C for a

minimum of 1 hour. Coverslips were then washed three

times with Medium 154 before melanocytes were plated.

Cells were cultured on coverslips 24–48 hours before

immunostaining. Coverslips were fixed in )20 �C acetone

for 10 minutes, permeabilized with )20 �C methanol for

5 minutes, and washed with distilled water and phosphate

buffered saline solution (PBS). Nonspecific binding was

blocked by incubation in 10% normal goat serum diluted in

PBS for 1 hour at room temperature. Coverslips were then

incubated in mouse anti-NK1/beteb (1 : 20; Caltag Laborat-

ories) at 37 �C for 1 hour. Coverslips were then washed

three times with PBS, incubated for 1 hour at 37 �C in goat

anti-mouse Cy3 immunoglobulin (1 : 500, Jackson Immuno

Research Labs, West Grove, PA), washed three times in

PBS, incubated for 10 minutes in equilibrium buffer, and

mounted in SlowFade Light (Molecular Probes, Eugene

OR).

Galvanotaxis
Coverslips and cells were processed following the proce-

dure described previously.4,17–21 Briefly, melanocytes or a

combination of keratinocytes and melanocytes were

plated on type I collagen (60 lg/ml)–coated glass cover-

slips at a density low enough to allow cells to attach singly,

without contact with other cells. After cell attachment

(2–3 hours), the coverslip was placed into a galvanotaxis

chamber. The galvanotaxis chamber is a piece of plexiglass

constructed with a reservoir containing medium on either

side of the coverslip that allows flow from one side to the

other, as previously described.9 The chambers were sealed

with tape and silicone high-vacuum grease to prevent

evaporation and pH change. The experimental chamber

contained supplemented MGM, which has a final calcium

concentration of 2 mM. Medium was first added to one

well of the chamber and only after a clear path of the

medium flow over the cells was established was the

medium added to the second well. Melanocytes were

exposed to a constant DC voltage of 100 mV/mm, applied

through Ag-AgCl electrodes in each well for 2 hours at

35 �C in room air. Agar-filled glass bridges separated the

electrodes supplying the current from the chamber itself to

prevent diffusion of electrode products into the medium.

As a control, melanocytes on type I collagen–coated glass

coverslips were simultaneously exposed to 0 mV/mm

using the same experimental conditions. The current was

measured at the beginning and end of each experiment

with an ammeter in series to ensure that the amperage was

kept below 0.6 mA to minimize Joule heating. The

temperature of the medium in the chambers was monit-

ored at the beginning and end of the experiment using a YSI

400 analog temperature probe (Yellow Springs Instrument

Co., Inc., Yellow Springs, OH) and did not vary by more

than 0.5 �C. If greater fluctuations occurred, the experi-

ments were not included in the analysis. Eight separate

experiments were performed with two different cell strains

per condition for the melanocyte alone experiments. The

co-culture experiments were performed twice. Occasion-

ally, cell division was noted during the experiments.
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Recording and data analysis for galvanotaxis
During exposure to the electric field, cells were observed

using either phase contrast or Hoffman optics. Images

were captured and recorded every 20 minutes for 2 hours

to an image analysis program on a Power Macintosh 8500/

120 using a modified version of NIH Image 1.60 and

FileMaker Pro 3.0. After each cell was tracked, the data

was automatically exported to FileMaker Pro 3.0 where the

data was analyzed and stored. Cell migration was quanti-

tatively analyzed for speed, distance, and directionality. To

quantitate the directedness of the average cellular trans-

location, the cosine of the angle at which each cell moved

in relation to the anodal-cathodal orientation was calcula-

ted. Specifically, a cosine value of 1 would indicate direct

cellular movement toward the negative pole (cathode); 0

would indicate movement perpendicular to the field

direction or random migration; and )1 would indicate

direct cellular movement toward the positive pole (anode).

The average cosine / for each experiment was calculated

from the formula: < cos / > ¼ (Si cos Ni)/N,4 where Si is

the summation of cosine values obtained from individual

cells, / is the angle between the field axis and the cellular

translocation direction, and N is the total number of cells

observed for a given experiment. Average cell velocities

(lm/minute) were calculated by dividing the sum of each

20-minute translocation distance for each cell by the total

time (120 minutes). True distance is defined as the actual

distance the cell traveled during the 2-hour experimental

period.

Statistical analysis
Statistical significance was determined by Student’s t test

(unpaired), with p < 0.005 considered significant. Data is

presented as mean ± the standard error of the mean (SEM).

Dendrite analysis
After galvanotaxis analysis was completed, images for the

time points of 0, 60, and 120 minutes were re-analyzed for

the parameters of dendrite length, cosine of each dendrite,

and number of dendrites per cell. To measure the cosine of

each dendrite, the angle of each dendrite with respect to

the cell body and the field was measured and from that

angle the cosine was calculated.

QuickTime movie
A movie was made in QuickTime Pro 4.0 of the co-culture

experiments by using images captured every 20 minutes

for 2 hours by NIH Image, making a stack of the images

and importing the stack into QuickTime. This movie

may be downloaded and viewed from the Wound Repair

and Regeneration Web site (ea.cphs.wayne.edu/wrr/

WRR.HTM).

RESULTS
Melanocyte motility in a DC electric field of 100 mV/mm

was examined (Figure 1). The cells moved randomly

with no sustained directional persistence. Migration was

not directional with respect to the field vector; cells

exposed to the field had an average cosine of

0.09 ± 0.12, which was not significantly different from

the control cells (p < 0.05). The electric field also did

not alter the migratory speed of exposed cells. True

speed for melanocytes in the field was 0.17 ± 0.01 lm/

minute which was slightly higher, but not significantly

different, than the controls (p < 0.05). The total distance

traveled by melanocytes exposed to the field (true

distance) was 20.6 ± 1.7 lm, which was slightly higher,

but not significantly different, than the control cells

(p < 0.05). Because the melanocyte cell body averages

about 17 lm in diameter, over the 2-hour experimental

observation period an average cell displaced about one

cell diameter. Data from Figure 1 are summarized in

Table 1.

Response of melanocyte dendrite length
and angle to applied DC electric field
Melanocyte dendrite length and angle were unaffected by

the applied DC electric field. Dendrites maintained a

random distribution relative to the cell body in both the

field and control groups (average cosine 0.014 ± 0.02 and

0.026 ± 0.025, respectively) (Figure 2). The average den-

drite length of cells in the field (38.8 ± 1.4 lm) was not

significantly different from that of the control cells

(37.5 ± 1.7 lm, p < 0.5). Furthermore, the average number

of dendrites per cell in the field (3.6 ± 0.17) was not

significantly different from that of the control group

(3.2 ± 0.13, p < 0.05). Data from Figure 2 are summarized

in Table 2.

Keratinocytes maintain directional
migration co-cultured with melanocytes
Negative data (such as the absence of a galvanotaxis

response, as we note with melanocytes) raises concerns

regarding the fitness of the experimental conditions in

general. To test this, NHM and normal human keratino-

cytes (NHK) were co-cultured and exposed to DC fields.

In these experiments, NHK migrate directionally toward

the cathode, whereas NHM exhibit random migration

(Figure 3). The NHK show a robust directional response,

migrating toward the cathode with a true speed of

0.7 lm/minute and an average cosine of 0.82, indicating

strong directional migration toward the cathode. Because

the keratinocyte cell body is about 30 lm in diameter, the

average cell translocated about three cell diameters over

the 2-hour course of observation. On the other hand, NHM
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migrate more slowly than the keratinocytes, with true

speeds of 0.2 lm/minute, equivalent to the speed observed

when melanocytes are cultivated in the absence of

keratinocytes (Figure 1), and their migratory paths show

no evidence of directionality, with an average cosine of

0.22. The robust directional migratory response of the

co-cultivated NHK in this system makes the observed

sluggish response of the melanocytes unlikely to be a func-

tion of experimental artifact. A movie of the time-lapse

images taken of the co-cultured keratinocytes and melano-

cytes over a 2-hour DC field exposure shows that although

the melanocytes are motile and exhibit morphologic chan-

ges associated with the polarized migratory phenotype,

their movement is not relative to the field vector. While the

keratinocytes move toward the cathode, the melanocytes

move and extend dendrites toward their neighboring

keratinocytes with no relationship to the applied field.

DISCUSSION
When skin is wounded, an endogenous electric field of

100–200 mV/mm is generated,3 with the negative (cathodal)

pole of the generated field at the center of the wound.

Human keratinocytes migrate toward the cathode (gal-

vanotaxis) when exposed to a DC electric field of

physiological strength.4,17–21 Similar studies using corneal

epithelial cells have also shown cathodal galvanotaxis,22

and analogous to skin wounds, corneal epithelium also

Table 1. Average distance, speed, and cosine of melanocytes exposed to an electric field

Electric field strength (mV/mm) True distance (lm)** (N) True speed (lm/min)** (N) Net cosine (N)@

0 16.3 ± 1.3 (67) 0.14 ± 0.01 (67) )0.26 ± 0.14 (25)
100 20.6 ± 1.7 (84) (P ¼ 0.06)– 0.17 ± 0.01 (84) (P ¼ 0.10)– 0.09 ± 0.12 (37) (P ¼ 0.06)–

Data taken from experiments described in Figure 1.

*Values indicate mean ± SEM.

@Cosine was calculated from cells with a true speed greater than 0.2 lm/min.

–P values were determined by two tailed unpaired Student’s t test.
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FIGURE 1. Cellular translocation distribution of human melanocytes during 2 hours of applied electric field. Images of the migration paths

were captured every 20 minutes and the translocation distance and directionality calculated as described. Each cell’s position at time

(t) ¼ 0 minutes is at the origin (0,0), and its final position at the end of the 2 hours exposure to the DC field is plotted as a single point on the

graph. The radius of each circle represents 200 lm of translocation distance. The cathode is at the top of each graph (0�), and the anode

at the bottom (180�). In the upper left corner of each circle plot are the average true speed, the average cosine and the total number of

cells studied (N). (A) 100 mV/mm and (B) 0 mV/mm.
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generates endogenous electric fields when wounded.23

Together, these studies have led to the notion that

endogenous wound electric fields provide early cues for

directional migration of cells involved in wound repair.24 In

this study, we asked the question of whether another

resident cell of the skin, the melanocyte, also responds to

an applied electric field of physiologic strength with

directed migration. Contrary to predictions based on the

previously reported responses of embryonic melanocytes

in different species, we found that under the experimental

conditions that allow for robust directional migration of

keratinocytes in an applied DC electric field, skin-derived

melanocytes are essentially ‘‘blinded’’ to the field. Rather

than exhibiting directional, cathodal migration, they move

randomly. Furthermore, they do not show dendritic

galvanotrophism as do nerve cells in an electric field.

Melanocyte ‘‘blindness’’ to the DC field is noted under

the assay conditions used: conditions under which kera-

tinocytes migrate optimally and show a robust galvano-

taxis response. It is possible that altering the composition

of the underlying extracellular matrix could influence the

galvanotaxis response of melanocytes as it does in

keratinocytes.17 Further work will be required to evaluate

the effect of other matrix proteins on melanocyte galvano-

taxis. However, the type I collagen substrate emulates the

skin wound environment, providing the cells with the

predominant collagen of the dermis and the wound

environment, and is the extracellular matrix protein the

melanocyte is most likely to encounter as it migrates to the

wounded area.

Wound healing in skin requires cell migration of a

number of different cell types to repopulate the wound.
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A
100 mV/mm
Number of dendrites per cell 3.6±0.17
Dendrite length (µm) = 38.8±1.4
Dendrite cosine = 0.014±0.03

B
0 mV/mm
Number of dendrites per cell 3.2±0.13
Dendrite length (µm) = 37.5±1.4
Dendrite cosine = 0.026±0.02

20 µm

FIGURE 2. Dendrite length and angle of human melanocytes during 2 hours of applied electric field. The final length and angle of each

dendrite was measured as described. Each dendrite’s final length and angle is plotted as a single point on the graph. The radius of each

circle represents 120 lm of length. The cathode is at the top of each graph (0�), and the anode at the bottom (180�). In the upper left corner

of each circle plot are the average number of dendrites per cell, average dendrite length, average cosine of the dendrites, and total

number of cells studied (N). (A) 100 mV/mm and (B) 0 mV/mm.

Table 2. Average number of melanocyte dendrites, dendrite

length, and cosine

Electric field

strength

(mV/mm)

Number of

dendrites**

per cell (N)

Dendrite

length**

(lm) (N)

Dendrite

cosine**

(N)

0 3.2 ± 0.13
(53)

37.5 ± 1.7
(53)

0.026 ± 0.03
(53)

100 3.6 ± 0.17 38.8 ± 1.4 0.014 ± 0.02
(59) (59) (59)

(P ¼ 0.06)@ (P ¼ 0.55)@ (P ¼ 0.71)@

Data taken from experiments described in Figure 2.

*Values indicate mean ± SEM.

@Values were determined by two tailed unpaired Student’s t test.
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An early cue for directional migration is the endogenous

wound electric field, and keratinocytes respond to this cue

with directional migration that can aid in the reepithelial-

ization process. If melanocytes do not respond to the

immediately generated endogenous wound electric field,

their directed migration or extension of dendrites into the

wound may be delayed. An initially depigmented wound

would result, and this is often the case, especially in burn

wounds.25–28 Understanding the cues that mediate melano-

cyte migration into healing wounds will allow rational

approaches for enhancing wound healing and normalizing

wound pigmentation.
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