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On the Poisson’s ratios of a woven fabric

Huiyu Sun* and Ning Pan
Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA

Ron Postle
School of Material Science, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Although it is undeniable that the Poisson’s effect on the behavior of a woven fabric is crucial, 

there have been relatively few papers devoted to this subject. In this study, a mechanical model 

for a woven fabric made of extensible yarns is developed to calculate the fabric Poisson’s ratios. 

Theoretical results are compared with the available experimental data. A thorough examination 

on the influences of various mechanical properties of yarns and structural parameters of fabrics 

on the Poisson’s ratios of a woven fabric is given. The prediction of Poisson’s ratios in this paper 

will enable more rigorous studies on such important issues of fabric bending and draping 

behaviors.
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1. Introduction

The Poisson’s ratio is one of the fundamental properties of any engineering materials, 

and represents important mechanical characteristics for a woven fabric in many 

applications including in engineering systems which incorporate textile fabrics as 

structural elements. Such structures include inflatable containers, tires, certain plastic 

laminated sheets, belting of various kinds, parachutes, sails, mackintoshes, etc. The 

magnitudes of Poisson’s ratios can attain some peculiar values for woven fabrics [1], very 
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different from those for conventional engineering materials, leading to unusual stress-

strain relationships.

Literature indicates that many investigators have studied the response of woven 

fabrics to a planar stress system. Kilby [2] in 1963 put forward a simple trellis model for 

a woven fabric and analyzed the planar stress-strain relationship, based on the continuum 

mechanics for an anisotropic elastic lamina; yet the author admitted the deficiency of this 

theoretical model for not exhibiting the Poisson’s ratios. Assuming a relation of yarn 

curvatures between the released and the stressed states for a woven fabric, Olofsson [3] 

soon after gave a mathematical analysis of equilibrium conditions, stress-strain 

relationships in extension and compression, and energy in bending. Grosberg and Kedia 

[4] analyzed the initial load-extension modulus of a cloth and showed that it depends not 

only on the bending modulus of the yarn and the geometry it takes up in the cloth, but 

also on the strain history of the fabric. An excellent summary of the analysis of the 

mechanical properties of woven fabrics prior to 1969 was included in the monograph by 

Hearle et al [5], who derived the Poisson’s ratio of a woven fabric assuming that the yarn

extension and compression were negligible.

By means of optimal-control theory, de Jong and Postle [1] applied the general 

energy analysis of fabric mechanics to the woven fabric structure for deformations, where 

the yarn extension was introduced into the theory. It was noted that the theoretical 

calculations of the fabric Poisson’s ratios based on the assumption of inextensible yarns 

are in conflict with the experimental results. Next, Huang [6] presented a methodology 

for analyzing the problem of the finite biaxial extension of a plain woven fabric, 

including such effects as the initial stresses due to partial setting of yarns, loss in bending 
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stiffness associated with fiber slippage in the yarn and the contact deformation of the 

yarns at the crimp in the analysis. Numerical solutions were found by using the Runge-

Kutta method for the problems of fabric uniaxial extension and biaxial extension with 

equal stresses. But the fabric Poisson’s ratios were not dealt with in the analysis. Leaf and 

Kandil [7] constructed a simple mechanical model termed the ‘straight-line’ or ‘saw-

tooth’ scheme to represent an idealized woven fabric and presented an analysis of the 

initial load-extension behavior of plain woven fabrics. A closed-form analytical solution 

was found for the initial Young’s modulus and the Poisson’s ratio of the fabric, when the 

yarns were assumed to be inextensible and incompressible.

By modeling the individual yarn as extensible elastica, Warren [8] in 1990 

determined the in-plane linear elastic constants of woven fabrics. Results of this 

theoretical analysis compare favorably with the measured in- plane Young’s moduli of 

woven fabrics. Pan [9] proposed a fabric model as the chain of yarn sub-bundle. The 

fabric stress-stain curve and the mean fabric strength were predicted for both uniaxial and 

biaxial tension cases. Using the finite element method, Tarfaoui et al [10] recently 

studied theoretically the mechanical behavior of textile structures of two different weave 

types: plain and twill. However, they admitted that analyzing their numerical results 

proved to be very hard and thus demanded a study of the stress field in the fabric unit cell.

Insofar as the experimental determination of fabric Poisson’s ratios is concerned, 

Lloyd and Hearle [11] in 1977 examined their suggested method of a uniaxial tensile test. 

It was found that the method does not provide a reliable technique and that, to overcome 

the shortcomings inherent in the specimen geometry, a biaxial test method is needed. Bao 

et al [12] in 1997 studied the error sources for measuring the apparent Poisson’s ratio of 
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textile fabrics by uniaxial tensile testing. In order to correct the experimental error, 

samples of various dimensions were utilized for their experiments, and some concrete 

examples to acquire apparent Poisson’s ratios of fabrics by the uniaxial tensile test were 

also shown.

Up to now, it is hard to get accurate Poisson’s ratio measures due to lack of reliable 

experimental techniques for woven fabrics [13]. While the significance of the effects of 

Poisson’s ratios on fabric drape and other behaviors is well recognized, their values were

mostly estimated, based on those for ordinary solid materials, for fabric modeling and 

simulations [14, 15]. Although a few papers dealt with the theoretical prediction of 

Poisson’s ratios for nonwovens [16, 17], there has been little done analytically 

determining Poisson’s ratios for woven fabrics based on the assumption of extensible

yarns in fabrics, and discussing the influences of the mechanical properties of yarns and 

the geometrical parameters of fabrics on the Poisson’s values.

This paper tries to fill the need. First, following the approach put forward by Warren 

[8], a mechanical model for woven fabrics made of extensible yarns is developed to get a 

closed-form expression for Poisson’s ratios. Then, the analytical results are compared 

with the experimental measurements. Finally, a parametric analysis is given for the 

effects of various geometric and mechanical parameters on the Poisson’s ratios of woven 

fabrics.

2. Theoretical analysis

A woven fabric is composed of two sets of orthogonal interlaced yarns: warp and 

weft. The waves in either set of yarns throughout its length are considered as alternating 
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circular arcs [8, 18] illustrated in Fig.1. The structural parameters of pick spacing p, yarn 

length l and crimp height h can be represented in terms of yarn geometric parameters R

and φo by

p=2Rsinφo                                                         (1a)

l=2Rφo                                                            (1b)

h=2R(1-cosφo)                                                     (1c)

where R is the radius of yarn undulation and φo is the crimp angle.

Each yarn is modeled as extensible elastica as shown in Fig.2. The undeformed shape 

of the elastica is defined by the slope

R

s
s o

o == )(φφ         0≤ so ≤ Lo              (2)

where so is the original arc length along the undeformed curve of total length Lo. The 

deformed shape is defined by the slope

)(sψψ =                      0≤ s ≤ L                         (3)

where s is the arc length along the deformed curve having total length L. The elastica is 

assumed to stretch linearly under the effect of the axial force T(s) acting through the 

centroid of the yarn cross-section of area A, which leads to the relation
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where E is the Young’s modulus of the yarn.

With the force To applied at the end s=L and the reactions F (horizontal) and V

(vertical) applied at the symmetry end s=0, the differential equation describing the non-

linear deformation of the extensible elastica is [8]
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where I is the moment of inertia for the yarn cross-section. The boundary conditions for 

the differential equation are

0)0( =ψ      at the symmetry end          (6a)
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Integrating the differential equation (5) twice with the boundary conditions leads to the 

displacements at the endpoint (s=L) of the elastica [8]

( )BVAF
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                                                  (7a)

( )CVBF
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                                                (7b)

where

( ) ( ) ooooA φγφφφγ 2sin32cos222 −−++=                                (8a)

( ) ( ) ooooB φγφφγφ 2cos32sin21cos4 −−−+−=                        (8b)

( ) ( ) oooooC φφγφφφγ sin82sin32cos222 −−+−+=                        (8c)

2AR

I=γ                                                           (8d)

In the same way, the displacements at the anti-symmetry endpoint of the other set of 

yarns orthogonal to the axis x are determined. By applying the equilibrium that requires 

the contact force V to be the same for both warp and weft yarns, and geometric 

compatibility that requires the displacements in the vertical direction to be the same, the 

strain-stress relations are given [8]
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where the subscripts x and y indicate warp and weft yarns, respectively, and

3
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The formulae (9a) and (9b) can be written in a matrix form
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It can be readily proved that

Sxy=Syx                                                            (12) 

Formula (12) is coincident with a requirement for a continuum. Structurally, a woven 

fabric is not a strict continuum. However, from the point of view of macro-mechanical 

response to the external force, a woven fabric reacts like a continuum governed by

continuum mechanics. Furthermore, Formulae (11) and (12) are in accord with the 

mechanical constitutive relationship for an orthotropic material with two elastic 

symmetry axes x (warp) and y (weft).

The Poisson’s ratios for a woven fabric are thus determined as follows
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From the analysis above, the Poisson’s effect in a woven fabric arises from the 

interaction between the warp and weft yarns, and can be expressed in terms of the 

structural and mechanical parameters of the system. This is an exclusive characteristic for 

a fabric, and different from a typical continuum. But their mechanical implications are 

quite similar. Also note that the effects of the yarn Poisson’s ratios themselves are 

excluded in this analysis.

3. Comparison with experiments and parametric studies

To compare the theoretical results with experiments, the experimental measurements 

are excerpted from the reference [12]. Table 1 shows the specifications of the samples 

tested. Conferring Fig.1, the yarn diameter is got by halving the fabric thickness. The 

comparison of theoretical predictions with the measured results is listed in Table 2. In 

general, the analytical calculations are in a reasonable agreement with the measurements.

From Formulae (13), (10) and (8), Poisson’s ratios for a woven fabric depend on the 

properties of yarns and structural geometry of fabrics. A parametric study is hence 

conducted to investigate effects of these factors on Poisson’s ratios.

Fig.3 illustrates the effect of the Young’s modulus ratio (Ex/Ey) between warp and 

weft yarns on the Poisson’s ratio υxy of a woven fabric, for which the weft yarn diameter 

dy is 0.04mm, and the pick spacings are 0.4mm (25 picks/cm) for both warp and weft 

yarns. It shows that with the increase of the yarn Young’s modulus ratio, the Poisson’s 

ratio increases. With the increase of the diameter ratio (dx/dy) between warp and weft 

yarns, the Poisson’s ratio increases as well. The result in Fig.3 is quite different from the 

previous conclusions [5, 7] based on the assumption of inextensible yarns, where the 
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variation of yarn Young’s modulus ratios has no effect on the Poisson’s ratio of woven 

fabrics.

The effect of the yarn diameter ratio (dx/dy) on the Poisson’s ratio υxy is demonstrated 

in Fig.4 with equal Young’s moduli for warp and weft yarns (Ex/Ey =1), while allowing 

the pick spacing ratio (px/py) to change from 0.5 to 2.0. It can be seen that with the 

increase of the yarn diameter ratio, the Poisson’s ratio first increases, then decreases after 

it reaches a maximum. When dx/dy is less than 1, the effect of the pick spacing ratio (px/py) 

on the Poisson’s ratio is complex. While dx/dy is greater than 1, increase of the pick 

spacing ratio boosts significantly the Poisson’s ratio, even beyond 2 at some segment of 

the curve where px/py equals 2.

Fig.5 shows the effect of the pick spacing ratio (px/py) on the Poisson’s ratio υxy of a 

woven fabric, letting the Young’s modulus ratio (Ex/Ey) change from 0.5 to 2.0. With the 

increase of the pick spacing ratio, the Poisson’s ratio first increases, and then decreases 

after reaching a maximum. Again, the Poisson’s ratio increases with the increase of the 

Young’s modulus ratio between the warp and weft yarns.

By comparing Fig.3 through Fig.5, it reveals in general that the pick spacing ratio 

appears to be of the most effect on the Poisson’s ratio of a woven fabric, and that the 

Young’s modulus ratio appears to be the least effective. In other words, the impact of 

structural parameters of a woven fabric on the Poisson’s ratio is more significant than that 

of mechanical parameters.

4. Conclusions
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The Poisson’s ratio for a woven fabric is predicted by lifting the previous assumption 

that the yarn in the fabric is inextensible. Theoretical analysis compares favorably with 

the experimental results.

It is revealed in this study that, the Poisson’s effect in a woven fabric arises from the 

interaction between the warp and weft yarns, and can be expressed in terms of the 

structural and mechanical parameters of the system; this is an exclusive characteristic for 

a fabric, and different from a typical continuum. But their mechanical implications are 

quite similar and the mechanical behavior of a woven fabric can be modeled as a 

continuum of orthotropy.

The effects of various mechanical properties of yarns and structural parameters of 

fabrics on the Poisson’s ratio of a woven fabric are investigated. On the whole, the pick 

spacing ratio and the yarn diameter ratio have more important effects on the Poisson’s 

ratio of a woven fabric than the yarn Young’s modulus ratio.

This study provides a guideline for the design of a woven fabric.
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Fig.1. Geometry of a woven fabric

Fig.2. The extensible elastica
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Table 1 Physical parameters of plain woven fabrics tested [12]

Material            Mass per         Thickness     Picks (number/cm)
unit area (g/m2) (mm) Warp             Weft

Fabric 1  Polyester           24.3                   0.075                     53                    53
Fabric 2 Polyester            43.2                 0.062                   106                  106
Fabric 3 Cotton               119.6                 0.221                     27                    25
Fabric 4 Wool                136.1               0.240                     23                    20

Table 2 Theoretical and experimental values of Poisson’s ratios of plain woven fabrics
υxy υyx

Theoretical  Experimental [12]              Theoretical  Experimental [12]

Fabric 1 0.473         0.341                               0.473            0.341
Fabric 2 0.433                0.202                               0.433                 0.202
Fabric 3 0.406                0.342                               0.489                 0.240
Fabric 4 0.380                0.438                               0.533                 0.567




