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Abstract

Chimeric antigen receptor (CAR) T-cell based immunotherapy has shown its potential in treating 

blood cancers, and its application to solid tumors is currently being extensively investigated. For 

glioma brain tumors, various CAR T-cell targets include IL13Rα2, EGFRvIII, HER2, EphA2, 

GD2, B7-H3, and chlorotoxin. In this work, we are interested in developing a mathematical 

model of IL13Rα2 targeting CAR T-cells for treating glioma. We focus on extending the work 

of Kuznetsov et al. (1994) by considering binding of multiple CAR T-cells to a single glioma 

cell, and the dynamics of these multi-cellular conjugates. Our model more accurately describes 

experimentally observed CAR T-cell killing assay data than the models which do not consider 

multi-cellular conjugates. Moreover, we derive conditions in the CAR T-cell expansion rate that 

determines treatment success or failure. Finally, we show that our model captures distinct CAR 

T-cell killing dynamics from low to high antigen receptor densities in patient-derived brain tumor 

cells.
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1. Introduction

Adoptive cell-based immunotherapy has shown to be successful in treating patients with 

cancer. In particular, Chimeric Antigen Receptor T cell (CAR T-cell) therapy is one of 

the adoptive immunotherapies that has been successful in clinical and pre-clinical models, 

and has been FDA-approved since 2017 [1,2]. In this therapy, a patient or donor’s T cells 

are collected and genetically engineered to express a receptor specific to an antigen found 

on cancer cells, thus improving the ability of T-cells to eradicate the target cancer cells. 

Finally, these CAR T-cells are cultured to large numbers, then introduced back to the 

patient [3,4]. CAR T-cell therapy has shown its potential in blood cancer, and solid tumors 

[3,5]. However, the success of CAR T-cell therapy for solid tumors has been challenging 

due to difficulties in (1) trafficking CAR T-cells into solid tumors, (2) hostile tumor 

microenvironment that suppresses T cell activity, and (3) tumor antigen heterogeneity [5,6]. 

Since CAR T-cells mostly exist in bloodstream and lymphatic system, which makes CAR 

T-cell therapy a great weapon for hematological tumors (e.g. blood tumor cells), it may be 

hard for CAR T-cells to penetrate tumor tissue through the vascular endothelium. Moreover, 

various types of cells infiltrate solid tumors to support tumor growth and restrict the efficacy 

of CAR T-cell therapy [6].

One of the first mathematical models describing the interaction between immune cells 

and cancer cells is from Kuznetsov et al. (1994) [7], which is a dynamical system model 

with two populations, tumor cells and cytotoxic T cells, or T lymphocytes. The model can 

describe the formation of a tumor dormant state and evasion of the immune system. A 

subsequent model developed by Kirschner and Panetta (1998) [8] considered the cytokine 

interleukin-2 in addition to the dynamics between tumor cells and immune effector cells, 

and was able to model short-term tumor oscillations as well as long-term tumor relapses. 

In order to model persistent oscillations that were observed in immune systems, periodic 

treatment and time delay was added to the model in [9], and stability analysis of the model 

was done in [10]. Thereafter, the later built models were improved by adding new types 

of cells, such as natural killer cells, normal cells, and different kinds of cytokines [11,12]. 

These models not only capture tumor immune escape, but also explain multiple equilibrium 

phases of coexisting immune cells and cancer cells. Other than dynamical system models, 

spatial models that describe the spatial temporal interaction are developed as well. [13] 

develops a spatial temporal version of [7] using partial differential equations, [14] develops 

a hybrid cellular automata-partial differential equation model, and [15] develops a hybrid 

off-lattice agent-based and partial differential equation model.

The surge of clinical trials and the success of CAR T-cell therapy also drew a lot of 

interest in mathematical modeling of CAR T-cell therapy. This includes modeling CD19 

CAR T-cell therapy targeting acute lymphoblastic leukemia in [16] as a dynamical system, 
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which includes healthy B cell populations and circulating lymphocytes. Later study in [17] 

further showed relationships between CAR T-cell doses and diseases burden by the observed 

clinical data. In order to study cytokine release syndrome, which is one of the primary side 

effects of CAR T-cell therapy, another dynamical system of nine cytokines responding to 

CAR T-cell therapy was proposed in [18] as well. More recent work in [19] attempted to 

understand the dynamics of CAR T-cell therapy by considering not only tumor cells and 

CAR T-cells but also normal T cells. Meanwhile, the model introduced in [20] includes 

long-term memory CAR T-cells, which are produced by memory pool formation of effector 

CAR T-cells. The corresponding stability analysis of this model was done in [21].

Here we develop a mathematical model of glioma cells and CAR T-cells inspired by the 

experimental data provided in [22]. The experiments study the interaction between glioma 

cell lines, derived from glioblastoma patients undergoing tumor resections at City of Hope 

[23,24], and IL13Rα2 targeting CAR T-cells. As shown in Fig. 1, cells were co-cultured in 

vitro and images were taken under a light microscope over a 72 h period. The experimental 

images illustrate two aspects of the glioma cell killing of CAR T-cells. First, the elimination 

process of glioma by CAR T-cell is not immediate, and second, multiple CAR T-cells can 

interact with glioma cells. Such phenomena can be also observed in a close-up video in [25]. 

In subsequent experiments, the glioma cells and CAR T-cells are mixed at different ratios 

(CAR T-cell to glioma cell ratios of 1:5, 1:10, and 1:20), and glioma cells with different 

antigen receptor density levels (low, medium, and high) were tested. We remark that number 

of CAR T-cells binding to glioma cells will depend on the antigen receptor density levels 

since glioma cells with high antigen receptor density levels will have more capacity for 

CAR T-cells to bind. Throughout the course of experiment, real-time monitoring of glioma 

population size was performed by using xCELLigence cell analyzer system [26]. This 

system quantifies the glioma cell population with a dimensionless number referred to as 

cell-index (CI) (1 CI ≈ 104 cells [22]), where the population size is tracked every 15 min. 

See appendix Fig. C.1 for the full set of data.

The rest of the paper is structured as follows. In Section 2, we describe the proposed 

model, where we assume that one glioma cell may interact with multiple CAR T-cells, 

and further come up with a system of ODE that describes not only the size of tumor cells 

and CAR T-cells, but also the size of multiple CAR T-cell binding conjugates. We denote 

the model with conjugates up to n CAR T-cells binding to glioma cell as the n-binding 

model. The stability analysis of one-binding slow reaction model is presented in Section 3, 

and we provide parameter conditions that guarantee either CAR T-cell treatment success or 

failure. In Section 4, we compare the accuracy between the slow reaction and fast reaction 

one-binding model, and show that the slow reaction model more accurately describes the 

experimental data. We also simulate the multiple binding slow reaction models from one- 

to five-binding conjugates, and study the hypotheses in reaction rates that captures the 

experimental result regarding low to high antigen receptor density levels of glioma cells. 

Summary of our findings and future work is discussed in Section 5.
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2. Mathematical model

This section summarizes the mathematical models that we study in this work. The 

motivation of building these models comes from the experiments that show multiple CAR 

T-cells interacting with glioma cells [25] and non-instantaneous killing process that can take 

hours. We start by deriving the dynamical system model proposed in Kuznetsov et al. (1994) 

[7] that considers one CAR T-cell interacting with one glioma cell. The two versions of 

the model – slow and fast reaction models – are compared. Then we extend the models to 

consider the multi-cellular conjugate of multiple CAR T-cells and glioma cell.

2.1. One CAR T-cell bound to one glioma cell model

Among the mathematical models considering interaction of glioma cells and immune cells, 

one of the most recognized models is the model developed in Kuznetsov et al. (1994) [7], 

modeling the one to one binding of cancer and cytotoxic immune cells. The glioma cells are 

subject to be attacked by cytotoxic effector cells, e.g. cytotoxic T lymphocytes and natural 

killer cells. Here, we consider CAR T-cells instead of the general effector cells. The killing 

process of CAR T-cell has mainly 4 stages: binding, recognition, lethal hit, and target cell 

rounding [5,27]. More explicitly, tumor cells are first scanned by CAR T-cells, then antigens 

are recognized through proteins or glycans on the surface. After that, tumor cells are killed 

by CAR T-cells and cell conjugates lose adhesion and commit to cancer cells’ death. In our 

model, we describe the interaction between the glioma cancer cells C(t) and CAR T-cells 

T(t) by the kinetic scheme illustrated in Fig. 2 (top), where I1(t) is the conjugate of one CAR 

T-cell and one glioma cell. The kinetic parameter k1
(1) describes the rate that the glioma cell 

binds to the CAR T-cell, and k−1
(1) is the rate that the conjugate detaches without damaging 

the cells. k3
(1) is the rate that the CAR T-cell and glioma cell interaction kills the glioma 

cell, and k2
(1) corresponds to the rate of reaction that the CAR T-cells become no longer 

active, for example, due to cell death or exhaustion [28]. Hence k3
(1) stands for the successful 

killing process, and k2
(1) and k−1

(1) indicates that some stage in the killing process did not 

work properly. In addition to the interaction, the growth dynamics of the glioma cells and 

CAR T-cells are included in the model, which yields in the following system of differential 

equation.

Ṫ = pT C
g + C − θT − k1

(1)CT + k−1
(1)I1 + k3

(1)I1

Ċ = ρC 1 − C
K − k1

(1)CT + k−1
(1)I1 + k2

(1)I1

İ1 = k1
(1)CT − k−1

(1)I1 − k3
(1)I1 − k2

(1)I1 .

(1)

Here, parameter ρ is the maximal growth rate of the glioma cells assuming logistic growth; 

parameter K is the maximal carrying capacity of the biological environment for the glioma 

cells; p is the rate that the CAR T-cells accumulate in the region due to the presence of 

the tumor, in other words, CAR T-cell expansion rate; g is a concentration of glioma cells 

that halves the maximum rate p; θ represents the death rate of the CAR T-cells. Lysed 

cancer cells and CAR T-cells will be formed at the end of this interaction, but since their 
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dynamics are simply decaying, we do not include those equations in our model as in [7]. We 

reparameterize the equation as

Ṫ = pT C
g + C − θT − kCT + αI1

Ċ = ρC 1 − C
K − kCT + βI1

İ1 = kCT − γI1,

(2)

where

k = k1
(1),    α = k−1

(1) + k3
(1)

β = k−1
(1) + k2

(1),    γ = k−1
(1) + k2

(1) + k3
(1) .

The new parameter a represents the rate of net inflow of CAR T-cells from the conjugate 

I1, β represents the inflow rate for glioma cells, and γ stands for the net decay rate of the 

conjugate I1 due to either detachment or lysed reaction. We will refer to Eqs. (1) or (2) as the 

slow reaction model, since following the dynamics of the conjugate I1 allows the interaction 

to be in a comparable time scale as the other dynamics, in contrast to the assumption that 

will be made in the following model.

2.1.1. One-to-one binding model with fast reaction—The model proposed in [7] 

further reduces Eq. (1) by a separation of time scale between the dynamics of glioma 

cells and CAR T-cells compared to the dynamics of the conjugates I1. Assuming that the 

dynamics of conjugate I1 reaches equilibrium quickly, we can take İ1 = 0, and we have 

k1
(1)CT − k−1

(1)I1 − k3
(1)I1 − k2

(1)I1 = 0, that is,

I1 =
k1

(1)

k−1
(1) + k3

(1) + k2
(1)CT .

Then, Eq. (2) reduces to the Kuznetsov et al. (1994) model as

Ṫ = pT C
g + C − θT − mCT

Ċ = ρC 1 − C
K − ℓ CT ,

(3)

where we define

ℓ =
k1

(1)k3
(1)

k−1
(1) + k2

(1) + k3
(1) ,    m =

k1
(1)k2

(1)

k−1
(1) + k2

(1) + k3
(1) . (4)

We will refer to this model as the fast reaction model of one CAR T-cell binding case, as 

opposed to the slow reaction model in Eq. (2). The fast reaction scenario can happen, for 

example, when the glioma cell is mixed with a large number of CAR T-cells or the receptor 

density levels of glioma cells are high, which may lead to a fast elimination of glioma cells.
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2.2. Two CAR T-cells bound to one glioma cell model

The following system, building up on the one-binding models in Eqs. (2) and (3), will 

govern the population dynamics of the scenario where up to two CAR T-cells can interact 

and bind to one glioma cell. As in the diagram of Fig. 2 (middle), conjugate I1 of one CAR 

T-cell and one glioma cell can interact with another CAR T-cell (T) and compose conjugate 

I2 of two CAR T-cells and one glioma cell. The kinetic interaction rates are defined similarly 

as before, where k1
(2) and k−1

(2) will describe the binding and detachment rate of cells without 

damage, and ki
(2) (i=2,3,4) will be the rates of the interaction events. The system of equations 

can be written as follows.

Ṫ = pT C
g + C − θT − kCT + αI1 − k1

(2)I1T + k−1
(2) + 2k4

(2) + k2
(2) I2

Ċ = ρC 1 − C
K − kCT + βI1 + k3

(2) + k2
(2) I2

İ1 = kCT − γI1 − k1
(2)I1T + k−1

(2)I2
İ2 = k1

(2)I1T − k−1
(2) + k4

(2) + k3
(2) + k2

(2) I2

(5)

This model follows the dynamics of I1 and I2 conjugates, so we will refer to this as a 

two-to-one or two binding slow reaction model. This model describes the scenario that if one 

CAR T-cell cannot kill a glioma cell immediately, then another CAR T-cell may come to 

react with the conjugate I1 formed by previous reaction.

2.2.1. Two-to-one binding model with fast reaction—Using a similar approach 

when we derived the Kuznetsov et al. (1994) model, the two-binding slow reaction system 

can be reduced to the following two-binding fast reaction system.

Ṫ = pT C
g + C − θT −

k1
(1)k2

(1)

k1
(2)T + k2

(1) + k3
(1)CT −

k1
(1)k1

(2) k2
(2) + 2k3

(2)

k2
(2) + k3

(2) + k4
(2) k1

(2)T + k2
(1) + k3

(1) CT 2

Ċ = ρC 1 − C
K −

k1
(1)k3

(1)

k2
(1) + k3

(1) + k1
(2)T

CT

−
k4

(2)k1
(2)k1

(1)

k2
(2) + k3

(2) + k4
(2) k2

(1) + k3
(1) + k1

(2)T
CT 2

.

(6)

Note that we added the assumption that the detach rate is small, that is, k−1
(1) ≈ k−1

(2) ≈ 0, for 

simplicity. Derivation of model details are included in Appendix A.

2.3. Multiple CAR T-cells bound to one glioma cell model

Building up on the two-binding model, we can further extend the model to n numbers 

of CAR T-cells binding to one glioma cell. We denote Ij as the conjugate of j CAR 

T-cells and one glioma cell. The notation ki
(n) denotes the rate of different reactions, where 

the superscript (n) denotes the n-binding and the subscript i denotes the ith reaction in 

the n-binding reaction. The governing equations of the n-binding model that includes the 

conjugates I1,…, In can be written as follows.
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Ṫ = pT C
g + C − θT − k1

(1)CT + ∑
j = 1

n
αjIj − ∑

j = 1

n − 1
k1

(j + 1)IjT

Ċ = ρC 1 − C
K − k1

(1)CT + k−1
(1)I1 + ∑

j = 1

n
βjIj

İ1 = k1
(1)CT − γ1 + k1

(2)T I1 + k−1
(2)I2

İj = k1
(j)Ij − 1T − γj + k1

(j + 1)T Ij + k−1
(j + 1)Ij + 1

İn = k1
(n)In − 1T − γnIn

(7)

where αj = ∑i = 1
j iki + 2

(j) + k−1
(j) , βj = ∑i = 1

j ki + 1
(j) , and γj = ∑i = 2

j + 2 ki
(j) + k−1

(j) . The parameters 

and their biological meanings are summarized in Table 1.

In the following sections, we will test various hypotheses on the reaction rates to reproduce 

the phenomena of saturation of CAR T-cell therapy efficacy when the antigen receptor 

density of cancer increases.

3. Stability analysis

In order to better understand the dynamics of CAR T-cell therapy with the slow and fast 

reaction models, we present stability analysis of the one-to-one binding model.

3.1. One-to-one binding slow reaction model

In this section, we study the stability of one-binding slow reaction model (2). There are four 

steady states (T, C, I1) in the slow reaction model

(0, 0, 0),    (0, K, 0),     T1, C1, k
γ C1T1 ,     T2, C2, k

γ C2T2 ,

where

T1 =
ρ 1 −

C1
K

k − βk
γ

,    T2 =
ρ 1 −

C2
K

k − βk
γ

,

and

C1 =
p − θ − kg + αkg

γ
2 k − αk

γ
−

p − θ − kg + αkg
γ

2
− 4 αk

γ − k ( − θg)

2 k − αk
γ

,

C2 =
p − θ − kg + αkg

γ
2 k − αk

γ
+

p − θ − kg + αkg
γ

2
− 4 αk

γ − k ( − θg)

2 k − αk
γ

.
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Note that we order the points as C1 < C2, so that C1 is the state with a smaller cancer size. 

Among these four states, we are interested in (0, K, 0) and T1, C1, k
γ C1T1 , which represent 

CAR T-cell treatment failure and success, respectively. The steady state (0, 0, 0) is always 

an unstable saddle point (See Appendix B), thus it is not of our interest. We aim to find 

the parameter conditions that yield these two states, especially focusing on the CAR T-cell 

expansion rate induced by the presence of cancer, p.

3.1.1. CAR T-cell treatment failure—One of the steady states is (0, K, 0) that 

represents the tumor reaching its maximal capacity, or in other words, the CAR T-cell 

treatment failure. This steady state becomes stable if

p < (g + K) k 1 − α
γ + θ

K . (8)

or using the kinetic reaction parameters,

p < (g + K) k1
(1) k2

(1)

k−1
(1) + k2

(1) + k3
(1) + θ

K . (9)

This condition implies that if the engineered CAR T-cell expansion rate p is less 

than (g + K) k 1 − α
γ + θ

K , the tumor reaches its maximum capacity; meanwhile, if the 

engineered CAR T-cells can expand enough so that p ≥ (g + K) k 1 − α
γ + θ

K , then the CAR 

T-cell therapy will prevent the cancer from growing to its maximum capacity. Therefore, this 

condition provides a minimal level of CAR T-cell expansion rate which can prevent cancer 

from growing to its maximal size.

Let us further examine the condition in Eqs. (8) and (9). Observe that as the reaction rate 

k3
(1) increases, or equivalently, α/γ becomes closer to 1, the right-hand side of the inequality 

decreases. Thus, if the killing of cancer becomes more effective, the minimum expansion 

rate of the CAR T-cell required to prevent treatment failure becomes smaller. It means 

that a CAR T-cell with a high cancer killing rate can prevent the tumor from growing 

to its maximum size despite a relatively low expansion rate. On the other hand, as k2
(1)

increases, or α/γ gets closer to 0, the right-hand-side of the inequality increases. Thus if 

the inactivation rate of the CAR T-cells from interaction increases, CAR T-cells will need a 

higher expansion rate to successfully treat the tumor. As for the parameter K, which stands 

for the capacity of cancer cells, the right-hand-side is an increasing function with respect to 

K on the range of K > gθ/(k − kα/γ). This means that a tumor with a larger capacity will 

need a larger value of expansion rate p to prevent CAR T-cell treatment failure.

3.1.2. Potential CAR T-cell treatment success—Another steady state of our interest 

is the CAR T-cell treatment success state, T1, C1, k
γ C1T1 . Then, the tumor is reduced to size 

C1 compared to reaching its maximal capacity K. For this equilibrium point to exist, the 

following condition needs to be satisfied,
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θ + gk(1 − α/γ) 2 ≤ p . (10)

or

θ + gk1
(1) k2

(1)

k−1
(1) + k2

(1) + k3
(1)

2

≤ p (11)

This condition provides a minimum level of CAR T-cell expansion rate that makes it 

possible to avoid treatment failure that results in tumor growing to its maximal capacity, 

although the treatment success will depend on other parameters and initial CAR T-cell 

dosage. When k2
(1) is large, the term k2

(1)/ k−1
(1) + k2

(1) + k3
(1)  will be closer to 1, and our lower 

bound for p will approach θ + gk1
(1) 2

. This implies that with a less effective cancer killing 

rate, the CAR T-cell requires a higher expansion rate to achieve potential treatment success. 

Also if the reaction rate k3
(1) has a large value, our lower bound for p will decrease to θ. It 

follows that the interaction requires a lower expansion rate to achieve a potential treatment 

success with a more effective cancer killing rate. Detailed analysis can be found in Appendix 

B, and further discussion on the stable nonzero CAR T-cell population is in Section 5.

3.2. One-to-one binding fast reaction model

The stability analysis of the one-to-one binding fast reaction model Eq. (3) is comparable 

to the slow reaction model. The analysis can be found in many literature including [7,29]. 

Here, we briefly summarize it to compare it with the slow reaction model. Identical to the 

slow reaction model, there are four possible steady states (T, C),

(0, 0),    (0, K),     T1, C1 ,     T2, C2 ,

where

T1, 2 =
ρ 1 −

C1, 2
K

ℓ ,

C1, 2 = (p − θ − mg) ± (p − θ − mg)2 − 4mgθ
2m .

The steady state that the tumor growing to its maximum capacity, (T, C) = (0, K), becomes 

stable if

p < (mK + θ) g
K + 1 . (12)

This condition is comparable to Eq. (8), which provides the condition that the CAR T-cell 

expansion rate prevents the cancer from growing to its maximum. The other condition 

related to the equilibrium point (T1, C1), the CAR T-cell therapy success case, is
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( θ + mg)2 ≤ p, (13)

comparable to Eq. (10). The CAR T-cell needs to expand at least this level to have chances 

for successful CAR T-cell treatment. We remark that the other equilibrium points (0, 0) and 

(T2, C2) are always saddles, so that they are not of our interest.

4. Numerical study of glioma cells and CAR T-cells interaction

Our experimental data consist of multiple doses of CAR T-cells and multiple types of glioma 

cells based on the antigen receptor densities. Specifically, we look into the experiment data 

using IL13BB CAR T-cells [22]. The data includes glioma cells measured in a unitless cell 

index (CI) with low, medium, and high antigen receptor densities, where the latter is likely 

to have a better response to CAR T-cell treatment, although not strictly better. For each 

density level, the experiments were initialized with different mixture ratios between CAR 

T-cells and glioma cells as 1:5, 1:10, and 1:20 (See Fig. C.1). The number of initial CAR 

T-cells are determined to be proportional to the initial glioma cell number. For instance, for 

a 1:5 mixture ratio, the glioma cells are mixed with 0.2C0 (CI) = 0.2C0 · 104 (cells) CAR 

T-cells, where C0 is the initial glioma size in CI. Using this rich dataset, we numerically 

study the proposed multiple CAR T-cell binding model to find a better model that describes 

the experimental data.

To numerically solve the models, we use the built-in ODE solver (ode23) in MATLAB, 

which is based on an explicit Runge–Kutta pair of Bogacki and Shampine [30,31]. The 

calibration of our model is done by minimizing the sum of squares norm of the error 

between the data and our model fit. To improve the accuracy and parameter identifiability 

of the calibration, we calibrate the parameters sequentially, first using the tumor growth data 

without treatment, then using the data with treatment. Using the no treatment data, we first 

calibrate the tumor growth parameter ρ with fixed K in Ċ = ρC (1−C/K). We obtain three 

sets of values of ρ and K given three different types of tumor considering antigen receptor 

densities – low, medium, and high. Afterward, we calibrate the remaining parameters for 

each density level while parameters ρ, K, and θ are fixed. See Tables in Appendix C for 

the full set of parameters. We comment that the calibrated values of CAR T-cell expansion 

rate p change more than a magnitude when mixed with low to high antigen density glioma, 

where varying levels of T-cell expansion depending on the level of presented antigens has 

been observed [32]. In the remaining section, we show that the slow reaction model Eq. 

(2) describes the data more accurately compared to the fast reaction model Eq. (3). Then, 

we compare different assumptions in the reaction rates to investigate the saturation of CAR 

T-cell treatment efficacy regarding the antigen density levels.

4.1. Comparison between fast reaction and slow reaction models

The fast reaction model, for example, Eq. (3) does not describe the dynamics of the 

conjugates Ij, assuming that they reach the equilibrium state immediately. However, in 

reality, the reaction is not always fast enough as it takes time for the CAR T-cells to 

detect and infiltrate the glioma cells, which is also depicted in the experimental data [22]. 

Therefore, we expect the slow reaction model (2) to describe the data more accurately. Our 
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hypothesis is confirmed in Fig. 5, where we compare the accuracy of the slow reaction 

model Eq. (2) and the fast reaction model Eq. (3). The error is computed as the sum of 

squares differences between the data and the calibrated model fit. In these plots, the errors 

from the three sets of data with the same receptor density (low and high) and CAR T-cell 

ratio (1:5, 1:10, 1:20) are marked as black crosses, and the bar shows the average of the 

errors. We observe that the slow reaction model results in significantly smaller errors for all 

cases. Let us comment on each dataset more closely.

Fig. 3 compares the accuracy of slow binding and fast reaction models calibrated to the low 
receptor density glioma data. We observe that the slow reaction model does have a better 

fitting than the fast reaction model. The top row shows the case of initial ratio 1:5, where we 

can see that the data points are closer to the calibrated model curve especially near t = 0.5 

and t = 1.5 using the slow reaction model. Similarly in the second row that corresponds to 

the 1:10 ratio, the fitting of the slow reaction model is significantly better at capturing the 

saturating tail at the later time points after t = 3. The last row shows the result of initial ratio 

1:20, which is the case with the smallest CAR T-cell dosage. Again, the slow reaction model 

better describes the non-monotonic data. In all three cases of low antigen receptor density 

glioma experiments, we observe that the slow reaction model is more accurate, especially 

when the concavity is nonzero. The reason behind this result is that the reaction speed is 

slower when the antigen receptor density is low, which makes the slow reaction model more 

appropriate than the fast reaction model.

On the other hand, we hypothesize that the fast reaction model could be more appropriate 

to fit the experiments with high antigen receptor density glioma. Since the high receptor 

density glioma cells have more receptors for the CAR T-cells to bind, the reactions can be 

more efficient. We observe that from the data plotted in Fig. 4 that the tumor size decay 

faster compared to the low receptor density case. This is the case especially when the glioma 

cells are mixed with a large number of CAR T-cells, that is, the 1:5 ratio case among our 

experiments. The top row of Fig. 4 shows the 1:5 ratio mixture, where the CAR T-cells 

eliminate the glioma cells most rapidly. The model fits using the slow and fast reaction 

models both look accurate, and we confirm that this is the case that the fast reaction model 

can accurately capture the data. No big difference can be seen between the slow and fast 

reaction model fits, although the error is smaller using the slow reaction model (see Fig. 

5(b)). Nonetheless, in case of lower dosages of CAR T-cells, for instance, 1:20 mixture, the 

slow reaction model improves the accuracy by more than 75%, being able to capture the 

initial bump of the data. Finally, Akaike information criterion (AIC) [33,34] that quantifies 

the quality of model fitness is computed in Table 2. The AIC values of slow reaction model 

is smaller than the fast reaction model across all datasets thus confirms the better model 

fitness of the slow reaction model.

We conclude that the slow reaction model is more appropriate to be considered in general, 

since the model fit is more accurate compared to the fast reaction model, and moreover, 

it agrees with the experimental observation that showed the reaction between the glioma 

cells and the CAR T-cells not being immediate. This happens especially when the glioma 

cells have low antigen receptor density and CAR T-cell numbers are small. In addition to 

the model fit comparison, we argue that the slow reaction model can either match the fast 
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reaction model or deviate from it based on the parameter values. We remark that the slow 

reaction model has four interaction parameters that defines two parameters of fast reaction 

model, ℓ and m, presented in Eq. (4). Therefore there are multiple sets of parameters of 

slow reaction model that reduces to an identical fast reaction model. Fig. 6 shows such an 

example. The bottom figures are computed from two distinct parameter sets of the slow 

reaction model that yields identical ℓ and m values, ℓ = 2.785 and m = 0.0223, for the fast 

reaction model. Large values of k3
(1) indicate fast reaction, for example, when k3

(1) = 100, the 

I1 conjugate dynamics are trivial and the slow reaction model agrees the fast reaction model. 

However, when k3
(1) = 0.01, we observe the I1 conjugates number increasing and the slow 

reaction model show distinct result from the fast reaction model. While the fast reaction 

model shows the number of glioma cells declining, the slow reaction model with a different 

choice of k3
(1) changes the glioma cell dynamics from decreasing to increasing. This example 

shows the richer dynamics that the slow reaction model contains. However, the slow reaction 

model has a drawback that more uncertainty is present in the estimated parameters due to 

its larger number of parameters, thus interpretation of the fitted parameters needs to be done 

carefully, and it is our future work to study parameter identifiability in the proposed model 

when additional data of CAR T-cells and conjugates Ii are available.

4.2. Simulation of multiple-binding slow reaction models

Having compared the slow and fast reaction models in the previous section, we now study 

the multiple CAR T-cells binding model Eq. (7). In particular, we focus on the experimental 

results of glioma cells with different levels of antigen receptor density: low, medium, and 

high. When mixed with the same number of CAR T-cells, glioma cells with low antigen 

receptor density respond less than the glioma cells with medium antigen receptor density. 

In other words, the decay rate of glioma cell is positively correlated with the antigen 

receptor density in general. However, an interesting observation was made in [22] that the 

effectiveness CAR T-cell therapy saturated after a certain receptor density level. As shown 

in Fig. 7, the high receptor density cells did not respond better than the medium receptor 

density glioma cells, or responded rather worse. We aim to study these phenomena using the 

multiple CAR T-cells binding models Eq. (7). Assuming that the antigen receptor density 

levels of glioma cells determines the number of CAR T-cells that can bind to a single glioma 

cell, we associate the one CAR T-cell binding model (n = 1) to the low density receptor 

glioma, and multiple CAR T-cells binding model up to the five binding (n = 5) to higher 

density receptor levels of glioma. One problem we face for the multiple CAR T-cells binding 

models is that the number of interaction parameters ki
(j) increases as the number of binding 

increases. Since we do not have data for the dynamics of any conjugates Ij for j = 1, …, n, it 

is difficult to estimate parameters from the data. Therefore, using the parameter set estimated 

for the one-binding model, we test the following two different hypotheses describing the 

relationships between the reaction rates for the multiple binding models with more than one 

binding.

• Hypothesis 1: Assume that the reaction rates are uniform across conjugates Ij.
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• The CAR T-cell attaches to the glioma cell or the conjugate Ij with an identical 

rate, i.e.,

k1
(1) = k1

(j),    for all j = 2, 3, …, n . (14)

• The reactions that the glioma cell dies from the conjugate Ij have the same rates 

across number of bindings, i.e.,

k1 + 2
(1) = kj + 2

(j) ,    for all j = 2, 3, …, n . (15)

• The reactions that glioma cells’ survive also have the same reaction rates with 

equal chances of CAR T-cells dying i.e,

kj
(n) =

n
j − 1

2n2 − 6n + 7
k2

(1),    for j = 2, 3, …, n + 1, (16)

so that k2
(1) = ∑i = 2

n + 1ki
(n).

Note that 
n

j − 1  denotes the number of cases when j − 1 CAR T-cells die after 

the detachment of In, while 2n2−6n+7 denotes the number of all cases when 

at least one CAR T-cell dies (in other words, glioma cell survives) from the 

detachment of In.

• Hypothesis 2: Instead of assuming that the reaction rates are uniform across 

the conjugates Ij, in this hypothesis, we assume that the reaction rates are non-
uniform, either increasing or decreasing, and saturate after a certain number of 

CAR T-cells bind.

• The reaction rates of a new CAR T-cell attaching to the conjugate Ij decrease 

geometrically, i.e.,

k1
(j) =

k1
(1)

Mj − 1 ,    for all j = 2, 3, …, n . (17)

for some positive integer M ≥ 1.

• The glioma cells’ death rate increases geometrically as the number of bindings 

increases, but saturates after three CAR T-cells binding, i.e.,

k4
(2) = k3

(1)L,    k5
(3) = k3

(1)L2,
kj + 2

(j) = k5
(3),    for all j = 4, 5, …, n .

(18)

for some positive integer L ≥ 1.

We observe that the parameter L directly leads to efficiency of cancer killing 

rate. With a bigger L, glioma cells’ death rate gets bigger for the first 3 bindings, 
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which is more likely to bring a successful treatment. To estimate the parameter L 

directly from experiments, it can be determined by comparing the glioma cells’ 

death rates between n +1-binding interaction and n-binding interaction.

The reactions that glioma cells’ survive are distributed as in hypothesis 1, Eq. 

(16).

We compare the two hypotheses to find which assumption yields the experimental data we 

have considering different levels of antigen receptor densities in glioma cells. In particular, 

we compare the final tumor size after 3 days of CAR T-cell treatment, i.e. C (t) at t = 3. In 

the top row of Fig. 8, we show the results testing hypothesis 1. The results do not match 

what we observe in the experiments, as the final tumor size increases from one-binding 

to five-binding models. We presume that this is due to the relative reaction rate of cancer 

death decreasing as the number of reaction increases. Hence, by simply considering uniform 

reaction rates for one to multiple CAR T-cell conjugates as in hypothesis 1, we cannot 

recover the dynamics of glioma cells responding better in higher antigen receptor density 

levels.

Nevertheless, results from hypothesis 2 show distinctive outcomes from hypothesis 1. The 

simulation results taking different values of M and L are shown in the bottom row of Figs. 8 

and 9. In particular, Fig. 9 shows the result of M = 1, L = 2, and M = 2, L = 2. It turns out 

that we no longer have the increase of tumor size as n increases, instead, we have a decrease 

for both low and high densities. We can further observe that the reaction saturates after the 

numbers of binding become more than three, as the final tumor size remains very small 

eventually. However, if we consider M = 2, L = 1, the tumor size increases as n increases, 

and the results again deviate from the experimental data as shown in the bottom row of Fig. 

8. Thus, we conclude that hypothesis 2 on the reaction rates with L > 1 agrees with the 

experimental data shown in Fig. 7 (c,d) regarding the decay and saturation of tumor size 

with respect to increasing antigen density receptor levels. It makes sense that L is the critical 

parameter for this result, since it is the parameter that makes the death rate of the glioma 

cells increase as n increases. In addition, parameter sensitivity analysis [35] is included in 

Appendix D that shows larger Pearson correlation coefficient of L compared to M to the 

final tumor volume despite various levels of magnitude.

5. Summary and future work

Here we developed an ODE model extending [7]. While the original model considers one 

conjugate I1 of one glioma cell and one CAR T-cell, and assumes that the dynamics of I1 

conjugate is in equilibrium, our model considers multiple conjugates Ij, j = 1, …, n with 

more than one CAR T-cells binding to the glioma cell, and follow their dynamics. We denote 

the original model as one binding fast reaction model, and our models as n binding slow 

reaction models.

First, we study the stability of the one-binding slow reaction ODE system, and compare 

it with the fast reaction model. We obtain similar equilibrium states, but in terms of the 

parameter of the slow reaction model. Also, we derive the conditions, especially regarding 

the range of the CAR T-cell expansion rate parameter p, (i) the minimum level of CAR 
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T-cell expansion rate that provides the possibility that the CAR T-cell treatment can be 

successful, and (ii) the level of CAR T-cell expansion rate that guarantees the escape from 

reaching the maximum tumor size.

Using our model, we then compare the fast and slow reaction model numerically, and show 

that the slow reaction model describes the experimental data more accurately, especially 

when the glioma antigen receptor density is low and/or mixed with relatively small numbers 

of CAR T-cells. In addition, we use the one-binding to five-binding slow reaction models 

to simulate low to high receptor density glioma cells, and study the assumption in the 

reaction rates that yield desired outcome, the decay and saturation of tumor size with 

respect to the antigen density levels. We come up with two different hypotheses to describe 

their connections, where the first hypothesis considers homogeneous rates across different 

numbers of CAR T-cell binding conjugates. More precisely, we assume identical rates for 

reactions involving glioma cells dying from the conjugates Ij. We show that the second 

hypothesis, where we consider non-homogeneous reaction rates, in particular, increasing 

tumor killing rates as the number of bindings increases, reflects the reduced but saturated 

tumor size.

One of our future works is to calibrate the reaction rate parameters from experimental data, 

and verify whether our assumptions in hypothesis 2 on the reaction rates of multiple binding 

model is valid. Currently, our model is calibrated to the time series data of glioma cells, 

and additional CAR T-cell dynamics data and experiments can be used to infer the reaction 

rates from data. We also hope to validate the effectiveness of the slow reaction model to 

in vivo data where we expect the interaction between the glioma cells and CAR T-cells 

to be slower than our current in vitro data. Different CAR T-cell designs lead to different 

affinities and cytotoxicities [36–38], thus we hope to estimate and compare the kinetic 

reaction rates for different immunological synapse designs of CAR T-cells. In addition, 

parameter identifiability study and strategies to find universal parameters that can be fixed 

across patients are our future work as well.

A limitation of our model is that it is fitted to the in vitro data that does not include 

the human immune system or tumor microenvironment. We propose to study and model 

the interaction of glioma cells and CAR T-cells with other immune cells in the future. 

Modeling the interaction with endogenously produced immune cells including non CAR 

T-cells, natural killer cells, and antigen presenting cells that include macrophages, dendritic 

cells, and B cells, along with cytokines may help understand how and why CAR T-cell 

conjugates are created as well as the role of other immune cells in the immune system in 

this process. This is also related to further investigating the persisting nonzero CAR T-cell 

population in case of treatment success predicted by our model in the stability analysis. Such 

a stable CAR T-cell population has been shown to be achieved in the clinics treating blood 

cancer [39,40]. In particular, [41] studies the persistence of CD4+ CAR T-cell population 

over 10 years after therapy treating leukemia, and finds that CD8+ and CD4+ CAR T-cells 

are critical for elimination of leukemic cells at early stage and in long-term, respectively 

[42]. This indicates the importance of considering different populations of T-cells to better 

achieve durable remission, and this is also our future work.
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Appendix A.: Computation of two-binding model with fast reaction

Our assumption in this case is that

İ1 = k1
(1)CT − k−1

(1) + k3
(1) + k2

(1) I1 − k1
(2)I1T + k−1

(2)I2 = 0 (19)

İ2 = k1
(2)I1T − k−1

(2) + k4
(2) + k3

(2) + k2
(2) I2 = 0 (20)

which means that the two conjugates decompose immediately right before the other CAR 

T-cells come to react with the conjugates themselves. By rearranging Eq. (19), we obtain

I1 =
k1

(1)CT + k−1
(2)I2

k−1
(1) + k3

(1) + k2
(1) + k1

(2)T

=
k1

(1)CT
k3

(1) + k2
(1) + k1

(2)T

(21)

and by rearranging Eq. (20), we obtain

I2 =
k1

(2)I1T
k−1

(2) + k4
(2) + k3

(2) + k2
(2)

=
k1

(2)I1T
k4

(2) + k3
(2) + k2

(2)

(22)

where we further assume that k−1
(1) ≈ 0. Now we look at Ṫ

Ṫ = pT C
g + C − θT − k1

(1)CT + k3
(1)I1 − k1

(2)I1T + 2k4
(2) + k3

(2) I2

= pT C
g + C − θT − k1

(1)CT + k3
(1)I1 +

k4
(2)k1

(2) − k1
(2)k3

(2)

k2
(2) + k3

(2) + k4
(2) TI1

by substituting (21) into our equation and simplify it, we obtain
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Ṫ = pT C
g + C − θT −

k1
(1)k2

(1)

k1
(2)T + k2

(1) + k3
(1)CT

−
k1

(1)k1
(2) k2

(2) + 2k3
(2)

k2
(2) + k3

(2) + k4
(2) k1

(2)T + k2
(1) + k3

(1) CT 2
(23)

For Ċ, by using (21) and (22), we have

Ċ = ρ 1 − C
K − k1

(1)CT + k2
(1)I1 + k3

(2) + k2
(2) I2

= ρC 1 − C
K − k1

(1)CT + k2
(1)I1 + k3

(2) + k2
(2) k1

(2)I1T

k4
(2) + k3

(2) + k2
(3)

= ρC 1 − C
K − k1

(1)CT + k2
(1) +

k1
(2) k2

(2) + k3
(2)

k4
(2) + k3

(2) + k2
(2)T I1

= ρC 1 − C
K − k1

(1)CT + k2
(1) +

k1
(2) k2

(2) + k3
(2)

k4
(2) + k3

(2) + k2
(2)T

k1
(2)CT

k3
(1) + k2

(1) + k1
(2)T

which can be rewritten as

Ċ = ρC 1 − C
K −

k1
(1)k3

(1)

k2
(1) + k3

(1) + k1
(2)T

CT

−
k4

(2)k1
(2)k1

(1)

k2
(2) + k3

(2) + k4
(2) k2

(1) + k3
(1) + k1

(2)T
CT 2

(24)

Therefore, (23) and (24) give our two-binding model with fast reaction.

Appendix B.: Stability analysis of one-binding model with slow reaction

The equilibrium points can be computed by:

pT C
g + C − θT − kCT + αI1 = 0

ρC 1 − C
K − kCT + βI1 = 0

kCT − γI1 = 0.

Observe that because of kCT − γI1 = 0, this ODE system have the equilibrium points 

stated in Section 3.1. More precisely, using the relation k
γ CT = I1, we can rewrite the three 

dimensional ODE system into a two dimensional ODE system:
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pT C
g + C − θT − kCT + αk

γ CT = 0

ρC 1 − C
K − kCT + βk

γ CT = 0

The first equation gives us

T1, 2 =
ρ 1 −

C1, 2
K

k − βk
γ

,

and

C1, 2 =
p − θ − kg + αkg

γ
2 k − αk

γ
±

p − θ − kg + αkg
γ

2
− 4 αk

γ − k ( − θg)

2 k − αk
γ

.

If we let m ≔ k − αk
γ  and ℓ ≔ k − βk

γ , these agree with (T1, C1) and (T2, C2) obtained with 

the fast reaction model. Therefore, again we have 4 equilibrium points

(0, 0, 0),    (0, K, 0),     T1, C1, k
γ C1T1 ,     T2, C2, k

γ C2T2

We then notice the Jacobian matrix of the ODE system Eq. (2) is

J T , C, I1 =

p C
g + C − θ − kC pgT

(g + C)2
− kT α

−kC ρ − 2ρ C
K − kT β

kC kT −γ

Let us examine each equilibrium points and compare them with the fast reaction model.

1. The equilibrium point (T, C, I1) = (0, 0, 0) is the tumor-free and CAR T-cellfree case. The 

Jacobian matrix becomes

J(0, 0, 0) =
−θ 0 α
0 ρ β
0 0 −γ

The corresponding characteristic polynomial will be
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det
−θ − λ 0 α

0 ρ − λ β
0 0 −γ − λ

Because this is an upper triangular matrix, the eigenvalues can be observed easily, i.e. λ1 = 

−θ, λ2 = ρ, λ3 = −γ. We conclude that (0, 0, 0) is an unstable saddle point.

Fig. C.1. 
Data of tumor size (CI) dynamics in time (days) for different experimental design 

considering the number of mixed CAR T-cells (no CAR T-cell, 1:5, 1:10, 1:20) and glioma 

antigen receptor density (low, medium, high) [22].

2. The equilibrium point (T, C, I1) = (0, K, 0) is the tumor reaching the maximal capacity 

with no CAR T-cell surviving. The Jacobian matrix becomes

J(0, K, 0) =

pK
g + K − θ − Kk 0 α

−Kk −a β
Kk 0 −γ

For simplicity, let g(C) ≔ p C
g + C − θ − kC, so g(K) = pK

g + K − θ − Kk. The corresponding 

characteristic polynomial will be

P (λ) = det
g(K) − λ 0 α

−Kk −a − λ β
Kk 0 −γ − λ

= − Kkα( − ρ − λ) + ( − γ − λ)(gK − λ)( − ρ − λ)
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By setting P(λ) = 0, we obtain the first eigenvalue λ1 = −ρ, and the following quadratic 

equation,

−Kkα + ( − γ − λ)(g(K) − λ) = 0.

This gives two additional solutions

λ = g(K) − γ ± ( − g(K) + γ)2 + 4(Kkα + γg(K))
2 .

Note that the expression inside the square root is always positive since

( − g(K) + γ)2 + 4(Kkα + γg(K)) = (γ + g(K))2 + 4Kkα > 0 .

Therefore, these two eigenvalues are always real. For this equilibrium point to be stable, we 

need the eigenvalues to be negative, i.e.

g(K) − γ + ( − g(K) + γ)2 + 4(Kkα + γg(K)) < 0,

or equivalently,

p < g
K + 1 − kα

γ /K + θ + Kk (25)

which comes from γg(K) < −Kka. If Eq. (25) is satisfied, the equilibrium point (0, K, 0) is 

stable. Therefore, this condition provides the minimal level of CAR T-cell expansion rate to 

avoid treatment failure.

3. The equilibrium points T1, 2, C1, 2, k
γ C1, 2T1, 2  include (T1, C1) that can be denoted as the 

CAR T-cell therapy success case by ordering the points as 0 < C1 < C2 and T1 > T2 > 0. For 

these equilibrium points to exist, we can obtain the two conditions, p − θ − kg + αkg
γ ≥ 0, and 

p − θ − kg + αkg
γ

2
+ 4 αk

γ − k (θg) ≥ 0, that reduces to

( θ + g( − αk/γ + k))2 ≤ p . (26)

This condition provides a minimum level of CAR T-cell expansion rate that makes treatment 

success possible. To examine the stability, let us define ℎ(C) = − θ + p C
g + C − kC + αk

γ C. The 

characteristic polynomial becomes
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P (λ) = det

− αk
γ Ce − λ ℎ′ Ce Te − αk

γ Te α

−kCe ρ − 2 ρ
K Ce − kTe − λ β

kCe kTe −γ − λ
= − λ3 + Aλ2 + Bλ + D

where the coefficients are computed as following

A = ρ − 2ρ
Ce
K − αk

γ Ce − kTe − γ

B = ρ − 2ρ
Ce
K γ +

αkCe
γ + (β − γ)kTe − kℎ′ Ce TeCe

D = kCeℎ′ Ce Te(β − γ) .

The stability of the equilibrium points will depend on the roots of this polynomial. Although 

it is difficult to analyze the condition from this polynomial, we know that for the CAR 

T-cell therapy success case (T1, C1), D > 0 β = k−1
(1) + k2

(1) < γ = k−1
(1) + k2

(1) + k3
(1) and h′(C1) < 

0, which provide us that (T1, C1) is either stable or a saddle.

Table C.1

Parameters for the slow binding model Eq. (2) with low IL13Rα2 antigen density. The left 

column lists all the parameters that are considered in the calibration. The top row specifies 

different CAR T-cell ratios.

1:5 1:10 1:20

ρ (day−1) 0.3953 0.3953 0.3953

K (CI) 6 6 6

p (day−1) 3.2430 8.8245 7.0226

g (CI) 16.8454 17.0687 10.7698

k1
(1)  day −1 ⋅ CI−1 6.1317 14.2485 9.9151

k2
(1)  day −1 ⋅ CI−1 1.1658 0.8095 1.1463

k3
(1)  day −1 ⋅ CI−1 9.1820 8.4086 12.8200

k−1
(1)  day −1 ⋅ CI−1 0.1017 0.0658 0.7729

θ (day−1) 0.0412 0.0412 0.0412
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Table C.2

Parameters for the fast binding model Eq. (3) with low IL13Rα2 antigen density. The left 

column lists all the parameters that are considered in the calibration. The top row specifies 

different CAR T-cell ratios.

1:5 1:10 1:20

ρ (day−1) 0.3953 0.3953 0.3953

K (CI) 6 6 6

p (day−1) 0.4351 5.3280 7.9233

g (CI) 5.2676 11.5747 11.4983

m (day−1 · CI−1) 0.1179 0.4640 0.6260

ℓ (day−1 · CI−1) 2.3818 3.0213 3.4057

θ (day 1) 0.0412 0.0412 0.0412

Table C.3

Parameters for the slow binding model Eq. (2) with high IL13Rα2 antigen density. The left 

column lists all the parameters that are considered in the calibration. The top row specifies 

different CAR T-cell ratios.

1:5 1:10 1:20

ρ (day−1) 0.2187 0.2187 0.2187

K (CI) 6 6 6

p (day−1) 18.5305 16.5100 16.6778

g (CI) 8.0816 1.6240 2.3731

k1
(1) day −1 ⋅ CI−1 3.7075 3.7439 1.6125

k2
(1) day −1 ⋅ CI−1 4.3446 0.2965 2.0446

k3
(1) day −1 ⋅ CI−1 13.0198 1.8054 1.8582

k−1
(1) day −1 ⋅ CI−1 0.3386 0.0495 0.7008

θ (day−1) 0.0412 0.0412 0.0412

Table C.4

Parameters for the fast binding model Eq. (3) with high IL13Rα2 antigen density. The left 

column lists all the parameters that are considered in the calibration. The top row specifies 

different CAR T-cell ratios.

1:5 1:10 1:20

ρ (day−1) 0.2187 0.2187 0.2187

K (CI) 6 6 6

p (day−1) 10.5097 16.7512 15.2942

g (CI) 5.5172 11.8066 17.9938
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1:5 1:10 1:20

m (day−1 · CI−1) 0.5691 0.3766 0.0566

ℓ (day−1 · CI−1) 1.8054 1.2394 1.4700

θ (day−1) 0.0412 0.0412 0.0412

Fig. D.1. 
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Partial correlation coefficients (PCC) of the model parameters of the five-binding model (7) 

to the final tumor volume. Shown cases are IL13Rα2 antigen density and CAR T-cell ratio, 

low and 1:10 (top), high and 1:20 (middle), and high and 1:5 (bottom).

Appendix C.: Data and parameters

The glioma growth data used to calibrate the models are shown in Fig. C.1.

The calibrated parameter values of one-to-one binding slow and fast reaction models to plot 

Figs. 3 and 4 are provided in Tables C.1–C.4. The tumor growth rate ρ is calibrated with the 

tumor data without CAR T-cell treatment, while K is fixed as 6 CI ≈ 6 · 104 cells. The other 

parameters are calibrated with tumor data with CAR T-cell treatment while θ is fixed [7] to 

reduce uncertainty in parameter estimations.

Table D.1

Partial correlation coefficients of parameters M and L in multiple binding models (7) and 

hypothesis 2 in section 4.2. Presented cases of densities and CAR T-cell ratios are from 

Figs. 8–9. Both M and L are taken to be 2. The mean of partial correlation coefficients with 

the range of minimums and maximums across 2 bindings to 5 bindings in parentheses are 

shown.

M L

Low density, 1:10 0.04286
(0.03768, 0.04676)

−0.3575
(−0.3683, −0.3488)

High density, 1:5 0.01673
(0.01322, 0.02230)

−0.05055
(−0.05823, −0.04516)

Appendix D.: Parameter sensitivity analysis

In Fig. D.1, we list partial correlation coefficients for all parameters in the five-binding 

model. In Table D.1, we include the partial correlation coefficients for parameters M and L 
to final tumor volume.
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Fig. 1. 
IL13-CAR T-cell killing of brain tumor cells. The first row corresponds to when glioma cells 

are mixed with mock-T cells, and the second row is when mixed with IL13-CAR T-cells. 

It shows the process of glioma cell (red arrow) being eliminated by the CAR T-cells (green 

arrow).
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Fig. 2. 
Kinetic interaction between glioma cancer cells (C) and CAR T-cells (T), assuming single 

CAR T-cell and single cancer cell conjugates I1 (top), double CAR T-cell and cancer cell 

conjugates I2 (middle), and multiple CAR T-cells and cancer cell conjugates In (bottom).
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Fig. 3. 
Low IL13Rα2 antigen density glioma. Comparison of the calibrated model fits between 

the fast reaction model Eq. (3) (Fast) and the slow reaction model Eq. (2) (Slow). The 

shown results are for low receptor density cancer with CAR T-cell to cancer ratio 1:5 (top), 

1:10 (middle), and 1:20 (bottom). The calibrated model fits using the slow reaction model 

are closer to the data points, demonstrating that the slow reaction model more accurately 

describes the experimental data than the fast reaction model in the case of low receptor 

density.
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Fig. 4. 
High antigen receptor density glioma. Comparison of calibrated model between the fast 

reaction model Eq. (3) (Fast) and the slow reaction model Eq. (2) (Slow). The shown results 

are for high receptor density cancer with CAR T-cell to cancer ratio 1:5 (top), 1:20 (bottom). 

The calibrated model fits between the two models are similarly good in the case of 1:5 ratio, 

that is the case of higher dosage. Since the high receptor density glioma cells with high 

dosage of CAR T-cells is the case that the reaction can be the most efficient, the fast reaction 

model is not significantly better when it comes to this case.
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Fig. 5. 
Comparison of model fit errors between the fast reaction model Eq. (3) and the slow reaction 

model Eq. (2). The shown bar plots are the average of the three marked errors (×) for fitting 

the data of low antigen receptor density glioma (a) and high antigen receptor density glioma 

(b), with CAR T-cell to cancer ratio 1:5 (top), 1:10 (middle), and 1:20 (bottom). It can be 

seen that slow reaction model has smaller errors in all cases.
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Fig. 6. 
Dynamics of cancer, CAR T-cell, and conjugate I1 using two parameter sets of slow reaction 

model (bottom) that reduces to the same fast reaction model (top) parameter set. The unit 

of time is in days. When the cancer killing rate is large as k3
(1) = 100 (bottom, left), the 

dynamics of slow and fast reaction models agree. However, when the cancer killing rate 

is small as k3
(1) = 0.01 (bottom, right), the conjugate I1 have non-trivial dynamics and the 

dynamics of slow reaction model differs from the fast reaction model.
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Fig. 7. 
Antigen expression measured with flow cytometry (mean florescence intensity MFI, and the 

percentage of cells positive) for cell line PBT138 (mock, low (L), medium (M), high (H)) 

reported in Sahoo et al. [22] (a). Dynamics of the size of glioma cell population measured by 

xCELLigence (b). Glioma tumor size data (CI) after mixed with CAR T-cells in 1:5 ratio (c) 

and 1:10 ratio (d) in terms of antigen receptor density level of glioma cells: low (L), medium 

(M), and high (H) are shown as well.
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Fig. 8. 
Final tumor size (CI) using the n-binding model Eq. (7) assuming up to n number of 

CAR T-cells binding to glioma cell forming the conjugates I1, …, In. We consider n = 

1,2,…,5. The kinetic rate parameters of the multiple CAR T-cells binding model are taken 

by hypothesis 1 (top) and hypothesis 2 with M = 2, L = 1 (bottom). In fact, the tumor size 

does not decay, but rather increases as the number of binding n increases, in both low and 

high antigen receptor density cases.
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Fig. 9. 
Hypothesis 2. Final tumor size (CI) using the n-binding model Eq. (7) assuming up to n 
number of CAR T-cells binding to glioma cell forming the conjugates I1, …, In. We consider 

n = 1,2,…,5. The kinetic rate parameters of the multiple CAR T-cells binding model are 

taken by hypothesis 2 with M = 1, L = 2 (top) and M = 2, L = 2 (bottom). Unlike what we 

had in hypothesis 1, there is no increase from two bindings to three bindings for all densities, 

and all results show saturation of final tumor size after three bindings. Thus the relationships 

between reaction rates that we consider in hypothesis 2 with L > 1 describe the experimental 

data regarding the cancer antigen density receptor level.
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Table 1

Model parameters and their biological interpretation.

Parameter Biological meaning

ρ Proliferation rate of glioma cells

K Carrying capacity of glioma cells

p Rate of CAR T-cell expansion induced by glioma

θ Death rate of CAR T-cells

g Steepness coefficient of CAR T-cell expansion

k1
(n)

Binding rate of CAR T-cell and conjugate In−1

k−1
(n) Detaching rate of CAR T-cell and conjugate In

kn + 2
(n)

Death rate of glioma cells from conjugate In

ki
(n)

i = 2
n + 1 Death rate of CAR T-cells from conjugate In
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Table 2

Comparison of model fitness using Akaike information criterion (AIC) [33,34] between fast reaction model 

Eq. (3) (Fast) and the slow reaction model Eq. (2) (Slow). Mean of AIC values among all datasets and in the 

parenthesis, minimal and maximal values are shown. The slow reaction model show better model fitness with 

lower values of AIC across all datasets.

Low Medium High

Fast −300.0
(−337,−285)

−346.9
(−378,−304)

−298.1
(−385,−242)

Slow −495.8
(−540,−438)

−455.8
(−590,−340)

−453.0
(−588,−284)
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