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Caveolin-1 Phosphorylation Is
Essential for Axonal Growth of
Human Neurons Derived From iPSCs
Shanshan Wang1,2, Zheng Zhang1,2, Angels Almenar-Queralt3, Joseph Leem1,2,
Celine DerMardirossian4,5, David M. Roth1,2, Piyush M. Patel1,2, Hemal H. Patel1,2 and
Brian P. Head1,2*

1 Veterans Affairs San Diego Healthcare System, San Diego, CA, United States, 2 Department of Anesthesiology, UC San
Diego, La Jolla, CA, United States, 3 Department of Cellular and Molecular Medicine, Sanford Consortium for Regenerative
Medicine, La Jolla, CA, United States, 4 Department of Immunology and Microbial Sciences, The Scripps Research Institute,
La Jolla, CA, United States, 5 Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA,
United States

Proper axonal growth and guidance is essential for neuron differentiation and
development. Abnormal neuronal development due to genetic or epigenetic influences
can contribute to neurological and mental disorders such as Down syndrome,
Rett syndrome, and autism. Identification of the molecular targets that promote
proper neuronal growth and differentiation may restore structural and functional
neuroplasticity, thus improving functional performance in neurodevelopmental disorders.
Using differentiated human neuronal progenitor cells (NPCs) derived from induced
pluripotent stem cells (iPSCs), the present study demonstrates that during early
stage differentiation of human NPCs, neuron-targeted overexpression constitutively
active Rac1 (Rac1CA) and constitutively active Cdc42 (Cdc42CA) enhance expression
of P-Cav-1, T-Cav-1, and P-cofilin and increases axonal growth. Similarly, neuron-
targeted over-expression of Cav-1 (termed SynCav1) increases axonal development
by increasing both axon length and volume. Moreover, inhibition of Cav-1(Y14A)
phosphorylation blunts Rac1/Cdc42-mediated both axonal growth and differentiation
of human NPCs and SynCav1(Y14A)-treated NPCs exhibited blunted axonal growth.
These results suggest that: (1) SynCav1-mediated dendritic and axonal growth in
human NPCs is dependent upon P-Cav-1, (2) P-Cav-1 is necessary for proper
axonal growth during early stages of neuronal differentiation, and (3) Rac1/Cdc42CA-
mediated neuronal growth is in part dependent upon P-Cav-1. In conclusion, Cav-1
phosphorylation is essential for human neuronal axonal growth during early stages of
neuronal differentiation.

Keywords: NPCs, iPSCs, caveolin-1, phosphorylation, Rac1/Cdc42, axonal growth

Abbreviations: AAV, adeno-associated virus; ANOVA, analysis of variance; Cdc42, cell division control protein 42 homolog;
LTP, long-term potentiation; Lv, lentivirus; MAP2, microtubule associated protein 2; MLRs, membrane/lipid rafts; NMDAR,
N-methyl-D-aspartate receptor; Rac1, Ras-related C3 botulinum toxin substrate 1; SynCav1(Y14A), tyrosine to alanine point
mutation at residue 14; SynCav1, synapsin caveolin-1; SynCdc42CA, synapsin constitutively active Cdc42; SynGFP, synapsin
green fluorescent protein; SynRac1CA, synapsin constitutively active Rac1; SynRFP, synapsin red fluorescent protein; Trk,
tropomyosin receptor kinase B.
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INTRODUCTION

Proper axonal growth and guidance are crucial for development
of functional neuronal networks. Neuronal growth cones, located
at the tip of emerging axons, transduce extracellular growth,
and inhibitory cues to the underyling cytoskeleton within the
axon (Head et al., 2014). Growth cones are enriched in MLRs,
discrete plasmalemmal microdomains enriched in cholesterol,
glycosphingolipids, and the scaffolding protein caveolin (Cav)
(Sekino et al., 2007; Grider et al., 2009; Whitehead et al.,
2012). Cav-1 is a cholesterol binding and scaffolding protein
within MLRs that organizes signaling complexes such as Src
family kinases (SFKs), cytoskeletal tethering proteins, and Rho
GTPases (RhoA, Cdc42, and Rac1) that regulate cytoskeletal
dynamics (Head et al., 2008, 2014; Pantera et al., 2009; Berta
et al., 2011; Stuermer, 2011). Loss or disruption of MLRs
from the leading edge results in growth cone collapse and
inhibition of neuritogenesis (Whitehead et al., 2012). Previous
research from of our group showed that Cav-1 organized growth-
promoting signaling complexes within MLRs and regulated
neurotrophic receptor signaling pathways (Head et al., 2008,
2011; Egawa et al., 2017; Mandyam et al., 2017). Specifically,
neuron-targeted overexpression of Cav-1 (SynCav1) enhanced
MLR formation, receptor-mediated cAMP production, TrkB
receptor expression and signaling, and augmented dendritic
arborization in primary neurons in vitro (Head et al., 2011). In
addition, in vivo delivery of SynCav1 to the hippocampus of
adult and aged mice enhanced both MLR-localized TrkB and
structural neuroplasticity, improving hippocampal-dependent
memory (Egawa et al., 2017; Mandyam et al., 2017). Past
findings demonstrated that Cav-1 was widely involved in
opioid-induced dendritic growth (Cui et al., 2017), further
demonstrating a regulatory role of Cav-1 on various forms
of neuroplasticity.

Modulation of cytoskeletal dynamics is important for proper
neuronal differentiation. Rho GTPases (RhoA, Cdc42, and
Rac1) are key regulators of cytoskeletal dynamics (Hall and
Lalli, 2010; Dent et al., 2011). Dysregulation of cytoskeletal
dynamics can lead to growth cone collapse and aberrant synaptic
connections that occur in many neurodegenerative conditions
such as Alzheimer’s disease (AD) (Heredia et al., 2006; Penzes
and Vanleeuwen, 2011) and Down syndrome (Jabbour et al.,
1992). While RhoA regulates actin stress fiber assembly and focal
adhesion sites; Rac1 controls actin filament accumulations and
plasmalemmal protrusion in the form of lamellipodia; Cdc42
produces filopodia and neurite outgrowth. Previous work from
others showed that Cav-1 modulates Rho GTPase signaling in
non-neuronal cells (Baltierrez-Hoyos et al., 2012; Lim et al.,
2014). Because Cav-1 has been shown to colocalize and modulate
Rho GTPase activity in non-neuronal cells (Cheng et al., 2010;
Bassi et al., 2011; Diaz et al., 2014; Williamson et al., 2015;
Coelho-Santos et al., 2016; Xu et al., 2016), the present study
tested whether Cav-1 was also involved in Rho GTPase-mediated
axonal growth and neuronal differentiation in human neurons
derived from induced pluripotent stem cells (iPSCs). A better
mechanistic understanding of this interplay within neurons could
yield potential targets for promoting functional neuroplasticity.

Kawauchi and colleagues recently demonstrated that Cav-1
promoted early neurite maturation in an endocytic-dependent
manner (Shikanai et al., 2018). However, whether Cav-
1 phosphorylation was necessary for neurite maturation,
specifically axonal maturation and guidance, has never been
investigated. Using human neuron progenitor cells (NPCs)
derived from iPSCs, we first tested the effects of neuron-targeted
Cav-1 expression and Rac1/Cdc42 activation on neuronal growth
during differentiation. Furthermore, by using a Cav-1 mutant
construct SynCav1 (Y14A), that prevents Cav-1 phosphorylation
at tyrosine (Y) 14, we demonstrated that Cav-1 phosphorylation
was required for both SynCav1-mediated and Rac1/Cdc42-
mediated neuronal axonal growth and differentiation.

MATERIALS AND METHODS

NPCs Culture and Differentiation
The use of human induced pluripotent stem cells (hiPSC) was
approved by the UCSD IRB/ESCRO (project #:1616206ZX).
Human differentiated neuronal progenitor cells (NPCs) were
previously derived from hiPSC CVB line (RRID: CVCL_1N86,
GM25430) (Young et al., 2015). NPCs were cultured on 20 mg/ml
poly-L-ornithine (PLO) and 5 mg/ml laminin (both from Sigma)
coated plates as previously described (Kassan et al., 2017). NPC
medium [DMEM/F12/Glutamax media with N-2 supplement,
B-27 supplement, Pen/Strep and basic Fibroblast Growth Factor
(bFGF)] were used for culturing NPCs. The incubator was set
at 37◦C in 5% CO2. Medium was changed every 2–3 days
and cells were split with Accutase and Accumax (Innovative
Cell Technologies) when arrived 100% confluency. bFGF was
removed from the medium to induce differentiation. Medium
was changed every 2–3 days.

Chemicals and Antibodies
Ras-related C3 botulinum toxin substrate 1/Cell division control
protein 42 homolog activator (#CN02-A, Cytoskeleton, Inc., San
Diego, CA, United States), Antibodies used for immunoblotting
and immunofluorescence were as follows: P-Cav-1 (#3251),
T-Cav-1 (#3267), P-Src (#2101), T-Src (#2108), and GAPDH
(#5274) were all from Cell Signaling Technology (San Diego,
CA, United States). P-cofilin (sc-271921) was from Santa Cruz
Biotech (Santa Cruz, CA, United States), microtubule-associated
protein 2 (MAP2) (ab5392) was from Abcam (Cambridge,
MA, United States), anti-neurofilament SMI 31 (#801601) was
from BioLegend (San Diego, CA, United States). Primary
antibodies were visualized using secondary antibodies conjugated
to horseradish peroxidase (HRP) (Santa Cruz Biotech, Santa
Cruz, CA, United States) and lumigen ECL ultra (MA-100,
Lumigen Inc., Southfield, MI, United States). All displayed
bands were compared to molecular weight standards (sc-2035,
Santa Cruz Biotech, Santa Cruz, CA, United States). The
amount of protein per sample was determined using a dye-
binding protein assay (Bio-Rad, Hercules, PA, United States).
For immunofluorescence, FITC-488, Texas Red-595 and Cy5-
647 secondary antibodies were obtained from Molecular Probes
(Carlsbad, CA, United States).
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FIGURE 1 | Early stage of differentiation process of NPCs. (A) Seven days after bFGF removal, NPCs were fixed and stained for the dendritic and axonal markers
MAP2 (green) and SMI 31 (red), respectively. Quantitation of axonal length (B) and volume (C). (D) NPC lysates at days 0 to 7 differentiation were probed for the
stem cell marker SOX1. Quantitation of SOX1 protein expression (E). Data are expressed as mean ± S.E (n = 3, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001, One-way ANOVA).

Generation of Neuron-Targeted Genetic
Constructs and Cell Transfection
Lentivirus containing synapsin-caveolin-1 (SynCav1), Rac1Q61L
(SynRac1CA, glutamine (Q) 61 to leucine point mutation,
constitutively active Rac1), Cdc42Q61L (SynCdc42CA, glutamine
(Q) 61 to leucine point mutation, constitutively active Cdc42),
and caveolin-1 phospho-mutant [SynCav1(Y14A), tyrosine (Y)
14 to alanine (A) point mutation] were generated as previously
described (Head et al., 2011). Differentiated NPCs were treated
with either control vector (synapsin-red fluorescent protein,
SynRFP or synapsin-green fluorescent protein, SynGFP as
indicated) or empty vector on day 3 in culture.

Drug Application
After seven days of differentiation, neurons were treated with
a small molecule [(#CN02-A) dissolved in NPC medium)] that
directly activates Rac1/Cdc42 with various doses and time points

(1, 2, and 3 units/ml; 5, 15, and 30 min). Untreated cells served
as negative control. To measure related protein expression level
change, cells were harvested directly after activator treatment and
prepared for Western blot.

Western Blot
Cells were homogenized with cold RIPA lysis buffer followed
by 3 cycles of 20-s bursts of sonication at 4◦C. The amount
of protein per sample was determined using a dye-binding
protein assay (Bio-Rad). Electrophoresis was performed on the
samples using 4–12% or 10% acrylamide gels (Invitrogen) and
transferred to polyvinylidene difluoride membranes (Millipore)
by electroelution. Membranes were blocked in blocking solution
[20 mM TBS Tween (1%) (TBST) containing 3% bovine serum
albumin (BSA)] and then incubated with primary antibodies
overnight at 4◦C. After 3 washes with TBST, the membrane was
incubated with secondary antibody for 1 h at room temperature
(RT). Horseradish peroxidase (HRP)-labeled goat anti-rabbit
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FIGURE 2 | SynCav1 enhances axonal growth in differentiated NPCs derived from human iPSCs. Differentiated NSCs were transfected with lentiviral SynCav1
(2 × 109 IU/µl) (or SynGFP) on day 3 for 4 days, IF microscopy was performed at 1–3 weeks post transfection. Representative IF images are shown in (A). SynCav1
significantly enhanced axonal length (um) and volume (um3) after 1 week (B) and increased both dendritic and axonal length (um) and volume (um3) at 3 weeks (C)
as measured by Autoneuron, a tracing algorithm that measures 3D image volume stacks (Head et al., 2011). NPCs were stained for the MAP2 (dendrites and
magenta), SMI 31 (axons and green), and Cav-1 (red). 40× magnification, Nikon confocal microscope. Data are expressed as mean ± S.E (n = 3, ∗p < 0.05, t-test).

IgG (Santa Cruz Biotech) was used as secondary antibody.
After another 3 times wash with TBST to remove the rest
secondary antibody, membrane was incubated with ECL reagent
(Amersham Pharmacia Biotech, Piscataway, NJ, United States)
and prepared for imaging. Bands were compared to molecular
weight standards (Santa Cruz Biotech). GAPDH served as the
internal reference by which to standardize the other protein
bands. The calculated ratio of the control group was normalized
to 100%, and the comparisons of other groups to the control
group were represented as percentages.

Immunofluorescence Confocal
Microscopy
Neurons were fixed with 2% paraformaldehyde for 10 min at
room temperature and then permeabilized in 0.1% Triton X-
100 and blocked with 1% BSA/PBS/Tween (0.05%) for 60 min.
Next, cells were incubated with primary antibodies in 1%
BSA/PBS/Tween (0.05%) for 24–48 h at 4◦C followed by
incubation with FITC or Alexa conjugated secondary antibody

(1:600 to 1:800) for 1 h at room temperature (RT). Stained
cells were mounted in mounting medium containing DAPI and
imaged with Olympus confocal microscope system (Applied
Precision, Inc., Issaquah, WA, United States) that included a
Photometrics CCD mounted on a Nikon TE-200 inverted epi-
fluorescence microscope. Exposure times were set to the same
value for all groups every time. Quantitation of intensity of
GTP-Rac1/GTP-Cdc42 was conducted by using Image J (NIH).
Quantitation of axonal length and volume was conducted by
using Autoneuron, which measures 3D image volume stacks
(MBF Bioscience) generated by Neurolucida as previously
described (Head et al., 2011); representative images and tracing
image are shown in Supplementary Figure S1.

Statistical Analysis
Data were expressed as means ± SE. All data were analyzed
by unpaired t-tests or One-Way ANOVA; post hoc comparisons
were performed by Student Neuman Keuls tests. Significance was
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FIGURE 3 | Constitutively active (CA) Rac1 and Cdc42 enhance expression of P-Cav-1, T-Cav-1 and P-Cofilin. NPCs were treated with SynRac1CA or
SynCdc42CA (2 × 109 IU/µl) and assayed for Rac1 GTPase (GTP-Rac1) (A) and Cdc42 GTPase (GTP-Cdc42) (B), respectively. Quantitation of Rac1 GTPase (C)
and Cdc42 GTPase (D). Data are presented as total pixels (green) per soma (Dapi, blue). GTP-Rac1 (E) and GTP-Cdc42 (G) treated cell lysate were probed for
P-Cav-1, T-Cav-1, and P-Cofilin (F for GTP-Rac; H for GTP-Cdc42). Data are expressed as mean ± S.E (n = 3, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001,
∗∗∗∗p < 0.0001, One-way ANOVA).

set at p < 0.05. Statistical analysis and graphs were made using
Prism 7 (GraphPad Software, Inc., La Jolla, CA, United States).

RESULTS

SynCav1 Increases Axonal Growth in
Early Stage Differentiation of Human
NPCs
As shown in Figure 1A, NPCs exhibited increased neuronal
processes (i.e., increased axonal and dendritic growth as
indicated by SMI 31 and MAP2 respectively, Figures 1B,C),

while concurrently, the expression of Sox1, a stem cell marker,
gradually decreased during this early stage of differentiation and
were undetectable by day 7 days in vitro (DIV7) (Figures 1D,E).
We have previously shown that SynCav1 increases dendritic
growth and arborization in primary rodent neurons in vitro
(Head et al., 2011), therefore we tested whether these effects on
neuroplasticity from SynCav1 could be recapitulated in human
NPCs. NPCs treated with SynCav1 on DIV3 exhibited significant
axonal growth (Figure 2A) (quantitation of length and volume,
n = 3, p < 0.05, Figure 2B), with no effect dendritic growth
after 1 week (DIV7). However, by week 3 (DIV21, 17 days
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FIGURE 4 | SynCav1 increases T-Cav-1 but not P-Cav-1 in NPCs. (A) NPCs were treated with SynCav1 (2 × 109 IU/µl) for 72 hours followed by Western blot for
P-Cav-1, T-Cav-1, and GAPH. Quantitation for P-Cav-1 and T-Cav-1 are shown in (B,C), respectively. Data are expressed as mean S.E (n = 3, ∗p < 0.05, t-test).

post SynCav1 treatment, Figure 2C) NPCs exhibited a significant
increase in both MAP2-positive dendrites and SMI 31-positive
axons (n = 3, p < 0.05, Figure 2D), akin to SynCav1-
treated primary rodent neurons in vitro (Head et al., 2011).
These findings demonstrate for the first time that SynCav1
increases both dendritic and axonal growth in human neurons
derived from iPSCs.

SynRac1CA and SynCdc42CA Enhance
Expression of P-Cav-1 and Axonal
Growth
On DIV4, human NPCs were treated with constitutively active
(CA) SynRac1CA or SynCdc42CA for an additional 3 days
(DIV6). To confirm constitutively activation of Rac1 and
Cdc42, antibodies to GTP-bound Rac1 or Cdc42 were used
for immunofluorescence (IF). As shown in Figures 3A,B,
a significant increase in GTP-bound Rac1 and Cdc42 was
observed following SynRac1CA and SynCdc42CA, respectively
(n = 3, p < 0.05, Figures 3C,D). Western blots analysis
showed that Rac1CA and Cdc42CA resulted in downstream
phosphorylation (i.e., inactivation) of cofilin [P-cofilin1(E5)], a
protein that directly regulates actin dynamics (Figures 3E,G).
Interestingly, Rac1CA and Cdc42CA also increased expression
of total (T-) Cav-1 and phosphorylated (P-)Cav-1(Y14)
(n = 3, p < 0.05, Figures 3F,H); surprisingly there was no
increase in P-Cav-1 following SynCav1 treatment (n = 3,
p < 0.05, Figures 4A,B). We next stimulated NPCs with the
Rac1/Cdc42 small molecule activator at 3 different doses.
Maximal P-cofilin1 was measured at 2 unit/ml (Figure 5A).
The small molecule activator also increased P-Cav-1 at 15, 30,
and 45 min (Figure 5B), increased P-Src (Y416) at 1, 5, and
15 min (decreasing back to basal by 45 min), and increased
P-cofilin1 at 5, 15, and 30 min. The increase in P-Cav-1
with SynRac1CA and SynCdc42CA, but not with SynCav1,

suggests that detectable changes in P-Cav-1 occur early and
transiently or only during an activated signaling pathway (i.e.,
activated Rac1, Cdc42).

SynCav1(Y14A)-Treated NPCs Exhibit
Stunted Axonal Growth During Early
Stage of Differentiation
Neuronal progenitor cells were treated with a mutated Cav-1
construct [SynCav1(Y14A)] which prevents phosphorylation
at Y14, resulting in a dominant negative Cav-1. At DIV3,
NPCs were treated with SynCav1 and SynCav1(Y14A) for
4 days. Western blot assay showed that both SynCav1(Y14A)
and SynCav1 significantly increased T-Cav-1, while
SynCav1(Y14A) inhibited P-Cav-1, and P-Src expression
(n = 3, p < 0.05, Figure 6). As shown in Figure 7A, NPCs
showed a significant increase in axonal growth in SynCav1-
treated cells compared to control, while SynCav1(Y14A)
treated NPCs exhibited blunted axonal growth (i.e., stunted
axonal length) (n = 3, p < 0.05, Figures 7B,C). These
results demonstrated that SynCav1-promoted axonal
growth is in part dependent upon Cav-1 phosphorylation
of tyrosine (Y)14.

Inhibition of P-Cav-1(Y14) Blunts
Rac1/Cdc42-Mediated Axonal Growth
and Differentiation of Human NPCs
On DIV3, NPCs were treated with SynRac1CA or SynCdc42CA.
As shown in Figure 8, SynCav1(Y14A) inhibited both SynRac1CA
and SynCdc42CA-mediated P-Cav-1 expression (n = 3, p < 0.05).
IF revealed that both SynRac1CA and SynCdc42CA-treated
NPCs exhibited increased axonal length and volume, while cells
co-transfected with SynCav1(Y14A) exhibited blunted axonal
growth compared to control cells (n = 3, p < 0.05, Figure 9).
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FIGURE 5 | Time-course of P-Cav1 expression with the Rac1/Cdc42 activator in NPCs. (A) NPCs were incubated with three doses of the Rac1/Cdc42 activator
(1–3 units/ml) and assayed for P-cofilin at three time points (5, 15, and 30 min) using Western blot. (B) NPCs were incubated with 2 units/ml of the activator followed
by Western blot for P-Cav-1, T-Cav-1, P-Src, and P-cofilin at 1, 5, 15, 30, and 45 min. Quantitation is shown for P-Cav-1 (C), P-Src (D), and P-Cofilin (E). Data are
expressed as mean ± S.E (n = 3, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001, One-way ANOVA).

These results suggest that Rac1/Cdc42-mediated axonal growth
is in part dependent upon P-Cav-1.

DISCUSSION

The present study used differentiated human NPCs derived
from iPSCs to demonstrate that (1) neuron-targeted Cav-1
(i.e., SynCav1) augments axonal growth during early stages
of neuronal differentiation, a finding that extends previous
work that SynCav1 promotes neuroplasticity in vitro and
in vivo (Head et al., 2010, 2011; Mandyam et al., 2017), (2)
Cav-1-mediated axonal growth is abolished by inhibition of
Cav-1 phosphorylation (Y14), and (3) axonal growth induced
by Rac1/Cdc42 activation is in part dependent upon Cav-1

phosphorylation (Y14). In conclusion, Cav-1 phosphorylation is
necessary for human neuronal axonal growth during early stages
of neuronal differentiation.

Rho GTPases (e.g., RhoA, Rac1, and Cdc42) are key regulators
of cytoskeletal dynamics, growth cone motility, and axonal
guidance (Hall and Lalli, 2010; Dent et al., 2011) and are shown
to regulate these processes at the plasma membrane (Baltierrez-
Hoyos et al., 2012; Lim et al., 2014). While RhoA activation
results in axonal growth retraction, Rac1, and Cdc42 activation
promotes axonal growth. Dysfunctional Rac1/Cdc42 has been
associated with aberrant synaptic plasticity and intellectual
disability (Jiang et al., 2010; Tejada-Simon, 2015; Chen et al.,
2016; Pengelly et al., 2016). On a subcellular level, evidence from
non-neuronal cells has shown that Rac1 and Cdc42 co-localize
and interact with Cav-1 at the plasma membrane microdomains
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FIGURE 6 | SynCav1 (Y14A) inhibits P-Cav-1 expression in NPCs. NPCs were incubated with SynRFP, SynCav1, or SynCav1(Y14A) (2 × 109 IU/µl) on day 3. On
week 2, NPCs were lysed and probed for P-Src(Y416), T-Src, P-Cav-1(Y14), T-Cav-1, and GAPDH. Quantitation for P-Src and P-Cav-1 are shown in (B,C),
respectively. Data are expressed as mean ± S.E (n = 3, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, One-way ANOVA).

(Baltierrez-Hoyos et al., 2012; Lim et al., 2014). Polarization of
active Rac1 was lost in fibroblasts lacking Cav-1 (Williamson
et al., 2015), and Cdc42 knockdown prevented ApoA-I-mediated
increased Cav-1 in astrocytes (Kheirollah et al., 2014), findings
which indicate an interplay between Cav-1, Rac1 and Cdc42-
mediated signaling, and associated cellular effects. The present
study shows that, in addition to increasing T-Cav-1, Rac1/Cdc42
activation also increases P-Cav-1 in NPCs 3 days post-treatment.
Surprisingly, we did not observe elevated P-Cav-1 in SynCav1
treated cells [which still increased T-Cav-1 as early as 24 hours
post treatment (Supplementary Figure S2)]. The possible reason
may be that increased P-Cav-1 occurs early and transiently during
activated signaling events such as measured with constitutively
Rac1(CA) and Cdc42(CA). Although not observed in the present
study, SynCav1-mediated changes in P-Cav-1 may be detected
immediately after receptor agonism or other activated signaling
events (e.g., integrin activation, osmotic stress, and shear stress).
However, the blunting of SynCav1-mediated axonal growth in
the presence of P-Cav-1(Y14A) indicates that SynCav1-mediated

axon growth is dependent upon its phosphorylation at Y14.
These results lead us to postulate that P-Cav-1 may occur early
and transiently following SynCav1 treatment, resulting in the
profound neuroplastic changes observed 1 and 3 weeks later.
The present study builds upon these previous findings and is
the first to definitively show in human neurons that activating
signaling events (e.g., Rac1/Cdc42) that increase axonal growth is
dependent upon P-Cav-1.

Previous research showed that Cdc42 activation enhances
P-Src, while silencing Cdc42 prevents P-Src (Shen et al., 2008).
Other work also found that Rac1 activates Src signaling in
non-neuron cells (Fang et al., 2016). Because P-Cav-1(Y14)
is mediated by Src family kinases (SFKs) (Li et al., 1996),
the significant enhancement of P-Cav-1 with constitutively
active Rac1/Cdc42 or with the Rac1/Cdc42 small molecule
activator observed in the present study may be caused by the
persistent activation of SFKs (Grande-Garcia et al., 2007).
Therefore, we hypothesized that activation of Rac1/Cdc42
is dependent upon SFK-mediated P-Cav-1(Y14). By using
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FIGURE 7 | SynCav1 (Y14A) blunts axonal growth in NPCs during differentiation. (A) NPCs were treated with Ctrl, SynCav1, or SynCav1(Y14A) (2 × 109 IU/µl) on
day 3. On week 2, NPCs were stained for the dendritic marker MAP2 (red), SMI31 (green), and DAPI (blue). Quantitation of axonal length and volume are shown in
(B,C), respectively. Data are expressed as mean ± S.E (n = 3, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.0001, One-way ANOVA).

SynCav1(Y14A), we found that loss of P-Cav-1(Y14) blunted
P-Src (Y416) Rac1/Cdc42-mediated axonal growth, indicating
that Rac1/Cdc42-mediated axonal growth in early stages of
differentiation is in part dependent on P-Src and P-Cav-1.

Our previous findings showed that SynCav1 increased
dendritic arborization in hippocampal neurons in vivo
(Mandyam et al., 2017), which is consistent with the present
study that SynCav1 promotes dendritic growth in human
neurons in vitro. Moreover, we also detected increased axonal
growth as early as 1 week post SynCav1 transfection, the first
evidence that Cav-1 also regulates axonal growth. These findings
extend previous work by others that MLRs and MLR-associated
proteins (such as Cav-1) provide subcellular and molecular
signaling complexes essential for axonal growth and guidance
(Guirland and Zheng, 2007; Yamashita and Kuruvilla, 2016; Batty
et al., 2017). The present study attempted to better elucidate the
molecular mechanism(s) underlying Cav-1-mediated neuronal
growth. Previous research already demonstrated that even subtle
changes in axon connectivity and neuronal network formation

may cause various neurological disorders ranging from Down
Syndrome to Autism. Because Cav-1 phosphorylation is
essential for SynCav1-promoted axonal growth in early-stage
of differentiation, disruption or imbalances in P-Cav-1 may
have implications for neurological diseases or during aberrant
neuronal development.

Endocytosis and intracellular trafficking are critical for
neuritogenesis, axonal guidance and maturation (Winckler and
Yap, 2011), and are dependent upon membrane lipid composition
(Lauwers et al., 2016). Emerging evidence shows that MLRs
and Cav-1 are necessary for neuritogenesis (Shikanai et al.,
2018), axonal guidance, and synaptogenesis (i.e., formation of
new synapses) (Head et al., 2014; Egawa et al., 2016, 2017).
We have previously demonstrated that SynCav1 delivery to
the hippocampus increased total excitatory type I synapses,
multiple synapse forming boutons, LTP, and axonal myelination,
all of which are ultrastructural indicators of axonal function
and synaptic plasticity (Egawa et al., 2017). Although we did
not test whether P-Cav-1 affects axonal transport of vesicles
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FIGURE 8 | SynCav1(Y14A) prevents SynRac1CA and SynCdc42CA-mediated increased P-Cav-1 expression in NPCs. NPCs were treated with vectors
(2 × 109 IU/µl) as indicated on day 3 and WB was performed on week 2 to assay for P-Cav-1, T-Cav-1, and GAPDH. (A) Representative WB images of Ctrl,
SynRac1CA, or SynRac1CA + SynCav1(Y14A) treated NPCs; Quantitation of P-Cav-1 and T-Cav-1 expression are shown in (B,C), respectively. (D) Representative
WB images of Ctrl, SynCdc42CA, or SynCdc42CA + SynCav1(Y14A) treated NPCs; Quantitation of P-Cav-1 and T-Cav-1 expression are shown in (E,F),
respectively. Data are expressed as the mean ± SE (n = 3, ∗p < 0.05, ∗∗p < 0.01, One-way ANOVA).

and/or cellular cargoes, the present study does show that NPCs
treated with SynCav1(Y14A) resulted in profound impaired
axonal growth in contrast to SynCav1, which significantly
augmented axonal growth. Recent work demonstrated that
P-Cav-1 facilitates microRNA insertion into extracellular vesicles
by regulating RNA binding proteins in non-neuronal cells
(Lee et al., 2019). Because P-Cav-1(Y14) and Src activation
are linked to actin remodeling, endocytosis (Shi and Sottile,
2008), vesicular transport (Coelho-Santos et al., 2016), and
trafficking (Cao et al., 2002, 2004; Salanueva et al., 2007;
Chen et al., 2014) in non-neuronal cells, we are currently
testing the hypothesis that P-Cav-1(Y14) may facilitate early
stage signaling events necessary for axonal transport of
vesicles to and from the presynaptic active zone as well as
secretion of pro-growth neuronal microvesicles, subcellular
events which are necessary for axonal growth and guidance, and
synaptic maintenance.

In summary, these results show that Cav-1 phosphorylation
is critical for axonal growth. Furthermore, because increased
Cav-1 phosphorylation occurred with constitutively active
Rac1 and Cdc42, but not with SynCav1 alone, suggests
that this post-translational event may occur early and
transiently (i.e., signal transduction) in response to
extracellular pro-growth signaling cues. The present study
also demonstrated that SynCav1-promoted axonal growth
is dependent upon P-Cav-1(Y14). Moreover, inhibition
of endogenous phosphorylation of Cav-1 even in the
presence of increased T-Cav-1 (i.e., SynCav1) results in
aberrant and blunted axonal growth. In conclusion, targeting
Cav-1, specifically Cav-1 phosphorylation in neurons, may
serve as a novel therapeutic target to promote axonal
growth during early-stage differentiation in the setting of
neurodevelopmental disorder such as Down Syndrome or
serve to promote functional neuroplasticity after CNS injury
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FIGURE 9 | SynCav1(Y14A) suppresses SynRac1CA and SynCdc42CA-mediated axonal growth during NPC differentiation. NPCs were treated with vectors
(2 × 109 IU/µl) as indicated on day 3 and IF was performed on week 2. (A) Representative images of Ctrl, SynRac1CA, or SynRac1CA + SynCav1(Y14A) treated
NPCs. Quantitation of axonal length (um) and volume (um3) are shown in (B,C), respectively. (D) Representative images of Ctrl, SynCdc42CA, or SynCdc42CA plus
SynCav1(Y14A) treated NPCs. Quantitation of axonal length (um) and volume (um3) are shown in (E,F), respectively. NPCs were stained for MAP2 (red), SMI 31
(green) and DAPI (blue). Data are expressed as the mean ± SE (n = 3, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001, One-way ANOVA).
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(ischemic or traumatic) and in neurodegenerative diseases (AD,
ALS, and multiple sclerosis).
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previously described (Head et al., 2011).
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represents SynCav1 treatment.
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