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Abstract 

Three-dimensional reconstruction of ribosome particles from electron micrographs 

requires selection of many single-particle images. Roughly 100,000 particles are required 

to achieve approximately 10
o
Α  resolution. Manual selection of particles, by visual 

observation of the micrographs on a computer screen, is recognized as a bottleneck in 

automated single particle reconstruction. This paper describes an efficient approach for 

automated boxing of ribosome particles in micrographs. Use of a fast, anisotropic non-

linear reaction-diffusion method to pre-process micrographs and rank-leveling to enhance 

the contrast between particles and the background, followed by binary and morphological 

segmentation constitute the core of this technique. Modifying the shape of the particles to 

facilitate segmentation of individual particles within clusters and boxing the isolated 

particles is successfully attempted. Tests on a limited number of micrographs have shown 

that over 80% success is achieved in automatic particle picking. 

Keywords: micrograph, particle, diffusion, segmentation, boxing 
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1. Introduction 

 Electron microscopy (EM) techniques comprise a powerful and diverse collection 

of methods that facilitate visualization of biological structures at a macromolecular level. 

Electron microscopy covers a range of resolution that spans several orders of magnitude, 

bridging the gap between crystallography and light microscopy (Sali et al, 2003). The 

resolution of an image of macromolecular structures depends on the number of electrons 

applied to the sample, since a trade-off exists between statistical definition and damage to 

sample (Glaeser, 1971). Micrographs showing projections of macromolecular assemblies 

must be recorded at very low electron dose to minimize radiation damage, resulting in 

low image contrast (Henderson, 1995). Overcoming the limitations posed by the low 

electron exposures that are “safe” requires merging data from images of up to millions of 

molecules in order to increase the signal-to-noise ratio. The number of macro-molecule 

images required for a volumetric reconstruction increases significantly with the resolution 

of the micrograph (Frank, 1996). When images of currently available quality are used, it 

is believed that at least one million particles are required to reconstruct a protein-

molecule with “atomic” resolution (Henderson, 1995; Sali et al, 2003). 

For reconstructing the three-dimensional (3-D) shape of a protein molecule, 

particles from each micrograph are selected either manually, using interactive graphics 

software or by computer aided semi-automatic methods. Either method becomes a very 

labor intensive job when the number of particles required becomes very large. 

Automation of particle selection is hence necessary to prevent this stage from becoming a 

serious bottle neck in visualization of the structure of a protein molecule. Several 

approaches to automate particle picking have been proposed which have met with 
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varying degrees of success (Nicholson and Glaeser, 2001). Among these, particle 

extraction based on texture features of candidate particles obtained by peak search of the 

Gaussian smoothed micrograph was proposed by Lata et al (1995). Although this method 

remains one of the most effective that has been described to date, many false positives 

still get through and a manual editing of the resulting data is required as a final step.  

 In this article, we present a methodology based on non-linear preprocessing of 

micrographs followed by multi-level, region-based thresholding and morphological 

segmentation. Our objective is not just extraction of single particles but also to segment 

those single particles which are located rather close to one-another, thus increasing the 

throughput of the boxing process without increasing erroneous selection of particles.  

2. Segmentation of Ribosome Particle Images 

 Micrographs of ribosome particles lack clarity and definition because of the high 

level of electron shot noise mentioned above (Glaeser, 1971). The design of 

computational techniques that can extract particles from the background and from 

interfering materials in the image is thus essential. Normalization of the micrographs to 

have approximately the same mean and grey-level distribution for all the micrographs, 

followed by anisotropic reaction-diffusion and rank-leveling to smooth the background 

texture and remove the illumination variation, constitute our initial pre-processing steps. 

Pre-processed micrographs are then thresholded and individual particles and clusters are 

separated. Particles within clusters are then segmented by a combined erosion-dilation 

and region growing algorithm. This is followed by a second stage of particle picking and 

boxing of the segmented particles in the micrograph. 
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2.1 Normalization 

When we digitize the micrographs, the measured optical density (OD) values reflect the 

electron image intensity at each point on the micrograph. Within a large data set, 

however, one can expect to have significant variations in the average electron intensity 

due to variations in specimen thickness from one micrograph to the next, variations in 

condenser lens setting, different choice of image magnification from one day to the next 

and other factors. 

Generally, the micrograph pixel values are in a narrow range of the possible grey-

scale range. It is therefore helpful to “standardize” all micrographs before segmentation, a 

step that we have chosen to do by a selective histogram stretching. Histogram stretching, 

generally known as contrast stretching, also tends to make the image visually more 

distinctive, a fact that has simplified our work during the process of designing pre-

processing and segmentation algorithms. Histogram stretching can be briefly described as 

follows. If ( )yxf ,  is the image function then the histogram stretch is given by  

( ) ( )
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maximum brightness value in the histogram-stretched image (by default 255=k .0). This 

process brings the OD values of the micrograph into the complete grey-scale range. We 

have observed that standard histogram stretching, as per the above definition, is not very 

useful in making the image visually more distinctive or in enhancing the contrast, 

however. To obtain a better result, we stretch only a selected part of the histogram that 

contains most of the pixels. The max and min values are defined as the grey-levels where 

the histogram curve falls to below offset+%1  and offset−%1 of the number of pixels at 
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the mode point of the histogram on both sides of the peak respectively. For example, 

Figure 1 shows, a histogram of a micrograph where the curve falls below 1% of the peak 

at grey-levels 160 and 230. With offset = 20, we calculate max =250 and min =140. 

Figure 1, shows the histogram of a micrograph before and after stretching.  

 
(a) 

 
                 (b) 

Figure 1: Histogram of a micrograph (a) before (b) after stretching. 
 

Since the max and min grey-levels calculated, based on the initial histogram curve, are 

data dependent, the result of histogram stretching standardizes micrographs by tending to 

produce a common mean and grey-scale distribution. The standardization effect on three 

micrographs is illustrated in Figure 2. 

Mode 

min max 
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(a)                                                                       (b) 

Figure 2: Illustration of micrograph standardization by selective histogram stretching (a) 

Original histogram (b) After selective histogram stretching. 
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2.2 Non-linear Pre-processing 

Micrographs, in general, have poor signal to noise ratio (SNR) as has been stated above. 

The main type of noise that corrupts micrographs of ice embedded specimens is electron 

shot noise. In order to increase the SNR, a high degree of smoothing of micrographs is 

required. Smoothing an image using low-pass filters like the Gaussian smoothing filter 

will also blur the image and compromise the boundary (or the edge) information. What 

we desire is an image denoising scheme that reduces the background noise and texture 

variation, while preserving the particle shape boundaries. We employ the non-linear 

partial differential equation based smoothing technique called the Beltrami flow equation 

(Sochen et al 1996; 1998). 

Consider the image function ( )yxIU ,= . Linear diffusion can be achieved by a 

parabolic partial differential equation (PDE), namely 

2
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in x  and y dimensions. The linear diffusion given by Eqn.(1) is equivalent to Gaussian 

smoothing ( ) ( )( )yxfGtyxu t ,,, 2 ∗=  for .0>t  Here, tG 2  is a Gaussian kernel with 
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isotropic diffusion. The blurring of important features such as edges that occurs while 

moving from finer to coarser scales can be avoided by application of anisotropic 
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diffusion methods. The use of diffusion equation for image processing originated with the 

work of Perona and Malik (1987) where the authors pre-select a diffusion coefficient that 

preserves the edge information. A different view on diffusion was achieved by realizing 

that the iso-intensity contours of the image can be moved under curvature their curvature 

following the work of Osher and Sethian (1988). Image smoothing by way of level set 

curvature motion (Alvarez et. al 1992; Rudin et al 1992; Malladi, Sethian 1996), thwarts 

the diffusion in the edge direction, thereby preserving the edge information.  

 The main motivation behind the work of Sochen et al. (1996) was to find a natural 

way of dealing with different types of image mappings, grayscale, color, volumetric etc. 

The key idea is to view images as embedded maps between two Riemannian manifolds 

and to define an action potential that provides a measure on the space of these maps. To 

be specific, let us denote by (Σ,g) the image manifold and its metric, and by (M,h) the 

image space-feature manifold and its metric, the so-called action potential is the weight 

of the map Χ:Σ→Μ, i.e. 

[ ] ( )∫ ∂∂= ,,, XhXXggdhgXS ij
jim

ij
i

νµµν σ  ----------- (2) 

where m is the dimension of Σ, g is the determinant of the image metric, µνg  is the  

inverse of the image metric, and ijh  is he metric of the embedding space. This action is 

the natural generalization of the L2 norm to non-Euclidean manifolds and is known as the 

Polyakov Action. Minimizing the above potential with respect to the embedding or the 

feature coordinates leads to different flows that are known in the literature as the 

Gaussian, curvature flow, etc. We choose a particular minimization, one that sets the first 

variation of the potential with respect to the embedding to zero. As an example, a gray 



 10

level image is an embedding of a surface described as a graph in 3R , as follows: 

( ) ( )[ ]yxIyxyxX ,,,,: →  and the metric is defined  

                                       ( ) 
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The explicit equation describing the smoothing flow is realized by minimizing the action 

potential with respect to the third coordinate I , namely 
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with the initial condition ( ) ( ),,0,, 0 yxItyxI == the noisy image. 

The Beltrami flow incorporates the edge indicator function ( )221/1 yx IIh ++= , 

thus providing a minimum diffusion at the edges and extensive diffusion elsewhere.  

Now consider the following reaction-diffusion PDE: 

( ) ( ) UhUh
t

U 2sincos ∇⋅⋅+∇⋅∇⋅=
∂
∂ ββ     -------- (5) 

This equation is derived by simple algebraic rearrangement of terms in Eqn. (4); 

see Malladi and Ravve (2001; 2002) for details. The first term, ( ){ }Uh ∇⋅∇⋅βcos  is a 

reaction term responsible for edge-enhancement while the second term ( ){ }Uh 2sin ∇⋅⋅β  

is a diffusion term responsible for smoothing. β  is a parameter that determines the 

relative contribution of reaction and diffusion terms and varies from 0o to 90o. 00=β is a 

pure reaction term, 045=β is a nonlinear diffusion flow, 04.632arctan ≈=β is the 

Beltrami flow ( Sochen et al, 1998), and 090=β is the pure diffusion. Thus by suitably 

selecting β  we can achieve desired amount of smoothing without substantially losing 
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edge information. Implementation and computational details of reaction-diffusion PDE 

can be obtained from Malladi and Ravve (2002).  

Keeping edge information is necessary as it help in accurate marking of boundary 

of the particles thus, in turn, helps in finding precise shape features and orientation of the 

particles that are important for 3-D reconstruction. Figure 2 shows the result of 

smoothing achieved by the reaction-diffusion technique using different values of β , 

while parameter such as time step for reaction-diffusion are kept same. We have 

used 075=β . This value is selected experimentally by considering a number of correctly 

detected particles. 

2.3 Background Leveling 

Due to variation in the sample thickness and other factors, micrographs normally 

show some degree of uneven illumination. Such illumination variation could be corrected 

by removing low frequency components from the image by high-pass filtering or by a 

least-squares fitting technique. We have used, instead, the rank-leveling approach (Russ, 

1995) to remove uneven background illumination and to further reduce the textural nature 

of the background. The advantage of rank-leveling over least square fitting or low-pass 

filtering in the frequency domain is that rank-leveling is an adaptive process.  

Rank leveling is a multi-step morphological filtering process. In the first step, a 

background image is constructed by replacing every pixel by the minimum grey level in 

its neighborhood (if the particles are brighter than the background) until the objects in the 

image disappear. The neighborhood size is selected based on the approximate size of the 

object i.e. the particle size in the micrograph. If the objects are darker i.e. have lower grey 
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(a) Normalized micrograph                     (a1)           (a2) 

      
 (b) o30=β             (b1)          (b2) 

     
 (c)  o75=β            (c1)          (c2) 

     
    (d) o90=β             (d1)           (d2) 

Figure 3: Effect of changing β  in Beltrami-flow based smoothing. 

2048 x 2048 512 x 512 128 x 128: original resolution 
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values than the background, we replace each pixel grey level by the maximum in its 

neighborhood. The resulting image is an approximate representation of the background. 

In the second step, the background image is subtracted from the micrograph, and the grey 

values below zero are clipped to zero value. Figure 4, shows the result of pre-processing 

a histogram-stretched micrograph, after non-linear smoothing and rank-leveling. 

     

       (a)        (b)        (c) 

Figure 4: Result of pre-processing (a) histogram stretched micrograph, (b) after non-

linear smoothing (c) after rank-leveling. 

2.4 Segmentation of Particles 

Ideally, a segmentation method finds those sets of pixels that correspond to 

distinct structures or regions of interest in the image and gives a unique label to each 

individual set. Segmentation of complex images involves several stages such as 

thresholding to separate background from foreground, distinguishing artifacts from 

objects, edge and/or region based algorithms to separate objects which are touching or 

closely located, component labeling and tuning the boundary pixel location for better 

precision.  
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2.31 Thresholding 

Thresholding is a conversion from a grey-level image to a bi-level image. A bi-level 

image should contain all the information concerning the number, position and structure of 

the objects that are present in the grey-level image while containing much less other 

information. The problem is to select a proper threshold that accomplishes the above task. 

We have observed that selection of a single threshold for an entire micrograph is not 

possible in most of the cases due to overlapping of the grey-levels of the particles and 

background from different regions of the image. The first issue that must then be 

addressed, if regional thresholds are to be used, is to determine how many thresholds are 

needed and what the sizes of the regions are. We have implemented an adaptive region 

selection method. In the first step, the image is amplitude thresholded at a global mean 

intensity value ( )µ⋅k  where k  is a tuning parameter andµ  is the mean intensity of the 

preprocessed micrograph. All connected components in the foreground are identified by 

component labeling (Dillencourt et al, 1992). Each such connected component is then 

considered as an individual region. In the second step, the mean grey level iµ  of 

connected component i  is calculated. Connected component i  is further thresholded at a 

unique threshold value ( ik µ⋅1 ). The tuning factor 1k  is experimentally set (we have used 

k=1.0 and k1 = 0.5).   

Bi-level micrographs thus obtained still contain many artifacts in the form of tiny 

isolated structures and small holes within the particles which are dealt with in the 

following way. Using a circular structuring element (Serra, 1982), the thresholded 

micrograph is ‘opened’. If S is the structuring element and A is the image then grey scale 

opening of A by S is defined as { }ASS Θ⊕ ; where, 
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[ ] [ ][ ] [ ]{ }ScrAcjricrScjriAAS ∈∈−−−−−=Θ ,,,,min
[ ] [ ][ ] [ ]{ }ScrAcjricrScjriAAS ∈∈−−+−−=⊕ ,,,,max ; ⊕  is the dilation operator 

and Θ is the erosion operator.  This opening operation reduces small noisy objects that 

resulted from thresholding micrographs that are still somewhat textured. Following this, a 

closing operation { }ASS ⊕Θ , reduces noisy holes in the particles. The structural 

smoothing due to morphological filtering also force the objects to have a convex shape 

that can be better segmented. Figure 5 shows the result of multi-level, region-based 

thresholding followed by morphological opening and closing. 

            
                      (a)                    (b) 
Figure 5: (a) Part of the pre-processed image. (b) After thresholding and noise removal 
by morphological filters. 
 

2.32 Relative Feature Filtering 

Once the binarization process described above has been completed, it is still necessary to 

distinguish artifacts from individual particles and/or clusters of particles in the image. 

The use of some simple and intuitively obvious filters such as relative size and the 

relative average intensity of pixels within the candidate particle are recommended for this 

purpose. When the size and the average intensity values of the particles in the micrograph 

are known, this information can be provided as a priori information to the filtering 

process for selecting individual isolated particles and flagging cluster of particles for 
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further processing. Otherwise a data-driven process to filter-out the artifacts is 

recommended. We have tested one such approach in which the relative size of the object 

vr  is defined as the ratio of the size of that object to the average size of objects in the 

image. If the average size of the object i  is iV , then  

∑
=

⋅

=
β

β
1

1

i
i

i
v

V

V
r

i
        ----------- (6)  

where β is the number of isolated objects present in the image. The relative intensity of 

the object 
iIr  is defined as the ratio of the average intensity of the object pixels to the 

average intensity of foreground pixels in the image. If the average intensity of the object 

i  is iI , then  

∑
=

⋅

=
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k
k

f

i
I

I
N

I
r

1

1
        ----------- (7)  

where fN is the number of foreground pixels in the image. Particles are first ordered 

based on their sizes i.e. number of pixels within the particles. The average size is 

calculated by an α -trimmed filter which excludes α number of extreme size elements in 

the size ordered list of objects for calculation of the average object size iV  in the image 

(Oten, 2000). We have excluded 25% of the particles on both extremes of the ordered list 

of particles. All those particles with relative average-intensity less than 0.3 or relative 

size less than 0.5 are considered as artifacts and eliminated. Figure 6(a) is a normalized 

micrograph, Figure 6(b), shows a thresholded image while Figure 6(c) displays all the 
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isolated individual ribosome particles. In addition, objects with relative mean object size 

more than 1.5 are considered as possible clusters of particles and are flagged off for 

further segmentation. Figure 6(d) shows the image that has been flagged-off for further 

segmentation which we call the “residue image”.  

   
(a)                                                              (b) 

      
 (c)                                                              (d) 

 
Figure 6: (a) Normalized micrograph (b) After binarization (c) Objects isolated as 

individual particles (d) Objects flagged off as cluster of particles. Note that the larger 

white “clumps” in (b) have been eliminated from (c) and (d) by relative size filtering. 
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2.33 Cluster Segmentation 

The residue-image, consisting of particle clusters flagged off by relative feature filtering, 

is labeled using a component labeling algorithm. Segmentation of clusters is done in two 

independent stages. 

Stage 1: The foreground of the residue-image is eroded one pixel thickness at a time. 

Ideally, this erosion process continues until a unique marker is obtained for each particle 

in the region of interest. Markers are the small group of connected pixels located at the 

approximate center of individual particles. The markers are tagged with a unique label 

and the number of erosion iterations needed to bring it to marker size. In the second step, 

markers are subject to controlled dilation. Markers are grown into their neighboring 

background pixels under certain conditions.  

• No two growing markers are allowed to overlap or touch one another.  

• The growing process is terminated when the grown region covers all the 

foreground pixels in the original residue-image.  

A pixel level logical AND operation between the residue image and the dilated markers 

image provides segmentation of many particles in the cluster. The relative size filter with 

feature parameters obtained from already isolated particles can then be used to extract 

particles that are isolated by the erosion-dilation process.  

Stage 2: If there are clusters of particles still left in the residue-image, then a final step of 

segmentation based on region growing over a distance map, which is a generalized 

version of the watershed technique, is applied (Vincent and Soille, 1991; Adiga and 

Chaudhuri, 2001). A distance map of the residue-image is generated using the Borgefors 

algorithm (Borgefors, 1996). Homogeneous regions in the distance map are identified 
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and the distance values of those pixels are rescaled to reduce flat fields (Bleu and Joshua, 

2000).  

Let dist(.) represent the distance value of pixels in the distance map.   

Step 1: Connected group of pixels having maximum distance maxd  in the distance map 

are considered as markers. A marker may consist of single pixel or a group of connected 

pixels. The markers are labelled by the component labelling algorithm. Let maxd  be the 

maximum distance in the distance map, nextd  is the next maximum distance level and 

mind is the minimum distance value in the distance map. 

Step 2: Pixels having a distance value  ( )nextd  and located in the immediate 

neighbourhood of the labelled regional markers are merged with their neighbouring 

regional marker. This step can also be viewed as growing markers into their 

neighbourhood pixels that have a distance value nextd  by reassigning their distance 

values to be maxd and tagging them with the corresponding label of the marker. 

The isolated pixel or group of connected pixels in the distance map with distance 

nextd  and not having a labelled regional marker in their immediate neighbourhood are 

considered as new markers and given a new unique label as well as having its distance 

value upgraded to maxd .  

Step 3: =nextd next maximum distance value in the image which is less than maxd  

Step 4: If the minddnext ≠ then steps 2 and 3 are repeated. 

The resulting image is filtered using relative size filters. Figure 7, shows an example of 

segmentation of clusters of ribosome particles. 
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(a)                                                                  (b)  

 
  (c) 
 

A second stage of analysis is necessary to identify missed ribosome particles in 

the first stage. Every segmented particle projection in the original unprocessed 

micrograph is replaced by a background texture patch. The resulting image is then 

considered as a new, pre-processed micrograph, and all the steps of segmentation are 

applied again. As most of the parameters controlling segmentation are data driven, it is 

not necessary to retune them at this intermediate stage. Particles thus extracted are added 

to the original set of segmented particles. Figure 8 shows the result of second stage 

analysis to pick particles that were left-out in the first stage. We have observed that about 

10-to-15% of the total particles segmented are obtained from the second stage of 

Figure 7: (a) Same as Figure 6(c),  
(b): Result of erosion-dilation,  
(c) Result of region growing / watershed on 
a distance map for segmenting clusters 
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processing. The increase in number of false positives due to the second stage of 

processing is negligible. 

   
 (a)                                                             (b) 

Figure 8: Illustration of second stage of particle picking (a) Pre-processed micrograph 

after replacing all the particle area by a grey value less than the mean grey value of the 

pre-processed micrograph, (b) Particles and particle clusters picked during the second 

stage only. 

Our aim is to extract each particle as a small sub-image. All the sub-images 

should have the same size (same number of columns and rows) so that they can be used 

for further analysis towards 3-D construction. To accomplish this, the centroid of each 

particle that is segmented from the micrograph is calculated, and a fixed size box is 

stamped around the centroid such that the complete particle is enclosed within the box. 

Figure 9 shows an example of a micrograph where segmented ribosome particles are 

boxed.  
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3. Experimental Results and Discussion: 

The basic idea behind this methodology for picking ribosome particles is to pre-

process the image to an extent that the standard segmentation algorithms can successfully 

identify each particle in the image.  

 

Figure 9: Illustration of boxing of recognized ribosome particles. Most of the apparent 

ribosome particles that can still be seen without boxes are, in fact, particles that are not 

picked by human either.  
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A two tone version of the image is then used to measure the size (i.e. the area) of the 

particles and the average density within this area is further used to identify the particles. 

Our goal is to consistently achieve, on a large set of data, 80% efficiency with respect to 

manual selection, with less than 10% false positives contained in the data set, and to do 

so without human intervention. 

Table 1 gives a quantitative analysis of the efficiency of our automatic procedure 

in the case of a few micrographs with routine image quality. We have achieved and in 

most cases exceeded the expected target of 80% recognition with less than 10% false 

positives. The efficacy of our approach needs to be further tested on a large number of 

micrographs before accepting the software as a routine tool for picking ribosome 

particles. 

No. Image Name No. of 

Particles 

Manual 

No. of 

particles 

Automatic 

False 

Positives 

Estimated 

False 

positives 

% recognition/ 

efficiency 

1 Smic01 591 583 25 11 94% 

2 Smic02 645 596 21 8 89% 

3 Smic03 634 521 18 14 80% 

Table 1: Quantitative analysis of manual particle picking and automatic method 

The image files Smic01.spi, Smic02.spi and Smic03.spi, with particle coordinates 

that are known from manual boxing, were used as gold standards to test the performance 

of the protocol and to establish the parameter values used in the algorithm. The number 

of particles that were boxed both manually and automatically was used to compute the 

efficiency of the software with respect to the manual boxing process. If 
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{ }nman ppp ,...,, 21=Θ  is the set of manually boxed particles, where the size of the set 

{ } nman =Θ# , and { }maut ppp ,...,, 21=Θ is the set of particles boxed automatically, 

where { } maut =Θ# , then { }autman Θ∩Θ is the set of particles that are picked by both 

automatic and manual methods. The symbol ‘∩ ’ is the set intersection that brings out 

those elements that are common to both sets. The set { }{ }autmanman Θ∩ΘΘ \  is the set 

of particles that are manually picked but not picked up by the software. The symbol ‘\’ 

denotes the set difference. The set, { }{ }autmanaut Θ∩ΘΘ \  is the set of false positives 

i.e. set of particles boxed by the automatic method while rejected as non-particles by the 

manual method. The percentage efficiency of the automatic method is then calculated by 

{ }
100

#
% ×

Θ∩Θ
=

n
efficiency autman . The particles that are marked by the automatic 

process but not by manual boxing are considered to be false positives. The efficiency of 

automatic particle picking, as defined above, is calculated based on the total number of 

false positives listed in column 5 rather than the estimated number listed in column 6 of 

Table 1. The column “estimated false positives” is provided because some of the boxes 

that are marked by the software, but not by the manual process, appeared to have actual 

particles in them.  

Increasing β  increases the diffusive property of the anisotropic diffusion process. 

An optimal trade off between protecting the boundary of the particles, and smoothing the 

noisy texture in the interior of the particles as well as in the image background, is 

achieved by trial-and-error. This trade-off resulted in our choice of o75=β as a default 

value, as it produced a marked reduction in the already small percentage of false positives 
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with only a modest loss in the recognition of true positives. Table 2 shows the effect of 

using different values of β in the Beltrami flow based pre-processing.  

Image. 

Name  

Manual 

Pick 

PDE 

o30=β  

count / 

false +ve 

PDE 

o45=β  

count / 

false +ve 

PDE 

o3.62=β  

count / false 

+ve 

PDE 

o75=β  

count / 

false +ve 

PDE 

o90=β  

count / 

false +ve 

Smic01 591 533 / 71 589 / 64 646 / 57 583 / 25 484 / 28 

Smic02 645 513 / 51 546 / 48 558 / 45 596 / 21 433 / 30 

Smic03 634 598 / 81 580 / 58 601 / 47 521 / 18 455 / 31 

Table 2: Effect of the smoothing parameter on particle picking 

It has been observed that our software performs with a better computational 

efficiency when the images are of size, say, 1024 x 1024, rather than when they are 4096 

x 4096 and above. This is an issue of implementation of the algorithms and the efficiency 

of the computer. To make our software work efficiently for a large image on smaller 

machines such as PC, etc., a divide and conquer method can be adopted. The large image 

is divided into optimum size for the software to run efficiently on each image part. When 

each image part is processed, however, we reject those particles that are too close to the 

image border. For example, when an image of 4096 x 4096 pixels is divided into sixteen 

parts of size 1024 x 1024, a large number of particles in each part would be rejected as 

being too close to the border. This problem can be solved by not rejecting any objects 

until the whole image is reconstructed by tiling individual, processed/segmented, image 

parts. 
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To complete all stages of automatic particle picking on a 2048x2048 image with 

about six hundred particles, the program took twenty-one minutes on a 1GHz / 256Mb 

PC with Win2000 operating system. The program is implemented in Interactive Data 

Language (www.rsi.com). Re-implementing it in C or C++ would improve the efficiency 

at least by 50%. The efficiency of the program is also directly related to the quality of the 

image and the number of single isolated particles present, as well as the number of 

particle clusters present.  

An important difference from the existing methods of particle selection is that this 

method can be defined as blind, as no manual intervention is allowed. The high degree of 

accuracy achieved in particle selection is due to extensive pre-processing that improves 

the particle contrast from its background. The application of the PDE-based Beltrami 

flow equation for smoothing and enhancing features helps in retaining the particle 

boundary, which in turn preserves the particle size and shape. Though the program was 

tested on relatively similar data sets, we expect it to work generally well on all 

micrographs acquired with similar instrument settings. Under different settings, retuning 

of one or several parameters may be necessary.  
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