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Abstract

Partial Separability and Graphical Models for High-Dimensional Functional Data

by

Javier Andres Zapata Ramirez

Functional data analysis (FDA) is the statistical methodology that analyzes datasets

whose data points are functions measured over some domain, and is specially useful to

model random processes over a continuum. This thesis develops a novel methodology

to address the general problem of covariance modeling for multivariate functional data,

and functional Gaussian graphical models in particular. The resulting methodology is

applied to neuroimaging data from the Human Connectome Project (HCP).

First of all, a novel structural assumption for the covariance operator of multivariate

functional data is introduced. The assumption, termed partial separability, leads to a

novel Karhunen-Loève-type expansion for such data and is motivated by empirical results

from the HCP data. The optimality and uniqueness of partial separability are discussed

as well as an extension to multiclass datasets. The out-of-sample predictive performance

of partial separability is assessed through the analysis of functional brain connectivity

during a motor task.

Next, the partial separability structure is shown to be particularly useful to pro-

vide well-defined functional Gaussian graphical models. The first one is concerned with

estimating conditional dependencies, while the second one estimates the difference be-

tween two functional graphical models. In each case, the models can be identified with a

sequence of finite-dimensional graphical models, each of identical fixed dimension. Em-

pirical performance of the methods for graphical model estimation is assessed through

simulation and analysis of functional brain connectivity during motor tasks.
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Chapter 1

Introduction

1.1 Graphical Models

Graphical models are a very powerful tool to describe the conditional dependence

structure in a group of random variables through a network. The network consists of

nodes representing the random variables, and edges representing conditional dependencies

between a pair of variables. This thesis is concerned with undirected graphs for partial

correlations where an edge represents a non-zero correlation between a pair of variables

after controlling for all other remaining random variables. In the case where these random

variables are jointly Gaussian then such edges can be identified by the non-zeros in the

off-diagonal entries of the inverse covariance matrix, also known as the precision matrix.

The literature on Gaussian undirected graphical models has mostly focused on es-

timating sparse precision matrix for high-dimensional regimes where the number of ob-

servations is smaller than the number of random variables. In practice, the sparsity

assumption is often used as it facilitates the interpretation of the graph. This literature

can be divided into two main groups. The first one started with the neighborhood se-

lection work of [1] where the goal is to solve a penalized regression problem where each

variable is regressed on all the remaining variables. Thus non-zero entries in the precision

matrix are identified column by column. And the second group corresponds to penalized

1



Introduction Chapter 1

likelihood methods starting with the seminal work of [2] known as the graphical lasso. In

this branch of the literature the goal is to maximize a penalized Gaussian log-likelihood

in terms of the precision matrix. The sparsity pattern in the resulting graph is achieved

by means of a penalization on the entries of the precision matrix.

In particular, undirected graphical models have become widely used in many real life

applications. They have been used in scientific domains such as computational biology [3],

genetics [4], and neuroscience [5]. In particular, this work is motivated by applications

of Gaussian graphical models to neuroimaging data where the goal is to estimate a

functional connectivity map among the different regions of the brain.

1.2 Functional Data Analysis

Functional data analysis (FDA) is the statistical methodology that analyzes datasets

whose data points are functions. In other words, each observation consists of a group

of measurements observed on a discrete set of points of a continuous domain such as a

time interval, a surface, etc. The main difference between FDA and traditional statis-

tical methods is that allows function to be measured on irregular grids as opposed to

an evenly spaced grid. Indeed, as the measurement points could be arbitrarily close the

data-generating mechanism of interest is a random process over a continuum. For in-

stance, consider a rainfall dataset with hourly observations over many years for multiple

locations. For the purpose of FDA the dataset is as a collection of curves indexed by

location and date.

With the development of new data technologies, functional datasets are becoming

widely available in different fields. The list include chemometrics, medicine, biology,

linguistics, ecology and finance [6] , e-commerce and marketing ([7] and [8]) to name a

few.

2
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One of the most important tools in FDA is functional principal component analysis

(FPCA). It is a ubiquitous tool in functional linear regression and density estimation

for functional data [9]. Its main goal is to facilitate the analysis of potentially infinite-

dimensional functions by capturing the principal directions of variation of the data as well

reducing its dimensionality. In essence, it summarizes the observed curves in terms of

the basis provided by the principal components. In doing so, the structure of functional

data can be analyzed without defining a probability measure on a functional space [10].

In particular, this thesis develops a parsimonious extension of FPCA to multivariate

functional data. This extension is applied to neuroimaging data to formulate a novel and

well-defined functional Gaussian graphical model.

1.3 Neuroimaging Data from the Human Connec-

tome Project

This thesis is motivated by a large neuroimaging dataset from the Human Connectome

Project (HCP). The HCP is a five-year project sponsored by sixteen components of the

National Institutes of Health, split between two consortia of research institutions. And

it is the first large-scale attempt to produce detailed data to understand the human

connectional anatomy of the brain.

The neuroimaging data consists of functional magnetic resonance imaging (fMRI)

data which measures blood-oxygen level dependent (BOLD) signals at multiple regions

on the brain cortex. Variations in the blood oxygenation levels serve as a measurement of

neural activity as they have a well-understood relationship with other biological processes

in the cortex of the brain [11]. The BOLD signals are measured for volumetric pixels

(or voxels) which represent a very small cube of brain tissue containing millions of brain

3



Introduction Chapter 1

cells.

In particular, this work focuses on a motor task dataset consisting of fMRI scans of

individuals performing basic body movements. During each scan, a sequence of visual

cues signals the subject to move one of five body parts: fingers of the left or right hand;

toes of the left or right foot; or the tongue. After each three-second cue, a body movement

lasts for 12 seconds with temporal resolution of 0.72 seconds. The data comes with

observations for 1054 subjects with complete metadata and 91,282 voxels. In particular,

this thesis analyzes the ICA-FIX pre-processed data variant as suggested by [12] that

controls for spatial distortions and alignments across both subjects and modalities.

Using BOLD signals at the voxel level is not recommended in practice as they tend

to be very noisy and extremely high dimensional [13]. For this reason the voxel-level

BOLD signals are aggregated into averages using a parcellation (also known as atlas) of

the different regions of the brain. Having removed cool down and ramp up observations,

the dataset ends up with 16 time points of pure movement tasks.

Having this consideration in mind, this thesis makes use of the atlas in [14] because

is a state-of-the-art parcellation with the highest number of regions among atlases using

multiple MRI modalities [15]. It consists of 360 regions of interest (ROIs) delineated

with respect to function, connectivity, cortical architecture, and topography, as well as,

expert knowledge and meta-analysis results from the literature [13].

In Figure 1.1 we can see the different regions of the brain based on [14].

1.4 Summary of Chapters

The rest of the thesis is organized as follows. In Chapter 2 a novel structural as-

sumption for the covariance operator of multivariate functional data is introduced. The

assumption, termed partial separability, leads to a novel Karhunen-Loève-type expansion

4
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Figure 1.1: Cortical flat map of the brain for the left and right hemisphere using
the brain parcellation of [14]. The regions of interest are colored based on their
functionality [14]: visual (blue), motor (green), mixed motor (light green), mixed
other (red) and other (purple).

for such data and is motivated by empirical results from the HCP data. The optimality

and uniqueness of partial separability are discussed as well as its extension to multiple

datasets. The out-of-sample predictive performance of partial separability is assessed

through the analysis of functional brain connectivity during a motor task.

Next, in Chapter 3 the partial separability structure is shown to be particularly useful

to provide a well-defined functional Gaussian graphical model that can be identified with

a sequence of finite-dimensional graphical models, each of identical fixed dimension. This

motivates a simple and efficient estimation procedure through application of the joint

graphical lasso. Empirical performance of the method for graphical model estimation is

assessed through simulation and analysis of functional brain connectivity during a motor

task.

Finally, Chapter 4 introduces a differential functional graphical model based on the

partial separability assumption. The differential functional Gaussian graphical model

can be identified with a sequence of finite-dimensional differential graphical models, each

5
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of identical fixed dimension. This motivates a novel and efficient estimation procedure

termed Joint Trace Loss. Empirical performance of the method for differential graph-

ical model estimation is assessed through simulation and analysis of functional brain

connectivity differences between two motor tasks.

6



Chapter 2

Partial Separability for Multivariate
Functional Data

The extension of multivariate analysis techniques to multivariate functional data requires

careful considerations. Examples include principal components analysis and graphical

models, for which structural assumptions on the model can yield computational advan-

tages or, in some cases, be necessary in order for the model to be well-defined.

The focus of this chapter is principal components analysis. One such extension is

functional principal component analysis (FPCA) which is a commonly used tool for

functional data. One of its salient features is the parsimonious reduction of a univariate

stochastic process into a countable sequence of uncorrelated random variables through

the Karhunen-Loève expansion [10]. This expansion holds under minimal assumptions

and is especially useful in performing common functional data analysis tasks such as di-

mension reduction or regression [9]. However, FPCA does not have a unique multivariate

extension and different approaches have been developed. For instance, [16] expands a

multivariate random process into a sequence of scalar random variables. This is a very

useful approach for clustering, but may not be useful for other multivariate analysis. For

instance in graphical models the multivariate aspect of the data should be preserved by

the expansion.

7



Partial Separability for Multivariate Functional Data Chapter 2

In this chapter, a novel structural assumption termed partial separability is proposed,

yielding a new Karhunen-Loève type expansion for multivariate functional data. First of

all, this assumption is motivated with an empirical analysis of the covariance structure of

fMRI signals from a motor task experiment. Second, partial separability is defined and

also compared to other separability principles available in the literature and is shown to

rely on weaker assumptions. Third, the optimality and uniqueness properties of partial

separability are discussed. Finally, an extension of partial separability to multiclass

multivariate functional data is also provided, with an application to fMRI signals from a

motor task.

2.1 Preliminaries

2.1.1 Notation

We first introduce some notation. Let L2[0, 1] denote the space of square-integrable

measurable functions on [0, 1] endowed with the standard inner product: 〈g1, g2〉 =∫ 1

0
g1(t)g2(t) dt and associated norm ‖·‖. (L2[0, 1])p is its p-fold Cartesian product or

direct sum, endowed with inner product: 〈f1, f2〉p =
∑p

j=1〈f1j, f2j〉 and its associated

norm ‖·‖p. For a generic compact covariance operator A defined on an arbitrary Hilbert

space, let λAj denote its j-th largest eigenvalue. Suppose f ∈ (L2[0, 1])p, g ∈ L2[0, 1],

a ∈ Rp, ∆ is a p × p matrix, and B : L2[0, 1] → L2[0, 1] is a linear operator. Then

ag ∈ (L2[0, 1])p takes values {g(x)}a ∈ Rp, ∆f ∈ (L2[0, 1])p takes values ∆{f(x)} ∈ Rp,

B(f) = (B(f1), . . . ,B(fp)) ∈ (L2[0, 1])p, and (∆B)(f) = B(∆f). The tensor products

g ⊗ g and f ⊗p f signify the operators (g ⊗ g)(·) = 〈g, ·〉g and (f ⊗p f)(·) = 〈f, ·〉pf on

L2[0, 1] and (L2[0, 1])p, respectively.

In this thesis, multivariate functional data constitute a random sample from a multi-

8
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variate process

{X(t) ∈ Rp : t ∈ [0, 1]} (2.1)

which, for the moment, is assumed to be zero-mean such that X ∈ (L2[0, 1])p almost

surely and E
(
‖X‖2

p

)
<∞. If X is also assumed to be Gaussian, then its distribution is

uniquely characterized by its covariance operator G, the infinite-dimensional counterpart

of the covariance matrix for standard multivariate data. In fact, one can think of it as a

matrix of operators G = {Gjk : j, k ∈ {1, . . . , p}}, where each entry Gjk is a linear, trace

class integral operator on L2[0, 1] [10] with kernel Gjk(s, t) = cov{Xj(s), Xk(t)}. That

is, for any g ∈ L2[0, 1]: Gjk(g)(·) =
∫ 1

0
Gjk(·, t)g(t)dt. Then G is an integral operator on

(L2[0, 1])p with: {G(f)}j =
∑p

k=1 Gjk(fk) (f ∈ (L2[0, 1])p, j ∈ V ).

2.1.2 Dataset

To motivate and illustrate the proposed methods, a large data set consisting of func-

tional magnetic resonance imaging (fMRI) data from the Human Connectome Project is

used. A detailed description of the data can be found in the introductory chapter. For

this section, data from left and right-hand finger movements task is considered.

The dataset consists of curves {Xij(t) ∈ Rp : t ∈ τ} where subjects are indexed by

i = 1, . . . , n, ROIs by j = 1, . . . , p, and measurements are taken on a grid of equally

spaced time points τ = {t1 = 0, . . . , tK = 1}. There are n = 1054 subjects, p = 360

ROIs and K = 16 timepoints. The curves have been centered for every ROI so that

n−1
∑n

i=1 Xij(t) = 0 for t ∈ τ and j = 1, . . . , p.

9
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2.2 Empirical Motivation

For a multivariate functional process X as in (2.1), consider a univariate functional

component Xj with j ∈ 1, . . . , p. The well-known Karhunen-Loève Theorem [10] provides

the infinite dimensional expansion:

Xj(t) =
∞∑
l=1

ξjlφjl(t), ξjl =

∫ 1

0

Xj(t)φjl(t)dt (2.2)

where, the eigenfunctions {φjl}∞l=1 is an orthonormal basis of L2[0, 1] and {ξjl}∞l=1 are a

sequence of uncorrelated zero-mean random variables also known as principal component

scores or simply scores. In practice, this expansion is often truncated at a certain number

of basis functions L for a given threshold of cumulative variance explained. This approach

provides a regularization of the data by means of a dimensionality reduction for each

component function Xj. Finally, set ξj = (ξj1, . . . , ξjL)T (j ∈ V ) and define a pL ×

pL covariance matrix Γ blockwise for the concatenated vector (ξT1 , . . . , ξ
T
p )T , as Γ =

(Γjk)
p
j,k=1, (Γjk)lm = cov(ξjl, ξkm), (l,m = 1, . . . , L).

The structural assumption, that that will be proposed in Section 2.3, is motivated

by an analysis of the empirical covariance structure of the scores random scores in the

expansion (2.2). Using the fMRI data, the scores vector ξij = (ξij1, . . . , ξijL) is computed

for each component Xij. Second, all the scores vectors are stacked into a single vector de-

noted ξi = (ξTi1, . . . , ξ
T
ip)

T ∈ RLp. Finally, the sample correlation matrix of ξi is computed

with its element sorted in a basis-first ordering as: ξi = (ξi11, . . . , ξip1, . . . , ξi1L, . . . , ξipL)T .

A detailed explanation on the computation of the univariate Karhunen-Loève expansion

and the sample correlation for the random scores can be found in Section A.1 in the

Appendix.

Figure 2.1 illustrates the sample correlation matrix of ξ. The first salient feature of the
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matrix is a block-diagonal structure with blocks of size p by p. Notice that these scores

were computed independently for each univariate functional components and, in principle,

they could exhibit a dense correlation structure throughout the matrix. However they

only exhibit significant correlations in the diagonal blocks, especially for the first four

principal components.

Figure 2.1: Estimated correlation structure of RLp-valued random coefficients from
an L-truncated Karhunen-Loève expansion for the right-hand task. The figure shows
the upper left 7 x 7 basis blocks of the absolute correlation matrix in basis-first order
for functional principal component coefficients (ξT1 , . . . , ξ

T
p )T in (2.2) as in [17].

In addition, the off-diagonal blocks in Figure 2.1 exhibit a sparse pattern. These

blocks are cross-correlation matrices between random scores corresponding to differ-

ent principal components. For instance, block (1,2) corresponds to the sample cross-

correlation matrix between score vectors (ξ11, . . . , ξp1) and (ξ12, . . . , ξp2). From the

Karhunen-Loève expansion in (2.2) only the diagonal is expected to be zero but nothing

prevents the remaining entries to be non-zeros.

Another motivation for an structural assumption comes from the eigenfunctions

{φjl}∞l=1. Figure 2.2(a) shows the first four eigenfunctions for all the univariate com-
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ponents. At every principal component order l the eigenfunctions φ1l, . . . , φpl exhibit a

very similar shape. This especially interesting as they correspond to fMRI signals from

different ROIs with different functionalities. On the other hand, the fMRI curves seem

to be very complex and require a large number of principal components to capture a

significant amount of variability. Indeed, 15 out of 16 components are needed to explain

at least 95% of the variance as seen in Figure 2.2(b).

(a) (b)

Figure 2.2: Estimated functional principal components from an L-truncated
Karhunen-Loève expansion for the right-hand task data set. (a): First four prin-
cipal components functions φ1l, . . . , φpl for l = 1, . . . , 4 as in (2.2). (b): Proportion of
variance explained by different number of principal components.

2.3 Partial Separability: A Parsimonious Basis for

Multivariate Functional Data

Motivated by the empirical findings in the previous section a structural assumption

for multivariate functional data is presented to obtain a novel Karhunen-Loève type

12
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decomposition. The goal in mind is to provide a parsimonious structure resulting in a

functional principal component expansion that includes the main features observed in the

data. That includes the block-diagonal correlation structure of the random scores, the

similarity of the eigenfunctions across components, and finally, the proportion of variance

explained by any number of principal components.

2.3.1 Definition and Characterization

First, a novel structural assumption on the eigenfunctions of G is presented, termed

partial separability.

Definition 2.3.1. A covariance operator G on (L2[0, 1])p is partially separable if there

exist orthonormal bases {elj}pj=1 (l ∈ N) of Rp and {ϕl}∞l=1 of L2[0, 1] such that the

eigenfunctions of G take the form eljϕl (l ∈ N, j ∈ V ).

We first draw a connection to separability of covariance operators as they appear in

spatiotemporal analyses, after which the implications of partial separability will be fur-

ther explored. Dependent functional data arise naturally in the context of a spatiotem-

poral random field that is sampled at p discrete spatial locations. In many instances

(see e.g., [18, 19, 20]), it is assumed that the covariance of X is separable, meaning that

there exists a p× p covariance matrix ∆ and covariance operator B on L2[0, 1] such that

G = ∆B. Letting {ej}pj=1 and {ϕl}∞l=1 be the orthonormal eigenbases of ∆ and B respec-

tively, it is clear that ejϕl are the eigenfunctions of G. Hence, a separable covariance

operator G satisfies the conditions of Definition 2.3.1. It should also be noted that the

property of G having eigenfunctions of the form ejϕl has also been referred to as weak

separability [21], and is a consequence and not a characterization of separability. The

connections between these three separability notions are summarized in the following

result, whose proof is simple, and thus omitted.

13
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Proposition 1. Suppose G is partially separable according to Definition 2.3.1. Then

G is also weakly separable if and only if the bases {elj}pj=1 do not depend on l. If G is

weakly separable, then it is also separable if and only if the eigenvalues take the form

〈G(ejϕl), ejϕl〉p = cjdl for positive sequences {cj}pj=1, {dl}∞l=1.

The next result gives several characterizations of partial separability. The proof of

this and all remaining theoretical results can be found in the Appendix.

Theorem 2.3.1. Let {ϕl}∞l=1 by an orthonormal basis of L2[0, 1]. The following are equiv-

alent:

1. G is partially separable with L2[0, 1] basis {ϕl}∞l=1.

2. There exists a sequence of p× p covariance matrices {Σl}∞l=1 such that

G =
∞∑
l=1

Σlϕl ⊗ ϕl.

3. The covariance operator of each Xj can be written as Gjj =
∑∞

l=1 σljjϕl ⊗ ϕl, with

σljj > 0 and
∑∞

l=1 σljj <∞, and cov(〈Xj, ϕl〉, 〈Xk, ϕl′〉) = 0 (j, k ∈ V, l 6= l′).

4. The expansion

X =
∞∑
l=1

θlϕl, θl = (〈X1, ϕl〉, . . . , 〈Xp, ϕl〉)T , (2.3)

holds almost surely in (L2[0, 1])p, where the θl are mutually uncorrelated random

vectors.

For clarity, when G is partially separable, the expansion in point 2 is assumed to be

ordered according to decreasing values of tr (Σl) . Property 3 reveals that the Gjj share

common eigenfunctions and are thus simultaneously diagonalizable, with projections of
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any features onto different eigenfunctions being uncorrelated. Consequently, one obtains

the vector Karhunen-Loève type expansion in (2.3). If one truncates (2.3) at L compo-

nents, the covariance matrix of the concatenated vector (θT1 , . . . , θ
T
L)T is block diagonal,

with the p× p matrices Σl = var(θl) constituting the diagonal blocks.

Figure 2.3 visualizes the partially separable covariance structure against the univariate

Karhunen Loeve expansions in (2.2).

(a) (b)

Figure 2.3: Covariance structures of RLp-valued random coefficients from different
L-truncated Karhunen-Loève type expansions. (a): covariance of functional princi-
pal component coefficients (ξT1 , . . . , ξ

T
p )T in (2.2). (b): block diagonal covariance of

coefficients (θT1 , . . . , θ
T
L)T under partial separability in (2.3).

2.3.2 Optimality and Uniqueness

Lastly, optimality and uniqueness properties are established for the basis {ϕl}∞l=1 of

a partially separable G. A key object is the trace class covariance operator

H =
1

p

p∑
j=1

Gjj. (2.4)
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Let λl = λHl (l ∈ N) denote the eigenvalues of H, in nonincreasing order.

Theorem 2.3.2. Suppose the eigenvalues of H in (2.4) have multiplicity one.

1. For any L ∈ N, and for any orthonormal set {ϕ̃l}Ll=1 in L2[0, 1],

L∑
l=1

p∑
j=1

var(〈Xj, ϕ̃l〉) ≤
L∑
l=1

λl,

with equality if and only if {ϕ̃}Ll=1 span the first L eigenspaces of H.

2. If G is partially separable with L2[0, 1] basis {ϕl}∞l=1, then

H =
∞∑
l=1

λlϕl ⊗ ϕl, λl =
1

p
tr(Σl). (2.5)

Part 1 states that, independent of partial separability, the eigenbasis of H is optimal

in terms of retaining the greatest amount of total variability in vectors of the form

(〈X1, ϕ̃l〉, . . . , 〈Xp, ϕ̃l〉)T , subject to orthogonality constraints. Part 2 indicates that, if

G is partially separable, the unique basis of L2[0, 1] that makes Definition 2.3.1 hold

corresponds to this optimal basis. The proof is included in the Appendix.

2.3.3 Empirical Results

In this section the empirical performance of partial separability for multivariate func-

tional data is analyzed. Throughout this section results for the right-hand task dataset

are discussed, although similar conclusions can be obtained for the left-hand task dataset

as seen in the Appendix.

First of all, the sample correlation matrices of the random scores vectors are compared

for the right-hand task dataset. The random scores for the partially separable expansion

are obtained from equation (2.3). The scores vector θij = (θij1, . . . , θijL) is computed for
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each component Xij. And then, all the scores vectors are stacked into a single vector

denoted θi = (θTi1, . . . , θ
T
ip)

T ∈ RLp. Finally, the sample correlation matrix of θ is computed

with its element sorted in a basis-first ordering as: θi = (θi11, . . . , θip1, . . . , θi1L, . . . , θipL)T .

Figures 2.4 (a) and (b) correspond to the sample correlation matrices of vectors ξ and

θ. The two matrices exhibit a similar block diagonal sparse structure, with negligible

entries in the off-diagonal blocks as suggested by Part 3 of Theorem 2.3.1. In particular

for θ in Figure 2.4(b), the strongest correlations are concentrated within square sub-

blocks of size p/2 by p/2 after the third diagonal block. Each one of these sub-blocks

correspond to ROIs in the left and right hemispheres of the brain.

On the other hand, consider part 4 of Theorem 2.3.1. In principle, partial separa-

bility allows the ordering of the basis functions to be different for each component. By

further assuming that {ϕl}∞l=1 are ordered according to decreasing values of tr (Σl) for

each component, then the expansion (2.3) has a further consequence. That is, all the

univariate components of the partially separable process X should have the same eigen-

functions. In other words, the eigenfunctions φjl and ϕl as defined in equations (2.2) and

(2.3) respectively should satisfy φjl = ϕl for j = 1, . . . , p.

Figure 2.5 compares these different eigenfunctions for every principal component.

The partially separable eigenfunction ϕl has a similar behavior to the average across

eigenfunction φ1l, . . . , φpl at every principal component.

17
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(a) (b)

Figure 2.4: Estimated correlation structures of RLp-valued random coefficients from
different L-truncated Karhunen-Loève type expansions for the right-hand task. The
figure shows the upper left 7 x 7 basis blocks of the absolute correlation matrix in
basis-first order for: (a) functional principal component coefficients (ξT1 , . . . , ξ

T
p )T in

(2.2), and (b) random coefficients (θT1 , . . . , θ
T
L)T under partial separability in (2.3).

The similarity between the partially separable and univariate expansion eigenfunc-

tions is explored using similarity measure in inner product spaces known as cosine simi-

larity. Briefly, the cosine similarity between functions f, g ∈ L2[0, 1] is defined as:

〈f, g〉
‖f‖2‖g‖2

taking values in the interval [−1, 1]. In particular, it is equal to 1 if f = g, −1 if f = −g

and 0 if f and g are orthogonal. Thus, is an appealing similarity measure to analyze part

4 of Theorem 2.3.1.
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Figure 2.5: Estimated eigenfunctions from L-truncated Karhunen-Loève type expan-
sions for the right-hand task. Curves are coded as: functional principal components
eigenfunctions φjl ( ) in (2.2), average univariate eigenfunction p−1

∑p
j=1 φjl ( ),

and eigenfunctions ϕl ( ) under partial separability in (2.3). Values on the top
of each figure indicate the marginal and cumulative proportion of variance explained
under partial separability.

Figure 2.6(a) shows the absolute cosine similarity between ϕl and each eigenfunction

φjl for j = 1, . . . , p. They look especially similar for the first four principal components
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with absolute cosine similarities very close to 1. And for higher order principal com-

ponents, the median absolute cosine similarity does not exhibit a monotonic decreasing

pattern towards zero in spite of the increasing instability of eigenfunctions estimators for

higher order principal components.

Finally, Figure 2.6(b) compares the cumulative variance explained by both expan-

sions. As expected, the univariate Karhunen-Loève exhibits a better in-sample perfor-

mance, a known optimality property of functional principal component analysis. How-

ever, the partially separable expansion explains almost the same proportion of variance

at every number of principal components. All in all, no strong contraindication of the

partial separability structure was found in the dataset.

(a) (b)

Figure 2.6: Comparison between L-truncated Karhunen-Loève (KL) type expansions.
(a): Boxplots for component-wise absolute cosine similarity between eigenfunctions
ϕl in (2.3) and φjl for j = 1, . . . , p in (2.2) for every principal component. (b): Pro-
portion of variance explained for each expansion under different number of principal
components. Curves are coded as: functional principal components eigenfunctions φjl
( ) in (2.2), and eigenfunctions ϕl ( ) under partial separability in (2.3).
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2.3.4 Out-of-Sample Predictive Performance

This section compares the empirical performance of the partially separable and uni-

variate Karhunen-Loève type expansions on the motor task fMRI dataset as motivated

by Theorem 2.3.2. For this analysis subjects are randomly assigned into training and

validation sets of equal size. The training set is used to estimate the eigenfunctions of

each expansion, whereas the validation set is used to compute out-of-sample variance

explained percentages. Boxplots are computed on 100 simulations of this procedure. A

detailed description of this procedure is given in the Appendix.

Figure 2.7 shows that the univariate Karhunen-Loève exhibits a better in-sample per-

formance, a known optimality property of functional principal component analysis. On

the other hand, Figures 2.7 and 2.8 show that the partially separable decomposition

exhibits a better out-of-sample performance in both absolute terms and in relative com-

parison to its in-sample performance. Similar conclusions can obtained for the left-hand

task and are included in the Appendix.
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Figure 2.7: Estimated variance explained for partially separable and univariate
Karhunen-Loève type expansions for right-hand task fMRI curves. Left: In-Sam-
ple. Right: Out-of-Sample. Boxplots are coded as: functional principal components
in (2.2) as ( ), and partially separable expansion in (2.3) as ( ).
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Figure 2.8: Estimated variance explained for partially separable and univariate
Karhunen-Loève type expansions for right-hand task fMRI curves. The figure shows
boxplots for the ratio out-of-sample over in-sample variance explained. Boxplots are
coded as: functional principal components in in (2.2) as ( ), and partially separable
expansion in (2.3) as ( ).

2.4 Joint Partial Separability

As for multivariate statistics, datasets incorporating multiple classes are also ubiq-

uitous in functional data analysis. For instance, in neuroscience fMRI scans of healthy

individuals are compared with those of patients with mental disorders [22, 23]. In partic-

ular, the empirical findings on the fMRI motor task data in Section 2.2 show that both

the right- and left-hand tasks have a parsimonious covariance structure sharing similar

characteristics. With this in mind, the goal in this section is to extend the partial sep-

arability principle to multiple classes to obtain a joint parsimonious structure for their

covariance operators. This new formulation is applied to the two motor tasks datasets

and their predictive performance is discussed.
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2.4.1 Definition

Consider two multivariate functional datasets {X(t) ∈ Rp, t ∈ τ} and {Y (t) ∈ Rp, t ∈

τ} with covariance operators GX and GY , respectively. Both X and Y are assumed to be

zero-mean and such that X, Y ∈ (L2[0, 1])p almost surely and finite moments E(||X||2p)

and E(||Y ||2p). This section begins by proposing a novel structural assumption on the

eigenfunctions of GX and GY , termed joint partial separability as follows:

Definition 2.4.1. The covariance operators GX and GY on (L2[0, 1])p are joint partially

separable if there exist orthonormal bases {eXlj }j=1,. . . ,p and {eYlj}j=1,...,p of Rp for l ∈ N

and {ψl}l=1,...,∞ of L2[0, 1] such that the eigenfunctions of GX and GY take the form eXlj

ψl and eYljψl(l ∈ N, j = 1, . . . , p).

In other words, definition 2.4.1 means that two multivariate functional datasets with

a joint partially separable covariance structure share the same eigenfunctions. This is a

stronger assumption than partial separability, but it has good empirical properties as it

will be shown in Section 2.4.2. The following corollary follows directly definition 2.4.1

and provides a connection between the two partial separability notions:

Corollary 1. The covariance operators GX and GY on (L2[0, 1])p are joint partially

separable if and only if they are individually partially separable with common L2[0, 1]

orthonormal basis.

The main consequence from Corollary 1 is that X and Y have the same features

of partially separable structures, including their characterizations and optimality and

uniqueness properties. Thus, we can now write the functional principal component ex-
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pansions of X and Y based on Theorem 2.3.1 part 4 as:

X =
∞∑
l=1

ϑXl ψl, ϑXl = (〈X1, ψl〉, . . . , 〈Xp, ψl〉)T

Y =
∞∑
l=1

ϑYl ψl, ϑYl = (〈Y1, ψl〉, . . . , 〈Yp, ψl〉)T
(2.6)

where {ψl}l≥1 correspond to the eigenfunctions and ϑXl , ϑ
Y
l correspond to the random

scores for X and Y respectively. The main advantage of the expansion in (2.6) is that

the random scores for X and Y can be analyzed directly with multivariate statistics

methods.

Lastly, optimality and uniqueness properties are established for the basis {ψl}∞l=1 of

a partially separable GX and GY . A key object is the trace class covariance operator

H =
1

2p

p∑
j=1

(GXjj + GYjj) (2.7)

Let λl = λHl (l ∈ N) denote the eigenvalues of H, in nonincreasing order.

Corollary 2. Suppose the eigenvalues of H in (2.7) have multiplicity one.

1. For any L ∈ N, and for any orthonormal set {ψ̃l}Ll=1 in L2[0, 1],∑L
l=1

∑p
j=1 var(〈Xj, ψ̃l〉)+var(〈Yj, ψ̃l〉) ≤

∑L
l=1 λl, with equality if and only if {ψ̃}Ll=1

span the first L eigenspaces of H.

2. If GX and GY are joint partially separable with L2[0, 1] basis {ψl}∞l=1, then

H =
∞∑
l=1

λlψl ⊗ ψl, λl =
1

2p
tr(ΣX

l + ΣY
l ) (2.8)

Notice that Corollary 2 is analogous to Theorem 2.3.2 and the proof is omitted.
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2.4.2 Empirical Results

Using the fMRI datasets for the right- and left-hand tasks, Figure 2.9 compares the

eigenfunctions from the joint and single partial separability structures. Overall, the

principal components from the joint expansion look very similar to their individually

separable counterparts.

On the other hand, Figure 2.10 shows the resulting block correlation structures for

the random score vectors ((ϑX1 )T , . . . , (ϑXL )T )T and ((ϑY1 )T , . . . , (ϑYL )T )T in (2.6). Again,

a block diagonal structure is observed as expected. Finally, Figure 2.11 compares the

proportion of variance explained between the functional principal components in (2.2)

and ψl under joint partial separability in (2.6). For the left- and right-hand tasks, the

curves look very similar.
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Figure 2.9: Estimated functional principal components from L-truncated partially sep-
arable Karhunen-Loève type expansions for the right- and left-hand task. Curves are
coded as: partially separable functional principal components in (2.3) as right-hand
( ) and left-hand ( ), and joint partially separable expansion in (2.6) as ( ).
Values on the top of each figure indicate the marginal and cumulative proportion of
variance explained under joint partial separability.
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(a) (b)

Figure 2.10: Estimated correlation structures of RLp-valued random coefficients from
the L-truncated Karhunen-Loève type expansion under joint partial separability in
(2.6) for the fMRI motor task data. The figure shows the upper left 7 x 7 basis
blocks of the absolute correlation matrix in basis-first order for: (a) left-hand task
random scores vector ((ϑX1 )T , . . . , (ϑXL )T )T , and (b) right-hand task random scores
vector ((ϑX1 )T , . . . , (ϑXL )T )T .
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(a) (b)

Figure 2.11: Proportion of variance explained from different L-truncated
Karhunen-Loève type expansions on the fMRI motor task dataset. (a): left-hand
task. (b): right-hand task. Curves are coded as: functional principal components
eigenfunctions φjl ( ) in (2.2) and ψl ( ) under joint partial separability eigen-
functions as in (2.6).

2.4.3 Out-of-Sample Predictive Performance

This section expands the analysis in Section 2.3.4 to include the joint partially sepa-

rable Karhunen-Loève type expansions on the motor task fMRI dataset. The first column

in Figure 2.12 shows that the joint partially separable expansion has the lowest in-sample

performance when compared to the univariate and partially separable Karhunen-Loève

expansions. On the other hand, the second column in Figure 2.12 and Figure 2.13 show

that the joint partially separable expansion exhibits a better out-of-sample performance

in both absolute terms and in relative comparison to its in-sample performance. Similar

conclusions can be found for the left-hand task in Section A.3 in the Appendix.
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Figure 2.12: Estimated variance explained for different L-truncated Karhunen-Loève
type expansions for right-hand task fMRI curves. Left: In-Sample. Right: Out-
-of-Sample. Boxplots are coded as: functional principal components ( ) in (2.2),
partially separable expansion ( ) in (2.3), and joint partially separable expansion
( ) in (2.6).
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Figure 2.13: Estimated variance explained for different L-truncated Karhunen-Loève
type expansions for right-hand task fMRI curves. The figure shows boxplots for the
ratio out-of-sample over in-sample variance explained. Boxplots are coded as: func-
tional principal components ( ) in (2.2), partially separable expansion ( ) in (2.3),
and joint partially separable expansion ( ) in (2.6).

2.5 Conclusions

The partially separable assumption provides a novel approach to analyze multivari-

ate functional data. It enjoys several advantages. First of all, the partially separable

covariance structure exhibits a better out-of-sample predictive performance than the

true univariate Karhunen-Loève expansions for the motor-task fMRI data. This is a very

powerful result and holds for the individual and joint partial separability assumptions.

Second, partial separability is a weaker form of separability than other alternatives in

the functional data literature. Third, it provides a parsimonious characterization for

one of the most important neuroimaging open data repositories available. And finally,

the decomposition into a vector of scores is potentially useful for statistical modeling,

specifically the graphical models that will be introduced in the next chapter.

There exist several extensions for future research. First of all, partial separability is

not restricted to multivariate Gaussian processes and can be extended to develop scal-

able methods to study other phenomena in the brain. For instance, multivariate count
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processes are ubiquitous in neural spike data where the goal is to understand the elec-

trical activity of the neurons [24]. In this setting, a scalable structural assumption such

as partial separability is needed to cope with functional datasets for over one million

neurons [25]. Moreover, the applicability of partial separability for Poisson graphical

models can be studied. And second, partial separability provides a useful framework

for other functional data analysis methods. They include multilevel and mixed effects

functional data where structural assumptions are needed to estimate functional fixed ef-

fects [26, 27], and multivariate functional linear regression where the predictors variables

contain multiple random functions [28]. On the other hand, the joint partial separability

principle provides a useful framework to develop classification and clustering algorithms

for multivariate functional data. For instance, in neuroscience, differences in brain con-

nectivity maps between healthy individuals and patients is a promising biomarker for

mental disorders [22, 23].
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Chapter 3

Functional Graphical Models for
Partially Separable Multivariate
Gaussian Processes

Dependencies between functional magnetic resonance imaging (fMRI) signals for a large

number of regions across the brain during a motor task experiment are the motivating

example for this chapter. Since fMRI signals are collected simultaneously, it is natural to

model these as a multivariate process {X(t) ∈ Rp : t ∈ T }, where T ⊂ R is a time interval

over which the scans are taken [17]. The dual multivariate and functional aspects of the

data make the covariance structure of X quite complex, particularly if the multivariate

dimension p is large. This leads to difficulties in extending highly useful multivariate

analysis techniques, such as graphical models, to multivariate functional data without

further structural assumptions.

As for ordinary multivariate data, the conditional independence properties of X are

perhaps of greater interest than marginal covariance, leading to the consideration of in-

verse covariance operators and graphical models for functional data. If X is Gaussian,

each component function Xj corresponds to a node in the functional Gaussian graphical

model, which is a single network of p nodes. This is inherently different from the es-

timation of time-dependent graphical models (e.g. [29, 30, 31, 32]), in which the graph
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is dynamic and has nodes corresponding to scalar random variables. In this chapter,

the graph is considered to be static while each node represents an infinite-dimensional

functional object. This is an important distinction, as covariance operators for functional

data are compact and thus not invertible in the usual sense, so that presence or absence

of edges cannot in general be identified immediately with zeros in any precision operator.

In the past few years, there has been some investigation into this problem. Under

a Bayesian setting, [33] developed a framework for graphical models on product func-

tion spaces, including the extension of Markov laws and appropriate prior distributions.

And in a frequentist formulation, [17] implemented a truncation approach, whereby each

function is represented by the coefficients of a truncated basis expansion using functional

principal components analysis, and a finite-dimensional graphical model is estimated by

a modified graphical lasso criterion. On the other hand, [34] developed a non-Gaussian

variant, where conditional independence was replaced by a notion of so-called additive

conditional independence.

The methodology proposed in this chapter is within the setting of multivariate Gaus-

sian processes as in [17], and exploits a notion of separability for multivariate functional

data to develop efficient estimation of suitable inverse covariance objects.

There are at least three novel contributions of this methodology to the fields of func-

tional data analysis and Gaussian graphical models. First, a structure termed partial

separability is defined for the covariance operator of multivariate functional data, yield-

ing a novel Karhunen-Loève type representation.

The second contribution is to show that, when the process is indeed partially separa-

ble, the functional graphical model is well-defined and can be identified with a sequence

of finite-dimensional graphical models. In particular, the assumption of partial sepa-

rability overcomes the problem of noninvertibility of the covariance operator when X is

infinite-dimensional, in contrast with [33, 17] which assumed that the functional data were
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concentrated on finite-dimensional subspaces. Third, an intuitive estimation procedure is

developed based on simultaneous estimation of multiple graphical models. Furthermore,

theoretical properties are derived under the regime of fully observed functional data.

Empirical performance of the proposed method is then compared to that of [17]

through simulations involving dense and noisily observed functional data, including a

setting where partial separability is violated. Finally, the method is applied to the study

of brain connectivity (also known as functional connectivity in the neuroscience litera-

ture) using data from the Human Connectome Project corresponding to a motor task

experiment. Through these practical examples, our proposed method is shown to provide

improved efficiency in estimation and computation. An R package fgm implementing

the proposed methods is freely available via the CRAN repository.

3.1 Preliminaries

3.1.1 Gaussian Graphical Model

Consider a p-variate random variable θ = (θ1, . . . , θp)
T , p > 2. For any distinct indices

j, k = 1, . . . , p, let θ−(j,k) ∈ Rp−2 denote the subvector of θ obtained by removing its jth

and kth entries. A graphical model [35] for θ is an undirected graph G = (V,E), where

V = {1, . . . , p} is the node set and E ⊂ V × V \ {(j, j) : j ∈ V } is called the edge set.

The edges in E encode the presence or absence of conditional independencies amongst

the distinct components of θ by excluding (j, k) from E if and only if θj ⊥⊥ θk | θ−(j,k).

In the case that θ ∼ Np(0,Σ), the corresponding Gaussian graphical model is intimately

connected to the positive definite covariance matrix Σ through its inverse Ω = Σ−1,

known as the precision matrix of θ. Specifically, the edge set E can be readily obtained

from Ω by the relation (j, k) ∈ E if and only if Ωjk 6= 0 [35]. This identification of edges in

35



Functional Graphical Models for Partially Separable Multivariate Gaussian Processes Chapter 3

E with the non-zero off-diagonal entries of Ω is due to the simple fact that the latter are

proportional to the conditional covariance between components. Thus, the zero/non-zero

structure of Ω serves as an adjacency matrix of the graph G, making disposable a vast

number of statistical tools for sparse inverse covariance estimation in order to recover a

sparse graph structure from data.

One first approach for estimating Ω is maximum likelihood estimation. The mul-

tivariate normal distribution assumption on θ yields a Gaussian log likelihood (up to

constants) given by:

log(|Ω|)− tr(SΩ)

with S the sample covariance matrix. For p < n, S is nonsingular and the log-likelihood

can be maximized with Ω̂ = S−1. In order to add sparsity to Ω̂ and/or handle higher

dimensional cases like p ≥ n, Ω̂ needs to be regularized. The graphical lasso in [2]

addresses these two limitations by adding a penalty term to the log likelihood function.

Thus, the penalized likelihood problem becomes

max
Ω

log(|Ω|)− tr(SΩ)− λ||Ω||1

where Ω ∈ Rp×p is symmetric positive definite, λ ≥ 0 is a penalty parameter and ‖Ω‖1=∑p
i 6=j |Ωij|. This penalty is similar to the standard lasso penalty and induces zeros in the

off-diagonal entries of Ω̂.

3.1.2 Functional Gaussian Graphical Models

Using the notation for functional data adopted in Chapter 1, this section in-

troduces graphical models for functional data. Consider a multivariate process

{X(t) ∈ Rp : t ∈ [0, 1]} which, for the moment, is assumed to be zero-mean such that
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X ∈ (L2[0, 1])p almost surely and E
(
‖X‖2

p

)
< ∞, and let G be the covariance operator

of X. A functional Gaussian graphical model for X is a graph G = (V,E) that encodes the

conditional independency structure amongst its components. As in the finite-dimensional

case, the edge set can be recovered from the conditional covariance functions

Cjk(s, t) = cov{Xj(s), Xk(t) | X−(j,k)} (j, k ∈ V, j 6= k), (3.1)

through the relation (j, k) ∈ E if and only if Cjk(s, t) = 0 for all s, t ∈ [0, 1]. However,

unlike the finite-dimensional case, the covariance operator G is compact and thus not

invertible, with the consequence that the connection between conditional independence

and an inverse covariance operator is lost, as the latter does not exist. This is an es-

tablished issue for infinite-dimensional functional data, for instance in linear regression

models with functional predictors; see [36] and references therein. Thus, a common ap-

proach is to regularize the problem by first performing dimensionality reduction, most

commonly through a truncated basis expansion of the functional data. Specifically, one

chooses an orthonormal functional basis {φjl}∞l=1 of L2[0, 1] for each j, and expresses each

component of X as

Xj(t) =
∞∑
l=1

ξjlφjl(t), ξjl =

∫ 1

0

Xj(t)φjl(t)dt. (3.2)

These expansions are then truncated at a finite number of basis functions to perform esti-

mation, and the basis size is allowed to diverge with the sample size to obtain asymptotic

properties.

Previous work related to functional Gaussian graphical models include [33] and [17].

In [33] the authors considered a rigorous notion of conditional independence for func-

tional data, and proposed a family of priors for the covariance operator G. On the
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other hand, in [17] the expansion in (2.2) is truncated at L terms using the func-

tional principal component basis [10], and set ξj = (ξj1, . . . , ξjL)T (j ∈ V ). [17] then

defined a pL × pL covariance matrix Γ for the concatenated vector (ξT1 , . . . , ξ
T
p )T , with

Γ = (Γjk)
p
j,k=1, (Γjk)lm = cov(ξjl, ξkm), (l,m = 1, . . . , L). Then, a functional graphical

lasso algorithm was developed to estimate Γ−1 with sparse off-diagonal blocks in order

to estimate the edge set.

The method of [17] constitutes an intuitive approach to functional graphical model

estimation, but encounters some difficulties that are addressed in this chapter. From

a theoretical point of view, even when p is fixed, consistent estimation of the graphical

model requires that one permit L to diverge, so that the number of covariance parameters

needing to be estimated is (pL)2. Additionally, the identification of zero off-diagonal

blocks in Γ−1 was only shown to be linked to the true functional graphical model under

the strict assumption that each Xj take values in a finite-dimensional space almost surely.

In many practical applications, the dimension p can be high, the number of basis functions

L may need to be large in order to retain a suitable representation of the observed data,

or both of these may occur simultaneously. It is thus desirable to introduce structure

on G in order to provide a parsimonious basis expansion for multivariate functional data

that is amenable to graphical model estimation.

3.2 Partial Separability and Functional Gaussian

Graphical Models

This section is based on the partial separability assumption for multivariate functional

data. A detailed discussion and definitions of this assumption can be found in Chapter

1 of this work.
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3.2.1 Consequences for Functional Gaussian Graphical Models

As a starting point for this section, consider the Karhunen-Loeve expansion for a

partially separable Gaussian process X as introduced in Theorem 2.3.1 point 4 of Chapter

1:

X =
∞∑
l=1

θlϕl, θl = (〈X1, ϕl〉, . . . , 〈Xp, ϕl〉)T ,

where Σl is the covariance of θl. As will be seen in Section 3.2.1, the matrices Σl in point 2

of Theorem 2.3.1 contain all of the necessary information to form the functional graphical

model when X is Gaussian and G is partially separable. For clarity, when G is partially

separable, the expansion in point 2 is assumed to be ordered according to decreasing

values of tr (Σl) . Consequently, one obtains the vector Karhunen-Loève type expansion in

(2.3). If one truncates (2.3) at L components, the covariance matrix of the concatenated

vector (θT1 , . . . , θ
T
L)T is block diagonal, with the p×pmatrices Σl = var(θl) constituting the

diagonal blocks. Figure 3.1 visualizes this covariance structure in comparison with that of

[17], along with comparisons of the inverse covariance structure. The latter comparison

is the more striking and relevant one, since the model of [17] possesses a potentially

full inverse covariance structure, whereas that under partial separability remains block

diagonal. As a consequence, the model of [17] has O(L2p2) free parameters, while the

corresponding model under partial separability has only O(Lp2) free parameters.
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(a) (b)

(c) (d)

Figure 3.1: Covariance structures of RLp-valued random coefficients from different
L-truncated Karhunen-Loève type expansions. (a) and (b): covariance and precision
matrices, respectively, of functional principal component coefficients (ξT1 , . . . , ξ

T
p )T in

(2.2). (c) and (d): block diagonal covariance and precision matrices, respectively, of
coefficients (θT1 , . . . , θ

T
L)T under partial separability in (2.3).

Assume that G is partially separable according to Definition 2.3.1, so that the partially

separable Karhunen-Loève expansion in (2.3) holds. If we further assume that X is

Gaussian, then θl ∼ N (0,Σl), l ∈ N, are independent, where Σl is positive definite for

each l. These facts follow from Theorem 2.3.1. Recall that, in order to define a coherent

functional Gaussian graphical model, one needs that the conditional covariance functions

Cjk in (3.1) between component functions Xj and Xk be well-defined. The expansion in
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(2.3) facilitates a simple connection between the Cjk and the inverse covariance matrices

Ωl = Σ−1
l , as follows. Let Σl = (σljk)

p
j,k=1. For any fixed j, k ∈ V, define the partial

covariance between θlj and θlk as

σ̃ljk = σljk − cov{θlj, θl,−(j,k)}var{θl,−(j,k)}−1cov{θl,−(j,k), θlk}. (3.3)

It is well-known that these partial covariances are directly related to the precision

matrix Ωl = (ωljk)
p
j,k=1 by σ̃ljk = −ωljk/(ωljjωlkk − ω2

ljk), so that σ̃ljk = 0 if and only if

ωljk = 0. The next result establishes that the conditional covariance functions Cjk can

be expanded in the partial separability basis {ϕl}∞l=1 with coefficients σ̃ljk.

Theorem 3.2.1. If G is partially separable, then the cross-covariance kernel between Xj

and Xk, conditional on the multivariate subprocess {X−(j,k)(u) : u ∈ [0, 1]}, is

Cjk(s, t) =
∞∑
l=1

σ̃ljkϕl(s)ϕl(t) (j, k ∈ V, j 6= k, s, t ∈ [0, 1]). (3.4)

Now, the conditional independence graph for the multivariate Gaussian process can

be defined by (j, k) /∈ E if and only if Cjk(s, t) ≡ 0. Due to the above result, the edge set

E is connected to the sequence of edge sets {El}∞l=1, for which (j, k) /∈ El if and only if

σ̃ljk = ωljk = 0, corresponding to the sequence of Gaussian graphical models (V,El) for

each θl.

Corollary 3. Under the setting of Theorem 3.2.1, the functional graph edge set E is

related to the sequence of edge sets El by E =
⋃∞
l=1 El.

This result establishes that, under partial separability, the problem of functional

graphical model estimation can be simplified to estimation of a sequence of decoupled

graphical models. When partial separability fails, the edge sets remain meaningful. Recall

from Theorem 2.3.2 that the eigenbasis of H is optimal in a sense independent of partial

41



Functional Graphical Models for Partially Separable Multivariate Gaussian Processes Chapter 3

separability, so that the vectors θl = (〈X1, ϕl〉, . . . , 〈Xp, ϕl〉)T are still the coefficients of X

in an optimal expansion. Although one loses a direct connection between the El and the

edge set of the functional graph, each El remains the edge set of the Gaussian graphical

model for the coefficient vector θl in this optimal expansion. Moreover, the equivalence

E =
⋃∞
l=1 El may hold independent of partial separability. For instance, Proposition 2 in

Section A.6 of the Appendix gives sufficient conditions, based on a Markov-type property

and a edge coherence assumption, under which the equivalence holds.

3.2.2 Violations of Partial Separability: Consequences for the

True Edge Set

An important question is how different violations of partial separability affect the true

edge sets. In general, even for the Gaussian case, there is no straightforward formula, for

connecting the partially separable graphical model with the true one if partial separability

does not hold.

For simplicity, consider a generic example. Let X have three components with each

one lying on a common two-dimensional space with probability one, and letH = 3−1(G11+

G22 +G33) have eigenfunctions (ϕ1, ϕ2), where Gjj is the covariance operator of Xj. Then

one has Xj = θ1jϕ1 +θ2jϕ2 for j = 1, 2, 3. If X is Gaussian, the conditional dependence is

completely determined by the block covariance matrix Σ = {Σll′}2
l,l′=1, Σll′ = {σll′jk}3

j,k=1,

where Σll′ = 0 for l 6= l′ if and only if X is partially separable. Thus, let the partially

separable edge set be E∗ = E1 ∪E2, where (j, k) ∈ El if and only if (Σ−1
ll )jk 6= 0. On the

other hand, the true edge set E has (j, k) ∈ E if and only if the (j, k)-th element in at

least one of the blocks in Σ−1 is nonzero.

42



Functional Graphical Models for Partially Separable Multivariate Gaussian Processes Chapter 3

Consider three possible values for Σ, given by

Σ1 =



1 a 0 c1 0 0

a 1 0 0 c2 0

0 0 1 0 0 c3

c1 0 0 1 0 0

0 c2 0 0 1 a

0 0 c3 0 a 1


Σ2 =



1 a 0 c1 0 0

a 1 0 0 0 0

0 0 1 0 0 c3

c1 0 0 1 0 0

0 0 0 0 1 a

0 0 c3 0 a 1



Σ3 =



1 a b 0 0 0

a 1 a 0 0 c

b a 1 0 c 0

0 0 0 1 0 0

0 0 c 0 1 0

0 c 0 0 0 1


.

It can be verified that the edge sets in the examples satisfy E∗ $ E (Σ1 with nonzero a, ci

s.t. |a|+ |ci| < 1 for i = 1, . . . , 3), E = E∗ (Σ2 with same conditions as Σ1), and E $ E∗

(Σ3 with nonzero a, b, c and a = b = (1 − c2)). Hence, different violations of partial

separability can lead to different types of discrepancies between the partially separable

and true edge sets, or none at all. More details regarding the formulas for the precision

matrices in each case can be found in Section A.9 of the Appendix.

43



Functional Graphical Models for Partially Separable Multivariate Gaussian Processes Chapter 3

3.3 Graph Estimation and Theory

3.3.1 Joint Graphical Lasso Estimator

Consider a p-variate process X, with means µj(t) = E{Xj(t)} and covariance operator

G. Let {ϕl}∞l=1 be an orthonormal eigenbasis of H in (2.4), and set θlj = 〈Xj, ϕl〉,

Σl = var(θl). The targets are the edge sets El, where (j, k) ∈ El if and only if (Σ−1
l )jk 6= 0,

as motivated by the developments of Section 3.2.1. Specifically, when X is Gaussian

and G is partially separable, the conditional independence graph of X has edge set

E =
⋃∞
l=1 El. When partial separability fails, these targets still provide useful information

about the conditional independencies ofX when projected onto the eigenbasis ofH, which

is optimal in the sense of Theorem 2.3.2. Furthermore, when X is not Gaussian, rather

than representing conditional independence, the El represent the sparsity structure of the

partial correlations of θl, which may still be of interest. By Theorem 2.3.1, tr(Σl) = λl ↓ 0

as l → ∞. As a practical consideration, this makes estimators of Σl progressively more

unstable to work with as l increases. To avoid this, we work with Ξl = R−1
l , where Rl is

the correlation matrix corresponding to Σl. Ξl and Ωl share the same edge information

as entries in these two matrices are either zero or nonzero simultaneously.

First, the estimation procedure is defined with targets Ξl, from a random sample

X1, . . . , Xn, each distributed as X. X is not required to be Gaussian, nor G to be partially

separable, in developing the theoretical properties of the estimators, which also allow

the dimension p to diverge with n. In order to make these methods applicable to any

functional data set, it is assumed that preliminary mean and covariance estimates µ̂j and

Ĝjk, j, k = 1, . . . , p, have been computed for each component. As an example, if the Xi

44



Functional Graphical Models for Partially Separable Multivariate Gaussian Processes Chapter 3

are fully observed, cross-sectional estimates

µ̂j =
1

n

n∑
i=1

Xij, Ĝjk =
1

n

n∑
i=1

(Xij − µ̂j)⊗ (Xik − µ̂k), (3.5)

can be used. For practical observational designs, smoothing can be applied to the pooled

data to estimate these quantities [37, 38]. Given such preliminary estimates, the esti-

mate of H is Ĥ = p−1
∑p

j=1 Ĝjj, leading to empirical eigenfunctions ϕ̂l. These quantities

produce estimates of σljk = 〈Gjk(ϕl), ϕl〉 by plugin, as

sljk = (Sl)jk = 〈Ĝjk(ϕ̂l), ϕ̂l〉. (3.6)

A group graphical lasso approach [39] will be used to estimate the Ξl. Let (R̂l)jk =

r̂ljk = sljk/[sljjslkk]
1/2 be the estimated correlations. The estimation targets the first L

inverse correlation matrices Ξl by

(Ξ̂1, . . . , Ξ̂L) = arg min
Υl�0,Υl=ΥT

l

L∑
l=1

{
tr(R̂lΥl)− log(|Υl|)

}
+ P (Υ1, . . . ,ΥL), (3.7)

In the Gaussian case, these are penalized likelihood estimators with penalty

P (Υ1, . . . ,ΥL) = γ

α
L∑
l=1

∑
j 6=k

|υljk|+ (1− α)
∑
j 6=k

(
L∑
l=1

υ2
ljk

)1/2
 , (Υl)jk = υljk.

(3.8)

The parameter γ > 0 controls the overall penalty level, while α ∈ [0, 1] distributes the

penalty between the two penalty terms. Then the estimated edge set is (j, k) ∈ Êl if and

only if Ξ̂ljk 6= 0. The joint graphical lasso was chosen to borrow structural information

across multiple bases instead of multiple classes as was done in [39]. If α = 1, the first

penalty will encourage sparsity in each Ξ̂l and the corresponding edge set Êl, but the
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overall estimate Ê =
⋃L
l=1 Êl may not be sparse. While consistent graph recovery is still

possible with α = 1 as demonstrated below in Theorem 3.3.2, the influence of the second

penalty term when α < 1 ensures that the overall graph estimate is sparse, enhancing

interpretation.

In practice, tuning parameters γ and α can be chosen with cross-validation to mini-

mize (3.7) for out-of-sample data. Specifically, the procedure would select γ and α that

minimize the average of (3.7) evaluated over each fold, where Υ1, . . . ,ΥL are computed

with the training set and R̂l are from the validation set. Another practically useful, and

less computationally intensive, approach is to choose these parameters to yield a desired

sparsity level of the estimated graph [17]. This latter approach is implemented in the

data example of Section 3.5.

3.3.2 Asymptotic Properties

The goal of the current section is to provide lower bounds on the sample size n so that,

with high probability, Êl = El (l = 1, . . . , L). The proofs for this section can be found in

Section A.7 in the Appendix. The approach follows that of [40], adapting the results to

the case of functional graphical model estimation in which multiple graphs are estimated

simultaneously. For simplicity, and to facilitate comparisons with the asymptotic prop-

erties of [17], the results are derived under the setting of fully observed functional data,

so that µ̂ and Ĝjk are as in (3.5). An additional proof for edge selection consistency that

is not restrictive on the value of the tuning parameter α can be found in the Appendix

in Section A.8. As a preliminary result, we first derive a concentration inequality for the

estimated covariances sljk in (3.6), requiring the following mild assumptions.

Assumption 1. The eigenvalues λl of H are distinct, and thus strictly decreasing.
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Assumption 2. There exists ς2 > 0 such that, for all l ∈ N and all j ∈ V, the standard-

ized scores θlj/σ
1/2
ljj are sub-Gaussian random variables with parameter ς2. Furthermore,

there is M independent of p such that supj∈V
∑∞

l=1 σljj < M <∞.

Assumption 2 can be relaxed to accommodate eigenvalues with multiplicity greater

than 1, at the cost of an increased notational burden. The eigenvalue spac-

ings play a key role through the quantities τ1 = 2
√

2(λ1 − λ2)−1 and τl =

2
√

2 max {(λl−1 − λl)−1, (λl − λl+1)−1} , for l ≥ 2. Assumption 2 clearly holds in the

Gaussian case, and can be relaxed to accommodate different parameters ς2
l for each l,

though for simplicity these are assumed uniform.

Theorem 3.3.1. Suppose that Assumptions 1 and 2 hold. Then there exist constants

C1, C2, C3 > 0 such that, for any 0 < δ ≤ C3 and for all l ∈ N and j, k ∈ V,

pr (|sljk − σljk| ≥ δ) ≤ C2 exp
(
−C1τ

−2
l nδ2

)
. (3.9)

Concentrations inequalities such as (3.9) are generally required in penalized estima-

tion problems where the dimension diverges to infinity. For the current problem, even if

the dimension p of the process remains fixed, the dimension still diverges since one re-

quires the truncation variable L to diverge with n. Furthermore, in contrast to standard

multivariate scenarios, the bound in Theorem 3.3.1 contains the additional factor τ−2
l .

Since λl ↓ 0, τl diverges to infinity with l, so that (3.9) reflects the increased difficulty of

estimating covariances corresponding to eigenfunctions with smaller eigenvalue gaps.

Remark. A similar result to Theorem 3.3.1 was obtained by [17] under a specific eigen-

value decay rate and truncation parameter scheme. Imposing similar assumptions on the

eigenvalues of H, we have τl = O(l1+β1) for some β1 > 1, so that for any 0 < β2 < 1/(4β1)
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and L = nβ2 , (3.9) implies

max
l=1,...,L

max
j,k∈V

pr (|sljk − σljk| ≥ δ) ≤ C2 exp{−C1n
1−2β2(1+β1)δ2},

matching the rate of [17]. In addition to establishing the concentration inequality for a

general eigenvalue decay rate, our proof is greatly simplified by using the inequality

|sljk − σljk| ≤ 2τl‖Gjk‖HS‖Ĥ − H‖HS + ‖Ĝjk − Gjk‖HS, (3.10)

where ‖·‖HS is the Hilbert-Schmidt operator norm.

Remark. The bound in (3.10) utilizes a basic eigenfunction inequality found, for exam-

ple, in Lemma 4.3 of [41]; see also [42]. However, using expansions instead of geometric

inequalities, [43] and other authors cited therein established stonger results for differ-

ences between true and estimated eigenfunctions in the form of limiting distributions

and moment bounds. Thus, it is likely that the bound in (3.9) is suboptimal, although

improvements along the lines of [43] would require further challenging work in order to

establish the required exponential tail bounds.

As the objective (3.7) utilizes the correlations r̂ljk, the following corollary is needed.

Corollary 4. Under the assumptions of Theorem 3.3.1, there exists constants

D1, D2, D3 > 0 such that, for any 0 < δ ≤ D3 and for all l ∈ N and j, k ∈ V,

pr (|r̂ljk − rljk| ≥ δ) ≤ D2 exp
(
−D1nm

2
l δ

2
)
, ml = τ−1

l πl, πl = min
j∈V

σljj. (3.11)

To establish consistency of Êl, some additional notation will be introduced. Let

Ψl = Rl⊗̃Rl, where ⊗̃ is the Kronecker product, and El = El ∪ {(1, 1), . . . , (p, p)}. For

B ⊂ V × V, let Ψl,BB denote the submatrix of Ψl indexed by sets of pairs (j, k) ∈ B,

48



Functional Graphical Models for Partially Separable Multivariate Gaussian Processes Chapter 3

where Ψl,(j,k),(j′,k′) = Rljj′Rlkk′ . For a p× p matrix ∆, let �∆�∞ = maxj=1,...,p

∑p
k=1|∆jk|.

The following assumption corresponds to the irrepresentability or neighborhood stability

condition often seen in sparse matrix and regression estimation [40, 1].

Assumption 3. For l = 1, . . . , L, there exists ηl ∈ (0, 1] such that

���Ψl,E
c
lEl

(
Ψl,ElEl

)−1
���
∞
≤ 1− ηl.

For fixed l, Assumption 3 was employed by [40] as sufficient for model selection consis-

tency. As Theorem 3.3.2 below implies simultaneous consistency of the first L edge sets,

we require the assumption for each l. Weakening of this condition may be possible for

graphs of specific structures; see Section 3.1 of [40].

Set κRl
= �Rl�∞ , κΨl

= �(Ψl,ElEl
)−1�∞, let yl = maxj∈V |{k ∈ V : Ξljk 6= 0}| be

the maximum degree of the graph (V,El), and ξmin,l = min{|Ξljk| : Ξljk 6= 0}. Finally,

when Assumption 3 holds, for any α > 1−minl=1,...,L ηl, define η′l = α + ηl − 1 > 0 and

εL = min1≤l≤L η
′
lml. Then, set

aL = D3 min
l=1,...,L

ml,

bL = min
l=1,...,L

{
6ylml max(κ2

Ψl
κ3
Rl
, κΨl

κRl
)(m−1

l + 8ε−1
L )2

}−1
,

cL = min
l=1,...,L

ξmin,l

{
4κΨl

(m−1
l + 8ε−1

L )
}−1

.

Tracking aL and bL, including the maximal degrees yl, allows one to obtain uniform

consistency of the matrix estimates Ξ̂l in (3.7), and to conclude that Êl ⊂ El with high

probability; see Lemma 2 in Section A.7.1 of the supplementary material. The quantity

cL involves the weakest nonzero signal ξmin,l of each graph, with weaker signals requiring

larger sample sizes for recovery. We then require the following for the divergence of the

number of basis functions L.
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Assumption 4. L→∞ as n→∞, L ≤ np, and min(aL, bL, cL){n/ log(n)}1/2 →∞.

Theorem 3.3.2. Suppose Assumptions 1–4 hold, where 0 ≤ (1−α) ≤ minl=1,...,L ηl, and

that, for some % > 2, γ = 8ε−1
L {(D1n)−1 log (D2L

%−1p%)}1/2
. If the sample size n satisfies

nmin(aL, bL, cL)2 > D−1
1 {log(D2) + (%− 1) log(n) + (2%− 1) log(p)} , (3.12)

then, with probability at least 1− (Lp)2−%, Êl = El for all l = 1, . . . , L.

Remark. If the conditional independence graph of X is E =
⋃∞
l=1El, as is the case

when X is Gaussian and G partially separable, Theorem 3.3.2 can lead to edge selection

consistency in the functional graphical model. For any fixed p, there exists a finite L∗p such

that E =
⋃L∗p
l=1El. If it is possible to choose a sequence L satisfying Assumption 4 and

L ≥ L∗p for large n, then one will have E =
⋃L
l=1 Êl with probability at least 1− (Lp)2−%

under the assumptions of Theorem 3.3.2 with this choice of L. This will automatically

be the case if p remains bounded as n grows, but can also hold in the high-dimensional

setting.

Remark. Under Assumption 4, (3.12) becomes

nmin(aL, bL, cL)2 & % log(p)

for large n, with & denoting inequality up to a multiplicative constant. Hence, if L grows

sufficiently slowly, the conclusion of Theorem 3.3.2 will hold asymptotically as long as

log(p) = o(n).

Remark. To understand how the graph properties affect the lower bound, assume κΨl
,

κRl
, and ηl do not depend on l, n, or p, and min1≤l≤nml & n−d, 0 < d < 1/4. Then (3.12)

becomes

n &

[{(
max
1≤l≤L

ξ−2
min,l

)
+

(
max
1≤l≤L

y2
l

)}
% log(p)

]1−4d
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asymptotically. In particular, if L remains bounded so that d = 0, the above bound is

consistent with that of [40], where the maxima over l reflect the need to satisfy the bound

for the edge set El that is most difficult to estimate.

3.4 Numerical Experiments

3.4.1 Simulation Settings

The simulations in this section compare the proposed method for partially separable

functional Gaussian graphical models, with that of [17]. Throughout this section we de-

note these methods as FGMParty and FGGM, respectively. Other potentially competing

non-functional based approaches are not included since they are clearly outperformed by

the latter (see [17]). An initial conditional independence graph G = (V,E) is generated

from a power law distribution with parameter π = pr{(j, k) ∈ E}. Then, for a fixed

M , a sequence of edge sets E1, . . . , EM is generated so that E =
⋃M
l=1El. A set of com-

mon edges to all edge sets is computed for a given proportion of common edges τ ∈ [0, 1].

Next, p×p precision matrices Ωl are generated for each El based on the algorithm of [44].

A fully detailed description of this step is included in the Section A.10 in the Appendix.

Random vectors θi ∈ RMp are then generated from a mean zero multivariate normal

distribution with covariance matrix Σ, yielding discrete and noisy functional data

Yijk = Xij(tk) + εijk, εijk ∼ N(0, σ2
ε) (i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . ,M).

Here, σ2
ε = 0.05

∑M
l=1 tr(Σl)/p and Xij(tk) =

∑M
l=1 θiljϕl(tk) according to the partially

separable Karhunen-Loève expansion in (2.3). Fourier basis functions ϕ1, . . . , ϕM evalu-

ated on an equally spaced time grid of t1, . . . , tT , with t1 = 0 and tT = 1, were used to

generate the data. In all settings, 100 simulations were conducted. To resemble real data
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example from Section 3.5 below, we set T = 30, M = 20 and π = 5% for a sparse graph.

Two models are considerd for Σ, corresponding to partially separable and non-

partially separable X, respectively. In the first, the covariance Σps is formed as a

block diagonal matrix with p × p diagonal blocks Σl = alΩ
−1
l . The decaying factors

al = 3l−1.8 guarantee that tr(Σl) decreases monotonically in l. In the second, Σps is

modified to violate partial separability. Specifically, a block-banded precision matrix

Ω is computed with p × p blocks Ωl,l = Ωl and Ωl+1,l = Ωl,l+1 = 0.5(Ω∗l + Ω∗l+1)

with Ω∗l = Ωl − diag(Ωl). Then, the non-partially separable covariance is computed

as Σnon-ps = diag(Σps)
1/2Ω−1diag(Σps)

1/2.

3.4.2 Comparison of Results

Comparisons between the proposed method and that of [17], implemented using code

provided by the authors, are presented here. Additional comparisons obtained by thresh-

olding correlations are provided in Section 3.4.3. Although this alternative method does

not estimate a sparse inverse covariance structure, its graph recovery is competitive with

that of the proposed method in some settings. As performance metrics, the true and

false positive rates of correctly identifying edges in graph G are computed over a range

of γ values and a coarse grid of five evenly spaced points α ∈ [0, 1]. The value of α

maximizing the area under the receiver operating characteristic curve is considered for

the comparison. In all cases, we set π = 0.05 and τ = 0. The two methods are compared

using L principal components explaining at least 90% of the variance. For all simulations

and both methods, this threshold results in the choice of L = 5 or L = 6 components.

For higher variance explained thresholds, however, we see a sharp contrast. While the

proposed method consistently converges to a solution, that of [17] does not, due to in-

creasing numerical instability. The reason for the instability is the need to estimate L = 5
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or 6 times more parameters compared to the proposed method. The proposed method

can thus accommodate larger L, thereby incorporating more information from the data.

In the figures and tables, additional results are available for the proposed method when

L is increased to explain at least 95% of the variance.
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(a) n = p/2

(b) n = 1.5p

Figure 3.2: Mean receiver operating characteristic curves for the proposed method
(FGMParty) and that of [17] (FGGM). In subfigures (a) and (b), Σps (top) and Σnon-ps

(bottom) were used for p = 50, 100, 150, π = 0.05 and τ = 0. Curves are coded as
FGMParty ( ) and FGGM ( ) at 90% of variance and FGMParty ( ) at
95% of variance explained. For FGMParty, the values of α used to compute the curve
values are printed in each panel.

Figure 3.2a shows average true/false positive rate curves for the high-dimensional

case n = p/2. The smoothed curves are computed using the supsmu R package that im-
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plements SuperSmoother [45], a variable bandwidth smoother that uses cross-validation

to find the best bandwidth. Table 3.1 shows the mean and standard deviation of area

under the curve estimates for various settings. When partial separability holds, Σ = Σps,

the proposed method exhibits uniformly higher true positive rates across the full range

of false positive rates. Even when partial separability is violated, Σ = Σnon-ps, the two

methods perform comparably. More importantly, and in all cases, the proposed method

is able to leverage 95% level of variance explained, owing to the numerical stability men-

tioned above. Figure 3.2b and Table 3.1 summarize results for the large sample case

n = 1.5p with similar conclusions. Comparisons under additional simulation settings can

be found in the Appendix.

Table 3.1: Mean area under the curve (and standard error) values for Figures 3.2a and 3.2b

Σ = Σps Σ = Σnon-ps

p = 50 p = 100 p = 150 p = 50 p = 100 p = 150

n
=
p
/
2

A
U

C

FGGM90% 0.60(0.03) 0.62(0.02) 0.63(0.01) 0.75(0.03) 0.72(0.02) 0.75(0.02)

FGMParty90% 0.71(0.04) 0.69(0.02) 0.70(0.01) 0.75(0.03) 0.73(0.02) 0.74(0.03)

FGMParty95% 0.72(0.04) 0.74(0.02) 0.77(0.02) 0.77(0.03) 0.78(0.02) 0.79(0.02)

A
U

C
15
† FGGM90% 0.15(0.04) 0.18(0.02) 0.20(0.01) 0.39(0.04) 0.40(0.02) 0.45(0.03)

FGMParty90% 0.30(0.05) 0.35(0.02) 0.37(0.02) 0.39(0.04) 0.42(0.03) 0.44(0.04)

FGMParty95% 0.29(0.05) 0.40(0.03) 0.46(0.03) 0.41(0.05) 0.48(0.03) 0.51(0.03)

n
=

1.
5p

A
U

C

FGGM90% 0.76(0.02) 0.72(0.02) 0.73(0.01) 0.86(0.02) 0.78(0.02) 0.80(0.03)

FGMParty90% 0.87(0.03) 0.75(0.02) 0.75(0.01) 0.85(0.02) 0.78(0.02) 0.79(0.03)

FGMParty95% 0.92(0.02) 0.84(0.02) 0.85(0.02) 0.92(0.03) 0.85(0.02) 0.85(0.02)

A
U

C
15
† FGGM90% 0.37(0.04) 0.41(0.02) 0.44(0.02) 0.66(0.03) 0.55(0.03) 0.57(0.04)

FGMParty90% 0.69(0.04) 0.52(0.02) 0.52(0.02) 0.65(0.04) 0.56(0.04) 0.55(0.05)

FGMParty95% 0.75(0.04) 0.68(0.03) 0.69(0.03) 0.76(0.06) 0.68(0.03) 0.64(0.03)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.
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3.4.3 Comparison With An Independence Screening Procedure

This section explores further practical aspect of the estimation method by comparing

it with covariance thresholding approach. The main motivation is that partial separability

entails a concrete relationship between (some) zeroes in the covariance and corresponding

zeroes in the precision matrices. Thus, it is of interest to see how much a very naive

graphical model can be improved upon based on the partial separability principle.

The FGMParty method is compared with another approach meant only for estimating

a sparse graph identifying the conditionally independence pairs in a multivariate Gaus-

sian process. This method, denoted as psSCREEN, is based on the sure independence

screening procedure of [46]. It assumes partial separability just like FGMParty, but the

graph is estimated by thresholding the off-diagonal entries of the matrix
[∑L

l=1 r̂
2
ljk

]
for

j, k = 1, . . . , p. Figures 3.3a and 3.3b follow the sparse case settings of Section 3.4 with

π = 0.05 and τ = 0. Comparisons under additional simulation settings can be found in

the Appendix.
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(a) n = p/2

(b) n = 1.5p

Figure 3.3: Mean receiver operating characteristic curves for the proposed method
(FGMParty) and the independence screening procedure (psSCREEN) under Σps (top)
and Σnon-ps (bottom) for p = 50, 100, 150, π = 0.05 and τ = 0. We see FGMParty
( ) and psSCREEN( ) both at 95% of variance explained for the sparse case.
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Table 3.2: Mean area under the curve (and standard error) values for Figures 3.3a and 3.3b

Σ = Σps Σ = Σnon-ps

p = 50 p = 100 p = 150 p = 50 p = 100 p = 150

n
=
p
/
2 A
U

C FGMParty95% 0.72(0.04) 0.74(0.02) 0.77(0.02) 0.77(0.03) 0.78(0.02) 0.79(0.02)

psSCREEN95% 0.69(0.04) 0.73(0.02) 0.75(0.02) 0.75(0.03) 0.78(0.02) 0.79(0.02)

A
U

C
15
†

FGMParty95% 0.29(0.05) 0.40(0.03) 0.46(0.03) 0.41(0.05) 0.48(0.03) 0.51(0.03

psSCREEN95% 0.23(0.05) 0.34(0.02) 0.40(0.02) 0.34 (0.05) 0.46(0.03) 0.49(0.03)

1.
5p

A
U

C FGMParty95% 0.92(0.02) 0.84(0.02) 0.85(0.02) 0.92(0.03) 0.85(0.02) 0.85(0.02)

psSCREEN95% 0.89(0.02) 0.84(0.02) 0.85(0.02) 0.93(0.02) 0.86(0.02) 0.85(0.02)

A
U

C
15
†

FGMParty95% 0.75(0.04) 0.68(0.03) 0.69(0.03) 0.76(0.06) 0.68(0.03) 0.64(0.03)

psSCREEN95% 0.61(0.05) 0.65(0.03) 0.67(0.03) 0.76(0.05) 0.68(0.03) 0.63(0.03)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.

3.5 Application to Functional Brain Connectivity

In this section, the proposed method is used to reconstruct the brain connectivity

structure using functional magnetic resonance imaging (fMRI) data from the Human

Connectome Project. We analyze the ICA-FIX preprocessed data variant that controls

for spatial distortions and alignments across both subjects and modalities [12]. In par-

ticular, we use the motor task fMRI dataset1 that consists of fMRI scans of individuals

performing basic body movements. During each scan, a three-second visual cue signals

the subject to move a specific body part, which is then recorded for 12 seconds at a

temporal resolution of 0.72 seconds. For this work, we considered only the data from

left- and right-hand finger movements.

The left- and right-hand tasks data for n = 1054 subjects with complete meta-data

were preprocessed by averaging the blood oxygen level dependent signals over p = 360

regions of interest (ROIs) [14]. After removing cool down and ramp up observations,

1The 1200 Subjects 3T MR imaging data available at https://db.humanconnectome.org
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T = 16 time points of pure movement tasks remained. As seen in Chapter 1, the

plausibility of the partial separability assumption for this dataset was discussed in detail

with no indications to the contrary. Penalty parameters γ = 0.91 and α = 0.95 were

used to estimate very sparse graphs in both tasks.

(a) Left-hand task (b) Right-hand task

(c) Activated ROIs unique to left-hand task (d) Activated ROIs unique to right-hand task

(e) Activated ROIs common to both tasks (f) ROI task activation map [14]

Figure 3.4: FGMParty estimated functionally connected cortical ROIs for the left- and
right-hand motor tasks. Each sub-figure shows a flat brain map of the left and right
hemispheres (in that order). ROIs having a positive degree of connectivity in each
estimated graph are colored based on their functionality [14]: visual (blue), motor
(green), mixed motor (light green), mixed other (red) and other (purple).

Figure 3.4 shows comparison of activation patterns from left and right-hand task

59



Functional Graphical Models for Partially Separable Multivariate Gaussian Processes Chapter 3

datasets. Figures 3.4a and 3.4b show the recovered ROI graph on a flat brain map, and

only those ROIs with positive degree of connectivity are colored. Figures 3.4c and 3.4d

show connected ROIs that are unique to each task, whereas Figure 3.4e show only those

that are common to both tasks. In this map, one can see that almost all of the visual

cortex ROIs in the occipital lobe are shared by both maps. This is expected as both tasks

require individuals to watch visual cues. Furthermore, the primary sensory cortex (touch

and motor sensory inputs) and intraparietal sulcus (perceptual motor coordination) are

activated during both left and right-hand tasks. On the other hand, the main difference

between these motor tasks lies at the motor cortex near the central sulcus. In Figure

3.4c and 3.4d the functional maps for the left- and right-hand tasks present particular

motor-related cortical areas in the right and left hemisphere, respectively. These results

are in line with the motor task activation maps obtained by [47].

3.6 Conclusions

The estimation method presented in this chapter is a useful tool to infer graphical

models from complex functional data. Indeed, the partial separability assumption reduces

the number of free parameters substantially, especially when a large number of functional

principal components is needed to explain a significant amount of variation. In the

numerical experiments, this also translated in faster convergence times.

An important feature of the proposed method for functional graphical model estima-

tion is equally applicable to dense or sparse functional data, observed with or without

noise. However, rates of convergence will inevitably suffer as observations become more

sparse or are contaminated with higher levels of noise. The results in Theorem 3.3.1 of

this chapter or Theorem 1 of [17] have been derived under the setting of fully observed

functional data, so that future work will include similar derivations under more general
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observation schemes.

In the light of the findings of this work there are several potential extensions to neu-

roimaging. First, [32] formulates a dynamic graphical model for multivariate functional

data. Their estimation method uses truncated univariate Karhunen-Loève expansions

as in [17] and analyses electroencephalography (EEG) data. Second, multivariate count

processes are ubiquitous in neural spike data where the goal is to understand the elec-

trical activity of the neurons [24]. In this setting, the applicability of partial separability

for Poisson graphical models could be studied. And finally, multilevel Gaussian graphical

models has become an active area of research with application in genetics [48] and neu-

roscience [49]. In the particular case of neuroimaging, voxel-level signals are aggregated

into ROIs at different levels of coarseness to estimate a joint graphical models. A func-

tional extension of this problem would greatly benefit from a joint partial separability

principle to connect graphs at different levels.
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Chapter 4

Functional Differential Graphical
Models for Partially Separable
Multivariate Gaussian Processes

This chapter focuses on estimating the difference between two functional undirected

graphical models. The motivating example are different dependencies between functional

magnetic resonance imaging (fMRI) signals for a large number of regions across the brain

during two motor task experiments.

The methodology proposed in this chapter is within the setting of multivariate Gaus-

sian processes as in [50], and exploits a notion of joint partial separability for multivariate

functional data to estimate differences between inverse covariance objects. And included

is a novel estimation method that assumes sparsity only on the graphs difference while

allowing the individual graphical models to be denser.

Empirical performance of the proposed method is then compared to that of [50]

through simulations involving dense and noisily observed functional data, including a

setting where partial separability is violated. Finally, the method is applied to the study

of brain connectivity using data from the Human Connectome Project corresponding to

a motor task experiment. Through these practical examples, our proposed method is

shown to provide improved efficiency in estimation and computation.
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4.1 Preliminaries

4.1.1 Differential Gaussian Graphical Model

Consider a p-variate random variables ϑX = (ϑX1 , . . . , ϑ
X
p )T , and ϑY = (ϑY1 , . . . , ϑ

Y
p )T ,

p > 2. For simplicity, the notation in this chapter is only defined for X although the

definitions for Y are analogous. For any distinct indices j, k = 1, . . . , p, let ϑX−(j,k) ∈ Rp−2

denote the subvector of ϑX obtained by removing its jth and kth entries. A graphical

model [35] for ϑX is an undirected graph GX = (V,EX), where V = {1, . . . , p} is the node

set and EX ⊂ V × V \ {(j, j) : j ∈ V } is called the edge set. The edges in EX encode

the presence or absence of conditional independencies amongst the distinct components

of ϑ by excluding (j, k) from EX if and only if ϑj ⊥⊥ ϑk | ϑ−(j,k). If ϑ ∼ Np(0,ΣX), the

edges of the resulting Gaussian graphical model correspond to the non-zero entries in

the precision matrix ΩX = (ΣX)−1. More details about this connection can be found in

Chapter 3.

It is well-known that the interactions in many types of networks can change under

different classes or experimental conditions. In such case, the object of study may be a

differential graphical model defined as follows. For the differential matrix ∆ = ΩX −ΩY ,

the corresponding edge set E∆ can be defined as {(j, k) ∈ V × V : ∆jk 6= 0}. And the

differential graphical model is G∆ = (V,E∆). However, the edges in E∆ should not be

interpreted as encoding differences in the partial covariances between the two classes. As

seen in [35], for any fixed j, k ∈ V the partial covariance between ϑXj and ϑXk can be

defined in terms of the precision matrix entries as σ̃Xjk = −ΩX
jk(Ω

X
jjΩ

X
kk − (ΩX

jk)
2)−1, and

the partial the partial covariance difference is

σ̃Xjk − σ̃Yjk =
−∆jk(Ω

X
jkΩ

Y
jk + ΩX

jjΩ
X
kk) + ΩX

jk(Ω
X
jjΩ

X
kk − ΩY

jjΩ
Y
kk))

(ΩX
jjΩ

X
kk − (ΩX

jk)
2)(ΩY

jjΩ
Y
kk − (ΩY

jk)
2)

.
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So, in general, ∆jk equal to zero is not a sufficient condition for σ̃Xjk = σ̃Yjk.

Several methods have been proposed to estimate differential networks. The first group

estimates both ΩX and ΩY assuming some common sparsity structure. For example, [39]

solves for a penalized joint log-likelihood of the ϑX and ϑY using group lasso penalties.

Other similar approaches include [51] and [52] where the common structure assumption

yields hub nodes in the networks.

Other methods focus on a direct estimation of ∆, without estimating neither ΩX

nor ΩY . The literature on this group includes [53], [54] and [55]. In this case, sparsity

assumptions are only imposed on ∆ whereas ΩX and ΩY are allowed to be dense. The

matrix ∆ is estimated by minimizing a trace loss function of the form:

L(∆|ΣX ,ΣY ) = tr

{
1

2
ΣY ∆TΣX∆−∆T (ΣY − ΣX)

}
By denoting ⊗ as the Kronecker product between two matrices, the second derivative of

this function in terms of ∆ is

∂2L(∆|ΣX ,ΣY )

∂∆2
= ΣY ⊗ ΣX

which is positive definite if and only if both ΣX and ΣY are positive definite. Thus,

L(∆|ΣX ,ΣY ) is convex and the unique minimizer of this problem can be obtained by

imposing a first order condition on its first derivative:

∂L(∆,ΣX ,ΣY )

∂∆
= ΣX∆ΣY − (ΣY − ΣX),

resulting in ∆ = (ΣX)−1 − (ΣY )−1. Similarly, the estimator ∆̂ can be computed by

plugin of SX and SY corresponding to the sample estimates of ΣX and ΣY if these sample

covariances are nonsingular. For p < n, the non-singularity of SX and SY is guaranteed
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but for high-dimensional cases with p ≥ n, the estimator of ∆̂ needs regularization.

Similar to the graphical lasso [2], this limitation can be handled by adding a penalty

term that induces sparsity on the solution. Thus, the penalized trace loss minimization

problem targets ∆ by

∆̂ = arg min
∆

tr
{1

2
SY ∆TSX∆−∆T (SY − SX)

}
+ λ‖∆‖1

where λ > 0 is a penalty parameter and ‖∆‖1=
∑p

i 6=j |∆ij|. This penalty is similar to

the standard lasso penalty and induces zeros in the off-diagonal entries of ∆̂.

4.1.2 Functional Differential Gaussian Graphical Model

Using the notation for functional data adopted in Chapter 2, this section introduces

differential graphical models for functional data. As for differential Gaussian graphical

models, differential networks are also of great interest to compare two classes of multivari-

ate functional data in terms of the conditional independencies. Consider two multivariate

process X and Y with covariance operators GX and GY . As discussed in Chapter 3, the

covariance operators GX and GY are compact and thus not invertible so the conditional

independence cannot be defined. This issue is commonly addressed by performing di-

mensionality reduction. Specifically, one chooses orthonormal functional basis {φXjl}∞l=1

and {φYjl}∞l=1 of L2[0, 1] for each j, and expresses each component of X and Y as

Xj(t) =
∞∑
l=1

ξXjl φ
X
jl (t), ξXjl =

∫ 1

0

Xj(t)φ
X
jl (t)dt

Yj(t) =
∞∑
l=1

ξYjlφ
Y
jl(t), ξYjl =

∫ 1

0

Yj(t)φ
Y
jl(t)dt

(4.1)
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These expansions are then truncated at a finite number of basis functions to perform esti-

mation, and the basis size is allowed to diverge with the sample size to obtain asymptotic

properties.

The literature on this topic is in its very early stages, with only one preprint to date

[50]. The authors of [50] truncated (4.1) at L terms using the functional principal compo-

nent basis [10], and set ξXj = (ξXj1, . . . , ξ
X
jL)T (j ∈ V ). Then, they define a define a pL×pL

covariance matrix ΓX blockwise for the concatenated vector ξX = ((ξX1 )T , . . . , (ξXp )T )T ,

as ΓX = (ΓXjk)
p
j,k=1, (Γ

X
jk)lm = cov(ξXjl , ξ

X
km), (l,m = 1, . . . , L).

Finally, a functional differential Gaussian graphical model is defined. For ∆ =

(ΓX)−1 − (ΓY )−1, the differential graph is denoted as G∆ = (V,E∆) where the edge

set can be recovered through the relation (j, k) ∈ E∆ if and only if the (j, k) block in the

matrix ∆ is not zero. This matrix is estimated with a Joint Functional Graphical Lasso

method, denoted as FuDGE, assuming sparse off-diagonal blocks in order to estimate the

edge set. At the moment, this is the only work related to functional differential Gaussian

graphical models available and will serve as a comparison benchmark for the simulation

studies.

4.2 Partial Separability and Functional Differential

Gaussian Graphical Models

This section is based on the joint partial separability assumption for multivariate

functional data of two different classes. A detailed discussion and definitions of this

assumption can be found in Chapter 2.
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4.2.1 Consequences for Functional Differential Gaussian

Graphical Models

As a starting point for this section, consider the Karhunen-Loeve expansion for joint

partially separable Gaussian processes X and Y as introduced in Corollary 2 point 2 of

Chapter 2:

X =
∞∑
l=1

ϑXl ψl, ϑXl = (〈X1, ψl〉, . . . , 〈Xp, ψl〉)T

Y =
∞∑
l=1

ϑYl ψl, ϑYl = (〈Y1, ψl〉, . . . , 〈Yp, ψl〉)T

Assume that GX and GY are joint partially separable covariance operators according

to Definition 2.4.1, so that the joint partially separable Karhunen-Loève expansion in

(2.6) holds. If we further assume that X is Gaussian, then ϑXl ∼ N (0,ΣX
l ), l ∈ N, are

independent, where ΣX
l is positive definite for each l. Thus, the inverse covariance matrix

ΩX
l = (ΣX

l )−1 is defined by for each l, and so ∆l = ΩX
l − ΩY

l

Under these assumptions and motivated by the findings in Chapter 2, the functional

differential Gaussian graphical model defined by [50] corresponds to (j, k) ∈ E∆ if and

only if (∆l)jk 6= 0 for any l. Due to the above result, the edge set E∆ is connected

to the sequence of edge sets {E∆
l }∞l=1, for which (j, k) /∈ E∆

l if and only if (∆l)jk = 0,

corresponding to the sequence of differential Gaussian graphical models (V,E∆
l ) for each

pair of random scores vectors ϑXl and ϑYl .

Corollary 5. Under the setting of Theorem 2.3.1, the functional differential graph edge

set E∆ is related to the sequence of edge sets E∆
l by E∆ =

⋃∞
l=1E

∆
l .

This result established that, under joint partial separability, the problem of functional

differential graphical model estimation can be simplified to estimation of a sequence of
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decoupled differential graphical models.

4.3 Graph Estimation

4.3.1 Joint Trace Loss Estimator

Consider p-variate processes X and Y . Let the components of X has mean functions

µXj (t) = E{Xj(t)} and covariance operator GX . Let {ψl}∞l=1 be an orthonormal eigenbasis

of H = (2p)−1
∑p

j=1 GXjj +GYjj, and set ϑXlj = 〈Xj, ψl〉, ΣX
l = var(ϑXl ), and ∆l = (ΣX

l )−1−

(ΣY
l )−1. The targets are the edge sets E∆

l , where (j, k) ∈ E∆
l if and only if (∆l)jk 6= 0,

as motivated by the developments of Section 4.2.1.

Consider a random sample X1, . . . , Xn, each distributed as X. X is not required to be

Gaussian, nor GX to be joint partially separable, in developing the theoretical properties

of the estimators, which also allow the dimension p to diverge with n. In order to make

these methods applicable to any functional data set, it is assumed that preliminary

mean and covariance estimates µ̂Xj and ĜXjk, j, k = 1, . . . , p, have been computed for each

component. As an example, if the Xi are fully observed, cross-sectional estimates

µ̂Xj =
1

n

n∑
i=1

Xij, ĜXjk =
1

n

n∑
i=1

(Xij − µ̂Xj )⊗ (Xik − µ̂Xk ), (4.2)

can be used. For practical observational designs, smoothing can be applied to the pooled

data to estimate these quantities [37, 38]. And analogous procedure for sample Y1, . . . , Yn

yields estimates µ̂Yj and ĜYjk, j, k = 1, . . . , p. Given such preliminary estimates, the esti-

mate of H is Ĥ = (2p)−1
∑p

j=1 ĜXjj + ĜYjj, leading to empirical eigenfunctions ψ̂l. These
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quantities produce estimates of σXljk = 〈GXjk(ψl), ψl〉 and σYljk = 〈GYjk(ψl), ψl〉 by plugin, as

sXljk =
(
SXl
)
jk

= 〈ĜXjk(ψ̂l), ψ̂l〉

sYljk =
(
SYl
)
jk

= 〈ĜY jk(ψ̂l), ψ̂l〉.
(4.3)

By Theorem 2.3.1, tr(ΣX
l ) ↓ 0 and tr(ΣY

l ) ↓ 0 as l→∞. As a practical consideration, this

makes estimators of ΣX
l and ΣY

l progressively more unstable to work with as l increases.

To address this issue the penalty approach of [39] is extended to a weighted group lasso

estimator of ∆l. The estimation targets the first L matrices ∆l by

(∆̂1, . . . , ∆̂L) = arg min
Υl=ΥT

l

L∑
l=1

[
tr

{
1

2
SYl ΥTSXl Υ−ΥT (SYl − SXl )

}]
+ P (Υ1, . . . ,ΥL),

(4.4)

By letting υljk = (Υl)jk, the penalty is

P (Υ1, . . . ,ΥL) = γ

α
L∑
l=1

∑
j 6=k

w1,ljk|υljk|+ (1− α)
∑
j 6=k

(
L∑
l=1

(w2,ljkυlij)
2

)1/2
 (4.5)

where w1,ljk, w2,ljk are the non-negative weighting scheme parameters. The parameter

γ > 0 controls the overall penalty level, while α ∈ [0, 1] distributes the penalty between

the two penalty terms. Then the estimated edge set is (j, k) ∈ Ê∆
l if and only if ∆̂ljk 6= 0.

We refer to the solution of problem (4.4) as the Joint Trace Loss (JTL) estimator.

The JTL estimator can borrow structural information across multiple bases. If α = 1,

the first penalty will encourage sparsity in each ∆̂l and the corresponding edge set Ê∆
l ,

but the overall estimate Ê∆ =
⋃L
l=1 Ê

∆
l may not be sparse. The influence of the second

penalty term when α < 1 ensures that the overall differential graph estimate is sparse,

enhancing interpretation.

In practice, tuning parameters γ and α can be chosen similarly to the case of a single
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FGGM. In the data example of Section 4.6 the parameters are chosen to yield a desired

level of sparsity.

4.3.2 Two Useful Penalty Weighting Schemes

This subsection introduces two particular choices for the weight parameters of the con-

vex penalty function P in problem 4.4 that lead to useful functional differential graphical

model estimates. Denote by Ω̃X
l and Ω̃Y

l the Moore–Penrose pseudoinverses of SXl and

SYl respectively for l = 1, . . . , L, and let ∆̃l = Ω̃X
l − Ω̃Y

l . For weights w1,ljk = (‖∆̃l‖1)−1

and w2,ljk = 1 the unweighted group estimates are the solution of problem (4.4), whose

penalty becomes:

P (Υ1, . . . ,ΥL) = γ

α
L∑
l=1

1

‖∆̃l‖1

∑
j 6=k

|υljk|+ (1− α)
∑
j 6=k

(
L∑
l=1

υ2
lij

)1/2
 . (4.6)

The weighting choice for the first term is an adaptive-lasso type penalty [56] to induce

sparse solutions. On the other hand, the second term consist of a standard group lasso

penalty to borrow information across the different estimates.

In principle the unweighted group estimates may exhibit some difficulties. First of all,

the estimators of ΣX
l and ΣY

l are progressively more unstable to work with as l increases.

Second, the norm of Ωl increases with l which could make the second term summand

in (4.6) highly dependent on the entries of ∆L. For this reason, a second estimator is

considered as follows.

Let d̃lj = (Ω̃X
ljjΩ̃

Y
ljj)

1/2 for l = 1, . . . , L and j = 1, . . . , p. For weights w1,ljk = (‖∆̃l‖1)−1

and w2,ljk = (d̃lj d̃lk)
−1 the weighted group estimates are the solution of problem (4.4),
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whose penalty becomes:

P (Υ1, . . . ,ΥL) = γ

α
L∑
l=1

1

‖∆̃l‖1

∑
j 6=k

|υljk|+ (1− α)
∑
j 6=k

(
L∑
l=1

1

d̃lj d̃lk
υ2
ljk

)1/2
 . (4.7)

The weighting choice for the first term is the same as before. The difference lies in

the second term consisting of a weighted-group lasso penalty that borrows information

more evenly across the different estimates.

To understand the motivation behind the weighted group estimator consider prob-

lem (4.4) at the partial correlation scale. In such case the object of interest would be:

ΩX
ljk(Ω

X
ljjΩ

X
lkk)
−1/2 − ΩY

ljk(Ω
Y
ljjΩ

Y
lkk)
−1/2. However, as in problem (4.4) one cannot identify

ΩX
ljk and ΩY

ljk, the weighting factor w2,ljk cannot work at the partial correlation scale

unless ΩX
ljj = ΩY

ljj for all j = 1, . . . , p. Under this strong assumption one can see that:

∆ljk

(ΩX
ljjΩ

X
lkkΩ

Y
ljjΩ

Y
lkk)

1/4
=

ΩX
ljk

(ΩX
ljjΩ

X
lkk)

1/2
−

ΩY
ljk

(ΩY
ljjΩ

Y
lkk)

1/2

Again, this is indeed a strong assumption on the covariance structure. But as illus-

trated in Section 4.5 this choice of weight exhibits a good performance, especially in the

high-dimensional case.

4.4 Algorithm for the Joint Trace Loss Problem

The optimization problem in (4.4) is convex and can be solved using an alternating

directions method of multipliers (ADMM) algorithm. A detailed discussion of the ADMM

algorithms and their convergence guarantees can be found in [57]. First of all, problem
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(4.4) can be written as

min
Υl=ΥT

l

L∑
l=1

L(Υl|SXl , SYl ) + P (Z1, . . . , ZL). (4.8)

subject to the constraint Zl = Υl for auxiliary variables Zl and l = 1, . . . , L. For sim-

plicity, denote {Z}Ll=1 = Z1, . . . , ZL. Second, the scaled augmented Lagrangian problem

(4.8) (see [57]) is:

Lρ({Υ}Ll=1, {Z}Ll=1, {U}Ll=1) =
L∑
l=1

L(Υl|SXl , SYl )+P (Z)+
ρ

2

L∑
l=1

‖Υl−Zl+Ul‖2
F−

ρ

2

L∑
l=1

‖Ul‖2
F

(4.9)

where {U}Ll=1 = U1, . . . , Ul are dual variables and ρ is a penalty parameter of the ADMM

algorithm. The goal of the ADMM algorithm is to solve (4.9) so that ‖Zl−Υl‖ decreases

to zero.

Algorithm 1: ADMM for JTL in (4.9)

input : {SXl }, {SYl }

Initialize Υl = 0p×p, Zl = 0p×p, Ul = 0p×p for l = 1, . . . , L;

repeat

a) {Υ(k)}Ll=1 = argmin{Υ}Ll=1
Lρ({Υ}Ll=1, {Z(k−1)}Ll=1, {U (k−1)}Ll=1) ;

b) {Z(k)}Ll=1 = argmin{Z}Ll=1
Lρ({Υ(k)}Ll=1, {Z}Ll=1, {U (k−1)}Ll=1) ;

c) U
(k)
l = U

(k−1)
l + ρ(Υ

(k)
l − Z

(k)
l ) for l = 1, . . . , L ;

until convergence ;

Finally, the {Z}Ll=1 resulting from Algorithm 1 correspond to the JTL estimates of

∆1, . . . ,∆L. The convergence criterion is set as

∑L
l=1‖Z

(k)
l − Z

(k−1)
l ‖F∑L

l=1‖Z
(k−1)
l ‖F+ε

< 10−5

with ε = 10−5. Notice that the first and second steps of Algorithm 1 correspond to finding
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dense and regularized estimates, respectively in an iterative way. The ADMM algorithm

guarantees that ‖Z(k)
l − Υ

(k)
l ‖F→ 0 as k → ∞ (see [57]). A detailed discussion of steps

a) and b) can be found in Sections 4.4.1 and 4.4.2.

4.4.1 Dense Estimation Subproblem of ADMM Algorithm 1

The first step of Algorithm 1 is solved as follows. The scaled augmented Lagrangian

in (4.9) reduces to

{Υ(k)}Ll=1 = argmin
{Υ}Ll=1

Lρ({Υ}Ll=1, {Z(k−1)}Ll=1, {U (k−1)}Ll=1)

= argmin
{Υ1,...,ΥL}

L∑
l=1

L(Υl|SXl , SYl ) +
ρ

2

L∑
l=1

‖Υl − Z(k−1)
l + U

(k−1)
l ‖2

F

(4.10)

The additive structure of the problem in (4.10) allows to solve for each Υl separately

as:

Υ̂l = argmin
Υl

L(Υl|SXl , SYl ) +
ρ

2
‖Υl − Z(k−1)

l + U
(k−1)
l ‖2

F (4.11)

for l = 1, . . . , L. The problem in (4.11) has closed form solution ( see [58] ):

Υ̂l = Vl
[
B ◦ (V T

l C
(k)
l Wl)

]
W T
l (4.12)

where VlD
Y
l V

T
l are WlD

X
l W

T
l are the singular value decompositions of SYl and SXl re-

spectively, C
(k)
l = (SYl −SXl )−U (k−1)

l +ρZ
(k−1)
l for l = 1, . . . , L, Bjk = 1/(DY

ljD
X
lk +ρ) for

j, k = 1, . . . , p, and ◦ denotes the Hadamard matrix product. The solution is not guar-

anteed to be symmetric, but the final results can be symmetrized as Υ̂l = 0.5(Υ̂l + Υ̂T
l ).

Finally, we set Υ
(k)
l = Υ̂l for l = 1, . . . , L.
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4.4.2 Regularized Estimation Subproblem of ADMM Algo-

rithm 1

In the second step of Algorithm 1 the scaled augmented Lagrangian in (4.9) reduces

to:

{Z(k)}Ll=1 = argmin
{Z}Ll=1

Lρ({Υ(k)}Ll=1, {Z}Ll=1, {U (k−1)}Ll=1)

= argmin
Z1,...,ZL

ρ

2

L∑
l=1

‖Υ(k)
l − Zl + U

(k−1)
l ‖2

F+P ({Z}Ll=1)

= argmin
Z1,...,ZL

ρ

2

L∑
l=1

‖Υ(k)
l − Zl + U

(k−1)
l ‖2

F+

γ

α
L∑
l=1

∑
j 6=k

w1,ljk|zljk|+ (1− α)
∑
j 6=k

(
L∑
l=1

(w2,ljkzlij)
2

)1/2


(4.13)

with zlij = (Zl)jk, λ1 = γα and λ2 = γ(1−α). Denote Al = Υ
(k)
l +U

(k−1)
l for l = 1, . . . , L,

λ̃1 = λ1/ρ, λ̃2 = λ2/ρ and aljk = (Al)jk . If w2,ljk = 1 for i, j = 1, . . . , p then problem

(4.13) has closed form solution as shown in [39]:

ẑljk = s(aljk, λ̃1w1,ljk) max

(
0, 1− λ̃2

{ L∑
l′=1

s(al′jk, λ̃1w1,l′jk)
2

}−1/2)
(4.14)

where s(x, c) = sign(x) max(0, |x|− c). For a general weighting scheme, ẑlij can be found

as the solution from the following system of equations:

zljk =
s(aljk, λ̃1w1,ljk)

1 + λ̃2w2
2,ljk

{∑L
l′=1 z

2
l′jkw

2
2,l′jk

}−1/2
(4.15)

74



Functional Differential Graphical Models for Partially Separable Multivariate Gaussian Processes
Chapter 4

for l = 1, . . . , L and i, j = 1, . . . , p. The nonlinear system of equations in (4.15) can be

solved very fast using the following starting point:

ẑstart
ljk = s(aljk, λ̃1w1,ljk) max

(
0, 1− λ̃2

{ L∑
l′=1

s(al′jk, λ̃1w1,l′jk)
2

w2
2,l′jk

}−1/2)
.

Finally, the solution matrix Ẑl has entries
(
Ẑl

)
jk

= ẑljk, and set Z
(k+1)
l = Ẑl.

4.5 Numerical Experiments

The simulations in this section compare the proposed method for joint partially sep-

arable functional differential Gaussian graphical models, with that of [50]. Throughout

this section we denote these methods as DFGMParty and FuDGE, respectively. Other

potentially competing approaches are not included since they are clearly outperformed

by the latter (see [50]). They include non-functional methods as well as estimation of

two separate functional graphical models to estimate ∆.

4.5.1 Simulation Settings for Model 1

This section is based on the simulation settings of Model 1 in [50] with the purpose

of comparing both estimation methods with a data-generating mechanism where partial

separability does not hold. First of all, consider a graph GX = (V,EX) with p(p −

1)/10 edges. This graph is generated with a power-law distribution with expected power

parameter equals to 2 which exhibits as hub-node structure. For more details please refer

to [59].

Second, the graph GX is used to construct a Mp×Mp matrix ΩX as follows. Unless

specified otherwise, the rows and columns of ΩX are sorted in features-first ordering as

in [50]. For (j, k) ∈ EX set the (j, k)-th block in ΩX as δjkIL with δjk a random variable
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sampled from a uniform distribution on [−0.5λ,−0.2λ] ∪ [0.2λ, 0.5λ]. Next, the diagonal

entries of ΩX are set to 1 and the matrix is averaged with its transpose to guarantee

symmetry. We set p = 60 and the positive definiteness of ΩX is guaranteed for λ = 1/4.

Third, a differential edge set E∆ is formed based on the the hub nodes from GX . More

specifically, the nodes in GX are sorted in decreasing order in terms of their degrees and

the first two nodes are selected. Next, for each selected hub node j ∈ V its edges are

sorted in decreasing order of edge magnitude measured as |δjk| for (j, k) ∈ EX . And the

top 20% of such edges are included in the set E∆.

Fourth, for a givenM×M matrixW compute ΩY as ΩY = ΩX+∆ where if (j, k) ∈ E∆

then the (j, k)-th block of ∆ is set as W and 0 otherwise. Notice that the DFGMParty

method can only estimate diagonal entries of W whereas FuDGE estimates the entire

matrix allowing for deviations of the partial separability principle.

With this in mind, two models for W are considered. The first one, denoted as

W fd, is formed by setting Wrs = w if either |r − s| ≥ β or r = s and 0 otherwise for

r, s = 1, . . . ,M . And the second one, W sd, is the same except for the diagonal entries

as follows. The edge set E∆ is partitioned into two halves denoted as E∗ and E∗∗ where

if (j, k) ∈ E∗ set Wss = w for odd s and 0 otherwise. And if (j, k) ∈ E∗∗ set Wss = w

for even s and 0 otherwise. The value of w is sampled from the same distribution as

δjk, and β is a non-negative integer characterizing deviations from partial separability.

The smaller the value of β, the higher the deviation. For clarity of exposition Figure 4.1

illustrates the support of matrices W fd and W sd.
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(a) W fd

(b) W sd for edge set E∗

(c) W sd for edge set E∗∗

Figure 4.1: Sparsity patterns for matrices W fd and W sd. The colored cell indicates
entries with value w. As the the value of β decreases, the deviations from partial
separability increases as DFGMParty can only estimate the diagonal entries. Rows
and column numbers are indicated in each figure.

Finally, random vectors ϑXi ∈ RMp are generated from a mean zero multivariate

normal distribution with covariance matrix (ΩX)−1 yielding discrete and noisy functional

data

X̃ijk = Xij(tk) + εijk, εijk ∼ N(0, σ2
ε) (i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . ,M).
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Here, σ2
ε = 0.52 and Xij(tk) =

∑M
l=1 ϑ

X
iljψl(tk) according to the joint partially separable

Karhunen-Loève expansion in (1). For brevity, only notation for X was defined although

the notation for Y is defined analogously. By setting M = 20, the basis functions

ψ1, . . . , ψ20 are defined as:

ψl(t) =


cos
(
40π{x− 2l−1

40
}
)

+ 1, if l−1
20
≤ x < l

20

0, otherwise

Thus, the orthogonality between these basis functions is given by their disjoint support.

These functions are evaluated on an equally spaced time grid of t1, . . . , tT , with t1 = 0

and tT = 1. In all settings, 100 simulations were conducted with T = 50, M = 20,

p = 60, n ∈ {30, 60, 90} and β ∈ {0, 2, 4}.

4.5.2 Comparison of Results for Model 1

This section compares the proposed method and that of [50]. Figure 4.2 and Table

4.1 show average true/false positive rate curves for model W fd under different deviations

of the partial separability assumption for low and high-dimensional cases. The proposed

method exhibits uniformly higher true positive rates across the full range of false positive

rates. In addition, the weighted group estimator tends to outperform the unweighted

group estimator in the high-dimensional case with n = p/2, whereas the reverse holds

for low-dimensional cases with n ≥ p. Moreover, in the high-dimensional case higher

values of β correspond to higher levels of sparsity in the best performing DFGMParty

estimators for both weighting schemes.

Finally notice that as β increases, deviations from partial separability in W decrease,

and both methods FuDGE and DFGMParty exhibit higher area-under-the-curve esti-

mates. This is an novel result for FuDGE that was not explored in [50] since the authors
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set the diagonal of W to zero.

Similar conclusions can be obtained from Figure 4.3 which illustrates ROC curves for

model W sd under different deviations of the partial separability assumption for low and

high-dimensional cases. However, the performance of the methods in terms of estimated

area under the curve increases for DFGMParty and decreases for FuDGE.
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(a) n = p/2

(b) n = p

(c) n = 1.5p

Figure 4.2: Mean receiver operating characteristic curves for the proposed method
(DFGMParty) and that of [50] (FuDGE). For p = 60, W = W fd and β ∈ {0, 2, 4},
subfigures (a), (b) and (c) correspond to values of n ∈ {30, 60, 90} respectively. Curves
are coded as unweighted group DFGMParty ( ), weighted group DFGMParty
( ) and FuDGE ( ) at 95% of variance explained. In each curve adjacent
points with FPR difference less or equal than 0.10 are interpolated with a solid line.
Otherwise, a dashed line is used. For DFGMParty, the values of α used to compute
the curve values are printed in each panel.
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(a) n = p/2

(b) n = p

(c) n = 1.5p

Figure 4.3: Mean receiver operating characteristic curves for the proposed method
(DFGMParty) and that of [50] (FuDGE). For p = 60, W = W sd and β ∈ {0, 2, 4},
subfigures (a), (b) and (c) correspond to values of n ∈ {30, 60, 90} respectively. Curves
are coded as unweighted group DFGMParty ( ), weighted group DFGMParty
( ) and FuDGE ( ) at 95% of variance explained. In each curve adjacent
points with FPR difference less or equal than 0.10 are interpolated with a solid line.
Otherwise, a dashed line is used. For DFGMParty, the values of α used to compute
the curve values are printed in each panel.
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Table 4.1: Mean area under the curve (and standard error) values for Figures 4.2 and 4.3.

W fd W sd

β = 0 β = 2 β = 4 β = 0 β = 2 β = 4

n
=
p
/
2

A
U

C

FuDGE 0.60(0.09) 0.72(0.08) 0.86(0.03) 0.59(0.09) 0.67(0.11) 0.75(0.13)

DFGMPartyunweighted 0.75(0.11) 0.81(0.08) 0.87(0.04) 0.79(0.11) 0.88(0.10) 0.87(0.04)

DFGMPartyweighted 0.84(0.09) 0.88(0.07) 0.90(0.04) 0.91(0.07) 0.92(0.06) 0.91(0.04)

A
U

C
1
5
† FuDGE 0.15(0.09) 0.29(0.12) 0.71(0.04) 0.15(0.09) 0.23(0.13) 0.39(0.20)

DFGMPartyunweighted 0.40(0.16) 0.53(0.12) 0.69(0.02) 0.47(0.16) 0.66(0.19) 0.69(0.07)

DFGMPartyweighted 0.47(0.16) 0.57(0.14) 0.70(0.03) 0.62(0.16) 0.69(0.14) 0.71(0.06)

n
=
p

A
U

C

FuDGE 0.64(0.09) 0.77(0.07) 0.85(0.02) 0.62(0.09) 0.74(0.11) 0.79(0.15)

DFGMPartyunweighted 0.83(0.09) 0.91(0.06) 0.90(0.04) 0.93(0.15) 0.97(0.03) 0.94(0.03)

DFGMPartyweighted 0.89(0.10) 0.95(0.05) 0.92(0.06) 0.97(0.04) 0.98(0.02) 0.95(0.04)

A
U

C
15
† FuDGE 0.19(0.10) 0.40(0.11) 0.71(0.02) 0.18(0.10) 0.34(0.15) 0.50(0.24)

DFGMPartyunweighted 0.55(0.13) 0.68(0.11) 0.72(0.02) 0.85(0.30) 0.88(0.07) 0.78(0.06)

DFGMPartyweighted 0.68(0.11) 0.78(0.12) 0.75(0.04) 0.88(0.08) 0.90(0.07) 0.84(0.06)

n
=

1.
5p

A
U

C

FuDGE 0.67(0.07) 0.83(0.05) 0.85(0.00) 0.65(0.10) 0.79(0.13) 0.82(0.15)

DFGMPartyunweighted 0.93(0.04) 0.98(0.01) 0.98(0.01) 1.00(0.00) 1.00(0.00) 0.99(0.00)

DFGMPartyweighted 0.94(0.03) 0.97(0.01) 0.96(0.01) 0.99(0.01) 0.99(0.01) 0.98(0.01)

A
U

C
15
† FuDGE 0.22(0.09) 0.49(0.10) 0.72(0.01) 0.19(0.10) 0.42(0.17) 0.58(0.24)

DFGMPartyunweighted 0.69(0.09) 0.90(0.04) 0.88(0.04) 0.99(0.01) 0.98(0.01) 0.94(0.02)

DFGMPartyweighted 0.73(0.09) 0.82(0.08) 0.77(0.03) 0.94(0.04) 0.94(0.04) 0.89(0.05)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.

4.5.3 Simulation Settings for Model 2

An initial conditional independence graph G∆ = (V,E∆) is generated from a power

law distribution with parameter π = pr{(j, k) ∈ E}. Then, for a fixed M , a sequence of

edge sets E∆
1 , . . . , E

∆
M is generated so that E∆ =

⋃M
l=1E

∆
l . A set of common edges to all

edge sets is computed for a given proportion of common edges τ ∈ [0, 1].

Next, p×p dense precision matrices ΩX
l and ΩY

l are generated and set ∆l = ΩX
l −ΩY

l
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where the set {(i, j) : (∆l)ij 6= 0} is the same as the edge set E∆
l . More specifically, a

graph GX = (V,EX) is generated according to a power law with parameter π̃ > π and

precision matrices ΩX
l are obtained by following the steps in Section 3.4 in the Appendix.

Then a p× p matrix ∆l is computed with entries (∆l)ij = c
(
ΩX
l

)
ij

if (i, j) ∈ E∆
l , and 0

otherwise for c ∈ [0, 1]. Finally, set ΩY
l = ΩX

l −∆l. Thus, the parameter c characterizes

the magnitude of the off-diagonal entries in ∆l. A fully detailed description of this step is

included in the Section A.13 in the Appendix. Then, following the steps in 3.4, a graph

GX = (V,EX) with parameter π̃ > π and a p × p precision matrices ΩX
l are obtained.

Then a p× p matrix ∆l is computed with entries (∆l)ij = c
(
ΩX
l

)
ij

if (i, j) ∈ E∆
l , and 0

otherwise. Finally, set ΩY
l = ΩX

l −∆l.

Denote by ΣX a block diagonal covariance matrix with p × p diagonal blocks

ΣX
l = al(Ω

X
l )−1. The decaying factors al = 3l−1.8 guarantee that tr(ΣX

l ) decreases

monotonically in l. Then, random vectors ϑXi ∈ RMp are generated from a mean zero

multivariate normal distribution with covariance matrix ΣX yielding discrete and noisy

functional data

X̃ijk = Xij(tk) + εijk, εijk ∼ N(0, σ2
ε) (i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . ,M).

Here, σ2
ε = 0.05 and Xij(tk) =

∑M
l=1 ϑ

X
iljψl(tk) according to the joint partially separable

Karhunen-Loève expansion in (1). For brevity, only notation for X was defined although

the notation for Y is defined analogously. Fourier basis functions ψ1, . . . , ψM evaluated

on an equally spaced time grid of t1, . . . , tT , with t1 = 0 and tT = 1, were used to generate

the data. In all settings, 100 simulations were conducted. To resemble real data example

from Section 4.6 below, we set T = 50, M = 20, π̃ = 0.30, c = 0.20 and π = 10% for a

sparse graph.
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4.5.4 Comparison of Results for Model 2

This section compares the proposed method and that of [50] with a data-generating

mechanism where partial separability holds. In particular, FuDGE is implemented using

code provided by the authors.

As performance metrics, the true and false positive rates of correctly identifying

edges in graph G∆ are computed over a range of γ values and a coarse grid of five evenly

spaced points α ∈ [0, 1]. The value of α maximizing the area under the receiver operating

characteristic curve is considered for the comparison. In all cases, we set π = 0.10 and

c = 0.2. The two methods are compared using L principal components explaining at least

95% of the variance. For all simulations and both methods, this threshold results in the

choice of L = 9 or L = 10 components.

Figure 4.4a and Table 4.2 show average true/false positive rate curves for different

proportion of common edges across basis for the high-dimensional case n = p/2. The

smoothed curves are computed using the supsmu R package that implements Super-

Smoother [45], a variable bandwidth smoother that uses cross-validation to find the best

bandwidth. Table 4.2 shows the mean and standard deviation of area under the curve

estimates for various settings. The proposed method exhibits uniformly higher true pos-

itive rates across the full range of false positive rates. In particular, the weighted group

estimator tends to outperform the unweighted group estimator. Moreover, as the pro-

portion of common edges increases, the best performing value of α in terms of area under

the curve decreases. On the other hand, Figures 4.4b and 4.4c summarize results for the

large sample case n ≥ p. In both cases, and contrary to the high-dimensional case, the

unweighted estimator exhibits the highest area under the curve. Similar conclusions can

be obtained for c = 0.4 as seen in Section A.14 in the Appendix.
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(a) n = p/2

(b) n = p

(c) n = 1.5p

Figure 4.4: Mean receiver operating characteristic curves for the proposed method
(DFGMParty) and that of [50] (FuDGE). For p = 60, τ ∈ {0, 0.1, 0.2}, π = 0.10
and c = 0.2 subfigures (a), (b) and (c) correspond to values of n ∈ {30, 60, 90}
respectively. Curves are coded as unweighted group DFGMParty ( ), weighted
group DFGMParty ( ) and FuDGE ( ) at 95% of variance explained. In each
curve adjacent points with FPR difference less or equal than 0.10 are interpolated
with a solid line. Otherwise, a dashed line is used. For DFGMParty, the values of α
used to compute the curve values are printed in each panel.
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Table 4.2: Mean area under the curve (and standard error) values for Figure 4.4.

τ

0 0.1 0.2
n

=
p
/2

A
U

C
FuDGE 0.51(0.02) 0.50(0.02) 0.51(0.02)

DFGMPartyunweighted 0.57(0.02) 0.55(0.02) 0.59(0.02)

DFGMPartyweighted 0.56(0.02) 0.59(0.02) 0.60(0.02)

A
U

C
1
5
† FuDGE 0.08(0.01) 0.08(0.01) 0.08(0.02)

DFGMPartyunweighted 0.21(0.04) 0.10(0.01) 0.12(0.01)

DFGMPartyweighted 0.20(0.05) 0.15(0.03) 0.13(0.02)

n
=
p

A
U

C

FuDGE 0.50(0.02) 0.50(0.02) 0.51(0.02)

DFGMPartyunweighted 0.63(0.02) 0.64(0.01) 0.66(0.02)

DFGMPartyweighted 0.63(0.02) 0.64(0.02) 0.65(0.03)

A
U

C
15
† FuDGE 0.08(0.02) 0.08(0.02) 0.08(0.02)

DFGMPartyunweighted 0.26(0.06) 0.29(0.06) 0.31(0.08)

DFGMPartyweighted 0.28(0.05) 0.31(0.07) 0.31(0.07)

n
=

1.
5p

A
U

C

FuDGE 0.50(0.02) 0.50(0.02) 0.51(0.02)

DFGMPartyunweighted 0.64(0.02) 0.67(0.02) 0.70(0.03)

DFGMPartyweighted 0.64(0.02) 0.67(0.02) 0.70(0.03)

A
U

C
15
† FuDGE 0.08(0.02) 0.07(0.02) 0.08(0.02)

DFGMPartyunweighted 0.33(0.03) 0.36(0.03) 0.43(0.06)

DFGMPartyweighted 0.32(0.04) 0.36(0.03) 0.43(0.06)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.

4.6 Application to Functional Brain Connectivity

In this section, the proposed method is used to reconstruct the differential brain

connectivity structure using functional magnetic resonance imaging (fMRI) data from

the Human Connectome Project. Specifically, the data from left- and right-hand finger

movements are considered. A full description of the data can be found in Application
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section in Chapter 3.

Figure 4.5a shows the differential graph estimated using the DFGMParty method.

The unweighted group penalty is used as the data consists of n = 1054 subjects and

p = 360 regions of interest (ROIs). The choice of penalty parameters γ = 2.7 × 10−3

and α = 0.95 were used to estimate a very sparse differential graph exhibiting a similar

number of edges to a differential graph obtained from the psFGGM method in Figure

4.5b. More details regarding the application of the psFGGM method to the HCP data

can be found in Section 3.5 in Chapter 3.

The graphs in figures 4.5a and 4.5b have several differences. First, the two graphs

do not have any common edge. The DFGMParty differential graph exhibits a similar

number of edges between hemispheres relative to the within-hemisphere edges as seen

in figures 4.5e and 4.5f. This is a contrasting feature as the psFGGM differential graph

only presents within-hemishphere edges. Indeed, this result holds even for higher values

of the γ penalty parameter in the DFGMParty method.

Second, the DFGMParty differential graph contains almost all the connected ROIs

in the psFGGM differential graph as seen in 4.5d. However, the DFGMParty differential

graph connects many more ROIs as seen in Figure 4.5c.

Finally, almost all the edges in the psFUDGE differential graph connect either non-

adjacent ROIs or ROIs with different functionalities. This is another main difference,

as the psFGGM differential graph connects mostly adjacent ROIs mostly with same

functionalities. More specifically, Figures 4.5g and 4.5h show the connectivity patterns

for the visual and motor ROIs in the DFGMParty differential graph. The former exhibit

mostly within-hemisphere edges, and the latter between-hemisphere edges. And there

are five motor ROIS connected to five visual ROIs.
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(a) Differential graph using DFGMParty (b) Differential graph using FGMParty in Chapter 3

(c) Unique ROIs for DFGMParty graph in Figure (a) (d) Common ROIs between figures (a) and (b)

(e) Edges between hemispheres (f) Edges within hemispheres

(g) Edges for visual ROIs (h) Edges for motor ROIs

Figure 4.5: DFGMParty estimated functionally connected cortical ROIs for the left-
and right-hand motor tasks. Each sub-figure shows a flat brain map of the left and
right hemispheres (in that order). ROIs having a positive degree of connectivity in
each estimated graph are colored based on their functionality [14]: visual (blue),
motor (green), mixed motor (light green), mixed other (red) and other (purple).
Edges within and between hemispheres are colored in white and yellow, respectively.
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4.7 Conclusions

The estimation method presented in this chapter is a useful tool to infer differential

graphical models from complex functional data. Indeed, the joint partial separability

assumption reduces the number of free parameters substantially, especially when a large

number of functional principal components is needed to explain a significant amount

of variation. This also translated in faster convergence times. Moreover, the empirical

findings in the application section highlights the importance of direct estimation methods

for differential graphs rather than computing differences on separate estimators as the

resulting graph can change substantially.

The proposed method for functional graphical model estimation is equally applicable

to dense or sparse functional data, observed with or without noise. Moreover, the JTL

estimator provides a very efficient estimation method that can work with high dimensional

functional data.

In the light of the findings of this work there are several potential extensions. First

of all, the JTL estimator could be used in other problems. For instance, multi-class

extensions of both the differential network estimator of [53] and the sparse quadratic

discriminant analysis of [58] would benefit from the JTL estimator. Second, joint partial

separability provide a useful framework to extend the differential latent variable graphical

models of [60] to the functional setting.
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Appendix

A.1 Computation of Karhunen-Loève Expansion

This section illustrates the computation of the eigenvalues and eigenfunctions of

the covariance kernel function Gjj(s, t) = cov{Xj(s), Xj(t)} to obtain the univariate

Karhunen-Loève expansion of Xj(j = 1, . . . , p) in equation (2.2). More details can be

found in Chapter 8 of [61].

Consider functional data {Xij(t) ∈ Rp : t ∈ τ} where subjects are indexed by i =

1, . . . , n, ROIs by j = 1, . . . , p, and measurements are taken on a grid of equally spaced

time points τ = {t1 = 0, . . . , tK = 1}. Denote xijk = Xij(tk), and consider noisy

measurements yijk = xijk + εijk where εijk are i.i.d. with zero mean and variance σε.

First of all, the covariance kernel function is estimated. Let the sample mean function

be computed as µ̂j(tk) = n−1
∑n

i=1 yijk and let the n×K matrix Ỹ with entries
(
Ỹ
)
jk

=

yijk−µ̂j(tk). Then, the sample covariance matrix is computed as Gj = n−1ỸỸ
T
. Second,

the eigenfunctions of Gj are computed. By denoting the singular value decomposition of

Ỹ as UDWT then Gj = n−1WD2WT . Thus, the eigenfunctions {φjl}l≥1 are estimated

by interpolating the k-dimensional column vector n−1/2W·l with φ̂jl(tk) = n−1/2Wkl.

And finally, the random scores estimators ξ̂ij are computed as the inner product between
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φ̂jl and Xj. This inner product equals
∫ 1

0
φ̂jl(s)Xj(s)ds which is estimated by trapezoidal

rule.

A.2 Proofs for Section 2.3

Proof of Theorem 2.3.1.

(1⇔ 2) Suppose 1 holds and let λGjl = 〈G(eljϕl), eljϕl〉p be the eigenvalues of G, and

set Σl =
∑p

j=1 λ
G
jlelje

T
lj. Since (eljϕl)⊗p (eljϕl) = (elje

T
lj)ϕl ⊗ ϕl,

G =
∞∑
l=1

p∑
j=1

λGjl(eljϕl)⊗p (eljϕl) =
∞∑
l=1

(
p∑
j=1

λGjlelje
T
lj

)
ϕl ⊗ ϕl =

∞∑
l=1

Σlϕl ⊗ ϕl,

and 2 holds. If 2 holds, let {elj}pj=1 be an orthonormal basis for Σl. Then

G(eljϕl) =
∞∑
l′=1

ϕl′ ⊗ ϕl′ {Σl′ (eljϕl)} =
∞∑
l′=1

(Σl′elj)ϕl′ ⊗ ϕl′(ϕl)

= (Σlelj)ϕl = λΣl
j eljϕl,

so eljϕl are the eigenfunctons of G.

(2⇔ 3) If 2 holds, set σljj = (Σl)jj , so the expression for Gjj clearly holds. Next, for

l 6= l′,

cov (〈Xj, ϕl〉, 〈Xk, ϕl′〉) = 〈ϕl,Gjk(ϕl′)〉 = 〈ϕl, σl′jkϕl′〉 = 0,

so 3 holds. If 3 holds, then define σljk = cov(〈Xj, ϕl〉, 〈Xk, ϕl〉) for j 6= k, and set

(Σl)jk = σljk (j, k ∈ V ). Then 2 clearly holds.

(1 ⇔ 4) Suppose 1 holds. By Theorem 7.2.7 of [10], and since
∑p

j=1 elje
T
lj is the
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identity matrix,

X =
∞∑
l=1

p∑
j=1

〈X, eljϕl〉peljϕl =
∞∑
l=1

p∑
j=1

(
p∑

k=1

eljk〈Xk, ϕl〉

)
eljϕl =

∞∑
l=1

(
p∑
j=1

elje
T
lj

)
θlϕl,

so that 4 holds. If 4 holds, let Σl be the covariance matrix of θl, and {elj}pj=1 an or-

thonormal eigenbasis for Σl. Then

G =
∞∑
l=1

∞∑
l′=1

cov(θl, θl′)ϕl ⊗ ϕl′ =
∞∑
l=1

var(θl)ϕl ⊗ ϕl =
∞∑
l=1

(
p∑
j=1

λΣl
j elje

T
lj

)
ϕl ⊗ ϕl

=
∞∑
l=1

p∑
j=1

λΣl
j (eljϕl)⊗p (eljϕl),

so that eljϕl are the eigenfunctions of G.

Proof of Theorem 2.3.2.

To prove 1, for any orthonormal basis {ϕ̃l}∞l=1 of L2[0, 1],

L∑
l=1

p∑
j=1

var (〈Xj, ϕ̃l〉) =
L∑
l=1

p∑
j=1

〈Gjj(ϕ̃l), ϕ̃l〉 = p
L∑
l=1

〈H(ϕ̃l), ϕ̃l〉.

Because the eigenvalues of H have multiplicity one, its eigenspaces are one-dimensional,

and equality is obtained if and only if the ϕ̃l span the first L eigenspaces of H, as claimed.

For the second claim, using part 2 of Theorem 2.3.1, we have H = p−1
∑∞

l=1 tr(Σl)ϕl⊗

ϕl, and {ϕl}∞l=1 is an orthonormal eigenbasis of H. Since it was assumed that the eigenval-

ues of H are unique, and the Σl are assumed to be ordered so that tr(Σl) is nonincreasing,

this yields the spectral decomposition of H.
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A.3 Left-Hand Task Partial Separability Results for

Sections 2.3 and 2.4.2

(a) (b)

Figure A.1: Estimated correlation structures of RLp-valued random coefficients from
different L-truncated Karhunen-Loève type expansions for the left-hand task dataset.
The figure shows the upper left 7 x 7 basis blocks of the absolute correlation matrix
in basis-first order for: (a) functional principal component coefficients (ξT1 , . . . , ξ

T
p )T

in equation 2.2 as in [17], and (b) random coefficients (θT1 , . . . , θ
T
L)T under partial

separability in (2.3)
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Figure A.2: Estimated functional principal components from L-truncated
Karhunen-Loève (KL) type expansions for the left-hand task dataset. Curves are
coded as: univariate KL eigenfunctions {φjl}pj=1 ( ) and their average p−1

∑p
j=1 φjl

( ), and partially separable eigenfunctions ϕl ( ). Values on the top of each figure
indicate the marginal and cumulative proportion of variance explained under partial
separability.
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(a) (b)

Figure A.3: Comparison between functional principal components from L-truncated
Karhunen-Loève (KL) type expansions for the left-hand dataset. (a): Boxplots for
component-wise absolute cosine similarity between ϕl and φjl for j = 1, . . . , p for
every principal component. (b): Proportion of variance explained for each expan-
sion different number of principal components. Curves are coded as: univariate KL
eigenfunctions φjl ( ) and partially separable eigenfunctions ϕl ( ).
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Figure A.4: Estimated variance explained for different L-truncated Karhunen-Loève
type expansions for left-hand task fMRI curves. Left: In-Sample. Right: Out-of-Sam-
ple. Boxplots are coded as: functional principal components ( ) in (2.2), partially
separable expansion ( ) in (2.3), and joint partially separable expansion ( ) in
(2.6).
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Figure A.5: Estimated variance explained for different L-truncated Karhunen-Loève
type expansions for left-hand task fMRI curves. The figure shows boxplots for the ratio
out-of-sample over in-sample variance explained. Boxplots are coded as: functional
principal components ( ) in (2.2), partially separable expansion ( ) in (2.3), and
joint partially separable expansion ( ) in (2.6).
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A.4 Block Correlation Computation in Sections 2.2

and 2.3.3

In this section I discussed how to compute the sample correlation matrices for the

random score of the Karhunen-Loève type expansions. Throughout this section, the data

consists of curves {Xij(·)} for i = 1, . . . , n and j = 1, . . . , p.

A.4.1 Univariate Karhunen-Loève Expansion

Consider a one dimensional Karhunen-Loève decomposition for each j = 1, . . . , p and

l ≥ 1 according to the model:

Xj(t) =
∞∑
l=1

ξjlφjl(t)

First, I compute estimates φ̂jl(·),j = 1, . . . , p, l = 1, . . . , L from the full data set. Second,

I compute (since the curves are already centered) the scores ξ̂ilj =
∫ 1

0
φ̂jl(t)Xij(t)dt for

i = 1, . . . , n. These integrals are estimated numerically. Then, a L× L block covariance

matrix Γ̂, where the (l,m)-th block Γ̂lm has (j, k)-th element

1

n

n∑
i=1

ξ̂ilj ξ̂imk.

Finally, a block correlation matrix is computed as:

diag(Γ̂)−1/2Γ̂diag(Γ̂)−1/2

.
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A.4.2 Partially Separable Karhunen-Loève Expansion

Under partial separability we consider a multivariate Karhunen-Loève expansion for

l ≥ 1 according to the model:

Xj(t) =
∞∑
l=1

θljϕl(t)

First, I compute estimates ϕ̂l(·), l = 1, . . . , L from the full data set. Second, I compute

(since the curves are already centered) the scores θ̂ilj =
∫ 1

0
ϕ̂l(t)Xij(t)dt for i = 1, . . . , n.

These integrals are estimated numerically. Then, a L × L block covariance matrix Σ̂,

where the (l,m)-th block Σ̂lm has (j, k)-th element

1

n

n∑
i=1

θ̂ilj θ̂imk.

Finally, a block correlation matrix is computed as:

diag(Σ̂)−1/2Σ̂diag(Σ̂)−1/2

.
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A.5 Out-of-Sample Performance Analysis In Section

2.3.4

In this section I discuss in detail the in- and out-of-sample analysis to compare the

univariate and partially separable Karhunen-Loève expansions. Let {Xij(t) : t ∈ [0, 1]}

be the featured-centered observed fMRI curves for i = 1, . . . , n and j = 1, . . . , p so that

n−1
∑n

i=1 Xij = 0.

A.5.1 Univariate Karhunen-Loève Expansion

Based on the work of [17], I consider a one dimensional Karhunen-Loève decomposi-

tion for each j = 1, . . . , p and l ≥ 1 according to the model:

Xj(t) =
∞∑
l=1

ξjlφjl(t)

I repeatedly split the data into {X·j(·)}train and {X·j(·)}test each time. Let X
train

j and

X
test

j be the testing and training means, which will not be 0. First, I compute estimators

φ̂jl(·) for j = 1, . . . , p and l = 1, . . . , L from a training set {X·j(·)}train.

Next, for curves in the testing set, I compute projected curves as:

X̂ij(t) = X
test

j (t) +
L∑
l=1

ξ̂jlφ̂jl(t), ξ̂ijl =

∫ 1

0

φ̂jl(t)[Xij(t)−X
test

j (t)]dt.

Finally, the variance explained in the testing set is computed as:

1−

∑
i

∑p
j=1

∫ 1

0

[
Xij(t)− X̂ij(t)

]2

dt∑
i

∑p
j=1

[
Xij(t)−X

test

j

]2

dt
,

where the index i ranges over the testing set. Since the curves can only be computed on
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a discrete grid, the integrals are computed using numerical integration.

A.5.2 Partially Separable Karhunen-Loève Expansion

Under partial separability we consider a multivariate Karhunen-Loève expansion for

l ≥ 1 according to the model:

Xj(t) =
∞∑
l=1

θljϕl(t)

Using the same splits as for fgm, I first compute estimators ϕ̂l(·) for l = 1, . . . , L from

a training set {X·j(·)}train, where the training curves must be centered as part of this

step with respect to X
train

j . Next, I compute:

X̂ij(t) = X
test

j (t) +
L∑
l=1

θ̂iljϕ̂l(t), θ̂ilj =

∫ 1

0

ϕ̂l(t)[Xij(t)−X
test

j ]dt.

Finally, the fraction of variance explained by the partially separable basis on the testing

set is computed as

1−

∑
i

∑p
j=1

∫ 1

0

[
Xij(t)− X̂ij(t)

]2

dt∑
i

∑p
j=1

[
Xij(t)−X

test

j

]2

dt
,

A.6 Proofs For Section 3.2.1

Proof of Theorem 3.2.1.
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We have

cov
{
Xj(s), Xk(t) | X−(j,k)

}
= cov

{
∞∑
l=1

θljϕl(s),
∞∑
l′=1

θl′jϕl′(s) | X−(j,k)

}

=
∞∑

l,l′=1

cov
{
θlj, θl′k | X−(j,k)

}
ϕl(s)ϕl′(t)

=
∞∑
l=1

cov
{
θlj, θlk | θl,−(j,k)

}
ϕl(s)ϕl(t)

=
∞∑
l=1

σ̃ljkϕl(s)ϕl(t)

Convergence of the sum in the last line follows since
∑∞

l=1 σ̃
2
ljk ≤

∑∞
l=1 σljjσlkk <∞.

Proof of Corollary 3.

The result follows immediately, since (j, k) /∈ E if and only if σ̃ljk = 0 for all l ∈ N,

which holds if and only if (j, k) /∈ El for all l ∈ N.

Proposition 2. Let θlj = 〈Xj, ϕl〉, and El be the edge set of the Gaussian graphical

model for θl. Suppose that the following properties hold for each j, k ∈ V and l ∈ N.

• E(θlj|X−(j,k)) = E(θlj|θl,−(j,k)) and E(θljθlk|X−(j,k)) = E(θljθlk|θl,−(j,k))

• (j, k) /∈ El and (j, k) /∈ E ′l implies cov(θlj, θl′k|X−(j,k)) = 0.

Then E =
⋃∞
l=1El.

Proof of Proposition 2.

In general, we may write Xj =
∑∞

l=1 θljϕl, though the coefficients θlj = 〈Xj, ϕl〉 need

not be uncorrelated across l when G is not partially separable. Then, under the first
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assumption of the proposition,

cov
{
Xj(s), Xk(t) | X−(j,k)

}
=
∞∑
l=1

cov{θlj, θlk | X−(j,k)}ϕl(s)ϕl(t)

+
∑
l 6=l′

cov{θlj, θl′k | X−(j,k)}ϕl(s)ϕl′(t)

=
∞∑
l=1

cov{θlj, θlk | θl,−(j,k)}ϕl(s)ϕl(t)

+
∑
l 6=l′

cov{θlj, θl′k | X−(j,k)}ϕl(s)ϕl′(t).

Now, since {ϕl ⊗ ϕl′}∞l,l′=1 is an orthonormal basis of L2([0, 1]2), (j, k) /∈ E if and only

if all of the coefficients in the above expansion are zero. Hence, if (j, k) /∈ E, we have

cov{θlj, θlk | θl,−(j,k)} = 0 for all l ∈ N, hence (j, k) /∈
⋃∞
l=1 El. On the other hand, if

(j, k) /∈ El for all l, the second assumption of the proposition implies that cov{θlj, θl′k |

X−(j,k)} = 0 for all l 6= l′, whence all of the coefficients in the above display are zero, and

(j, k) /∈ E.

A.7 Proof For Section 3.3

Recall that ‖·‖ is the ordinary norm on L2[0, 1]. For a linear operatorA on L2[0, 1] and

an orthonormal basis {φl}∞l=1 for this space, the Hilbert-Schmidt norm of A is ‖A‖HS =

(
∑∞

l=1‖A(φl)‖2)
1/2
, where this definition is independent of the chosen orthonormal basis.

In particular, for any f ∈ L2[0, 1], ‖f ⊗ f‖HS = ‖f‖2.

Lemma 1. Suppose Assumption 2 holds, and let µ̂j and Ĝjk (j, k ∈ V ) be the mean and

covariance estimates in (??) for a sample of fully observed functional data Xi ∼ X. Then
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there exist constants C̃1, C̃2, C̃3 > 0 such that, for any 0 < δ ≤ C̃3 and for all j, k ∈ V ,

pr
(
‖Ĝjk − Gjk‖HS ≥ δ

)
≤ C̃2 exp

(
−C̃1nδ

2
)
.

Proof of Lemma 1.

Without loss of generality, assume µj(t) = E {X1j(t)} ≡ 0 and set Yijk = Xij⊗Xik(t),

Y jk = n−1
∑n

i=1 Yijk. Then the triangle inequality implies

pr
(
‖Ĝjk − Gjk‖HS ≥ δ

)
≤ pr

(
‖Y jk − Gjk‖HS ≥

δ

2

)
+ 2 max

j∈V
pr

(
‖µ̂j‖2 ≥ δ

2

)
. (A.1)

We begin with the first term on the right-hand side of (A.1), and will apply Theorem

2.5 of [41]. Specifically, we need to find L1, L2 > 0 such that

E
(
‖Yijk − Gjk‖bHS

)
≤ b!

2
L1L

b−2
2 , (b = 2, 3, . . .),

which will then imply that

pr

(
‖Y jk − Gjk‖HS ≥

δ

2

)
≤ 2 exp

(
− nδ2

8L1 + 4L2δ

)
. (A.2)

Let Mj =
∑∞

l=1 σljj < M and write Xj =
∑∞

l=1 σ
1/2
ljj ξiljϕl, where ξilj are standardized

random variables with mean zero and variance one, independent across i and uncorrelated
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across l. Then, for any b = 2, 3, . . . , by Jensen’s inequality,

‖Yijk − Gjk‖bHS =

{
∞∑

l,l′=1

σljjσl′kk (ξiljξil′k − δll′rljk)2

}b/2

= (MjMk)
b/2

{
∞∑

l,l′=1

σljjσl′kk
MjMk

(ξiljξil′k − δll′rljk)2

}b/2

≤ (MjMk)
b/2−1

∞∑
l,l′=1

σljjσl′kk |ξiljξil′k − δll′rljk|b ,

where δll′ is the Kronecker delta. By Assumption 2, one has E(|ξilj|2b) ≤ 2(2ς2)bb! where,

without loss of generality, we may assume ς2 ≥ 1. The fact that |rljk| < 1 combined with

the Cr inequality implies that

sup
l,l′

E (|ξiljξil′k − δll′rljk|) ≤ 2b−1 sup
l

{
E(|ξilj|2b) + 1

}
≤ 2b+1{(2ς2)bb!}.

Thus,

E
(
‖Yijk − Gjk‖bHS

)
≤ b!

2
(4Mς2)b−2(8Mς2)2,

and we can take L2 = 4Mς2 and L1 = 2L2
2 in (A.2).

By similar reasoning, we can find constants L̃1, L̃2 > 0 such that

E(‖X1j‖b) ≤
b!

2
L̃1L̃

b−2
2 , (b = 2, 3, . . .),

whence

pr

(
‖µ̂j‖ ≥

δ

2

)
≤ 2 exp

(
− nδ2

8L̃1 + 4L̃2δ

)
(A.3)

Now, setting C̃3 ≤ 2 and 0 < δ < C̃3, we find that pr(‖µ̂j‖2 ≥ δ/2) is also bounded by the

right hand side of (A.3), since δ/2 < 1. Hence, choosing C̃−1
1 = max{8L1 + 4L2C̃3, 8L̃1 +

4L̃2C̃3} and C̃2 = 6, (A.1)–(A.3) together imply the result.
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Proof of Theorem 3.3.1.

Recall that σljk = 〈Gjk(ϕl), ϕl〉 and sljk = 〈Ĝjk(ϕ̂l), ϕ̂l〉. Thus, by Lemma 4.3 of [41]

and Assumption 2,

|sljk − σljk| ≤ |〈Gjk(ϕl), ϕl − ϕ̂l〉|+ |〈Gjk(ϕl − ϕ̂l), ϕ̂l〉|+ |〈[Gjk − Ĝjk](ϕ̂l), ϕ̂l〉|

≤ ‖Gjk(ϕl)‖‖ϕl − ϕ̂l‖+ ‖Gjk(ϕl − ϕ̂l)‖‖ϕ̂l‖+ ‖[Gjk − Ĝjk](ϕ̂l)‖‖ϕ̂l‖

≤ 2Mτl‖Ĥ − H‖HS + ‖Ĝjk − Gjk‖HS. (A.4)

Now, by applying similar reasoning as in the proof of Lemma 1, there exist C∗1 , C
∗
2 , C

∗
3 > 0

such that, for all 0 < δ ≤ C∗3 ,

pr
(
‖Ĥ − H‖HS ≥ δ

)
≤ C∗2 exp

{
−C∗1nδ2

}
.

Next, let τmin = minl∈N τl > 0, and C̃j as in Lemma 1. Set C3 = min{4MτminC
∗
3 , 2C̃3}

and observe that 0 < δ < C3 implies that δ(4Mτl)
−1 < C∗3 (l ∈ N) and δ/2 < C̃3. Hence,

by applying (A.4), when 0 < δ < C3, for any l ∈ N and any j, k ∈ V,

pr (|sljk − σljk| > δ) ≤ pr

(
‖Ĥ − H‖HS >

δ

4Mτl

)
+ pr

(
‖Ĝjk − Gjk‖HS >

δ

2

)
≤ C∗2 exp{−C∗1nδ2(4Mτl)

−2}+ C̃2 exp{−C̃1n(δ/2)2}.

Hence, setting C2 = C∗2 + C̃2 and C1 = min{C∗1(4M)−2, C̃1 min(τ 2
min, 1)/4}, the result

holds.

Proof of Corollary 4.

Define ĉlj =
√
sljj/σljj and, for ε ∈ (0, 1), the events

Alj(ε) = {|1− ĉlj| ≤ ε} (l ∈ N, j ∈ V ).
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Note that

|r̂ljk − rljk| ≤
|sljk − σljk|
ĉlj ĉlkπl

+ |1− (ĉlj ĉlk)
−1|.

Suppose 0 < δ ≤ ε. Then

pr (|r̂ljk − rljk| ≥ 2δ) ≤ 2 max
j∈V

pr{Alj(ε)c}+ pr [Alj(ε) ∩ Alk(ε) ∩ {|r̂ljk − rljk| ≥ 2δ}]

≤ 2 max
j∈V

pr{Alj(ε)c}+ pr
{
|sljk − σljk| ≥ δ(1− ε)2πl

}
+ pr

{
|1− ĉlj ĉlk| ≥ δ(1− ε)2

}
. (A.5)

We next obtain bounds for the first and last terms of the last line above. Let Cj be

as in Theorem 3.3.1, and π = maxl∈N πl. If D3 = min(ε, C3π
−1) and 0 < δ ≤ D3, then

pr{Alj(ε)c} ≤ pr(|1− ĉ2
lj| > ε) = pr(|sljj − σljj| > εσljj) ≤ pr(|sljj − σljj| > δπl)

≤ C2 exp{−C1nτ
−2
l π2

l δ
2}.

Next, for any a, b, c > 0 such that |1 − ab| ≥ 3c, we must have either |1 − a| ≥ c or

|1− b| ≥ c. By Theorem 3.3.1,

pr

{
|1− ĉlj| >

δ(1− ε)2

3

}
≤ pr

{
|sljj − σljk| >

δ(1− ε)2πl
3

}
≤ C2 exp

{
−C1nπ

2
l δ

2τ−2
l (1− ε)4/9

}
.

Putting these facts together, (A.5) becomes

pr (|r̂ljk − rljk| > 2δ) ≤ 2C2 exp{−C1nτ
−2
l π2

l δ
2}+ C2 exp{−C1(1− ε)4nτ−2

l π2
l δ

2}

+ 2C2 exp
{
−C1nπ

2
l δ

2τ−2
l (1− ε)4/9

}
.

Taking D3 as already stated, D2 = 5C2 and D1 = C1(1− ε)4/9, the result holds.
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A.7.1 Lemma 2 and Proof of Theorem 3.3.2

We introduce some additional notation. First, let ‖·‖E denote the usual Euclidean

norm on Rm of any dimension, where the dimension will be clear from context. Recall

that, for a p× p matrix ∆, �∆�∞ = maxj=1,...,p

∑p
k=1 |∆jk|, �∆�1 =

��∆T
��
∞ , and define

the vectorized norm ‖∆‖∞ = maxj,k=1,...,p |∆|jk. Additionally, for S ⊂ V × V, ∆S is the

vector formed by the elements ∆jk, (j, k) ∈ S. Finally, with Dj and ml as in Corollary 4,

define functions

n(δ; c) =
log(D2c)

D1δ2
, δ(n; c) =

{
log(D2c)

D1n

}1/2

(c, δ > 0, n ∈ N). (A.6)

Before proceeding to the results, we describe our primal-dual witness approach as

a modification of that of [40] to account for the presence of the group Lasso penalty

in (3.8). Of importance are the sub-differentials of each of the penalty terms in (3.8),

omitting the tuning parameter factor, evaluated at a generic set of inputs (Υ1, . . . ,ΥL).

Let υljk = (Υl)jk. The sub-differential contains a restricted set of stacked matrices Z =

(Zl)
L
l=1, Zl ∈ Rp×p. For the Lasso penalty, these satisfy

(Zl)jk =


0 if j = k

sgn(υljk) if j 6= k, υljk 6= 0

∈ [−1, 1] if j 6= k, υljk = 0.

(A.7)

In the case of the group penalty, define υ·jk = (υ1jk, . . . , υLjk)
T and z·jk =

{(Z1)jk, . . . , (ZL)jk}T . Then, for the group penalty, Z must satisfy

z·jk =


0 if j = k

υ·jk
‖υ·jk‖E

if j 6= k, ‖υ·jk‖E 6= 0

∈ {y ∈ RL : ‖y‖E ≤ 1} if j 6= k, ‖υ·jk‖E = 0.

(A.8)

108



Appendix Chapter A

We construct the so-called primal-dual witness solutions {(Ξ̃l, Z̃l) : l = 1, . . . , L} as

follows.

1. With El = El ∪ (1, 1) ∪ · · · ∪ (p, p), define

(Ξ̃1, . . . , Ξ̃L) = arg min
Υl�0,Υl=ΥT

l ,Υl,E
c
l
=0

L∑
l=1

{
tr(R̂lΥL)− log(|Υl|)

}

+ γ

α
L∑
l=1

∑
j 6=k

|υljk|+ (1− α)
∑
j 6=k

(
L∑
l=1

υ2
ljk

)1/2
 (A.9)

2. Select elements Z̃1 and Z̃2 of the Lasso and group penalty sub-differentials evalau-

ated at (Ξ̃1, . . . , Ξ̃L), respectively, that satisfy the optimality condition

[
R̂l − Ξ̃−1

l + γ
{
αZ̃1l + (1− α)Z̃2l

}]
El

(l = 1, . . . , L). (A.10)

3. Update

(
Z̃1,l

)
jk

=
1

γα

{(
Ξ̃−1
l

)
jk
− r̂ljk

}
,
(
Z̃2,l

)
jk

= 0, {(j, k) ∈ Ec

l , l = 1, . . . , L}.

(A.11)

4. Verify strict dual feasibility condition

∣∣∣∣(Z̃1,l

)
jk

∣∣∣∣ < 1, {(j, k) ∈ Ec

l , l = 1, . . . , L}. (A.12)

Lemma 2. Suppose Assumptions 1–3 hold and that γ = 8ε−1
L δ(n;L%−1p%) for some % > 2.

If the sample size satisfies the lower bound

n > n
(
min {aL, bL} ;L%−1p%

)
, (A.13)
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then, with probability at least 1− (Lp)2−%, the bounds

‖Ξ̂l − Ξl‖∞ ≤ 2κΨl

(
m−1
l + 8ε−1

L

)
δ(n;L%−1p%) (A.14)

hold simultaneously for l = 1, . . . , L.

Proof of Lemma 2.

Define Dj and ml as in Corollary 4. Observe that n > n(δ; c) implies δ(n; c) <

δ. Since (A.13) implies that n > n(D3ml;L
%−1p%) for each l, 1 ≤ l ≤ L, we have

m−1
l δ(n;L%−1p%) ≤ D3, for 1 ≤ l ≤ L. Define

Al =
{
‖Rl − R̂l‖∞ ≤ m−1

l δ(n;L%−1p%)
}
. (A.15)

Applying (3.11) with δ = m−1
l δ(n;L%−1p%) together with the union bound, we obtain

pr(Acl ) ≤ L1−%p2−%, 1 ≤ l ≤ L, so that pr
(⋂L

l=1Al
)
≥ 1 − (Lp)2−%. Let {(Ξ̃l, Z̃l), l =

1, . . . , L} be the primal-dual witness solutions constructed in steps 1–4 preceding the

lemma statement. The result in (A.14) will follow once we have established that, on⋂L
l=1Al, we have Ξ̃l = Ξ̂l (l = 1, . . . , L), and that (A.14) holds with Ξ̂l replaced by Ξ̃l.

When Al holds, we apply the condition γ = 8ε−1
L δ(n; L%−1p%) to conclude that

‖R̂l −Rl‖∞ ≤ m−1
l δ(n;L%−1p%) =

(
εL
mlη′l

){
8ε−1
L δ(n;L%−1p%)

} η′l
8
≤ γη′l

8
, (A.16)

as εL = minl=1,...,Lmlη
′
l. Additionally, since n > n(bL;L%−1p%), it must be that

2κΨl

(
‖R̂l −Rl‖∞ + γ

)
≤ 2κΨl

(m−1
l + 8ε−1

L )δ(n;L%−1p%)

≤ 2κΨl
(m−1

l + 8ε−1
L )

6ylml max(κ2
Ψl
κ3
Rl
, κΨl

κRl
)(m−1

l + 8ε−1
L )2

≤ min

(
1

3ylκΨl
κ3
Rl

,
1

3ylκRl

) (A.17)
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whenever Al holds, where the last line follows since ml(m
−1
l + 8ε−1

L ) > 1. Hence, the

assumptions of Lemma 6 in [40] are satisfied whenever Al holds, so that

‖Ξ̃l − Ξl‖∞ ≤ 2κΨl
(‖R̂l −Rl‖∞ + γ) ≤ 2κΨl

(m−1
l + 8ε−1

L )δ(n;L%−1p%). (A.18)

Define Wl = Ξ̃−1
l − Rl + Rl(Ξ̃l − Ξl)Rl. Having established (A.17) and (A.18), we

apply Lemma 5 of [40] to conclude that

‖Wl‖∞ ≤
3

2
yl‖Ξ̃l − Ξl‖2

∞κ
3
Rl

≤ 6κ3
Rl
κ2

Ψl
yl(m

−1
l + 8ε−1

L )2
{
δ(n;L%−1p%)

}2

=
{

6κ3
Rl
κ2

Ψl
yl(m

−1
l + 8ε−1

L )2δ(n;L%−1p%)
}(εL

η′l

)
γη′l
8

≤
{

6κ3
Rl
κ2

Ψl
ylml(m

−1
l + 8ε−1

L )2δ(n;L%−1p%)
}( εL

mlη′l

)
γη′l
8

≤ γη′l
8
.

(A.19)

The last line follows by (A.13) and because εL ≤ mlη
′
l.

Together, (A.16) and (A.19) imply that, when
⋂L
l=1Al holds,

max{‖R̂l −Rl‖∞, ‖Wl‖∞} ≤
γη′l
8

(l = 1, . . . , L).

Following similar derivations to those of Lemma 4 of [40], for any l = 1, . . . , L and

(j, k) ∈ Ec

l ,

∣∣∣(Z̃1,l

)∣∣∣
jk
≤ η′l

4α
+

1

γα

���Ψl,E
c
lEl

(
Ψ−1

l,ElEl

)���
1

2γη′l
8

+
1

α

���Ψl,E
c
lEl

(
Ψ−1

l,ElEl

)���
1

∥∥∥∥α(Z̃1,l

)
El

+ (1− α)
(
Z̃2,l

)
El

∥∥∥∥
∞
.

Using Assumption 3, the definitions of the sub-differentials in (A.7) and (A.8), and the
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fact that η′l = α− (1− ηl) > 0, the bound then becomes

∣∣∣(Z̃1,l

)∣∣∣
jk
≤ η′l(2− ηl)

4α
+

1− ηl
α

< 1,

and strict dual feasibility holds. Therefore, Ξ̃l = Ξ̂l for each l when
⋂L
l=1Al holds.

Together with (A.18), this completes the proof.

Proof of Theorem 3.3.2.

By construction of the primal witness in (A.9), it is clear that (j, k) /∈ El implies

Ξ̃ljk = 0. Under the given constraint on the sample size and using Assumption 4, we have

Ξ̃l = Ξ̂l with probaility at least 1 − (Lp)2−% by Lemma 2, so that Êl ⊂ El (1 ≤ l ≤ L)

with at least the same probability.

Furthermore, Assumption 4 and (3.12) imply n > n(cl;L
%−1p%), so that δ(n;L%−1p%) <

ξmin,l

{
4κΨl

(m−1
l + 8ε−1

L )
}−1

, 1 ≤ l ≤ L. Hence, for any (j, k) ∈ El,

|Ξ̂ljk| ≥ |Ξljk| − |Ξ̂ljk − Ξljk|

≥ ξmin,l − 2κΨl

(
τ−2
l π2

l + 8ε−1
L

)
δ(n;L%−1p%)

≥ ξmin,l/2 > 0.

It follows that, with probability at least 1− (Lp)2−%, El ⊂ Êl, (1 ≤ l ≤ L), and the proof

is complete.

A.8 Additional Edge Consistency Result

In this section, we prove a second result on edge selection consistency that is not

restrictive on the value of the tuning parameter α. As a trade-off for removing this

restriction, we obtain the slightly weaker result that
⋃L
l=1 Êl =

⋃L
l=1 El with high prob-
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ability, rather than accurate recovery of each individual edge set simultaneously. Unlike

the proof of Theorem 3.3.2, the result deals more explicitly with the group Lasso penalty,

and requires an adapted version of the irrepresentability condition. However, the con-

straints on the sample size and divergence of the parameter L are slightly weakened as a

result.

Recall the definition of Ψl from Section 3.3.2. Define the block matrix Ψ̃ =

{Ψ̃e,e′}e,e′∈V×V , where Ψ(j,k),(j′k′) is an L × L diagonal matrix with diagonal equal to{
Ψ1,(j,k),(j′,k′), . . . ,ΨL,(j,k),(j′,k′)

}
. Thus, Ψ̃ groups the elements of each of the Ψl within

the same edge pairs rather than the same basis. Letting S =
⋃L
l=1El, we can define

the submatrix Ψ̃ScS, with row and column blocks indexed by Sc and S, respectively.

Similarly, define ΨSS.

We next define an alternative operator norm on Ψ̃ScSΨ̃−1
SS tailored to the group Lasso

sub-differential defined in (A.8). Let A be an (|Sc|2L) × (|S|2L) matrix consisting of

L×L blocks A(j,k),(j′,k′) that are themselves diagonal. Where as the norm in Assumption 3

corresponds to the `∞/`∞ matrix operator norm, due to the more restricted set of matrices

in the group Lasso sub-differential, we define the blockwise `∞/`2 norm

�A�∞,2 = max
e∈Sc

max
‖ze′‖E≤1

∥∥∥∥∥∑
e′∈S

Aee′ze′

∥∥∥∥∥
E

= max
e∈Sc


L∑
l=1

(∑
e′∈S

|Aee′ll|

)2


1/2

. (A.20)

We require the following group irrepresentability condition.

Assumption 5. For some η ∈ (0, 1],
���Ψ̃ScSΨ̃−1

SS

���
∞,2
≤ 1− η.

Next, define κ̃Ψl
=

���(Ψl,SS)−1
���
∞

, y = maxj∈V |{k ∈ V :
∑L

l=1 Ξ2
ljk 6= 0}, and ξ̃min =

min(j,k)∈
⋃L

l=1 El
{maxl=1,...,L |Ξljk|} . With Dj as in Corollary 4 and ε̃L = ηminl=1,...,Lml,
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set

ãL = D3 min
l=1,...,L

ml,

b̃L = (6y)−1 min
l=1,...,L

{
ml(m

−1
l + 8ε̃−1

L )2 max
(
κ̃2

Ψl
κ2
Rl
, κ̃Ψl

κRl

)}−1

c̃L = ξ̃min{4κ̃Ψl
(m−1

l + 8ε̃−1
L )}−1.

(A.21)

As a direct analog of Assumption 4, we require the following.

Assumption 6. L→∞ as n→∞, L ≤ np, and min(ãL, b̃L, c̃L) {n/ log(n)}1/2 →∞.

Theorem A.8.1. Suppose Assumptions 1–2 and 5–6 hold and that, for some % > 2,

γ = 8ε̃−1
L {(D1n)−1 log(D2L

%−1p%)}1/2
and that the sample size satisfies the lower bound

nmin(ãL, b̃L, c̃L)2 > D−1
1 {log(D2) + (%− 1) log(n) + (2%− 1) log(p)} . (A.22)

Then, for any α ∈ (0, 1) and with probability at least 1− (Lp)2−%,
⋃L
l=1 Êl =

⋃L
l=1El.

Before giving the proof, a few remarks are in order. For large n, the bound in

(A.22) once again becomes nmin(ãL, b̃L, c̃L)2 & % log(p), so that one can achieve selection

consistency of the union of the first L edge sets so long as log(p) = o(n) and L grows

slowly enough with n. Second, if we regard κ̃Ψl
, κRl

, and η to be fixed as n, p, and L

diverge, if minl=1,...,Lml & n−d for 0 < d < 1/4, (A.22) becomes

n &
[{
ξ̃−2

min + y2
}
% log(p)

]1−4d

.

Compared to the bound given in Remark 3.3.2 under analagous settings, it is weaker in

the first term since ξ̃min > minl=1,...,L ξmin,l. However, since y ≥ yl for any l, the second

term here can be more restrictive. Practically speaking, this is not as much of a concern as

it will only be apparent when the individual edge sets El all have a much smaller maximal
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degree than their union. Finally, similar to Remark 3.3.2, one can deduce edge selection

consistency if L is capable of growing faster than L̃∗n = min
{
L :
⋃L
l=1El =

⋃∞
l=1El

}
while still satisfying Assumption 6.

Proof of Theorem A.8.1.

As the proof follows the same logical flow as that of Theorem 3.3.2, we will sketch the

proof while outlining major differences. First of all, steps 1–3 from Section A.7.1 that

detail the construction of the primal/dual witness pairs (Ξ̃l, Z̃l) is modified as follows.

In the first step, one computes the penalized estimator as in (A.9) except that one only

restricts Υl,Sc = 0. In step 2, the elements of the sub-differential are chosen to satisfy

the optimality condition as in (A.10), but over the entire set S rather than El. In step

3, one updates the sub-differential elements for all (j, k) ∈ Sc as

(
Z̃1,l

)
jk

=
(
Z̃2,l

)
jk

=
(
Z̃l

)
jk

:=
1

γ

{(
Ξ̃−1
l

)
jk
− r̂ljk

}
(l = 1, . . . , L).

With these amendments, one proceeds by showing that, when

bl := 2κ̃Ψl

(
‖R̂l −Rl‖∞ + γ

)
≤ min

(
1

3κRl
y
,

1

3κ3
Rl
κ̃Ψl

y

)
,

one has ‖Ξ̃l − Ξl‖∞ ≤ bl. This result can be proven using the same logic used in the

proofs of Lemmas 5 and 6 of [40] using the sub-differential properties in (A.7) and (A.8).

Next, one uses the fact that n > n(ãL;L%−1p%) to show that, with probability at least

1− (Lp)2−%, the event
⋂L
l=1Al holds, where Al is defined in (A.15). The rest of the proof

is then conditional on this event.

Using the facts that γ = 8ε̃−1
L δ(n;L%−1p%) and n > n(b̃L;L%−1p%) one can then estab-

lish that

max
l=1,...,L

max
(
‖R̂l −Rl‖∞, ‖Wl‖∞

)
<
γη

8
,
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so that

‖Ξ̃l − Ξl‖∞ ≤ 2κ̃Ψl
(m−1

l + 8ε̃−1
L )δ(n;L%−1p%) (l = 1, . . . , L).

Then, using arguments similar to Lemma 1 of [40], the bound

‖{(Z̃1)jk, . . . , (Z̃L)jk}T‖E ≤
2

γ

(���Ψ̃ScSΨ̃−1
SS

���
2,∞

+ 1
)(γη

8

)
+

���Ψ̃ScSΨ̃−1
SS

���
2,∞

≤ η(2− η)

4
+ 1− η < 1

by Assumption 5. Hence, for each l = 1, . . . , L, we have Ξ̂l = Ξ̃l, so that (j, k) /∈
⋃L
l=1 Êl

for any (j, k) ∈ Sc and
⋃L
l=1 Êl ⊂

⋃L
l=1El. Finally, using the bound n > n(c̃L;L%−1p%),

for (j, k) ∈
⋃L
l=1El, one has

max
l=1,...,L

|Ξ̂ljk| ≥ ξ̃min − max
l=1,...,L

‖Ξ̂l − Ξl‖∞

≥ ξ̃min − max
l=1,...,L

2κ̃Ψl
(m−1

l + 8ε̃−1
L )δ(n;L%−1p%)

≥ ξ̃min −
ξ̃min

2
> 0.

This implies
⋃L
l=1El ⊂

⋃L
l=1 Êl, and the proof is complete.
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A.9 Partial Separability Violation Examples of Sec-

tion 3.2.2

The examples in this section analyze how different violations of partial separability

affect the true edge sets.

For simplicity, consider a generic example. Let X has three components with each one

lying on a common two-dimensional space with probability one, and let H = 3−1(G11 +

G22 +G33) have eigenfunctions (ϕ1, ϕ2), where Gjj is the covariance operator of Xj. Then

one has Xj = θ1jϕ1 +θ2jϕ2 for j = 1, 2, 3. If X is Gaussian, the conditional dependence is

completely determined by the block covariance matrix Σ = {Σll′}2
l,l′=1, Σll′ = {σll′jk}3

j,k=1,

where Σll′ = 0 for l 6= l′ if and only if X is partially separable. Thus, let the partially

separable edge set be E∗ = E1 ∪E2, where (j, k) ∈ El if and only if (Σ−1
ll )jk 6= 0. On the

other hand, the true edge set E has (j, k) ∈ E if and only if the (j, k)-th element in at

least one of the blocks in Σ−1 is nonzero.

Consider three possible values for Σ, given by

Σ1 =



1 a 0 c1 0 0

a 1 0 0 c2 0

0 0 1 0 0 c3

c1 0 0 1 0 0

0 c2 0 0 1 a

0 0 c3 0 a 1


Σ2 =



1 a 0 c1 0 0

a 1 0 0 0 0

0 0 1 0 0 c3

c1 0 0 1 0 0

0 0 0 0 1 a

0 0 c3 0 a 1


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Σ3 =



1 a b 0 0 0

a 1 a 0 0 c

b a 1 0 c 0

0 0 0 1 0 0

0 0 c 0 1 0

0 c 0 0 0 1


.

A.9.1 Example 1

Consider the following block covariance matrix and its inverse:

Σ =



1 a 0 c1 0 0

a 1 0 0 c2 0

0 0 1 0 0 c3

c1 0 0 1 0 0

0 c2 0 0 1 a

0 0 c3 0 a 1


Ω = Σ−1 = γ−1



ω̃11 ω̃12 ω̃13 ω̃14 ω̃15 ω̃16

ω̃12 ω̃22 ω̃23 ω̃24 ω̃25 ω̃26

ω̃13 ω̃23 ω̃33 ω̃34 ω̃35 ω̃36

ω̃14 ω̃24 ω̃34 ω̃44 ω̃45 ω̃46

ω̃15 ω̃25 ω̃35 ω̃45 ω̃55 ω̃56

ω̃16 ω̃26 ω̃36 ω̃46 ω̃56 ω̃66


where:

• γ = a2c2
1 +a2c2

3 +a4−2a2−c2
1 +c2

1c
2
2−

c2
2 + c2

1c
2
3 − c2

1c
2
2c

2
3 + c2

2c
2
3 − c2

3 + 1

• ω̃11 = −a2 − c2
2 + c2

2c
2
3 − c2

3 + 1

• ω̃12 = a3 + ac2
3 − a

• ω̃13 = a2c2c3

• ω̃14 = a2c1 + c1c
2
2 − c1c

2
2c

2
3 + c1c

2
3 − c1

• ω̃15 = ac2 − ac2c
2
3

• ω̃16 = −a2c2

• ω̃22 = a2c2
1 − a2 − c2

1 + c2
1c

2
3 − c2

3 + 1

• ω̃23 = ac2
1c2c3 − ac2c3

• ω̃24 = −a3c1 − ac1c
2
3 + ac1

• ω̃25 = −c2c
2
3c

2
1 + c2c

2
1 + c2c

2
3 − c2
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• ω̃26 = ac2 − ac2
1c2

• ω̃33 = a2c2
1+a4−2a2−c2

1+c2
1c

2
2−c2

2+1

• ω̃34 = −a2c1c2c3

• ω̃35 = −a3c3 − ac2
1c3 + ac3

• ω̃36 = a2c3 + c2
1c3 − c2

1c
2
2c3 + c2

2c3 − c3

• ω̃44 = a2c2
3+a4−2a2−c2

2+c2
2c

2
3−c2

3+1

• ω̃45 = ac1c2c
2
3 − ac1c2

• ω̃46 = a2c1c2

• ω̃55 = a2c2
3 − a2 − c2

1 + c2
1c

2
3 − c2

3 + 1

• ω̃56 = a3 + ac2
1 − a

• ω̃66 = −a2 − c2
1 + c2

1c
2
2 − c2

2 + 1

Claim 1. E∗ $ E if a, ci are not zero and so that |a|+ |ci| < 1 for i = 1, . . . , 3

Proof. First, if ci = 0 for i = 1, 2, 3 then partial separability holds. Thus, E1 =

{(1, 2)}, E2 = {(2, 3)} and E∗ = E1 ∪ E2 = {(1, 2), (2, 3)}.

On the other hand, if ci 6= 0 for i = 1, 2, 3 then partial separability does not hold.

Sort the rows and columns of Ω in a features-first ordering as:

γ−1



ω̃11 ω̃14 ω̃12 ω̃15 ω̃13 ω̃16

ω̃14 ω̃44 ω̃24 ω̃45 ω̃34 ω̃46

ω̃12 ω̃24 ω̃22 ω̃25 ω̃23 ω̃26

ω̃15 ω̃45 ω̃25 ω̃55 ω̃35 ω̃56

ω̃13 ω̃34 ω̃23 ω̃35 ω̃33 ω̃36

ω̃16 ω̃46 ω̃26 ω̃56 ω̃36 ω̃66


We first prove that (1, 2) ∈ E. If |a|+ |ci| < 1 then a2 + c2

i < 1 for i = 1, 2, 3 and so

ω̃12 6= 0. Thus, the (1, 2)-block is not zero, so (1, 2) ∈ E.

Next, we prove that (1, 3) ∈ E. ω̃34 6= 0 since a, ci are not zero for j = 1, 2, 3. Thus,

the (1, 3)-block is not zero, so (2, 3) ∈ E.

Finally, we prove that (2, 3) ∈ E. If |a|+ |ci| < 1 then a2 + c2
i < 1 for i = 1, 2, 3 and
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so ω̃12 6= 0. Thus, the (2, 3)-block is not zero, so (2, 3) ∈ E.

A.9.2 Example 2

Consider the following block covariance matrix and its inverse:

Σ =



1 a 0 c1 0 0

a 1 0 0 0 0

0 0 1 0 0 c3

c1 0 0 1 0 0

0 0 0 0 1 a

0 0 c3 0 a 1


Ω = Σ−1 = γ−1



ω̃11 ω̃12 0 ω̃14 0 0

ω̃12 ω̃22 0 ω̃24 0 0

0 0 ω̃33 0 ω̃35 ω̃36

ω̃14 ω̃24 0 ω̃44 0 0

0 0 ω̃35 0 ω̃55 ω̃56

0 0 ω̃36 0 ω̃56 ω̃66


with:

• γ = a2c2
1 +a2c2

3 +a4−2a2−c2
1 +c2

1c
2
3−

c2
3 + 1

• ω̃11 = −a2 − c2
3 + 1

• ω̃12 = a3 + ac2
3 − a

• ω̃14 = a2c1 + c1c
2
3 − c1

• ω̃22 = a2c2
1 − a2 − c2

1 + c2
1c

2
3 − c2

3 + 1

• ω̃24 = −a3c1 − ac1c
2
3 + ac1

• ω̃33 = a2c2
1 + a4 − 2a2 − c2

1 + 1

• ω̃35 = −a3c3 − ac2
1c3 + ac3

• ω̃36 = a2c3 + c2
1c3 − c3

• ω̃44 = a2c2
3 + a4 − 2a2 − c2

3 + 1

• ω̃55 = a2c2
3 − a2 − c2

1 + c2
1c

2
3 − c2

3 + 1

• ω̃56 = a3 + ac2
1 − a

• ω̃66 = −a2 − c2
1 + 1

Claim 2. E∗ = E if a, ci are not zero and so that |a|+ |ci| < 1 for i = 1, . . . , 3
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Proof. First, if ci = 0 for i = 1, 3 then partial separability holds. Thus, for |a| < 1 we

have E1 = {(1, 2)}, E2 = {(2, 3)} and E∗ = E1 ∪ E2 = {(1, 2), (2, 3)}.

On the other hand, if ci 6= 0 for i = 1, 3 then partial separability does not hold. Sort

the rows and columns of Ω in a features-first ordering as:

γ−1



ω̃11 ω̃14 ω̃12 0 0 0

ω̃14 ω̃44 ω̃24 0 0 0

ω̃12 ω̃24 ω̃22 0 0 0

0 0 0 ω̃55 ω̃35 ω̃56

0 0 0 ω̃35 ω̃33 ω̃36

0 0 0 ω̃56 ω̃36 ω̃66


We first prove that (1, 2) ∈ E. If |a| + |ci| < 1 then a2 + c2

i < 1 for i = 1, 3 and so

ω̃12 6= 0. Thus, the (1, 2)-block is not zero, so (1, 2) ∈ E.

Next, we prove that (2, 3) ∈ E. ω̃34 6= 0 since a, ci are not zero for j = 1, 2, 3. And

ω̃56 6= 0 since |a|+ |c1| < 1. Thus, the (2, 3)-block is not zero, so (2, 3) ∈ E.

We prove that E∗ ⊂ E. ω̃16 6= 0 since a, c2 are not zero. Thus, the (1, 3)-block is not

zero, so (1, 3) ∈ E but (1, 3) /∈ E.

And since the (1, 3)-block is zero, then E∗ = E.
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A.9.3 Example 3

Consider the following block covariance matrix and its inverse:

Σ =



1 a b 0 0 0

a 1 a 0 0 c

b a 1 0 c 0

0 0 0 1 0 0

0 0 c 0 1 0

0 c 0 0 0 1


Ω = Σ−1 = γ−1



ω̃11 ω̃12 ω̃13 0 ω̃15 ω̃16

ω̃12 ω̃22 ω̃23 0 ω̃25 ω̃26

ω̃13 ω̃23 ω̃33 0 ω̃35 ω̃36

0 0 0 ω̃44 0 0

ω̃15 ω̃25 ω̃35 0 ω̃55 ω̃56

ω̃16 ω̃26 ω̃36 0 ω̃56 ω̃66


with:

• γ = 2a2b+a2c2−2a2 +b2c2−b2 +c4−

2c2 + 1

• ω̃11 = −a2 + c4 − 2c2 + 1

• ω̃12 = ab+ ac2 − a

• ω̃13 = a2 + bc2 − b

• ω̃15 = −a2c− bc3 + bc

• ω̃16 = −abc− ac3 + ac

• ω̃22 = −b2 − c2 + 1

• ω̃23 = ab− a

• ω̃25 = ac− abc

• ω̃26 = b2c+ c3 − c

• ω̃33 = −a2 − c2 + 1

• ω̃35 = a2c+ c3 − c

• ω̃36 = ac− abc

• ω̃44 = 1

• ω̃55 = 2a2b− 2a2 + b2c2 − b2 − c2 + 1

• ω̃56 = abc2 − ac2

• ω̃66 = 2a2b+ a2c2 − 2a2 − b2 − c2 + 1

Claim 3. E $ E∗ if a, b, c are not zero and a = b = (1− c2)

Proof. First, if c = 0 we can find nonzero a and b so that partial separability holds. Thus,
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E1 = {(1, 2), (1, 3), (2, 3)} and E∗ = E1 ∪ E2 = {(1, 2), (1, 3), (2, 3)}.

On the other hand, if c 6= 0 then partial separability does not hold. Sort the rows

and columns of Ω in a features-first ordering as:

γ−1



ω̃11 0 ω̃12 ω̃15 ω̃13 ω̃16

0 ω̃44 0 0 0 0

ω̃12 0 ω̃22 ω̃25 ω̃23 ω̃26

ω̃15 0 ω̃25 ω̃55 ω̃35 ω̃56

ω̃13 0 ω̃23 ω̃35 ω̃33 ω̃36

ω̃16 0 ω̃26 ω̃56 ω̃36 ω̃66


We prove that (1, 2) ∈ E. If b = (1 − c2) then ω̃12 = 0. In addition, if b = a then

ω̃125 = 0. Thus, the (1, 2)-block is not zero, so (1, 2) ∈ E.
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A.10 Simulation Details and Additional Figures for

Section 3.4

A.10.1 Simulation Details for Section 3.4

This section describes the generation of edge sets E1, . . . , EM and precision matrices

Ω1, . . . ,ΩM for the simulation settings in Section 3.4. An initial conditional indepen-

dence graph G = (V,E) is generated from a power law distribution with parameter

π = pr{(j, k) ∈ E}. Then, for a fixed M , a sequence of edge sets E1, . . . , EM is generated

so that E =
⋃M
l=1 El. This process has two main steps. First, a set of common edges

to all edge sets is computed and denoted as Ec for a given proportion of common edges

τ ∈ [0, 1]. Next, the set of edges E \Ec is partitioned into Ẽ1, . . . , ẼM where |Ẽl| ≥ |Ẽl′|

for l < l′ and set El = Ec ∪ Ẽl. The details for this process are described in Algorithm 2.

Next, p× p precision matrices Ωl are generated for each El based on the algorithm of

[44]. Let Ω̃l be a p× p matrix with entries

(
Ω̃l

)
jk

=


1 j = k

0 (j, k) /∈ El or j < k

∼ U(D) (j, k) ∈ El

(j, k = 1, . . . , p)

where D = [−2/3,−1/3] ∪ [1/3, 2/3]. Then, rowwise, we sum the absolute value of the

off-diagonal entries and divide each row by 1.5 times this sum componentwise. Finally,

Ω̃l is averaged with its transpose and has its diagonal entries set to one. The output is

a precision matrix Ωl which is guaranteed to be symmetric and diagonally dominant.
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Algorithm 2: Pseudocode to create the edge sets E1, . . . , EM
Input: graph G = (V,E) with nodes V = {1, . . . , p} and edge set E

number of basis M

proportion of common edges τ

Result: Edge sets E1, . . . , EM

Ec ← random subset of size τ |E| from E;

El ← Ec for l = 1, . . . ,M ;

l← 1;

B ← 1;

for e ∈ E \ Ec do

El ← El
⋃
e;

l← l + 1;

if l > B then

l← 1;

B ← (B + 1) mod M ;
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A.11 Additional Results for Section 3.4.2

A comparison of the two methods under the very sparse case is included. For this

case one has π = 0.025 with a proportion of common edges τ = 0. Finally, we check

the robustness of our conclusions under other settings including τ ∈ {0, 0.1, 0.2} and

π ∈ {2.5%, 5%, 10%}, as well as p greater, equal or smaller than n.
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(a) n = p/2

(b) n = 1.5p

Figure A.6: Mean receiver operating characteristic curves for the proposed method
(FGMParty) with that of [17] (FGGM) under Σps (top) and Σnon-ps (bottom) for
p = 50, 100, 150, π = 0.025 and τ = 0. We see FGMParty ( ) and FGGM ( )
at 90% of variance and FGMParty ( ) at 95% of variance explained.
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Table A.1: Mean area under the curve (and standard error) values for Figures A.6a and A.6b

Σ = Σps Σ = Σnon-ps

p = 50 p = 100 p = 150 p = 50 p = 100 p = 150

n
=
p
/
2

A
U

C

FGGM90% 0.61(0.06) 0.65(0.02) 0.67(0.02) 0.78(0.05) 0.77(0.02) 0.77(0.02)

FGMParty90% 0.73(0.05) 0.75(0.03) 0.74(0.02) 0.81(0.05) 0.79(0.02) 0.77(0.02)

FGMParty95% 0.70(0.05) 0.81(0.02) 0.82(0.02) 0.80(0.05) 0.85(0.03) 0.84(0.02)

A
U

C
1
5
† FGGM90% 0.15(0.06) 0.21(0.03) 0.26(0.02) 0.40(0.07) 0.47(0.03) 0.51(0.03)

FGMParty90% 0.31(0.08) 0.44(0.03) 0.47(0.03) 0.46(0.08) 0.52(0.04) 0.52(0.03)

FGMParty95% 0.27(0.07) 0.50(0.04) 0.57(0.03) 0.42(0.08) 0.59(0.05) 0.63(0.04)

n
=

1.
5p

A
U

C

FGGM90% 0.79(0.05) 0.79(0.02) 0.77(0.02) 0.94(0.03) 0.84(0.02) 0.79(0.02)

FGMParty90% 0.93(0.03) 0.82(0.02) 0.78(0.02) 0.96(0.02) 0.85(0.02) 0.80(0.02)

FGMParty95% 0.92(0.03) 0.92(0.02) 0.87(0.02) 0.96(0.02) 0.93(0.02) 0.87(0.02)

A
U

C
15
† FGGM90% 0.39(0.08) 0.52(0.03) 0.53(0.02) 0.82(0.05) 0.68(0.03) 0.60(0.03)

FGMParty90% 0.78(0.06) 0.65(0.03) 0.58(0.02) 0.86(0.06) 0.69(0.04) 0.60(0.04)

FGMParty95% 0.74(0.07) 0.83(0.03) 0.75(0.03) 0.86(0.05) 0.83(0.03) 0.74(0.03)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.
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(a) n = p/2

(b) n = 1.5p

Figure A.7: Mean receiver operating characteristic curves for the proposed method
(FGMParty) with that of [17] (FGGM) under Σps (top) and Σnon-ps (bottom) for
p = 50, 100, 150, π = 0.05 and τ = 0.1. We see FGMParty ( ) and FGGM ( )
at 90% of variance and FGMParty ( ) at 95% of variance explained.
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Table A.2: Mean area under the curve (and standard error) values for Figures A.7a and A.7b

Σ = Σps Σ = Σnon-ps

p = 50 p = 100 p = 150 p = 50 p = 100 p = 150

n
=
p
/
2

A
U

C

FGGM90% 0.61(0.03) 0.62(0.02) 0.62(0.01) 0.74(0.03) 0.69(0.02) 0.72(0.01)

FGMParty90% 0.70(0.03) 0.68(0.02) 0.68(0.01) 0.76(0.03) 0.68(0.02) 0.70(0.02)

FGMParty95% 0.71(0.03) 0.71(0.02) 0.72(0.01) 0.76(0.03) 0.73(0.02) 0.73(0.02)

A
U

C
1
5
† FGGM90% 0.18(0.04) 0.20(0.02) 0.22(0.01) 0.35(0.04) 0.32(0.02) 0.35(0.02)

FGMParty90% 0.30(0.04) 0.32(0.02) 0.33(0.01) 0.39(0.05) 0.33(0.02) 0.36(0.02)

FGMParty95% 0.31(0.04) 0.35(0.03) 0.37(0.02) 0.39(0.05) 0.39(0.03) 0.40(0.03)

n
=

1.
5p

A
U

C

FGGM90% 0.75(0.02) 0.71(0.02) 0.71(0.01) 0.88(0.02) 0.76(0.01) 0.80(0.01)

FGMParty90% 0.85(0.03) 0.75(0.02) 0.75(0.01) 0.88(0.02) 0.73(0.01) 0.76(0.01)

FGMParty95% 0.89(0.02) 0.83(0.02) 0.82(0.01) 0.91(0.02) 0.81(0.02) 0.81(0.02)

A
U

C
15
† FGGM90% 0.37(0.05) 0.37(0.02) 0.38(0.01) 0.67(0.04) 0.48(0.02) 0.52(0.01)

FGMParty90% 0.62(0.04) 0.50(0.02) 0.50(0.02) 0.68(0.04) 0.43(0.02) 0.49(0.02)

FGMParty95% 0.68(0.04) 0.63(0.03) 0.61(0.02) 0.70(0.04) 0.54(0.03) 0.56(0.03)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.
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(a) n = p/2

(b) n = 1.5p

Figure A.8: Mean receiver operating characteristic curves for the proposed method
(FGMParty) with that of [17] (FGGM) under Σps (top) and Σnon-ps (bottom) for
p = 50, 100, 150, π = 0.025 and τ = 0.1. We see FGMParty ( ) and FGGM ( )
at 90% of variance and FGMParty ( ) at 95% of variance explained.
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Table A.3: Mean area under the curve (and standard error) values for Figures A.8a and A.8b

Σ = Σps Σ = Σnon-ps

p = 50 p = 100 p = 150 p = 50 p = 100 p = 150

n
=
p
/
2

A
U

C

FGGM90% 0.64(0.05) 0.67(0.02) 0.67(0.02) 0.80(0.05) 0.80(0.02) 0.75(0.01)

FGMParty90% 0.75(0.05) 0.76(0.03) 0.73(0.02) 0.82(0.04) 0.81(0.02) 0.73(0.02)

FGMParty95% 0.72(0.05) 0.81(0.02) 0.79(0.02) 0.79(0.05) 0.83(0.02) 0.78(0.01)

A
U

C
1
5
† FGGM90% 0.22(0.06) 0.26(0.03) 0.28(0.02) 0.44(0.07) 0.51(0.03) 0.46(0.02)

FGMParty90% 0.37(0.07) 0.45(0.04) 0.44(0.02) 0.49(0.08) 0.54(0.04) 0.44(0.02)

FGMParty95% 0.33(0.07) 0.50(0.04) 0.52(0.03) 0.45(0.07) 0.57(0.04) 0.52(0.03)

n
=

1.
5p

A
U

C

FGGM90% 0.81(0.04) 0.80(0.02) 0.76(0.02) 0.94(0.02) 0.87(0.02) 0.78(0.01)

FGMParty90% 0.93(0.02) 0.84(0.02) 0.78(0.01) 0.95(0.02) 0.87(0.02) 0.76(0.01)

FGMParty95% 0.92(0.03) 0.93(0.02) 0.86(0.02) 0.95(0.02) 0.92(0.02) 0.83(0.02)

A
U

C
15
† FGGM90% 0.45(0.07) 0.53(0.03) 0.49(0.02) 0.82(0.05) 0.73(0.03) 0.56(0.02)

FGMParty90% 0.78(0.06) 0.68(0.03) 0.57(0.02) 0.84(0.04) 0.72(0.04) 0.53(0.02)

FGMParty95% 0.74(0.06) 0.83(0.03) 0.72(0.03) 0.82(0.05) 0.79(0.03) 0.64(0.03)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.
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(a) n = p/2

(b) n = 1.5p

Figure A.9: Mean receiver operating characteristic curves for the proposed method
(FGMParty) with that of [17] (FGGM) under Σps (top) and Σnon-ps (bottom) for
p = 50, 100, 150, π = 0.05 and τ = 0.2. We see FGMParty ( ) and FGGM ( )
at 90% of variance and FGMParty ( ) at 95% of variance explained.
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Table A.4: Mean area under the curve (and standard error) values for Figures A.9a and A.9b

Σ = Σps Σ = Σnon-ps

p = 50 p = 100 p = 150 p = 50 p = 100 p = 150

n
=
p
/
2

A
U

C

FGGM90% 0.63(0.04) 0.63(0.02) 0.62(0.01) 0.74(0.03) 0.72(0.02) 0.66(0.01)

FGMParty90% 0.71(0.04) 0.68(0.02) 0.67(0.01) 0.75(0.03) 0.70(0.02) 0.63(0.01)

FGMParty95% 0.72(0.03) 0.71(0.02) 0.69(0.01) 0.79(0.03) 0.73(0.02) 0.67(0.01)

A
U

C
1
5
† FGGM90% 0.21(0.04) 0.22(0.03) 0.23(0.01) 0.39(0.04) 0.35(0.02) 0.28(0.01)

FGMParty90% 0.34(0.05) 0.32(0.02) 0.31(0.01) 0.41(0.03) 0.36(0.02) 0.24(0.01)

FGMParty95% 0.34(0.04) 0.35(0.02) 0.34(0.02) 0.45(0.04) 0.38(0.02) 0.27(0.02)

n
=

1.
5p

A
U

C

FGGM90% 0.76(0.03) 0.71(0.02) 0.70(0.01) 0.82(0.02) 0.79(0.02) 0.67(0.02)

FGMParty90% 0.86(0.02) 0.76(0.02) 0.74(0.01) 0.81(0.02) 0.76(0.02) 0.65(0.01)

FGMParty95% 0.87(0.02) 0.82(0.02) 0.79(0.01) 0.88(0.02) 0.80(0.02) 0.70(0.01)

A
U

C
15
† FGGM90% 0.41(0.04) 0.38(0.02) 0.37(0.01) 0.57(0.03) 0.48(0.02) 0.34(0.02)

FGMParty90% 0.63(0.04) 0.49(0.02) 0.47(0.02) 0.56(0.03) 0.44(0.02) 0.29(0.01)

FGMParty95% 0.64(0.04) 0.58(0.03) 0.54(0.02) 0.64(0.04) 0.47(0.02) 0.30(0.02)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.
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(a) n = p/2

(b) n = 1.5p

Figure A.10: Mean receiver operating characteristic curves for the proposed method
(FGMParty) with that of [17] (FGGM) under Σps (top) and Σnon-ps (bottom) for
p = 50, 100, 150, π = 0.025 and τ = 0.2. We see FGMParty ( ) and FGGM ( )
at 90% of variance and FGMParty ( ) at 95% of variance explained.
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Table A.5: Mean area under the curve (and standard error) values for Figures A.10a
and A.10b

Σ = Σps Σ = Σnon-ps

p = 50 p = 100 p = 150 p = 50 p = 100 p = 150

n
=
p
/
2

A
U

C

FGGM90% 0.67(0.05) 0.69(0.02) 0.68(0.02) 0.81(0.04) 0.77(0.02) 0.69(0.06)

FGMParty90% 0.78(0.05) 0.78(0.02) 0.74(0.02) 0.81(0.04) 0.80(0.02) 0.75(0.02)

FGMParty95% 0.76(0.05) 0.81(0.02) 0.78(0.02) 0.80(0.04) 0.83(0.02) 0.78(0.01)

A
U

C
15
† FGGM90% 0.25(0.06) 0.30(0.03) 0.31(0.02) 0.48(0.07) 0.31(0.07) 0.22(0.09)

FGMParty90% 0.43(0.07) 0.48(0.03) 0.44(0.02) 0.49(0.06) 0.53(0.04) 0.43(0.02)

FGMParty95% 0.41(0.06) 0.51(0.03) 0.49(0.03) 0.47(0.06) 0.57(0.03) 0.46(0.02)

n
=

1.
5p

A
U

C

FGGM90% 0.83(0.04) 0.82(0.02) 0.76(0.01) 0.94(0.02) 0.87(0.02) 0.78(0.05)

FGMParty90% 0.93(0.03) 0.86(0.02) 0.79(0.01) 0.94(0.03) 0.86(0.02) 0.79(0.02)

FGMParty95% 0.92(0.03) 0.94(0.02) 0.86(0.02) 0.93(0.02) 0.91(0.01) 0.84(0.01)

A
U

C
15
† FGGM90% 0.52(0.06) 0.56(0.02) 0.50(0.02) 0.79(0.05) 0.69(0.02) 0.40(0.12)

FGMParty90% 0.79(0.06) 0.71(0.03) 0.59(0.02) 0.81(0.06) 0.68(0.03) 0.53(0.02)

FGMParty95% 0.77(0.06) 0.84(0.03) 0.71(0.02) 0.80(0.06) 0.75(0.03) 0.55(0.02)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.
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A.12 Additional Results for Section 3.4.3

This section provides additional results comparing the FGMParty method against

an independence screening procedure psSCREEN as described in Section 3.4.3. Figures

A.11a and A.11b follow the very sparse case settings with π = 0.025 and τ = 0.
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(a) n = p/2

(b) n = 1.5p

Figure A.11: Mean receiver operating characteristic curves for the proposed method
(FGMParty) and the independence screening procedure (psSCREEN) under Σps (top)
and Σnon-ps (bottom) for p = 50, 100, 150, π = 0.025 and τ = 0. We see FGMParty
( ) and psSCREEN( ) both at 95% of variance explained for the very sparse
case.
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Table A.6: Mean area under the curve (and standard error) values for Figures A.11a
and A.11b

Σ = Σps Σ = Σnon-ps

p = 50 p = 100 p = 150 p = 50 p = 100 p = 150

n
=
p
/
2 A
U

C FGMParty95% 0.70(0.05) 0.81(0.02) 0.82(0.02) 0.80(0.05) 0.85(0.03) 0.84(0.02)

psSCREEN95% 0.71(0.05) 0.80(0.02) 0.80(0.02) 0.75(0.04) 0.85(0.02) 0.84(0.02)

A
U

C
15
†

FGMParty95% 0.27(0.07) 0.50(0.04) 0.57(0.03) 0.42(0.08) 0.59(0.05) 0.63(0.04)

psSCREEN95% 0.26(0.07) 0.43(0.04) 0.49(0.03) 0.32(0.07) 0.58(0.04) 0.59(0.03)

n
=

1.
5p A

U
C FGMParty95% 0.92(0.03) 0.92(0.02) 0.87(0.02) 0.96(0.02) 0.93(0.02) 0.87(0.02)

psSCREEN95% 0.91(0.03) 0.92(0.02) 0.86(0.02) 0.94(0.03) 0.93(0.02) 0.88(0.02)

A
U

C
15
†

FGMParty95% 0.74(0.07) 0.83(0.03) 0.75(0.03) 0.86(0.05) 0.83(0.03) 0.74(0.03)

psSCREEN95% 0.66(0.07) 0.80(0.03) 0.72(0.03) 0.77(0.06) 0.83(0.03) 0.75(0.03)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.

A.13 Simulation Details and Additional Figures for

Section 4.5.3

A.13.1 Simulation Details for Section 4.5.3

This section describes the generation of edge sets E∆
1 , . . . , E

∆
M , and precision matrices

ΩX
1 , . . . ,Ω

X
M and ΩY

1 , . . . ,Ω
Y
M for the simulation settings in section 4.5.3. An initial dif-

ferential graph G∆ = (V,E∆) is generated from a power law distribution with parameter

π = pr{(j, k) ∈ E∆}. Then, for a fixed M , a sequence of edge sets E∆
1 , . . . , E

∆
M is gen-

erated so that E∆ =
⋃M
l=1E

∆
l . This process has two main steps. First, a set of common

edges to all edge sets is computed and denoted as E∆
c for a given proportion of common

edges τ ∈ [0, 1]. Next, the set of edges E∆ \ E∆
c is partitioned into Ẽ∆

1 , . . . , Ẽ
∆
M where

|Ẽ∆
l | ≥ |Ẽ∆

l′ | for l < l′ and set E∆
l = E∆

c ∪ Ẽ∆
l . The details for this process are described

in Algorithm 3.
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Next, following the steps in A.10, a graph GX = (V,EX) with parameter π̃ > π and

a p × p precision matrices ΩX
l are obtained. Then a p × p matrix ∆l is computed with

entries (∆l)ij = c
(
ΩX
l

)
ij

if (i, j) ∈ E∆
l , and 0 otherwise. Finally, set ΩY

l = ΩX
l −∆l.

Algorithm 3: Pseudocode to create the edge sets E∆
1 , . . . , E

∆
M

input: graph G∆ = (V,E∆) with nodes V = {1, . . . , p} and edge set E∆

number of basis M

proportion of common edges τ

Result: Edge sets E∆
1 , . . . , E

∆
M

E∆
c ← random subset of size τ |E∆| from E∆;

E∆
l ← E∆

c for l = 1, . . . ,M ;

l← 1;

B ← 1;

for e ∈ E∆ \ E∆
c do

E∆
l ← E∆

l

⋃
e;

l← l + 1;

if l > B then

l← 1;

B ← (B + 1) mod M ;

A.14 Additional Results for Section 4.5.3

This section includes results for the simulation analysis in Section 4.5.4 with param-

eters T = 50, M = 20, π̃ = 0.30, c = 0.4 and π = 10% for a sparse graph.
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(a) n = p/2

(b) n = p

(c) n = 1.5p

Figure A.12: Mean receiver operating characteristic curves for the proposed method
(psFuDGE) and that of [50] (FuDGE). For p = 60, n ∈ {30, 60, 90}, π = 0.10 and
c = 0.4 subfigures (a), (b) and (c) correspond to values of n ∈ {30, 60, 90} respectively.
Curves are coded as unweighted group psFuDGE ( ), weighted group psFuDGE
( ) and FuDGE ( ) at 95% of variance explained. In each curve adjacent
points with FPR difference less or equal than 0.10 are interpolated with a solid line.
Otherwise, a dashed line is used. For psFuDGE, the values of α used to compute the
curve values are printed in each panel.
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Table A.7: Mean area under the curve (and standard error) values for Figure A.12.

τ = 0 τ = 0.10 τ = 0.20

n
=
p
/
2

A
U

C

FuDGE 0.51(0.02) 0.50(0.02) 0.51(0.02)

psFuDGEunweighted 0.57(0.02) 0.56(0.03) 0.59(0.03)

psFuDGEweighted 0.56(0.02) 0.58(0.02) 0.60(0.03)

A
U

C
15
† FuDGE 0.08(0.01) 0.08(0.01) 0.08(0.02)

psFuDGEunweighted 0.19(0.04) 0.20(0.04) 0.12(0.01)

psFuDGEweighted 0.10(0.01) 0.13(0.02) 0.14(0.03)

n
=
p

A
U

C

FuDGE 0.50(0.02) 0.50(0.02) 0.51(0.02)

psFuDGEunweighted 0.62(0.02) 0.65(0.03) 0.65(0.02)

psFuDGEweighted 0.62(0.02) 0.65(0.03) 0.64(0.02)

A
U

C
15
† FuDGE 0.08(0.02) 0.08(0.01) 0.08(0.02)

psFuDGEunweighted 0.25(0.07) 0.30(0.07) 0.30(0.07)

psFuDGEweighted 0.25(0.07) 0.30(0.07) 0.31(0.06)

n
=

1.
5
p

A
U

C

FuDGE 0.50(0.02) 0.50(0.02) 0.51(0.02)

psFuDGEunweighted 0.64(0.02) 0.67(0.02) 0.70(0.03)

psFuDGEweighted 0.64(0.02) 0.67(0.02) 0.70(0.03)

A
U

C
15
† FuDGE 0.07(0.02) 0.07(0.02) 0.08(0.02)

psFuDGEunweighted 0.32(0.04) 0.36(0.04) 0.42(0.07)

psFuDGEweighted 0.32(0.04) 0.36(0.04) 0.42(0.07)

†AUC15 is AUC computed for FPR in the interval [0, 0.15], normalized to have maximum area 1.
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