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Abstract

Using Simpler Models to Understand Atmospheric River Responses to

Sea-Surface Temperature Increases

Atmospheric rivers (ARs) are filamentary systems which perform nearly all of the poleward

moisture transport through the midlatitudes. When these systems are lifted—for instance

when impinging on local topography—they can produce substantial precipitation which

ranges from beneficial to destructive, sometimes providing essential water resources and

sometimes leading to devastating floods. With this in mind, it is critical for planning and

preparedness purposes to project the response of ARs to climate change. Open questions

remain however, highlighting the need for a better understanding of the physical processes

behind the AR response to climate change. To address these gaps in understanding, ARs

are simulated in an aquaplanet, an idealized global climate model without land, sea ice,

topography, or seasonality. A time-invariant “Baseline” sea-surface temperature (SST)

distribution is prescribed for a reference run, while each test run applies a uniform increase

(plus two, four, and six Kelvin) over the Baseline distribution to isolate the response of

ARs to warming SSTs and assess sensitivities.

Under SST increases, zonal mean AR occurrence frequency increases everywhere,

mostly due to enhancements in AR size. These AR occurrence frequency increases are

greatest at higher latitudes as storm tracks shift poleward with SST warming. Zonal and

areal means of AR integrated water vapor (IWV) show that AR moisture is enhanced at

rates greater than predicted for surface moisture by the Clausius-Clapeyron relation with

respect to SST warming. Vertical profiles of relative humidity (RH) and temperature

show that this “super-Clausius-Clapeyron” IWV increase masks RH decreases at upper

levels which are related to upper-tropospheric warming that far outpaces the prescribed

SST increases. Zonal and areal means of AR IWV transport (IVT) show lower increases

with SST warming than for IWV; a simple linear decomposition of AR IVT into moisture

and wind components shows that a slowing of mean AR wind speeds attenuates the IVT

response. Zonal mean AR precipitation rates exhibit a complicated response characterized
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by increases in some latitude bands and decreases in others. A linear decomposition of AR

precipitation rates like that performed for AR IVT once again shows a compensatory rela-

tionship between AR moistening and weakening dynamics, in this case mid-tropospheric

vertical velocities.

Increases in AR size as SSTs warm are examined separately. Cross-sections of AR

IVT are approximated with Gaussian functions with three fit parameters: AR background

IVT, AR IVT exceedance above the background, and the breadth of the AR IVT profile,

defined as the distance through which 95% of the IVT exceedance occurs. From both

the AR IVT cross-sections and their Gaussian approximations are derived four measures

of AR width in total. All widths are enhanced with SST warming, mostly as a result of

enhanced background IVT statistics and increased AR IVT profile breadth. IVT profile

breadth changes are driven mostly by Clausius-Clapeyron moderated moisture increases,

though changes to AR wind profiles also play a role.
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Chapter 1

Introduction to Atmospheric Rivers

In 1998, Yong Zhu and Reginald Newell performed the first global study which objec-

tively isolated narrow, transient corridors of enhanced lower-tropospheric vapor fluxes

from background “broad fluxes” (Zhu and Newell, 1998, hereafter ZN98). They concluded

that three to five of these “atmospheric rivers” (ARs) in each hemisphere performed vir-

tually all of the meridional moisture flux while together occupying a scant ten percent

of the zonal circumference through the midlatitudes. It would be several years until the

magnitudes of both AR zonal fraction and water vapor transport were confirmed inde-

pendently in satellite retrievals of water vapor by Ralph et al. (2004a); it would be more

than a decade after this that a formal definition for “atmospheric river” first appeared in

the American Meteorological Society (AMS) Glossary of Meteorology (AMS, 2017), a feat

facilitated by substantial international effort and coordination (see Ralph et al., 2018,

for a summary of this effort). This definition involved many considerations, including

whether or not to relate it specifically to midlatitude dynamics, or whether to incorporate

quantitative guidance on thresholds for detecting AR lateral boundaries (Ralph et al.,

2018). In the end, a largely qualitative definition was adopted, characterizing an AR as

a “long, narrow, and transient corridor of strong horizontal water vapor transport that is

typically associated with a low-level jet stream ahead of the cold front of an extratropical

cyclone.” It further notes that AR moisture can have multiple sources, and that ARs can

provide abundant precipitation when forced upward (AMS, 2017). Indeed, just as ARs

perform an outsized portion of meridional vapor flux relative to the zonal fraction they
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occupy, they likewise can lead to precipitation fractions which appear at odds with their

sometimes fine appearance. On a global level, ARs produce more than one-fifth of runoff

totals (Paltan et al., 2017), while regional precipitation fractions from ARs can dominate

even that figure: as an example, regions along the southern west coast of South America

can receive up to 60% of their total annual precipitation from ARs (Viale et al., 2018).

While some information on ARs has been provided here, the following sections will

provide further context for the later chapters of this dissertation. Section 1.1 provides

a brief summary of ARs with a focus on bulk characteristics. Following this, Section

1.2 describes two models of AR development to contextualize some of the uncertainty

surrounding these newly defined systems. We conclude this chapter with an outline of

the rest of this dissertation.

1.1 Overview of Atmospheric Rivers

We have already emphasized the relative novelty of AR research, which began in earnest

at the turn of the 21st century. While ZN98 coined the term atmospheric river in reference

to midlatitude filaments of enhanced poleward vapor transport, there exists a pilot study

undertaken in Newell et al. (1992, hereafter N92) which dubbed river-like filaments of

midlatitude lower-tropospheric water vapor flux as “tropospheric rivers”. N92 went on to

note that these rivers were thousands of kilometers long but under 1000 kilometers wide

and appeared to account for the largest moisture flux between the tropics and southern

hemisphere midlatitudes, but did not partition river and non-river fluxes specifically as in

ZN98. Nevertheless it was the first paper to recognize ARs as drivers of poleward vapor

transport.

One might wonder how three to five of these filaments can accomplish nearly all of

the midlatitude meridional vapor transport. Observational work on the structure of ARs

provides insight to this disproportionate contribution: Ralph et al. (2017) used dropsondes

to investigate the structure of landfalling ARs along the United States West Coast, and

found that they were characterized by concentrated water vapor (≥ 2 cm) and high wind

speeds (≥ 15 m/s) contained mostly in the bottom three kilometers of the atmosphere
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and through a horizontal swath of approximately 850 kilometers (Figure 1.1; Ralph et al.,

2017). When the resultant vapor transport is integrated across the width of the AR, we

are presented with a compelling statistic: an average AR transports ∼ 5× 108 kilograms

of water vapor per second, more than double the flow at the mouth of the Amazon River,

making ARs the largest “rivers” on Earth (Ralph et al., 2017, 2018). Notably, conclusions

drawn from the relatively small observational sample size in Ralph et al. (2017) (N = 21

ARs) regarding AR vapor transport and width show good agreement with a later study

using reanalysis data which featured a much larger sample size in Guan et al. (2018)

(N ∼ 6000 ARs).

Figure 1.1: (a) Plan view perspective of AR and accompanying surface fronts. Color
scale is integrated vapor transport (IVT, kg m−1 s−1; Eq. 2.1.2); contours are vertically-
integrated water vapor (IWV, shown here in cm; Eq. 2.1.1). (b) Vertical cross-section
of AR. Orange color fill is IVT core; blue isotachs (m s−1) are normal to cross-section;
green dotted contours are water vapor mixing ratio (g kg−1). Figure is from Ralph et al.
(2017), ©American Meteorological Society. Used with permission.

The impacts of landfalling ARs are commensurate with their impressive vapor trans-

port. Worldwide, ARs provide water resources to more than 300 million people (Paltan

et al., 2017). This dependence on ARs represents a sensitive balance: for many commu-

nities, a wet season with fewer than average ARs means drought, while a season with a

higher count of ARs or stronger than average ARs can bring devastating floods (Dettinger

et al., 2011). Some of this comes down to ARs’ concentrated horizontal vapor transport:

it has been found that AR integrated vapor transport [IVT; Equation 2.1.2] is directly
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related to AR precipitation (Neiman et al., 2002; Moore et al., 2012; Rutz et al., 2014).

Since this precipitation is frequently enhanced by topography, there is a particularly strong

relationship between AR upslope moisture transport and precipitation (correlation coef-

ficient = 0.7), such that the angle of AR moisture transport with respect to topography

provides an additional control (Neiman et al., 2002). This last point is important, and it

reflects the importance of ARs’ vertical moisture and thermal structure on their ultimate

precipitation. Since ARs contain most of their moisture in the bottom 2.5 kilometers of

the atmosphere and are statically moist-neutral through this layer (Ralph et al., 2005,

2017), there is both ample vapor for condensation and little to no resistance to vertical

ascent when AR moisture encounters topography. With this in mind, it is clear why direct

upslope moisture flux maximizes precipitation. In any case, the general relationship be-

tween AR IVT and overland impacts has spawned an AR Category system not unlike that

developed for hurricanes (Elsner and Kara, 1999) and tornadoes (Fujita, 1981). The AR

Category scale uses timeseries of AR IVT at a geographic location to assign a Category

ranging from 1 to 5, where a “Category 1” represents a weak, mostly beneficial AR, and

a “Category 5” represents a strong, mostly hazardous event (Ralph et al., 2019). The use

of an event’s IVT timeseries rather than (say) its average or maximum IVT for the scale

is an important factor since the length of AR conditions at a point can have a marked

effect on ultimate overland impacts (e.g., Ralph et al., 2013).

Along with direct impacts overland, ARs can contribute less directly via their close

relationship with extratropical cyclones (ETCs). Specifically, ARs appear to help fuel

explosive or bomb cyclogensis, which occurs when the surface pressure in an ETC deepens

by at least 24 hPa in 24 hours (Sanders and Gyakum, 1980). Zhu and Newell (1994)

reported an association between ARs and bomb cyclones; they found that AR penetration

into a cyclonic system lead to central pressure falls, while departure of ARs from the

cyclone preceded central pressure increases. Accordingly, a study of ETC climatology in

reanalysis output found that approximately 80% of bomb cyclones were associated with

a nearby AR within six hours of the ETC’s maximum deepening rate (Eiras-Barca et al.,

2018). By contrast, ARs were detected nearby in only about 40% of the non-explosive
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cyclone cases. Both Zhu and Newell (1994) and Eiras-Barca et al. (2018) concluded that

latent heat (LH) release when a developing ETC encounters an AR provides an important

energy source for further deepening and explosive cyclogenesis. Since bomb cyclones

represent particularly destructive midlatitude weather events—like ARs, they can lead to

strong winds, intense precipitation, and impressive storm surges (e.g., Saruwatari et al.,

2019)—the interplay here in turn represents an indirect but still significant impact of ARs.

With that being said, the relationship between ARs and ETCs is still uncertain; we go

over some of these uncertainties in the following section.

1.2 Uncertainties in Atmospheric Rivers

Despite international collaboration to coalesce on a definition of “atmospheric river”—or

perhaps because of the grassroots nature of the movement—some uncertainty on ARs

persists. Much of this uncertainty can be framed in terms of the relationships between

ARs and related phenomena, namely ETCs and tropical moisture exports.

1.2.1 Atmospheric Rivers and Extratropical Cyclones

Much of the uncertainty in ARs is related to the relationship between them and ETCs.

ZN98 noted that AR tracks were coincident with midlatitude storm tracks; they framed

AR development in terms of ETC dynamics, tying it to an accumulation of warm, moist

air along convergence lines on the eastern edges of troughs. As these baroclinic waves

destabilize and cyclogenesis initiates, this band of moisture along the convergence lines

intensifies and narrows, forming the AR. A later study by Dacre et al. (2015) (hereafter

D15) would use findings from a Lagrangian study in reanalysis data to argue that AR

development is inextricably tied to moisture convergence along ETC cold fronts such that

AR formation is almost entirely dependent on local moisture sources. According to D15,

AR formation occurs via the following steps, which are referenced with respect to the

ETC’s movement in keeping with the ETC-following Lagrangian nature employed in the

study:

1. As an ETC propagates across the ocean, evaporation of sea water behind the cold

front and moisture flux convergence (MFC) in front of the cold front fuel AR vapor
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content.

2. As the cold front approaches the warm front, this MFC forms a cohesive, narrow

band of enhanced vapor transport at the base of the ETC’s warm conveyor belt

(WCB): This band is the AR.

3. As the ETC matures, the movement of the cold front towards the warm front main-

tains the AR by continuously sweeping up water vapor.

4. As the ETC warm sector narrows, this band of enhanced vapor transport gets cut

off from the cyclone center, eventually detaching and propagating on its own even

after the “parent” ETC decays.

In short, by the D15 model of AR development, ARs represent “moisture footprints”

left behind by ETCs as they move poleward. Importantly, the D15 model is consistent

with the frequent co-occurrence of ETCs and ARs and captures the structure of ARs

as narrow bands of enhanced poleward moisture flux in front of the cold front. It also

allows for the close relationship between ARs and warm conveyor belts (WCBs), which

are regions of poleward vapor transport and vertical ascent of heat and moisture on the

leading edge of cold fronts (Carlson, 1998). Whereas the poleward transport accomplished

by ARs was once ascribed to WCBs (e.g., Carlson, 1998), it has since been clarified that

ARs are the thin filaments of low-level (under 850 hPa) poleward vapor transport at

the base of WCBs, while WCBs are regions of ascending moisture flux and precipitation

(Dettinger et al., 2015). Incidentally this forced ascent and precipitation of AR moisture

means the WCB can be thought of as a sink for AR moisture. While the D15 model

can appropriately capture this relationship, it does not provide a physical mechanism to

accommodate findings from Lagrangian studies which find that ARs can advect vapor

from the tropics into the midlatitudes; we discuss this point in the next section.

1.2.2 Atmospheric Rivers and Tropical Moisture Exports

Tropical moisture exports (TMEs) are intrusions of warm and moist tropical air into

the extratropics (Knippertz et al., 2010). While we have detailed an argument that AR
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vapor is fueled entirely by local sources (D15), evidence suggests that ARs can act as

TMEs. For instance, a Lagrangian moisture tracker showed that sources of precipitation

in Norway (latitude > 60◦ N) from an AR extended as far as the tropics, which the

authors attributed to two hurricanes that underwent extratropical transition (Stohl et al.,

2008). Additionally, a trajectory analysis on Atlantic ARs found significant contributions

to AR precipitation along the Iberian Peninsula from vapor originating at latitudes lower

than 23.5◦ N (Ramos et al., 2016). Finally, a model fitted with vapor tracers found that a

single AR can persist through multiple ETCs, feeding these ETCs directly with tropical

or subtropical (hereafter we say (sub)tropical for brevity) moisture and taking advantage

of MFC along their frontal zones in turn (Sodemann et al., 2013), further complicating the

relationship between ETCs, TMEs, and ARs. To reconcile and clarify these relationships,

we start by describing a second model of AR development which presents a more holistic

view of AR vapor sources. The following model of AR development was presented by

Jason Cordeira at the International Atmospheric Rivers Conference in 2016 (Cordeira,

2016, hereafter C16) and uses Polar Front Theory (Bjerknes and Solberg, 1922) as the

framework:

1. A trough embedded in a Rossby wave propagates over a kink in the Polar Front,

equatorward of which exists the (sub)tropical moisture reservoir. Cyclogenesis is

initiated and poleward flow within the ETC warm sector advects this (sub)tropical

vapor.

2. As vapor ascends in the ETC’s WCB, precipitation and the resultant latent heat

release aloft deepen the surface and upper-level disturbances, favoring further cy-

clogenesis and additional poleward vapor transport.

3. Finally, frontogenesis favors low-level MFC, aggregating surface vapor into the fila-

mentary structures known as ARs.

The C16 model can be thought of as a hybrid model which reconciles dynamical

links between ETCs and ARs with the concept of ARs as long-distance transporters of

water vapor, sometimes from tropical sources. Certainly the very name “atmospheric
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river” is somewhat misleading because it can be interpreted as ARs being direct conduits

between (sub)tropical moisture sources and the midlatitudes, when the relationship is

more nuanced than that: while ARs can indeed advect vapor from remote source regions

(e.g. Sodemann et al., 2013), they are maintained along their tracks by continuous local

MFC and evaporation (Bao et al., 2006; Payne et al., 2020). Thus the C16 model can

describe the case of ARs which also act as TMEs (in other words, TMEs represent a

subset of ARs). Meanwhile perhaps the D15 model better describes ARs fueled entirely

or mostly by local processes.

Despite differences between the AR models presented in D15 and C16, they both

rely on midlatitude dynamics (specifically ETC dynamics) for AR development to occur.

That said, ARs can form in the absence of nearby ETC influences. According to one

climatology of cool-season ETCs and ARs over the US West Coast, approximately 15-

30% of ARs do not have an attendant ETC (Zhang et al., 2019). These ARs tend to

exist at lower latitudes near the (sub)tropical moisture source, and are associated with

a broad area of low pressure to their northwest and a ridge to their southeast. Thus

these ARs are initiated by dynamics related to this trough-ridge pattern rather than

ETC development. In any case, it is notable that all of the views of AR development

discussed here are consistent with the AMS definition for AR (AMS, 2017), because the

definition intentionally left out dynamical details such as AR genesis (Ralph et al., 2018).

For reference, when it comes to this manuscript, we take our guidance on ARs from this

definition.

1.3 Scope and Outline of Dissertation

This dissertation takes a novel approach to AR research by leveraging a series of simplified

models to answer questions about AR responses to climate change. Since vapor transport

by ARs is a key feature of them, and since sea-surface temperatures (SSTs) ultimately

drive the availability of water vapor for ARs to entrain, we focus our experiments on SST

increases. In order to simplify calculations and ensure proper attribution of AR responses

to individual climate forcings, these experiments specifically feature uniform SST increases
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in an aquaplanet model. An aquaplanet is a global climate model featuring a complete

atmosphere component but without land, sea ice, or topography; we additionally run the

aquaplanet without ocean-atmosphere feedbacks enabled in order to focus on responses

to uniform SST increases alone. In this way, we can ensure that any changes in ARs are

properly attributed to an isolated forcing, something which is difficult to do in the context

of more complete yet complex climate models (Held, 2005). In all, the results presented

here have implications for the past and future of AR climate change studies, since they

resolve some issues of attribution normally present in model and observational data.

First, Chapter 2 summarizes the variety of AR detection tools (ARDTs) in the litera-

ture, and details the ARDT used for this dissertation to properly contextualize what the

ARs studied here represent.

Next, in Chapter 3 we examine the responses of AR moisture transport and precip-

itation to a series of uniform SST increases (plus two, four, and six K over a baseline

distribution). We separate both AR IVT and precipitation rates into their thermody-

namic and dynamical contributions in a linear decomposition, in keeping with the theme

of simpler models used here. While AR IVT responses to climate change have been sep-

arated into moisture and wind components before (e.g., Gao et al., 2015), this has never

before been done in the context of an aquaplanet model, where direct physical effects can

be isolated and evaluated. With this series of simpler models—both in terms of the simu-

lation framework itself and in terms of the quantitative analysis—we answer the following

questions:

• What are the thermodynamic responses of AR moisture transport and precipitation

rates to a collection of uniform SST increases?

• How do dynamic quantities (e.g., midlatitude circulation, wind) respond to increas-

ing SSTs?

• How do these dynamic quantities serve to enhance or damp changes in AR vapor

transport and precipitation?

This work is published in Journal of Geophysical Research: Atmospheres as:
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McClenny, E. E., Ullrich, P. A., & Grotjahn, R. (2020). “Sensitivity of atmo-

spheric river vapor transport and precipitation to uniform sea surface temperature

increases”. Journal of Geophysical Research: Atmospheres, 125, e2020JD033421.

https://doi.org/10.1029/2020JD033421

In Chapter 4, we investigate an apparent AR widening seen in the Chapter 3 results.

AR widening under climate change conditions has been noted before (Espinoza et al.,

2018), but the mechanisms behind it have never been thoroughly investigated. Again

along the theme of simpler models, we investigate AR width by modeling AR IVT cross

sections as Gaussian functions with three free parameters: local background IVT, AR

peak IVT above the background, and overall IVT profile breadth; from this we derive two

widths, including an impacts-relevant width which is conditioned on the critical threshold

of IVT often employed for detecting AR boundaries (IV T ≥ 250 kg m−1 s−1). We

compare this impacts-relevant Gaussian width against AR boundaries determined with

the same critical threshold but with respect to the AR IVT profiles themselves (i.e., not

the Gaussian fits), as well as the AR width detected automatically by our ARDT. In all,

we use this experimental framework to answer the following questions:

• Are AR IVT cross-sections well-represented as simplified Gaussian functions?

• How do AR local background IVT and peak IVT intensity change as a result of

uniform SST increases?

• How do different measures of AR width change under uniform SST increases?

• Finally, how much of the change in the impacts-relevant AR width can be attributed

to changes in AR background IVT, AR IVT intensity above the local background

IVT, and the overall broadening of AR IVT profiles?

This work is under review in Journal of Geophysical Research: Atmospheres as:

McClenny, E. E. & Ullrich, P. A., (2020). “Response of Atmospheric River Width

and Intensity to Sea-Surface Temperatures in an Aquaplanet Model”. Journal of

Geophysical Research: Atmospheres
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Last, Chapter 5 includes a summary of the conclusions from this work as well as

recommendations for future research.
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Chapter 2

Detecting Atmospheric Rivers

Abstract

A recent growing interest in atmospheric river (AR) research has driven dozens of authors

to write their own AR detection tools (ARDTs). Partially as a result of the novelty of AR

research, as well as a lack of any quantitative guidance on AR characteristics from official

sources, each ARDT is unique and as such, produces unique results. In this chapter, we

provide a brief discussion contrasting ARDTs and describe some examples of their criteria.

We also describe a recent international effort undertaken to quantify how these ARDT

differences in turn affect final conclusions about ARs. After this overview, we discuss the

motivation and criteria for our own ARDT. With this chapter we not only clarify what we

consider an AR for the remainder of this manuscript, but we also show the results from a

series of sensitivity tests in order to demonstrate how different tuning criteria affect AR

occurrence frequency statistics. We find marked variations among statistics derived from

various ARDT criteria, though each meets expectations and has a clear physical rationale.

We also show some of the challenges involved in using our ARDT to detect ARs across

a multi-model ensemble. We follow this up by providing details on how we attempted to

reconcile some of the observed inter-model variation, and end this chapter with a brief

description of the physical intuition behind our ARDT.
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2.1 Introduction

The first descriptions of ARs discuss these features largely in terms of vapor flux (Newell

et al., 1992; Zhu and Newell, 1998), and further studies continue to underscore the role

that ARs play in global moisture transport (e.g., Ralph et al., 2017; Guan et al., 2018). As

such, we define two relevant quantities here: integrated water vapor (IWV) and integrated

vapor transport (IVT).

IWV = −1

g

∫ pT

pB

qdp (2.1.1)

IV T =

√√√√(− 1

g

∫ pT

pB

qudp

)2

+

(
− 1

g

∫ pT

pB

qvdp

)2

(2.1.2)

where pB is the bottom pressure layer of integration (usually 1000 hPa), pT is the top

pressure layer of integration (anywhere from 100 hPa to 500 hPa is used here; e.g., Rutz

et al., 2014; Warner et al., 2014, respectively), g is gravitational acceleration, q is specific

humidity, and u and v are zonal and meridional wind velocity, respectively.

Using the above quantities provides useful metrics for describing AR intensity. AR

horizontal vapor transport or its fraction with respect to total global fluxes is generally

described in terms of IVT; meanwhile, IWV quantifies AR vapor mass through a grid-

box column. IVT and IWV thresholds are also frequently used to identify ARs against

background fields, with common thresholds of IVT ≥ 250 kg m−1 s−1 (e.g., Rutz et al.,

2013) and IWV ≥ 20 kg m−2 (e.g., Ralph et al., 2004b; Wick et al., 2013a); that said,

substantial variations in AR detection tools (ARDTs) exist. The following section gives an

overview of some of these variations, as well as the impact those variations can have on final

conclusions about ARs. Next, we describe the ARDT used for the studies presented in this

manuscript, including results from a collection of detection parameter tuning experiments.
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2.2 Overview of Atmospheric River Detection Tech-

niques

ARs are narrow bands featuring high IWV and IVT which are prominent against the much

weaker background fields (Figure 2.1 shows an AR against an IVT field for reference).

As a consequence of the strong IWV/IVT which characterizes ARs, it is generally trivial

to identify their lateral boundaries by visual inspection of these fields alone; for instance

N92 inspected maps of IWV to perform their pilot study. While this might suffice for

examining a handful of ARs, manual detection is tedious and prohibitively slow when

one wishes to study ARs over multiple seasons to decades. As a consequence, researchers

have independently developed automated ARDTs which can identify AR spatiotemporal

boundaries. However, the uncertainty associated with ARs carries over to the automated

methods used to detect them. One source of uncertainty lies in the very field used for

identifying ARs; that is, some ARDTs rely on IWV while others rely on IVT. IWV-

based ARDTs are exceptionally useful for observational studies, since satellite imagery of

water vapor channels is readily available (e.g., Ralph et al., 2004a). Since IWV thresholds

alone do not capture the moisture transport associated with ARs, these methods often

rely additionally on low-level wind speed thresholds when wind data are available (e.g.,

Hagos et al., 2015; Shields and Kiehl, 2016). Furthermore, the temperature dependence

of saturated vapor pressure induces a strong background meridional IWV gradient which

can make it difficult to distinguish ARs at subtropical latitudes, where background IWV

can near or exceed the common AR threshold of 20 kg m−2 (for reference, Figure 3.6

shows zonal mean IWV results for an aquaplanet study used in this dissertation).

To address some of these issues, IVT thresholds are frequently used to detect ARs

in model output data. IVT has the advantage of capturing ARs as systems of enhanced

vapor transport, and leads to more consistent AR statistics across latitudes: lower-latitude

ARs tend to feature higher IWV, while ARs at higher latitudes tend to feature stronger

wind speeds but less moisture (Ralph et al., 2017). Since IVT takes both moisture and

wind into consideration, there exists much lower variability associated with background

fields—in other words, AR IVT statistics do not vary as a result of latitude like AR IWV
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statistics do. Still, IVT-based ARDTs introduce their own variability, mostly in terms of

the thresholds employed. While many rely on the absolute threshold already mentioned

(IVT ≥ 250 kg m−1 s−1; Rutz et al., 2013; Gershunov et al., 2017), others employ a

relative threshold (usually 85th percentile of IVT, e.g., Guan and Waliser, 2015; Ramos

et al., 2016; Viale et al., 2018) with the physical basis being that ARs are features not just

of high IVT, but of exceptional IVT with respect to climatological background values.

Incidentally, it is due to this last point that some ARDTs employ no threshold at all, but

instead use image processing and/or machine learning based methods to identify transient

plumes of enhanced IVT against the comparatively weak background (Radić et al., 2015;

Muszynski et al., 2019; O’Brien et al., 2020a; Prabhat et al., 2021).

Beyond IVT (or IWV) threshold considerations, ARDTs also vary in other ways, with

some enforcing overall object size requirements (e.g., Rutz et al., 2014; McClenny et al.,

2020) and/or object length-to-width ratios (usually two-to-one; e.g., Goldenson et al.,

2018; Viale et al., 2018), and some requiring tuning for specific regions (e.g., Payne and

Magnusdottir, 2015; Shields and Kiehl, 2016) while others feature global coverage (e.g.,

Guan and Waliser, 2015; Mundhenk et al., 2016). With such a variety of ARDTs, it

is challenging to compare results from one study to another. In an effort to quantify

the uncertainty associated with ARDTs, the Atmospheric River Tracking Method Inter-

comparison Project (ARTMIP; Shields et al., 2018) was initiated in a grassroots fashion,

much like the effort to define ARs. ARTMIP has revealed substantial disparities across

ARDTs: for instance, Shields et al. (2018) noted marked variations across ARDTs in dis-

tributions of AR frequency and duration along coastal transects for a one-month period.

The paper found that most disagreement occurred for weaker events, while ARDTs more

consistently identified stronger ARs. A followup study by Rutz et al. (2019) also found a

wide range of results across ARDTs, though some of this was resolved when ARDTs were

clustered into groups featuring similar criteria. In the end it was shown that ARDTs with

less restrictive criteria have the advantage of finding more ARs and AR-related impacts,

while more restrictive ARDTs tend to detect the strongest or most extreme ARs (Rutz

et al., 2019). Clearly, discretion is necessary when evaluating AR statistics derived from
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ARDTs; to address some of this, the following section describes the ARDT employed in

this dissertation, as well as some of the work undertaken while including this ARDT in

the ARTMIP effort.

2.3 Detecting Atmospheric Rivers with Tempest

All AR statistics shown in this thesis are derived from an original ARDT available under

the TempestExtremes feature detection software suite (Ullrich and Zarzycki, 2017; Zarzy-

cki and Ullrich, 2017; Ullrich et al., 2021, in preprint). Since AR statistics are a product

of the ARDT used to identify AR lateral boundaries, an understanding of the ARDT em-

ployed is necessary to understand the resulting statistics. Whereas most ARDTs identify

ARs with explicit relative or absolute IVT thresholds, TempestExtremes (TE) instead

computes an eight-point stencil Laplacian (at each of the cardinal and intercardinal di-

rections) of IVT (hereafter we denote the Laplacian of IVT as L2IVT) at each grid point

and accepts a threshold value for L2IVT. By the second derivative test, L2IVT < 0 rep-

resents a concave down position; more qualitatively, any grid point featuring L2IVT < 0

corresponds to a ridge in the IVT field. Since ARs are features of enhanced IVT (i.e.,

ridges in the IVT field), we propose that a negative threshold for L2IVT can therefore be

used to identify ARs. That said, the use of this metric benefits from manual tuning in

order to reliably capture ARs; we go over some of these tuning efforts for the remainder

of this chapter.

2.3.1 Tuning Tempest for Atmospheric Rivers

TE’s use of L2IVT is challenging because it requires both a magnitude and a radius (i.e.,

a distance in each of the eight directions) over which to compute L2IVT. The magnitude

is somewhat difficult to determine because there is no known climatology of L2IVT for

ARs, as opposed to the more common ARDT absolute or relative IVT thresholds, which

are justified by substantial background research. Furthermore, any attempts to establish

L2IVT statistics for ARs would necessarily be sensitive to the stencil radius employed

in the calculations. Last, the underlying grid size of the data impacts L2IVT statistics

(a point we expand on in the next section). For now, we will focus on the Laplacian
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stencil radius parameter (hereafter, we say “radius” for brevity), which impacts L2IVT

computations by acting as a smoothing parameter over the L2IVT field. The radius has

to be tuned such that TE simultaneously accomplishes two goals: (1) ridges in the IVT

field are sufficiently smoothed to remove features which are too weak to be considered

ARs, and (2) ridges in the IVT field which do represent ARs are not overly smoothed out,

and therefore no longer detected by TE.

To illustrate the effect of radius on the final AR lateral boundaries, Figure 2.1 shows

a snapshot of an AR impacting the United States (US) West Coast on an IVT field.

The figure also shows the effect of a series of different area requirements, where area

corresponds to the minimum number of connected grid points which meet the L2IVT

criterion—we show this as a comparison for the radius. The figure shows us that as

radius increases, smaller objects tend to get smoothed out and no longer recognized as

ARs by TE; this latter effect occurs as the area requirement increases as well. A notable

difference between the radius and area increases is that the radius increases result in an

AR with a smoother boundary, while area increases simply remove smaller standalone

objects. The smoothing and ultimate removal with increasing radius happens because

using more distance in the L2IVT computation can smear out ARs, or parts of them,

from the L2IVT field. As a result, some of this smoothing can be mitigated by applying a

less negative L2IVT threshold. In any case, the smoothing with enlarged radius introduces

us to an important trade-off: while a larger radius might successfully remove small, non-

AR objects, it can do so at the expense of identifying an AR’s full extent, which is of

particular importance when one wishes to attribute impacts to ARs.

Now that we have shown some radius and area considerations for TE, we move on

to briefly discuss the effects of changing the L2IVT parameter. Figure 2.2 is the same

as Figure 2.1, but for L2IVT< −40000 kg m−1 s−1 rad−2 (hereafter we omit units for

readability). Comparing the two figures yields some interesting observations: first, it is

consistent with our earlier assertion that a less negative Laplacian threshold can offset

some of the AR boundary contraction which occurs with a larger radius, a finding which

is especially apparent when comparing the right-hand columns of Figures 2.2 and 2.1.
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Figure 2.1: Snapshot of example objects detected by TE for L2IVT< −20000 kg m−1 s−1

rad−2 and labeled radius/area requirements (grid points). Colored contours show IVT
while black outlines show AR boundaries as determined by TE. IVT data were derived
from the Modern Era Retrospective Analysis for Research and Applications, Version 2
(MERRA2; Gelaro et al., 2017), which has a 0.625◦ × 0.5◦ longitude-latitude grid.

Second, it shows us that enforcing a stricter (more negative) L2IVT consistently results

in identifying the same strong AR impacting the US West Coast, but with the caveat that

it instead identifies a narrower region about the AR’s high-IVT “core”. This contraction
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of the AR lateral boundaries makes it more difficult to attribute overland impacts to the

AR (similar to the smoothing of the objects which occurs as the radius increases), but it

has the advantage of picking out AR cores which may be of interest to researchers. The

physical reasoning for this contraction is that a more negative L2IVT requirement will

naturally correspond to regions of IVT featuring greater curvature than a less negative

one; this region of enhanced curvature corresponds to the AR core.

Figure 2.2: As Figure 2.1, but for L2IVT< −40000 kg m−1 s−1 rad−2.
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Individual-AR differences realized by tuning parameter variations carry over into over-

all AR climatologies. Figures 2.3 and 2.4 show the all-season AR occurrence frequency

(OF) for 20 years (1980-1999) of Modern Era Retrospective Analysis for Research and

Applications, Version 2 (MERRA2; Gelaro et al., 2017) output for the same set of tun-

ing experiments as Figures 2.1 and 2.2. In a qualitative sense, the maps are consistent

both with each other and with another AR global OF climatology found using a differ-

ent ARDT in Espinoza et al. (2018); specifically, we tend to see local AR OF maxima

along the western sides of ocean basins which steadily shift poleward towards the east, in

keeping with the typical propagation of ARs.

Despite some qualitative consistency, we find that clear differences exist, each in keep-

ing with expectations set up by the earlier TE snapshots (Figures 2.1 and 2.2). Just as

we showed that an increase in the radius for a given area or L2IVT threshold resulted

in capturing fewer grid points as belonging to an AR, we also see a systematic decrease

in overall AR OF as radius increases. This could come down to capturing fewer objects

overall, capturing fewer grid points per object, or some mix of the two, any of which

can occur as the enlarging radius smooths the L2IVT field. Notably, this effect works

in tandem with increasing area to minimize the number of smaller tropical objects (e.g.,

tropical cyclones, easterly waves) which are captured by TE as ARs (Figure 2.3; note the

swaths of shading between approximately 15◦N and 20◦N), revealing the utility of using a

larger radius to smooth out these smaller objects from the L2IVT field. Meanwhile, com-

paring Figures 2.3 and 2.4 against one another shows how L2IVT magnitude impacts AR

OF statistics. Consistent with findings from Figures 2.1 and 2.2, AR OF systematically

decreases as the critical threshold of L2IVT is lowered from −20000 to −40000. Since

Figures 2.1 and 2.2 show that −40000 represents a stricter threshold which tends to pick

out only the strongest objects, it follows that the OF would essentially be a sub-sample of

that for the −20000 case. Notably, the OF shown in 2.4g appears the most quantitatively

similar to the AR OF for a different reanalysis product in Espinoza et al. (2018), sug-

gesting that the corresponding tuning was the most consistent with their ARDT criteria,

though the different models used makes this difficult to assess.
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Figure 2.3: MERRA2 all-season AR occurrence frequency (% time steps featuring AR
conditions) from 1980-1999, shown here across multiple radius and area criteria for
L2IVT< −20000 kg m−1 s−1 rad−2. The harsh delineation present at ±15◦N is due
to latitude masking to remove the bulk of tropical features captured by TE.

2.3.2 Tuning Tempest for Different Grid Sizes

We already mentioned that the underlying grid size of our data impacts L2IVT statistics.

This was made apparent when using TE to detect ARs in a collection of models which

participated in the Climate Model Intercomparison Project 5 (CMIP5; Taylor et al., 2012).

Since this analysis of TE ARs was a part of the ARTMIP effort, it was essential to have

consistent tuning between each model in order to minimize intra-ARDT criteria differences

as a source of uncertainty. As such, we changed the radius and area requirements to
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Figure 2.4: MERRA2 winter (DJF) AR occurrence frequency (% time steps featuring
AR conditions) from 1980-1999, shown here across multiple radius and area criteria for
L2IVT< −40000 kg m−1 s−1 rad−2.

accommodate the disparate grid sizes (Table 2.1) in order to maintain as much consistency

as possible in terms of geographic distances. Yet despite what we considered sufficient

compensatory criteria changes, we found the unexpected result that TE tended to detect

ARs sometimes much more rarely in the CMIP5 models than in MERRA2, which we used

as our reference model (Figure 2.5).

To investigate this discrepancy, we assume that in its exact form, the AR IVT cross-
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Figure 2.5: Zonal-mean all-season AR occurrence frequency (%) when using the same
critical threshold (L2IVT< −30000 kg m−1 s−1 rad−2) across models, compensating only
for area and radius as shown in Table 2.1. CMIP5 data are from 1950-2005; MERRA2
data are from 1980-2005.

section takes the form

IV T (s) = IV T0 + dIV T exp

(
− 8s2

wd2

)
(2.3.1)

where IV T (s) is the pointwise IVT at distance s kilometers along the cross section, IV T0

is the constant background IVT, dIV T is the anomalous IVT enhancement from the AR,

and wd is the dynamic width of the AR (defined in Chapter 4 as the distance through

which 95% of the AR IVT occurs).

If a typical finite volume method is employed for modeling the atmosphere (a common

approach in global climate model dynamical cores), the discrete degrees of freedom stored

in the model correspond to volume averages rather than pointwise samples. In practice,

such a numerical method is generally only able to “resolve” features whose width exceeds

3∆x (or wavelength 6∆x) (Ullrich, 2014). For simplicity we will assume here that the

atmospheric river object is simulated perfectly, but is nonetheless subject to smoothing

because of its representation on the discrete grid. Discretization of the AR profile (2.3.2)

on a grid cell of width ∆s centered on a point s then corresponds to the operation

1

∆s

∫ s+∆s/2

s−∆s/2

IV T (s′)ds′. (2.3.2)
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Figure 2.6: Theory-based scaling for AR IVT and L2IVT. (a) Continuous and discrete
(smoothed) IVT profiles for given grid spacings. (b) Peak IVT ratio as a function of grid
spacing. (c) L2IVT for corresponding IVT profiles in (a). (d) Peak IVT and L2IVT ratios
as a function of grid spacing. See text for details.

Treating this as a moving filter produces the smoothed profile

IV T (s) = IV T0 +
dIV Tw

√
2π

8∆s

[
erf

(√
2(2s+ ∆s)

wd

)
− erf

(√
2(2s−∆s)

wd

)]
. (2.3.3)

The original profile and its discrete (smoothed) analogue for ∆s = {50 km, 100 km, 200 km,

400 km} is plotted in Figure 2.6a for a dynamical width of wd = 300 km (smaller than

the average ∼900 km AR width (e.g., Guan et al., 2018); we do this in order to capture

narrower storms), a typical AR intensity of dIV T = 520 kg m−1 s−1, and a background

IVT of IV T0 = 150 kg m−1 s−1 (based on results from Chapter 4). For comparison, at-

mospheric models participating in CMIP5 generally use grid spacing of 110 km or greater,

with some reaching resolutions of 250 km or more (Table 2.1).

The ratio of the peak IVT in the discrete profile (over IV T0) to its exact analogue
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can be written as
IV T (0)

IV T (0)
=

√
2π

4∆s
erf

(√
2∆s

wd

)
, (2.3.4)

which is plotted in Figure 2.6b. As we can see, the intensity of the average AR can drop off

fairly rapidly on coarser grids, a typical effect when such features are underrepresented.

Thus, to capture the same ARs on a coarser grid, the threshold for maximum dIVT

over the background IVT0 should scale in accordance with Equation 2.3.4—e.g., if an

IVT threshold of 250 kg m−1 s−1 is employed for detecting atmospheric rivers at fine

resolutions, then an IVT threshold of 225 kg m−1 s−1 should be used at a 400 km grid

spacing.

However, the analysis above only applies for ARDTs that use the IVT criteria, whereas

TE uses the discrete Laplacian with radius ∆r of the IVT for detection of ARs, here

defined as

L2IV T (s) =
IV T (s−∆r)− 2IV T (s) + IV T (s+ ∆r)

∆r2
, (2.3.5)

which is again plotted in Figure 2.6c with the parameters given above, with a typical

Laplacian stencil radius of ∆r = 1000 km. Here the ratio of peak L2IV T in the discrete

profile is plotted in Figure 2.6d. This suggests a reduction in the peak L2IV T threshold

employed in TE that is substantially more than that for IVT, reaching around 60% of its

reference value when the grid spacing is around 300 km.

In summary, this analysis tells us that TE should require a less negative L2IVT as grid

size increases in order to achieve better consistency in AR statistics across model grids.

Mathematically, this L2IVT scaling formula takes the form:

L2IV T (s) = L2IV Tref

(
exp

(−s2
4w2

)
exp

(−s2ref
4w2

)
)

(2.3.6)

where L2IVTref is the L2IVT requirement used for the reference model, sref is the grid

spacing of the reference model (we use latitude spacing in degrees), w is a constant distance

(we use an empirically derived value of w = 2◦), and s is the grid spacing of the model to

which we are scaling.
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Table 2.1 shows the TE tuning criteria as scaled via Equation 2.3.2, using MERRA2

tuning parameters as reference values for each model, while Figure 2.7 shows the resulting

zonal mean AR OF across models. In all, we see more consistency in AR OF across

models in terms of overall magnitudes, though discrepancies in the location of maximum

AR OF still exist. Regardless, it is reassuring that the additional tuning overall improved

the intermodel spread in AR OF. In keeping with expectations that coarser grids result

in smoother IVT fields, we find that the model featuring the largest latitude spacing

(canESM2) experiences the most improvement with respect to MERRA2 after applying

the L2IVT scaling (Figure 2.7). Still, TE systematically produces lower AR OF in all

CMIP5 models relative to MERRA2, suggesting that these results can be improved with

additional tuning. Certainly, additional L2IVT values can be computed for the models,

as the scaling obtained from Equation 2.3.2 is sensitive to the width of the storms being

captured. In any case, these results show the sensitivity of TE to the L2IVT parameter

across different models.

Model L2IVT Grid spacing Radius Area

MERRA2 −30000 0.625× 0.5 20 (1110) 220 (847, 069)

CCSM4 −28827 1.125× 0.9424 10 (1046) 65 (849, 077)

CSIRO −24516 1.875× 1.8653 6 (1035) 20 (861, 838)

CanESM2 −18729 2.8125× 2.7906 4 (1239) 9 (870, 319)

IPSL-CM5A −24348 3.75× 1.8947 5 (1051) 10 (875, 422)

IPSL-CM5B −24348 3.75× 1.8947 5 (1051) 10 (875, 422)

Table 2.1: Criteria used for TE CMIP5 experiments (the criteria used to generate Figure
2.7). L2IVT is given in kg m−1 s−1 rad−2, grid spacing is given in longitude × latitude,
radius is given in grid points (approximate km with respect to latitude spacing), and area
is given in grid points (approximate km2). Note that Figure 2.5 was derived using the
same criteria as listed here, but with L2IVT < −30000 remaining constant for all models.

After describing the effort required to tune Tempest’s L2IVT parameter for AR de-

tection to individual models, one might wonder what this effort yields. To answer this,

we must describe what L2IVT and the radius physically represent: while negative L2IVT

corresponds to a ridge in the IVT field, the radius represents the (relatively short) dis-
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Figure 2.7: Same as Figure 2.5, but for results after tuning the L2IVT for each model’s
latitude-longitude grid size.

tance over which this ridge occurs. This is to say that the radius is equivalent to how

much of the local background about a grid point is included in the calculation of L2IVT.

In other words, it allows us to account for the local climatology about a grid point; from

a physical standpoint this suggests that it should at least be equal to the typical AR

width (∼ 900 km; Ralph et al., 2017). Thus, our finding that an approximate radius

of 1000 kilometers suffices is physically consistent with the width scale of ARs. Overall,

the benefit of using a L2IVT threshold rather than an IVT threshold is that TE always

instantaneously accounts for the local background IVT field, allowing it to act similarly

to ARDTs which employ relative IVT thresholds but in a more flexible manner.
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Chapter 3

Sensitivity of Atmospheric River

Vapor Transport and Precipitation

to Uniform Sea-Surface Temperature

Increases

This is a slightly modified version of a manuscript published in Journal of Geophysical

Research: Atmospheres as:

McClenny, E. E., Ullrich, P. A., & Grotjahn, R. (2020). Sensitivity of atmo-

spheric river vapor transport and precipitation to uniform sea surface temperature

increases. Journal of Geophysical Research: Atmospheres, 125, e2020JD033421.

https://doi.org/10.1029/2020JD033421

Abstract

Filaments of intense vapor transport called atmospheric rivers (ARs) are responsible for

the majority of poleward vapor transport in the midlatitudes. Despite their importance to

the hydrologic cycle, there remain many unanswered questions about changes to ARs in

a warming climate. In this study we perform a series of escalating uniform SST increases

(+2, +4, and +6K, respectively) in the Community Atmosphere Model version 5 in an

aquaplanet configuration to evaluate the thermodynamic and dynamical response of AR

vapor content, transport, and precipitation to warming SSTs. We find that AR column
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integrated water vapor (IWV) is especially sensitive to SST and increases by 6.3 − 9.7

percent per degree warming despite decreasing relative humidity through much of the

column. Further analysis provides a more nuanced view of AR IWV changes: since SST

warming is modest compared to that in the mid-troposphere, computing fractional changes

in IWV with respect to SST results in finding spuriously large increases. Meanwhile,

results here show that AR IWV transport increases relatively uniformly with temperature

and at consistently lower rates than IWV, as modulated by systematically decreasing low-

level wind speeds. Similarly, changes in AR precipitation are related to a compensatory

relationship between enhanced near-surface moisture and damped vertical motions.

3.1 Introduction

Atmospheric rivers (ARs) are shallow (up to 4 km deep), filamentary (< 1000 km wide,

∼ 2000 km long) streams of concentrated vapor typically found in the extratropics and

midlatitudes (Ralph et al., 2004a; Cordeira et al., 2013; Ralph et al., 2018). While ARs

occupy only ∼ 10% of the Earth’s zonal circumference in the midlatitudes, they perform

virtually all of the meridional vapor transport outside of the tropics (Zhu and Newell, 1998;

Ralph et al., 2004a). When AR vapor is lifted—for instance, by mountain barriers or the

warm conveyor belt of an extratropical cyclone (ETC)—they can produce substantial

precipitation. According to a study performed by Paltan et al. (2017), ARs alone are

responsible for 22% of annual total global runoff. As prominent features of the global

hydrological cycle, the variability of ARs has important consequences for global energy

balance and regional water resources. In particular, understanding the response of AR

precipitation to increasing surface temperatures is a significant open topic today.

The Clausius-Clapeyron (CC) relation predicts a ∼ 6-7 percent increase in satura-

tion vapor pressure (e∗) near the surface for each Kelvin increase in surface temperature

(Trenberth et al., 2003). While this figure only applies to local changes, global-mean

column-integrated water vapor (IWV) nevertheless increases at approximately CC rates

(Held and Soden, 2006; O’Gorman and Muller, 2010), though significant regional vari-

ations exist (O’Gorman and Schneider, 2009a). Although mean state changes may not
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hold for individual weather events, AR IWV has increased at rates comparable to that

predicted by CC, in turn resulting in greater integrated vapor transport (IVT) in stud-

ies comparing present-day (PD) and Representative Concentration Pathway (RCP) 8.5

end-of-century (EOC) conditions (Warner et al., 2014; Payne and Magnusdottir, 2015;

Shields and Kiehl, 2016). Gao et al. (2015) explicitly tested the enhancement of AR IWV

with respect to near-surface temperatures by isolating the thermodynamic and dynamical

contributions to AR IVT under PD and RCP8.5 conditions, and found that AR IWV fol-

lowed a “super-CC” increase. In other words, the CC relation appeared to under-predict

the change in AR IWV compared to that actually measured, which Gao et al. (2015)

attributed to AR vapor originating from a warmer ocean basin that was not included

in their calculations. However, it has since been argued that such “super-CC” increases

in AR IWV are consistent with the approximately saturated, moist-neutral conditions

characteristic of strong ARs (Ralph et al., 2017). Specifically, latent heat release aloft en-

hances upper-tropospheric warming with respect to surface warming, thereby driving AR

IWV increases beyond CC predictions conditioned on surface temperatures (Payne et al.,

2020). Such a result has been noted previously in zonal mean IWV studies (O’Gorman

and Schneider, 2009a,b), as well as orographic precipitation studies (Siler and Roe, 2014),

but not strictly tested with respect to ARs.

Global-mean precipitation rates will increase at lower fractional rates than global-

mean IWV due to energetic constraints (2-3% per K surface warming; Held and Soden,

2006; O’Gorman and Muller, 2010; O’Gorman et al., 2012); likewise, theoretical consid-

erations for AR precipitation rates also predict lower fractional enhancement than for

AR IWV. Since strong ARs are approximately moist-neutral (Ralph et al., 2017), it is

expected that their internal vertical velocities will not change appreciably as the climate

warms (O’Gorman, 2015); given this, it can be shown that extreme, non-orographic AR

precipitation rates will increase fractionally at the rate of near-surface e∗, which is lower

than that for AR IWV (Payne et al., 2020). Since orographic enhancement is a frequent

driver of extreme AR precipitation (e.g., Ralph et al., 2006), the previously described

changes in the vertical structure of atmospheric moisture have additional consequences.
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Specifically, the amplified warming aloft also drives the largest fractional increases in con-

densation higher in the column, in turn limiting moisture availability for precipitation on

the windward side: Siler and Roe (2014) found that orographically enhanced precipitation

increased at larger rates on the leeward side of a mountain range than upstream of the

crest (12.2% versus 8.8%). Another study comparing historical and RCP8.5 ARs in a

29-member ensemble found a 35% increase in the number of AR days, but only a 28% in

AR days associated with extreme precipitation (Hagos et al., 2016). Last, Warner et al.

(2014) examined US west coast ARs in a 10-member model ensemble under historical

and RCP8.5 conditions, and found that AR IVT increased by 25-30% while offshore AR

precipitation rates increased by 15-39%, though they noted that uneven surface warming

may have contributed to the ranges of the calculations.

Theory-based predictions for AR moisture transport and precipitation provide excel-

lent physical context, but can be difficult to test in “comprehensive climate models” (here

defined as those which contain sea ice, land, and an interactive ocean) due to the sheer

complexity of their many interacting components (Held, 2005). Therefore, we suggest

that a simplified experiment design will help elucidate the thermodynamic and dynamical

drivers of AR moisture transport and precipitation. Specifically, we suggest that the use

of an aquaplanet (AQP) model—a water-covered world without land, sea ice, interactive

ocean, or topography (Neale and Hoskins, 2000)—is ideally suited for such a study. Pre-

vious studies have leveraged the simplified AQP framework to isolate the physical drivers

of AR activity (Hagos et al., 2015; Swenson et al., 2018). Likewise, we use an AQP here

to isolate SST forcing from other climate change effects (e.g., differential land-sea warm-

ing) inherently present in comprehensive climate models, while the use of uniform SST

increases can help us further rule out impacts from changing meridional SST gradients.

Hence, we set out here to study the thermodynamically and dynamically driven changes

of AR moisture transport and precipitation to a series of progressively larger uniform SST

increases in an AQP model. Specifically, this research investigates the following questions:

• What are the thermodynamic responses of AR moisture transport and precipitation

rates to a collection of uniform SST increases?
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• How do dynamic quantities (e.g., midlatitude circulation, wind) respond to increas-

ing SSTs?

• How do these dynamic quantities serve to enhance or damp changes in AR vapor

transport and precipitation?

In all, this study seeks to contextualize AR climate change statistics—whether those

established from observations or from studies in comprehensive climate models—by iso-

lating the impacts of warming SSTs. We will not only test physical linkages between

SST increases and AR statistics, but will break down more complex AR processes (e.g.,

precipitation) into simple constituents (e.g., near-surface specific humidity and vertical

velocity) to further our understanding.

A secondary goal of this manuscript is the introduction of a simple and novel AR

detection tool (ARDT) developed as part of the TempestExtremes framework (Ullrich

and Zarzycki, 2017). Unlike other ARDTs in the literature (e.g., see Shields et al., 2018)

the proposed scheme relies on a threshold on the Laplacian of the IVT (rather than the

IVT itself). This has the advantage of detecting AR structures as ridges in the IVT field

regardless of changes to the background that occur in response to surface warming. An

optional algorithm for filtering tropical cyclone objects is also described.

This paper is organized as follows: Section 3.2 outlines methods, including model

parameters and detection tools; Section 3.3 presents relevant AR, non-AR, and total (AR

+ non-AR) statistics, including column-integrated quantities as well as vertical profiles for

all runs; finally, Section 3.4 provides a brief summary of our findings, as well as concluding

thoughts.

3.2 Methods

3.2.1 Model setup

We use the Community Earth System Model (CESM) version 2 with Community At-

mosphere Model version 5 (CAM5) physics (Neale et al., 2010). The spectral element

dynamical core is employed with NE60 horizontal resolution (0.5◦ average spacing be-

tween degrees of freedom along the equatorial band). Output is remapped to a uniform

32



0.5◦ finite volume grid using the TempestRemap software suite (Ullrich and Taylor, 2015;

Ullrich et al., 2016) before calculating derived variables, detecting ARs, or performing

analyses.

To isolate the influence of SST on AR precipitation, we run CAM in its AQP config-

uration, meaning it has no land, sea ice, or topography; it is a water-covered world. We

prescribe a data ocean in which SST thermally forces the atmosphere while remaining

fixed. As a “Baseline” SST scenario, we use the “QOBS” profile from Neale and Hoskins

(2000), while the warming scenarios feature plus two, four, and six K uniform SST in-

creases over QOBS, respectively. These uniform increases includes polar regions: where

the original QOBS formulation sets SST poleward of 60◦ at 0◦C, we set these points equal

to the uniform SST increase to prevent effects associated with a changing meridional SST

gradient.

All SST scenarios are symmetric about the equator and zonally uniform; solar radia-

tion is fixed at perpetual-equinox conditions, and there is no axial tilt. Carbon dioxide

concentrations for all runs are set at a uniform 348 ppm (the default value for CAM5

AQP), aerosol cloud interactions are turned off, and the only aerosol emissions come from

sea salt, which the model diagnoses from surface wind. The zonal and hemispheric ho-

mogeneity of the boundary conditions, along with the lack of seasonality, allows for many

more ARs under the same boundary conditions and forcing, so the sample size reduces

confidence bounds. Medeiros et al. (2016) found that two-year, zonal mean statistics

for water vapor, horizontal and vertical winds, and precipitation were statistically robust

with respect to a 16-year total AQP run. Similarly, Yang et al. (2013) found that a single

year provided stable statistics for zonal mean precipitation extremes in a five-year AQP

experiment. Testing of our own determined that zonal mean AR statistics converged

within 18 months (Figure A.1), so we maintain that the 30 months of statistics shown

here sufficiently capture bulk AR properties. Last, insofar as the northern and southern

hemispheres of an aquaplanet can be considered independent from one another, we av-

erage both hemispheres together and consider it as virtually doubling the sample size,

leaving us with effectively 2N months of data for each SST scenario, where N = 30.
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3.2.2 AR detection

The American Meteorological Society (AMS) definition for AR contains little quantitative

guidance (AMS, 2017), allowing for flexibility in ARDT development but also contributing

to differences across ARDTs. These differences, which include variations in terms of

detection variable (e.g., IWV, IVT, etc.), thresholds on the intensity of detection variables,

geometry, event persistence, and/or other detection considerations, can ultimately affect

conclusions about AR characteristics and impacts (Shields et al., 2018; Rutz et al., 2019;

O’Brien et al., 2020a; Payne et al., 2020). While some ARDTs rely on relative moisture

thresholds derived from climatology (e.g., Lavers et al., 2012; Guan and Waliser, 2015),

others use absolute thresholds for either IWV (Ralph et al., 2004a; Wick et al., 2013a)

or IVT (Equation 3.2.1) (Leung and Qian, 2009; Rutz et al., 2013). In general, ARDT

authors tend to condition AR detection on IVT rather than IWV, in part because a pure

IWV threshold does not capture the nature of ARs as midlatitude processes that transport

moisture, as well as because IWV thresholds capture too much of the tropical moisture

belt. We compute IVT as:

IV T =

√√√√(− 1

g

∫ pT

p0

qudp

)2

+

(
− 1

g

∫ pT

p0

qvdp

)2

(3.2.1)

where p0 = 1000 hPa, pT = 300 hPa, g is gravitational acceleration, q is specific humidity,

and u and v are the zonal and meridional wind velocities, respectively.

We use an original, objective ARDT which is available as part of the TempestExtremes

(TE) software suite (Ullrich and Zarzycki, 2017; Zarzycki and Ullrich, 2017). TE uses the

following criteria to detect AR conditions (i.e., the presence of an AR at an individual

time step) at a latitude-longitude grid point:

1. The grid point is poleward of 20◦N/S

2. The Laplacian of IVT at the grid point is < −40000 kg m−1 s−1 rad−2. We compute

this using an 8-point discrete Laplacian with a stencil radius of approximately 800

km, about the mean AR width found both in an observational study by Ralph et al.

(2017) as well as a reanalysis study by Guan et al. (2018).
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3. The grid point is part of ≥ 50 connected grid points (an area of approximately

125,000 km2) which meet the above criteria, as determined via a simple floodfill

algorithm. This area requirement removes pointwise enhancements in the IVT field

which would otherwise be counted as ARs, and we found that no explicit length or

width requirements beyond this were necessary to achieve a sampling of ARs with

a characteristic filamentary shape.

4. The grid point does not belong to a tropical cyclone (see Section 3.2.3 for details)

We emphasize here two important points about our ARDT. First, our use of an absolute

threshold for the Laplacian of IVT, rather than for IVT itself, allows TE to act similarly

to a “relative” ARDT (e.g., an ARDT conditioned on climatological IVT percentiles; see

Shields et al., 2018; Rutz et al., 2019) and precludes any necessity to enforce different

detection thresholds despite the different background climatology of each SST run. This

is because the Laplacian identifies regions where IVT has increased to a ridge over a

short distance (∼ 800 km) relative to the local background IVT. Offline sensitivity tests

determined that the Laplacian threshold was sufficiently strong that it never captures

points that do not satisfy the threshold of IVT > 250 kg m−1 s−1 typically used for ARs

(Shields et al., 2018; Ralph et al., 2019). Therefore, whenever this manuscript references

ARs in the context of those detected by TE, it refers to any object whose IVT represents

a local ridge in the field. We recognize that our detection criteria often results in the

inclusion of tropical cyclones (TCs), so we filter them out with a separate detection

criteria (see Section 3.2.3 for details). Second, the Laplacian threshold, its radius, and

the grid point number (area) requirement were all determined via manual inspection of

detected objects. These thus represent tuning parameters in the ARDT and should not

be taken as absolute. For reference, we included TE in the Atmospheric River Tracking

Method Intercomparison Project (ARTMIP; see Shields et al., 2018; Rutz et al., 2019),

which seeks to quantify how differing ARDTs result in differing AR statistics. Within

these studies, TE tends to exhibit behavior close to the median for relevant AR statistics,

relative to the entire ensemble of ARTMIP ARDTs (Shields et al., 2018; Rutz et al., 2019).

Figure 3.1 shows a snapshot of TE-identified ARs against fields of (a) IVT and (b)
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Figure 3.1: Snapshot of ARs (solid black outlines) as well as a TC (dotted black outlines)
as identified by TE. We show them here on a field of (a) IVT and (b) the Laplacian of
IVT from the Baseline SST run.

the Laplacian of IVT for reference. Note that IVT values within AR contours always

meet or exceed the typical AR criteria of 250 kg m−1 s−1, even without this threshold

being explicitly enforced (Figure 3.1a). To capture the bulk AR climatology for each

run, we also compute an AR occurrence frequency (OF), defined here as the percent of

time steps in which TE has identified AR conditions at any given latitude-longitude grid

point. Since these results are independent of zonal coordinate, we show the zonal mean

AR OF in Figure 3.2a. With each +2K increase in SST, AR OF both increases overall

and experiences a robust poleward shift in its maximum. This shift is likely driven by a

similar poleward shift in the location of the eddy-driven jet, which we discuss in Section

3.3.1. Meanwhile, the overall enhancement in AR OF under warming SST conditions

can be due to changes in the number of ARs, the zonal extent of AR objects, and/or an

increase in the average duration of ARs. We find that the largest contribution comes from

the average zonal extent of individual AR objects (that is, the average number of grid

points in the zonal direction occupied by an individual AR object; nominally a measure of

AR width without taking AR axis into account), which expands systematically as SSTs

warm, especially in the lowest and highest latitudes of the test domain (Figure 3.2b).
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Figure 3.2: Zonal mean AR (a) occurrence frequency and (b) zonal extent for each SST
run. Shading shows the 95% confidence intervals, computed with respect to N = 20
three-month ensembles.

Espinoza et al. (2018) similarly reported enhanced AR OF due to expanding AR length

and width under climate change conditions using an independently developed ARDT.

The extent of the AR “widening” produced by TE can be explained in part by multi-

plicative IVT increases since the multiplicative factor carries over into the Laplacian, but

it is unlikely to be the only driver: assuming that AR IVT exhibits a Gaussian profile,

it can be shown that a uniform 50% increase in IVT only results in a ∼ 1% wider AR

(Text A.1). In any case, the increased width of AR objects does imply some care needs

to be taken when assessing zonal mean AR statistics—namely, the added points at the

periphery of the AR objects are likely to be different in character than the AR core, which

is characterized by the most extreme values of IVT. Subsequently, our analysis examines

both the zonal mean statistics and histograms of relevant fields.
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3.2.3 Filtering out tropical cyclones

One pitfall associated with the TE AR detection criteria used here is the identification as

ARs of bands of high IVT associated with TCs. While ARs can occur in association with

TCs and extratropical transition (e.g., Sodemann et al., 2013), our analysis focuses on AR

conditions alone and not on related phenomena. Restricting AR detection poleward of

20◦ removes a substantial proportion of TCs and TC-like objects, but in order to ensure

these objects are not incorporated in our analysis we additionally use a separate detection

algorithm to filter them (Ullrich and Zarzycki, 2017; Zarzycki and Ullrich, 2017). TE’s

TC detection is used to mask out all variables within an eight-degree radius of grid points

which meet the following criteria:

1. They are the most intense local minimum of sea-level pressure (SLP) within a 2.0◦

great-circle distance.

2. Their SLP increases by at least 375 Pa over a 3.6◦ radius.

3. Their 300 minus 500 hPa geopotential height thickness decreases by six meters over

7.5◦. This criterion acts so as to only detect warm core storms and not eliminate

extratropical cyclones.

Figure 3.1 shows an example TC detected by TE against fields of (a) IVT and (b) the

Laplacian of IVT for reference. For further details on how TE detects TCs, we refer

readers to Ullrich and Zarzycki (2017) and Zarzycki and Ullrich (2017). We note here

that while removing TCs did not change our overall results substantially, it did remove

spuriously high values of IVT, low-level wind speeds, and precipitation from AR zonal

mean statistics between 20◦ and 25◦.

3.2.4 Data and statistical tests

Due to zonal uniformity and symmetry of SSTs across the equator, AQPs lend them-

selves nicely to meridional distributions of zonal mean statistics. Hence, many statistics

are presented in this form, and, due to the aforementioned hemispheric symmetry, are

shown only for the northern hemisphere (although southern hemisphere statistics are in-

corporated in these plots as well). Furthermore, since we do not track ARs in time,
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all analysis on AR variables (e.g., AR precipitation) is performed on a grid point basis,

rather than over the entire AR object throughout all or part of its lifecycle. Therefore,

all meridional distributions of AR variables discussed here may be better characterized as

distributions of variables under “AR conditions” (i.e., TE has identified that grid point

as belonging to an AR) in which all non-AR grid points are excluded from analysis. We

evaluate significance throughout this manuscript at the 95% confidence level with respect

to 3-monthly ensemble members with the northern and southern hemispheres treated as

independent samples (N = 20). This is analogous to a series of seasonal-length ensembles.

Since some variables exhibit strong meridional variations in terms of their relative

response, we stratify our analysis into four distinct, approximately equal-area latitude

bands: lower subtropics (A; 20.25 − 26.75◦); upper subtropics (B; 30.25 − 37.75◦); lower

midlatitudes (C; 38.25−46.75◦); and upper midlatitudes (D; 47.25−57.25◦). The relatively

large gap between A and B exists because of a complex precipitation response in the area

between those bands, as seen in Figure 3.10; we reserve discussion of precipitation for

Section 3.3.5.

3.3 Results and discussion

We begin our discussion in Section 3.3.1 with a brief summary on the midlatitude circu-

lation for each SST run, as it is important for understanding the AR environment. Next,

Section 3.3.2 describes findings on IVT, the variable on which AR detection is conditioned

and one of the most prominent features of ARs. We follow this up by roughly considering

IVT as the product of IWV and low-level wind, thus allowing us to separate IVT into its

thermodynamical (IWV) and dynamical (wind) contributions. These contributions are

then analyzed in detail in Sections 3.3.3 and 3.3.4, respectively. Finally, AR precipitation

is analyzed in Section 3.3.5.

3.3.1 Circulation response

The midlatitude circulation provides the large-scale dynamical background for ARs. We

characterize the midlatitude circulation in terms of three metrics: the Hadley cell (HC)

edge, the subtropical jet (STJ), and the eddy-driven jet (EDJ). The purpose of this section
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is to provide a broad overview of the major circulation responses to SST increases in order

to provide context for the AR responses described in later sections.

The HC edge defines the poleward extent of the region of subsidence associated with

the HC’s descending branch, where strong static stability suppresses precipitation. To

locate it, we follow the work of Davis and Birner (2016) who define it as the latitude at

which the column-integrated, zonal mean meridional stream function (MMS) first disap-

pears poleward of the deep tropical MMS extrema. We use bilinear interpolation to find

the precise latitude of the HC edge when it is between grid points, as in Davis and Birner

(2016). Figure 3.3a depicts a kernel density estimate (KDE) of the daily-mean HC edge.

Despite a slight discontinuity between the +4K and +6K runs, the HC edge generally

shifts poleward as SST warms, a result which has been observed and analyzed previously

(Frierson et al., 2007; Lu et al., 2007; Vallis et al., 2015; Tandon et al., 2013; Shaw et al.,

2016; Maher et al., 2020).

Whereas the HC edge broadly defines regions of convergence and divergence through

the tropics and subtropics, the tropospheric jets act as dynamical guides against which

cyclones, and the closely related ARs, form and propagate. Statistics related to AR

occurrence, landfall location, and moisture transport are impacted by the prevailing jet

regime for a given ocean basin (Payne and Magnusdottir, 2015; Shields and Kiehl, 2016;

Kim et al., 2019). Thus, we provide a short summary of EDJ and STJ statistics here,

beginning with the EDJ.

To locate the EDJ, we use the method described in Woollings et al. (2010): we (1)

perform vertical averaging from 925 to 700 hPa of the daily mean zonal wind fields between

15◦ and 70◦; and (2) smooth the zonal mean using a 10-day Lanczos filter with a 61-day

window (Duchon, 1979). We then denote the latitude of the daily maximum of this field

as the EDJ position. Accumulated over the complete simulation, the KDE of the EDJ

position is given in Figure 3.3b. We find that the EDJ position shifts poleward as SST

increases, an unsurprising result given the uniform SST increases and the strengthening

upper-level temperature gradient shown in Figure 3.7 (e.g., Shaw and Voigt, 2015). As

the EDJ shifts poleward, it enhances static stability through the subtropics, similarly
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Figure 3.3: Kernel density estimates (KDEs) of (a) Hadley cell edge for each run and (b)
subtropical jet (STJ; thin lines) and eddy-driven jet (EDJ; thick lines) positions. Colored
boxes and accompanying labels on the x-axis denote the analysis subregions described in
Section 3.2.4, and are shown here for reference.

41



pushing storm tracks and the HC edge poleward (Butler et al., 2010; Chang et al., 2012;

Yin, 2017). Hence, the shift seen here in the EDJ is consistent with our results for the

HC edge and AR occurrence frequency, both of which shift poleward with respect to the

Baseline run (Figure 3.5).

Last, we find the STJ as in Davis and Birner (2016), who define it as the most

equatorward zonal mean zonal wind maximum below 50 hPa after subtracting the surface

zonal wind component to distinguish it from the EDJ. We remove the 850 hPa wind from

the column instead as in Maher et al. (2020) and similarly find a distinct STJ core (Figure

A.4). Figure 3.3b shows KDEs of daily STJ position for each SST run. Unlike the HC

edge’s systematic poleward shift as SST increases, the STJ location shows a discontinuous

response characterized by a relatively large poleward movement in the +2K scenario but

smaller poleward movements in the +4K and +6K scenarios, when measured with respect

to the Baseline run. Even though the HC edge and STJ are frequently co-located, a “de-

coupling” characterized by differing meridional shifts in the position of each has been

described before (Davis and Birner, 2013; Maher et al., 2020). We also cannot rule out

difficulties with separating the STJ from the EDJ (Medeiros et al., 2016), although this

is less of an issue in the +4K and +6K experiments (Figure 3.3b). Another systematic

response to uniformly warming SSTs is a strengthening of the STJ, as evidenced by higher

zonal mean zonal winds in its core (Figure A.4). The STJ strengthening is likely related

to the enhanced upper-level meridional temperature gradient in the subtropics as SSTs

warm (Figure 3.7.)

3.3.2 Vapor transport

Figure 3.4 shows (a) meridional distributions of zonal mean IVT for all runs, as well as

(b) the relative change between each warming run and the baseline (expressed as % per

K). Solid lines show zonal averages over grid points in which AR conditions are present,

whereas the dotted lines show zonal averages over non-AR grid points only. Finally, (c)-

(f) show area-weighted fractional changes for each analysis subregion described in Section

3.2.4. We find that both AR and non-AR IVT increases with SST, though the response

is not entirely uniform. While the change in AR IVT shown in Figure 3.4b appears
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Figure 3.4: (a) Meridional distributions of zonal mean AR (solid) and non-AR (dotted)
IVT. Shading shows 95% confidence intervals. (b) Relative differences with respect to
the Baseline SST (% K−1), using the same line color and style conventions. (c-f) Area-
weighted mean relative change per K SST increase (blue; line style conventions as before).
Grey dashed lines show changes in near-surface e∗ as predicted by the CC relation com-
puted with respect to the prescribed uniform SST increases, which we show here for
reference.

virtually flat and typically increases quite linearly at approximately 5% K−1, the change

through subregion A is only about half as strong. The relatively uniform increase across

latitudes in AR IVT contrasts the change in non-AR IVT, which is characterized by both

an overall increase as well as poleward shifting maxima (moving from 40◦ to 46◦ under

the +6K scenario) concordant with shifts in the EDJ position (Section 3.3.1). In terms of

overall fractional changes, it is notable that non-AR IVT increases at higher rates than

AR IVT in the A and D subdomains, at lower rates in B, and at similar rates in C.

We investigate changes in zonal mean IVT first by breaking it up into its zonal (uIVT)

and meridional (vIVT) components (Figure 3.5). Perhaps the most obvious feature emerg-
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Figure 3.5: As in Figure 3.4, but for (a-f) zonal IVT (uIVT) and (g-l) meridional IVT
(vIVT) components. Note the differences in ordinate scales. Also note numerical issues
which prevented us from plotting some non-AR quantities: (1) non-AR uIVT is consis-
tently near-zero between subregions A and B, resulting in an artificial inflation of relative
changes in subplot (b), though the subregion means (c-f) were possible; (2) non-AR vIVT
has a similar problem, though the values pass through the y-intercept in subregion A;
hence, we could plot neither the zonal (h) nor the regional (i-l) fractional changes.
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ing from this decomposition is the somewhat complementary relative changes between AR

uIVT and vIVT: the largest relative increases in uIVT occur in subregions A and D, where

vIVT decreases slightly; likewise, the largest increases in vIVT occur through the B and C

subregions, where uIVT shows the smallest fractional change. Specifically, when it comes

to changes in the direction of vapor transport, we show here that increasing SST leads

to increasingly westerly AR IVT through A and D, but does not substantially change

transport direction through the B and C subregions, where both uIVT and vIVT experi-

ence similar fractional increases. Nonetheless, the relatively localized increase in vIVT in

B suggests an intensification in AR vapor advection from the subtropical moisture reser-

voir as SSTs increase. The changing pattern of AR vIVT out of A tracks with observed

shifts in the STJ for each SST scenario (Figure 3.3b)—namely, AR vIVT is enhanced

on the cyclonic side of the jet, and suppressed on the anticyclonic side—suggesting that

the strengthening zonal flow of the STJ reduces AR-modulated interactions between the

equatorward and poleward sides of the jet.

In non-AR regions, the poleward shift in IVT is exclusively due to an increase and

poleward shift in westerly transport (uIVT), as meridional transport remains small (or

even shows a small statistically insignificant decrease outside of B), a change likely fa-

cilitated by the poleward shift in the EDJ (Figure 3.3). Given that vIVT in non-AR

regions is small, moisture transport into the midlatitudes appears increasingly dominated

by ARs as SSTs increase, potentially indicating that future ARs will perform a greater

fraction of meridional moisture flux than the 90% typically attributed to ARs (Zhu and

Newell, 1998). Since no corresponding increase in moisture flux occurs in subregion D,

we thus expect that precipitation increases in C will be largely due to increases in AR

precipitation.

3.3.3 Thermodynamic response

Figure 3.6 shows zonal mean IWV and its fractional change under uniformly increased

SST forcing. AR and non-AR IWV both increase systematically with warming SSTs, with

non-AR IWV changing at higher fractional rates than AR IWV in all domains except C, in

which AR and total IWV change approximately equivalently. As with the CC relation for
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Figure 3.6: As in Figure 3.4, but for IWV.

near-surface e∗ (grey lines on Figure 3.6c-f), IWV increases are enhanced slightly for larger

SST increases. However, the magnitude of IWV enhancement exceeds CC predictions for

near-surface e∗ when conditioned on SSTs (except for in the +2K D subregion).

Similar “super-CC” moistening rates in ARs have been observed before (Gao et al.,

2015). However, the idealized aquaplanet explored in this paper allows us to more easily

elucidate the relevant physical linkages. We begin by examining column temperatures:

Figure 3.7 shows vertical profiles of zonal mean absolute temperature changes in AR and

non-AR grid points. Although these profiles incorporate not only the cores of ARs but

also their peripheries, the vertical distributions here nonetheless allow us to unravel one

of the physical drivers of the zonal mean IWV signals seen in Figure 3.6. We find that

the temperature response for AR grid points in all subregions and non-AR grid points

through A and B is consistent with a damping of the moist-adiabatic lapse rate, which can

be shown to occur under surface warming conditions as a result of enhanced latent heat
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Figure 3.7: Vertical distributions of zonal mean absolute temperature in (a) AR and
(b) non-AR grid points. (c-e) Vertical distributions of the absolute change in absolute
temperature in AR grid points. (f-h) Vertical distributions of the absolute change in
absolute temperature in non-AR grid points. Boxes delineating subregions are as for the
previous figures, and are shown for reference.

release aloft (Siler and Roe, 2014; Payne et al., 2020). Meanwhile, the mid-tropospheric

warming maximum in non-AR grid points in C and D is similar to that seen in previous

studies citing more complicated physical mechanisms for tropospheric warming in the

midlatitudes which are beyond the scope of this manuscript (e.g., O’Gorman and Singh,

2013).

While the temperature analysis facilitated by Figure 3.7 provides a qualitative eval-

uation of model output with respect to theoretical predictions, it does not address why

non-AR IWV tends to increase at higher rates than AR IWV (Figure 3.6). To investigate

this, we leverage relative humidity (RH), an ideal variable in this scenario since it directly

shows the departure of specific humidity from saturation specific humidity under a given

SST increase, providing important context for the differing responses between AR and
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Figure 3.8: Same as Figure 3.7, but for relative humidity (RH; %).

non-AR IWV. To that end, Figure 3.8 shows vertical profiles of the absolute change of RH

in AR and non-AR grid points for each SST run. These profiles show that RH decreases

through most of the column and at most latitudes whether or not we select for AR condi-

tions, though the decrease is generally larger at AR grid points. The only location where

ARs get closer to saturation under SST increases is the B subregion’s mid-troposphere,

though the RH increase here is very slight and is likely facilitated by enhanced meridional

vapor advection out of subregion A (Figure 3.5h).

3.3.4 Dynamic response

To broadly understand the dynamical component of AR IVT, we examine AR winds at

the 850 hPa level. Zonal means show a robust decrease in AR 850 hPa wind speeds

(Figure A.5), which we decompose into histograms of zonal and meridional winds taken

over all AR points within each subregion (Figure 3.9). These distributions reveal that

zonal winds at AR points generally weaken as SST increases, with the most robust of
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these decreases occurring through the B and C subregions. Since the EDJ shifts from

primarily occurring in C to D under higher SST conditions (Figure 3.3b), this slowing

is likely related to a poleward shift in the strongest steering winds. Meanwhile, 850

hPa meridional winds in ARs show a more complicated response, characterized less by a

systematic shift towards lower values, and more by an increased sampling of grid points

featuring weak or even equatorward meridional winds. That is, the upper tails of all four

histograms (> 20m/s)—representing points largely drawn from the AR core—exhibit

essentially no change in meridional wind speed.

As stated earlier, we roughly consider IVT to be the product of IWV and low-level

wind speed. With this in mind, the decreased magnitude of zonal mean IVT increases

compared to IWV increases suggests that slowing winds attenuate the IVT response. We

compactly show the compensatory relationship between IWV and low-level winds on IVT

by returning to the weighted area-mean fractional changes of IVT and IWV (Figures 3.4

and 3.6) for each of our analysis subregions, and compute the same for 850 hPa wind

speed (U850). Following this, we describe a relative change in IVT as

∆IV T

IV T
=

∆IWV

IWV
+

∆U850

U850

+ r (3.3.1)

where r is the residual value. We plug in the area-weighted fractional changes for IVT,

IWV, and U850 to Equation 3.3.1, the results of which are summarized in Table 3.1.

Performing this simplified analysis allows us to see the relative roles of thermodynamics

(i.e., moisture fields) and dynamics (in this case, wind magnitude) in modulating AR and

large-scale vapor transport. In particular, it allows us to see the opposition between

the thermodynamic and dynamic components under warmer SST regimes. The generally

small magnitudes of the r values in AR grid points indicates that absent changes in wind

speed, AR IVT increases are approximated by those in AR IWV, a result which agrees

well with several previous analyses (Dettinger, 2011; Lavers et al., 2013; Warner et al.,

2014; Gao et al., 2015, 2016; Payne et al., 2020). Non-AR U850 values illustrate this

especially well, as their changes do not represent a systematic decrease so much as a

poleward-shifting maximum. As a result, non-AR IVT values in A, B, and C regions all

increase at rates lower than non-AR IWV, while increases in D non-AR IVT far exceed
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Figure 3.9: Histograms of AR (a-d) zonal wind at 850 hPa (u850) and (e-h) meridional
wind at 850 hPa (v850) in each analysis subregion, with spacing at 1 m/s. Y-axis shows
the fractional area of the subregion occupied by a particular bin value. Steps show the
median of the three-month ensemble members, while error bars show the inter-quartile
range with respect to N = 20 ensemble members. The gray, dashed lines show the mode
of the Baseline histogram for reference.
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∆IV T
IV T

∆IWV
IWV

∆U850

U850
r

A +2K 3.49 (6.04) 7.03 (9.44) -5.51 (-2.11) 1.97 (-1.29)

+4K 3.44 (7.59) 7.77 (10.76) -4.33 (-1.07) 0.00 (-2.10)

+6K 3.87 (6.76) 8.03 (11.37) -4.22 (-1.69) 0.06 (-2.92)

B +2K 4.98 (2.68) 7.69 (7.86) -2.96 (-4.10) 0.25 (1.08)

+4K 4.87 (1.86) 9.18 (9.29) -3.53 (-4.98) -0.78 (-2.95)

+6K 5.44 (2.74) 9.70 (9.91) -3.12 (-4.13) -1.14 (-3.04)

C +2K 5.11 (5.71) 7.03 (8.17) -2.14 (-1.43) 0.22 (-1.03)

+4K 5.53 (5.26) 8.44 (9.38) -2.76 (-2.47) -0.15 (-1.65)

+6K 5.82 (5.32) 8.97 (9.84) -2.50 (-2.37) -0.65 (-2.15)

D +2K 5.43 (12.39) 6.33 (9.65) -0.78 (3.02) -0.12 (-0.28)

+4K 6.35 (14.28) 7.47 (10.83) -1.15 (3.10) 0.03 (0.35)

+6K 6.55 (14.04) 8.03 (11.48) -1.23 (2.26) -0.25 (0.30)

Table 3.1: Area-weighted mean relative changes for IVT, IWV, and U850 for each lati-
tude band in all SST experiments. We also show the residual value, r, as expressed in
Equation 3.3.1. AR values are expressed in boldface, while non-AR values are contained
in parentheses. All values have units of % K−1 conditioned on the given uniform SST
increase.

those of non-AR IWV, due to enhanced U850 at these high latitudes.

3.3.5 Precipitation

We move on now to perhaps the most widely associated feature of ARs. We begin by

examining zonal means within AR and non-AR grid points, as in previous sections. From

here, we examine the drivers of precipitation and its changes first by applying a simplified

physical model of precipitation analogous to that found in Table 3.1. We follow this up by

examining distributions of AR precipitation and vertical velocities in more detail. Last,

we characterize changes in AR precipitation independent of changes in AR areal extent.

3.3.5.1 Bulk properties and drivers of AR precipitation

Figure 3.10 shows zonal mean 3-hourly average precipitation rates as well as the fractional

change of those rates with respect to the prescribed SST increase. Non-AR precipitation
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Figure 3.10: The same as Figure 3.4, but for 3-hourly average precipitation rate.

exhibits a pattern consistent with the poleward shifts in the HC edge and the EDJ posi-

tion (Figure 3.3), which together likely serve to enhance moisture flux convergence (MFC)

in the D subregion and suppress it through B. Generally speaking, this pattern is consis-

tent with other thermodynamic scaling studies of mean precipitation rates (e.g., Held and

Soden, 2006; O’Gorman and Schneider, 2009b), so we turn our focus now to AR precipi-

tation, whose response shows a similar pattern to non-AR precipitation but with marked

meridional shifts. For instance, like fractional changes in AR vIVT (Figure 3.5h) the

spatial pattern of the AR precipitation response through the A and B subregions (Figure

3.10b) tracks more closely with observed shifts in the STJ position than in the HC edge

(Figure 3.3). Hence, while decreasing AR precipitation through A may be related to the

expansion of the HC’s descending branch through this subregion, we also suspect effects

associated with changing patterns of convergence and divergence in the vicinity of the

STJ.

To contextualize our findings on AR precipitation, we perform a simplified analysis
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similar to that performed for IVT in Section 3.3.4. To do so, we assume the local precipita-

tion rate (P ) of AR grid points over the ocean is roughly equal to the vertically integrated

condensation rate; we can thus characterize it with the following proportionality:

P ∼
∫ ps

0

ω
dq∗

dp

∣∣∣∣
θe

dp (3.3.2)

where ω is the vertical velocity in pressure coordinates and dq∗/dp is the vertical

gradient of specific humidity evaluated along a moist adiabat with constant equivalent

potential temperature θe. It is generally assumed that strong ARs are moist-neutral due

to findings from observational analyses (Ralph et al., 2017), and thus dq∗/dp can be

integrated in pressure coordinates to yield the surface specific humidity, q∗sfc. While we

find that ARs in our simulation are not exactly moist-neutral (note column RH and its

changes through Figure 3.8), we nevertheless make this assumption in order to simplify

analysis, and thus approximate dq∗/dp with q∗sfc. Since ARs are approximately saturated

near the surface (Figure 3.8), we set q∗sfc = qsfc at AR grid points. We furthermore

simplify this relation by evaluating ω only at the 700 hPa level. This leaves us with the

approximation that precipitation is the product of qsfc and ω700, similar to approximations

described in other studies of extreme precipitation (Sardeshmukh et al., 2015; O’Brien

et al., 2016; Rauscher et al., 2016). Accordingly, a fractional change in AR precipitation

can be expressed as:
∆P

P
=

∆qsfc
qsfc

+
∆ω700

ω700

+ r (3.3.3)

As with the earlier IVT analysis (Table 3.1), we compute terms with respect to weighted

areal means within each analysis subregion. The results of this analysis are summarized

in Table 3.2. Generally speaking, residual values tend to be small (Table 3.2), indicating

that Equation 3.3.3 captures changes in zonal mean AR precipitation rates reasonably

well.

We find the most substantial weakening in ω700 in subregion A, coincident with the

largest decrease in precipitation rates. Meanwhile, in B, where some of the largest pre-

cipitation increases occur, we also see the slightest weakening in ω700 and some of the

largest near-surface q increases, suggesting that substantial increases in moisture may
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∆P
P

∆qsfc
qsfc

∆ω700

ω700
r

A +2K -5.17 5.67 -11.89 1.05

+4K -1.87 6.31 -7.41 -0.77

+6K -2.96 6.63 -7.87 -1.72

B +2K 2.57 6.59 -3.38 -0.64

+4K 4.12 7.17 -3.13 0.07

+6K 3.66 7.58 -3.25 -0.68

C +2K 2.94 6.47 -4.08 0.56

+4K 2.87 6.93 -5.25 1.19

+6K 3.31 7.40 -4.31 0.22

D +2K 1.11 6.66 -4.97 -0.57

+4K 1.24 7.09 -5.35 -0.50

+6K 1.45 7.56 -4.84 -1.27

Table 3.2: As for Table 3.1, but for Equation 3.3.3 instead and only considering AR
grid points. Note that a negative change in the ω700 ratio means less vigorous upward
motion (i.e., vertical velocities are getting more positive). Additionally, only AR values
are shown because non-AR ω700 approaches 0 at some points in B, where relative changes
will approach infinity (and thereby artificially inflate area-mean values).

help overcome weakening upward motions in some regions. A similar explanation can be

used for C, where fractional changes in AR precipitation follow a nearly linear increase

with SST. While subregion D also shows a nearly linear fractional increase in precipita-

tion, the smaller magnitudes overall are facilitated by the stronger suppression of ω700

here. As for why vertical motions systematically decrease in magnitude under warming

SST conditions, this outcome appears to be a consequence of weakening vertical tempera-

ture gradients (Section 3.3.3) and a subsequent strengthening in local static stability. We

recognize that the enhanced static stability in D is likely somewhat artificially inflated

by the use of the prescribed SST, since a variety of mechanisms (e.g., atmosphere-ocean

feedbacks, enhanced poleward latent heat flux by ARs and other processes) would nor-

mally lead to a larger SST increase here (e.g., ?Roe et al., 2015). Regardless, this analysis

produces results similar to those for IVT, in that thermodynamic effects alone (qsfc) serve
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to enhance AR precipitation, while dynamical effects (here ω700) attenuate this enhance-

ment (and in this case, even compensate for it sufficiently to decrease mean precipitation

rates in subregion A).

3.3.5.2 AR precipitation in more detail

We recognize that neither seasonal-length zonal means of AR precipitation rates (nor

large-scale area integrals of them) are the most informative metric, especially when the

most extreme AR events can lead to catastrophic flooding (e.g., Ralph et al., 2006).

To that end, Figure 3.11a-d shows histograms of precipitation rates at AR grid points

stratified by analysis subregion, alongside histograms of ω700 for reference (Figure 3.11e-h).

We find an overall increase in our sample size for each subregion, consistent with increased

AR occurrence and area (Figure 3.2). In subregion A, this increase is notably more

significant at precipitation rates below 20 mm/day, accounting for the observed decrease

in mean precipitation rates here (Figure 3.10). Similarly, ω700 in A also exhibits an

enhanced sampling of weaker grid points. We attribute this increased sampling of weaker

precipitation rates and vertical velocities in this subregion to the large enhancement of

AR zonal extent (Figure 3.2) here: by sampling more grid points at the periphery of AR

objects, we also expect to sample grid points exhibiting less vigorous vertical velocities

and lower precipitation rates. However, extreme precipitation rates (>70 mm/day) also

cover more area within this region as SSTs increase, indicative of an enhancement in

extreme precipitation and a larger spread in AR precipitation rates overall.

By contrast, both the B and C subregions have marked increases in the most intense

precipitation rates (> 70 mm/day) that are in turn responsible for driving up the mean

precipitation rates. Interestingly, we do not see a similar uptick in intense vertical veloci-

ties in these subregions; however, as per the analysis presented in Table 3.1, enhanced AR

precipitation rates here are related mostly to strongly enhanced AR moisture in these sub-

regions, rather than changes in ω700. Last, subregion D precipitation histograms display

near-uniform increases in the sampling of all precipitation rates, reflecting the smallest

change in mean precipitation rates here (Figure 3.10). Similarly, histograms of ω700 in the

D subregion show an enhanced sampling across a broad range of vertical velocities, both
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Figure 3.11: The same as Figure 3.9, but for 3-hourly average (a-d) precipitation rates
and (e-h) pressure velocities at 700 hPa (ω700). For (a-d), bin spacing is 1 mm/day with
every third bin shown for clarity; we only consider points precipitating with a rate of at
least 1 mm/day. For (e-h), bin spacing is 0.01 Pa/s, with every other shown.
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more and less negative than the Baseline mode. Regardless, these changes skew more

towards positive ω700 values, accounting for the apparent damping of vertical velocities

here.

3.3.5.3 Accounting for increasing AR area

We have discussed already that as SST increases in these experiments, so too does AR

area. This enhancement in our sample size then makes it difficult to compare AR statis-

tics across SST runs, particularly because means presented are obscured by an increased

sampling of grid points farther from the narrow AR core which features the highest IVT

and most intense oversea precipitation rates (Neiman et al., 2008). We first leveraged his-

tograms of AR quantities to make comparisons despite unequal sample sizes, since that

avoided issues associated with averaging AR core and periphery points together. Unfor-

tunately, increasing AR area still makes histograms difficult to interpret, first because the

upward shift can make left- or rightward shifts less obvious, and second because it cannot

explicitly filter for core or periphery AR points.

We first wish to determine the contribution of changing AR area on mean AR precip-

itation rate changes. To that end, we compare fractional changes in AR area (ARA; that

is, the average combined area of all ARs in a given subregion) and AR area-integrated

precipitation (PA). Table 3.3 presents fractional changes of these quantities under SST

increases.

∆PA

PA

∆ARA

ARA

∆PA

PA

∆ARA

ARA

A +2K 2.77 10.64 B +2K 5.97 5.78

+4K 14.82 20.41 +4K 6.61 3.61

+6K 15.12 24.75 +6K 6.47 3.55

C +2K 13.00 12.19 D +2K 34.25 37.23

+4K 12.38 11.81 +4K 48.22 50.01

+6K 11.27 9.88 +6K 50.42 54.83

Table 3.3: Fractional changes of mean area-integrated AR precipitation (PA) and AR area
coverage (ARA) in each analysis subregion (% K−1).

We find that fractional increases in AR area are much larger than those in AR PA in
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subregion A, further supporting our assertion that decreases in mean AR precipitation

rates here are related to enhanced AR areal coverage featuring weaker rates. Subregion

B tells a different story however, with fractional changes in AR PA exceeding those of AR

area for all SST test runs, particularly the +4K and +6K scenarios. The precipitation

distributions for this subregion (Figure 3.11b) show a marked increase in fractional area

occupied by intense AR precipitation rates (≥70 mm/day) under higher SST conditions,

allowing fractional increases in AR PA to surpass those in AR area. ARs in the C subregion

behave similarly, though fractional changes in AR PA only just outpace those in AR area.

Again, histograms of precipitation in this subregion (Figure 3.11c) provide additional

context for these changes: much of the increased areal extent of AR precipitation occurs

at above-average rates (≥30 mm/day), facilitating the observed slight acceleration of

changes in AR PA with respect to AR area. Finally, results in Table 3.3 for subregion

D reinforce expectations set up by the precipitation distributions (Figure 3.11d), wherein

nearly-equivalent changes in AR PA and AR area are supported by a relatively uniform

rise in the occurrence of all AR precipitation rates.

Second, we test the hypothesis that computed area-mean AR precipitation changes

(Figures 3.10c-f) are influenced heavily by an increased sampling of weak, periphery AR

points which naturally feature lower precipitation rates. We do this by comparing to-

tal precipitation rates against total precipitation rates weighted with IVT values. We

compute these “IVT-weighted” precipitation means (PIV T ) like so:

PIV T =

∫
A
P · IV TdA∫
A
IV TdA

(3.3.4)

where A is the area of the subregion and dA is the grid point area. This approach has a

two-fold advantage: by weighting precipitation proportionally to IVT, it not only skews

area means towards ARs without necessitating a binary AR filter, but also weights the

analysis towards the highest IVT points found in ARs. Therefore, we consider the PIV T

means shown in Figure 3.12 analogous to precipitation rates in the high-IVT AR core.

We thus compare fractional changes in them side-by-side with those computed directly

for AR precipitation in Figure 3.12, in an effort to tease apart the effect of enhanced AR

area on mean changes in AR precipitation rates.
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Figure 3.12: (a) Area-mean precipitation rates for all SSTs (mm/day). Circles indicate
unweighted means, while diamonds indicate that the means were weighted by IVT values,
as described by Equation 3.3.4. Markers show the median value with respect to the 20-
member ensemble, while error bars show the interquartile range. (b-e) shows the fractional
change in area precipitation means with respect to the Baseline for each uniform SST
increase (% K−1). We use dotted lines for non-weighted and solid lines for IVT-weighted,
with line markers consistent with those used in (a). Gray, dashed lines show the same
fractional changes in AR precipitation as in Figure 3.10c-f for reference.

In A in particular, we see a marked difference in the fractional changes of AR precip-

itation rates and PIV T : while the former decreases as SST increases, the latter shows no

change under the +2K scenario, and large increases in the +4K and +6K SST forcings

of 6.54 and 5.00% K−1, respectively (Figure 3.12b). For subregion B, increases in PIV T

only slightly outpace those in AR precipitation rates (Figure 3.12c); since AR area does

not increase more than AR PA here (Table 3.3), we would not expect substantially larger

changes in PIV T here either. Meanwhile, in C, changes in PIV T track almost exactly with

those in AR precipitation rates (Figure 3.12d), suggesting that increasing AR area does

not play a large role in AR precipitation rate statistics in this subregion. Last, Figure

3.12e shows that PIV T enhancement in the D subregion remains steady at approximately

5% K−1, providing a stark contrast to the mean AR precipitation rate increases of ap-
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proximately 1% K−1 here. Overall, this analysis indicates that high-IVT grid points such

as those found in or near AR cores will feature regionally large enhancement in mean

precipitation rates.

3.4 Conclusions

CAM5 was employed in its aquaplanet configuration (global, zonally-symmetric, pre-

scribed SSTs) with uniformly increased SSTs of +2K, +4K, and +6K over the control

“QOBS” profile (Neale et al., 2010). While certainly not a realistic model configuration

or climate change signal, this experimental setup allowed us to isolate the impacts of in-

creased SST on ARs, with the goal of evaluating fractional changes conditioned on SST of

AR IVT, IWV, and precipitation rates, and validating the model response against more

than a decade of theory. We detected ARs with an objective algorithm conditioned on

finding local ridges in the IVT field at any given time step (i.e., the algorithm is insen-

sitive to horizontal average increase in specific humidity). To facilitate simple regional

comparisons, we divide our analysis domain into four subregions of approximately equal

surface area.

We find that as SSTs increase so too does AR occurrence frequency, especially towards

the higher latitudes in our test domain (Figure 3.2a). We attribute this domain-wide

enhancement in AR occurrence frequency largely to an overall increase in the size of ARs,

(defined here as “zonal extent”; Figure 3.2b), a result which agrees with previous work

using an independently developed ARDT (Espinoza et al., 2018). Meanwhile, the steady

poleward movement of AR occurrence frequency maxima under SST warming is related to

a poleward shift in EDJ position (Figure 3.3b), another result in agreement with existing

AR literature (Gao et al., 2016; Mundhenk et al., 2016; Shields and Kiehl, 2016).

Alongside changes in AR occurrence and morphology, we also find changes in AR

vapor transport statistics. In general, ARs experience super-CC enhancement in IWV

with respect to SST (from ∼ 6.3 to 9.7% K−1 depending on subregion and SST scenario;

Figure 3.6), though the magnitude of this enhancement is in part a response to upper-

tropospheric temperature increases that outpace those in SST (Figure 3.7). Since the
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large enhancement of warming in the upper troposphere arises as a natural consequence

of a dampened moist-adiabatic lapse rate under surface warming conditions (e.g., Siler

and Roe, 2014; Payne et al., 2020), we consider this result more reassuring than surprising.

Similar rates of AR IWV enhancement have been observed in a coupled model (Gao et al.,

2015) and shown to be related to enhancements in (a) CC sensitivity to below-freezing

temperatures in the upper troposphere and (b) latent heat release aloft as the atmosphere

moistens (Payne et al., 2020). Meanwhile, we find that AR IVT also increases, though it

occurs at a lower rate than IWV for all subregions (∼ 3.4 to 6.6% K−1; Table 3.1). We

perform a very simplified analysis of the dynamical and thermodynamical contributions

to AR IVT (Equation 3.3.1) and find that this result is related to a systematic decrease

in AR low-level winds speeds, which slow at fractional rates of ∼ -0.8 to -5.5% K−1 (Table

3.1).

Taken together, the relative changes in AR IWV and IVT are comparable to those

seen in other studies (Warner et al., 2014; Gao et al., 2015) as is the finding that AR

IVT will increase mostly due to thermodynamical effects (enhanced AR IWV) rather

than dynamical ones (AR low-level winds) (Dettinger, 2011; Lavers et al., 2013; Warner

et al., 2014; Gao et al., 2015, 2016). Dynamical changes are further observed in chang-

ing patterns of AR characteristics. Specifically, a poleward-shifting EDJ (Figure 3.3b)

pushes ARs poleward with the storm track (Figure 3.2a), a result which is documented

in comprehensive climate models (Gao et al., 2016; Shields and Kiehl, 2016). We also

find an apparent connection between the STJ and AR vIVT characterized by a fractional

enhancement of AR vIVT on the cyclonic side of the STJ, and a suppression of AR vIVT

on its anticyclonic side (Figure 3.5g-h). Although the STJ shows a discontinuous response

to SST increase (Figure 3.3b), the result suggests a relatively easily diagnosed large-scale

dynamical control on potential moisture sources for ARs.

Despite systematic increases in AR IWV and IVT, AR precipitation has a much more

varied response across latitudes (∼ −5.2 to 4.1 % K−1 ; Figure 3.10). Similar to our anal-

ysis on AR IVT, we perform a simplified calculation derived from theory to contextualize

these changes in terms of dynamical and thermodynamical contributions (Equation 3.3.3),

61



and generally find a compensatory relationship characterized by consistent increases in

moisture (in this case, near-surface q) and a systematic damping in mid-troposphere ver-

tical velocities (Table 3.2). An examination of precipitation distributions provides some

important context for these findings: across all analysis subregions, the highest precipita-

tion rates always increase, hinting at a robust enhancement in AR extreme precipitation

even in areas where mean AR precipitation decreases (Figure 3.11a-d). Further compli-

cating our results on mean precipitation rates is the finding that AR area increases as

SST does (Figure 3.2b and Table 3.3). While AR area increases have been noted before

(Espinoza et al., 2018), the enhanced AR area can nevertheless obscure interpretation of

ARDT-derived conclusions about mean AR characteristics. Here, a simple analysis on AR

area and precipitation (Section 3.3.5.3) shows that by sampling more grid points towards

the weaker periphery of AR objects, fractional changes in zonal mean AR precipitation

rates are damped in three out of four analysis subregions (Figure 3.12). Nonetheless, a

clear enhancement in precipitation rates within ARs is observed in the B and C analysis

subregions (Figure 3.12b-c).

We approached this study with the goal of leveraging an idealized model to investigate

the sensitivity of AR statistics to isolated SST warming. In fact, the idealizations present

in this experiment design provide a means to more clearly elucidate the underlying physical

processes and explain the relevant theory. The analyses of AR IWV and precipitation

described here provide physical context for results obtained in comprehensive climate

models, where compensatory or compound effects can confound interpretation and leave

open questions about the mechanistic relationships between forcings and impacts.
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Chapter 4

Response of Atmospheric River

Width and Intensity to Sea-Surface

Temperatures in an Aquaplanet

Model

This is a slightly modified version of a manuscript submitted to Journal of Geophysical

Research: Atmospheres that is under review as:

McClenny, E. E. & Ullrich, P. A., (2020). “Response of Atmospheric River Width

and Intensity to Sea-Surface Temperatures in an Aquaplanet Model”. Journal of

Geophysical Research: Atmospheres

Abstract

Transient corridors of enhanced integrated vapor transport (IVT) called atmospheric

rivers (ARs) are crucial features of the global hydroclimate, but their response to climate

change is still poorly understood. Since ARs are narrow [O(1000 km)] and the water-

shed features which they impact exist on a smaller scale [O(100 km)], width represents a

critical AR characteristic. Previous research already suggests robust AR widening, even

across a diverse set of AR detection tools (ARDTs) which define AR lateral boundaries.

To remove the influence of the ARDT, this study takes a novel approach by defining AR

impacts-relevant width (wi; conditioned on the critical threshold IVT > 250 kg m−1 s−1)
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by modeling AR IVT profiles as idealized Gaussian curves with free parameters back-

ground IVT (IVT0), intensity above background (dIVT), and IVT profile breadth (wd;

the width encompassing 95% of the total IVT) to determine the quantitative contributions

of each factor. To minimize effects from regional topography, this study uses the aqua-

planet configuration of the Community Atmosphere Model version 5, first with a Baseline

sea-surface temperature (SST) distribution, then adding two, four, and six Kelvin over

this Baseline. Quantitative analysis finds that AR wi expands by approximately 35 km

per K SST warming, with the majority of this widening related to thermodynamically

driven increases in IVT0. Separating this analysis along the AR spine reveals additional

insights, that wi expansion is dominated by thermodynamics (dIVT and IVT0 increases)

on the equatorward side and dynamics (wd) on the poleward side related to weakening

wind gradients.

4.1 Introduction

In a seminal paper, Zhu and Newell (1998) partitioned snapshots of midlatitude moisture

fluxes into those performed by weak “broad fluxes” and those performed by coherent

filaments of enhanced vapor transport. This partitioning allowed them to determine

that these narrow “atmospheric rivers” (ARs) accomplish virtually all of the meridional

moisture flux through the midlatitudes despite occupying less than ten percent of the

region’s zonal circumference (Zhu and Newell, 1998). For one study day in particular,

they estimated that in order to accomplish this, each AR must transport an average of

∼ 2.2 × 108 kg of water vapor per second through a cross-sectional width of less than

1000 km. Since then, larger studies have confirmed the magnitudes of both AR vapor

transport and cross-sectional width: a dropsonde study of 21 ARs by Ralph et al. (2017),

as well a reanalysis study by Guan et al. (2018) featuring a much larger sample size (∼

6000 ARs) found that each AR transports an average of ∼ 5 × 108 kg of water vapor

per second through a cross-sectional width of ∼890 km (Ralph et al., 2017). Summing

this vapor transport across the approximately three to five ARs typically present in each

hemisphere indeed accounts for virtually all of the meridional moisture transport through
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the midlatitudes (Ralph et al., 2017), revealing the crucial role these systems play in

global water and energy transport despite their often delicate, filamentary morphology.

On land, this vapor transport through such a narrow region can add up to extreme

impacts: since ARs are approximately moist-neutral through the lower troposphere (Ralph

et al., 2017), their moisture does not resist orographic uplift, granting them the potential

to be impressive and even destructive precipitation events (Neiman et al., 2002). For

instance, an observational study by Ralph et al. (2006) found that all seven flooding events

along California’s Russian River in an eight-year period occurred during AR conditions

characterized by heavy orographic precipitation. Likewise, Lavers et al. (2012) examined

31 years of flooding across nine basins in Great Britain, and attributed 40-80% of the

events to persistent AR conditions. Aside from flooding, ARs still have an oversized

impact compared to their modest widths: along the United States’ west coast, landfalling

ARs contribute 20 − 50% of the total cool-season precipitation (Dettinger et al., 2011;

Lavers and Villarini, 2015) and 30 − 40% of the total mountain snowpack’s snow-water

equivalent (Guan et al., 2010). AR precipitation fraction is even larger on the South

American west coast, where Viale et al. (2018) found that ARs contributed 40− 60% of

annual precipitation totals from 2001 − 2016. Meanwhile, the western European coast

receives comparatively less (up to 20− 30%) of its precipitation totals from ARs (Lavers

and Villarini, 2015), but these fractional accumulations are impressive nonetheless. Taken

together, ARs are credited with providing over one-fifth of water runoff globally (Paltan

et al., 2017), once again cementing the role of these narrow systems role as dominant

features of the global hydroclimate.

Since ARs have such clear importance to global water balance and regional water

resources, their response to climate change will play a crucial role in the future hydrocli-

mate (Payne et al., 2020). Still, their status as relatively newly identified systems—Zhu

and Newell (1998) is credited as the first study to describe them as distinct, globally dis-

tributed features—has stymied large-scale, systematic studies of ARs under present-day

or climate-change conditions. One specific issue was only very recently addressed: the

American Meteorological Society (AMS) Glossary of Meteorology (GoM ) first added an
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entry for ARs in 2017 after extensive inter-institutional effort to converge on an accept-

able definition (see Ralph et al., 2018, for a summary of this process). This definition

characterizes ARs as “long, narrow, and transient corridor[s] of strong horizontal water

vapor transport...typically associated with a low-level jet stream ahead of the cold front

of an extratropical cyclone,” and notes that they are, on average, 850 km wide and 3

km deep (AMS, 2017). While the AR entry in the GoM provides researchers with a

commonly accepted definition for these critical climate features, it intentionally leaves

out quantitative guidance on identifying AR lateral boundaries in order to leave room for

“future and specialized developments [in AR research]” (Ralph et al., 2018).

Returning to the studies cited earlier on AR vapor transport (e.g., Zhu and Newell,

1998) and overland impacts (e.g., Ralph et al., 2006) it should be clear that AR lat-

eral boundary identification is necessary not only for attribution purposes, but in itself

represents a critical AR statistic. ARs exist on a relatively fine scale in terms of their

cross-sectional width and landfall location [O(1000 km)], but the watersheds which they

impact typically exist on an even finer one [O(100 km)]. Hence the average 300 km AR

landfall position error recorded at three-day lead times (Wick et al., 2013b; DeFlorio

et al., 2018) represents a significant limitation for planning and preparedness. As a result,

certain details of AR landfall—such as location, orientation with respect to topography,

and the area of local AR impacts—are considered key observational gaps (Ralph et al.,

2020); moreover, research on the response of these AR characteristics to surface warm-

ing can then lead to an important understanding of the underlying process drivers. To

this end, oversea AR width statistics have been employed to provide some simplified yet

intriguing insights: in the first global assessment of AR statistics under present-day and

climate-change conditions, Espinoza et al. (2018) found that the number of individual ARs

decreased by ∼10%, but AR length and width both increased by ∼25%, an effect which

was robust across 21 models. Likewise, McClenny et al. (2020) found that increasing zonal

mean AR occurrence frequency under uniform sea-surface temperature (SST) warming in

an aquaplanet model was dominated by increasing AR zonal extent, a surprising result

given the ARDT employed there is insensitive to additive changes in background IVT. In
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any case, it showed the importance of AR area in understanding climate-driven changes

in AR statistics.

Despite the qualitative agreement between Espinoza et al. (2018) and McClenny et al.

(2020), substantial spread exists in AR climate change predictions as a function of AR

detection tool (ARDT) choice: a comparison of AR statistics derived from several ARDTs

across multiple models showed that while all ARDTs produced an increase in overall

areal extent under climate-change conditions, the inter-ARDT variation of changes in AR

count or size dominated the inter-model variation (O’Brien et al., 2020b, in preprint).

Given these results, we argue that an examination of AR width changes that is largely

independent of ARDT will provide an important comparison against the existing inter-

ARDT spread. We furthermore argue that simplified surface boundary conditions are

useful for clarifying the mechanisms behind any AR width changes by allowing us to

isolate the physical drivers (Held, 2005). To facilitate this, we examine ARs in a series

of aquaplanet simulations featuring increasing uniform SST warming. We also define a

series of AR widths not derived directly from ARDT-identified lateral boundaries. A

novel aspect of this paper is the representation of AR cross-sections in integrated vapor

transport (IVT; Equation 4.2.1) as Gaussian curves with free parameters background IVT

(IV T0), AR intensity above background (dIV T ), and dynamic width (wd), defined here

as the lateral region through which ∼95% of the total vapor transport occurs (Equation

4.2.2). Notably, the definition for wd does not include any explicit numerical thresholds,

in contrast to most ARDTs which feature either a relative (percentile-based) or absolute

threshold (usually the region featuring IVT greater than 250 kg m−1 s−1; see Shields et al.,

2018, for a review). We then assume that this critical IVT threshold corresponds to the

impacts-relevant region of the AR, and so define an AR impact width (wi) conditioned

on it but derived with respect to the Gaussian approximations (Equation 4.2.4). In all,

we use these Gaussian fits and the widths derived from them to answer the following

questions:

(a) Are AR IVT cross-sections well-represented as simplified Gaussian functions?

(b) How do AR local background IVT (IV T0) and peak IVT intensity (dIV T ) change

68



as a result of uniform SST increases?

(c) How do different measures of AR width change under uniform SST increases?

(d) Finally, how much of the change in the impacts-relevant AR width can be attributed

to changes in AR background IVT (IV T0), AR IVT intensity above the local back-

ground IVT (dIV T ), and the overall broadening of AR IVT profiles (dynamic width;

wd)?

Related to question (d), we also revisit a question left unanswered from McClenny

et al. (2020)—namely, why does the TempestExtremes ARDT produce wider ARs under

uniform SST increases, given its baked-in insensitivity to uniform increases in the IVT

field?

For reference, Figure 4.1 shows a series of idealized AR IVT cross-sections as Gaussian

curves. These curves correspond to a baseline Gaussian curve as well as various trans-

formations of this baseline curve as a result of isolated increases in each variable. In all

cases, the lateral boundaries corresponding to IV T = 250 kg m−1 s−1 indeed widen, but

there are important distinctions to be made between each resulting IVT profile: specifi-

cally, an isolated increase to wd results in an overall broader IVT field, while rising IV T0

corresponds to a uniform upward shift in the IVT field, and enhanced dIV T describes

an AR cross-section which elongates along the y axis without changes in the background

IVT field (that is, IV T0).

We present this paper as follows: first, Section 4.2 describes our experimental proce-

dures, including details on the ARDT, all measures of AR width, and the curve-fitting

procedures, then ends with a brief description of the model setup. After this, Section

4.3 starts with a summary of bulk AR cross-sections, then a validation of Gaussian fits

compared to AR IVT profiles. We then examine AR cross-section statistics for each SST

scenario, and quantitatively examine the contributions of IV T0, dIV T , and wd to changes

in AR impact width. Finally, Section 4.4 presents conclusions from this analysis.
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Figure 4.1: A depiction of an idealized AR IVT cross-section (black curve) as a Gaussian
curve characterized by the background IVT (IV T0), intensity above background (dIV T ),
and dynamic width (wd). The impact width (wi) then refers to the cross-sectional width
of the region where IVT exceeds 250 kg m−1 s−1. Changes to the impact width can be due
to changes in the background IVT (short dashed green curve), changes in the intensity
above background (long dashed red curve), or changes in the dynamic width (blue curve).

4.2 Methods

In order to investigate AR width and changes therein resulting from SST warming, we

must first define the lateral boundaries of ARs. To that end, we begin this section by defin-

ing terms used throughout the manuscript, as well as summarizing the AR identification

and cross-section generation procedures used here. We follow this with a discussion of the

concept of AR cross-sections as Gaussian curves in the local IVT field, a characterization

from which we can extract key information, including a novel estimate of AR width. We

then move on to describe several other distinct AR width measurements employed here,

each of which enriches our understanding in a unique way. After this, we provide details

on the curve-fitting procedure, then conclude with a brief description of the model setup.

70



Excluded latitudes

AR object

AR spine

Stereographic 
projection at 
spine point

x

y

Orientation angle

Cross-section axis

x
y

AR object

AR spine

Figure 4.2: A depiction of the terminology used to describe the output of the Tempes-
tExtremes ARDT.

4.2.1 Definitions

A depiction of the terminology employed in this paper is given in Figure 4.2. IVT is

computed as

IV T =

√√√√(− 1

g

∫ pT

p0

qudp

)2

+

(
− 1

g

∫ pT

p0

qvdp

)2

(4.2.1)

where p0 = 1000 hPa, pT = 300 hPa, g is gravitational acceleration, q is specific humidity,

and u and v are the zonal and meridional wind velocities, respectively.

Grid points are considered part of an atmospheric river object if they satisfy the Tem-

pestExtremes (TE) criteria for ARs. Briefly, TE computes the Laplacian of IVT (L2IVT)

at each grid point using an eight-point stencil (each cardinal and intercardinal direction)

with a radius of ∼ 800 km. It then identifies contiguous areas of at least 50 adjacent grid

points (an area of approximately 125,000km2) with L2IVT < −40000 kg m−1 s−1 rad−2.

These criteria are motivated by the observation that a large negative Laplacian of IVT

corresponds to points in an IVT profile that are strongly curved downward—namely, one

should expect that long, narrow filaments of IVT should have a large negative Laplacian.

The area criteria is then employed to remove isolated peaks in the IVT field. Note that

these criteria are only employed in this study to downselect AR points that would be

subsequently used for identifying the AR spine; since the spine of the AR is generally

expected to pass through the AR core—a feature which is detected by essentially all

ARDTs (Shields et al., 2018; Rutz et al., 2019)—we argue that our results will be largely
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independent of ARDT.

Once the footprint of the AR is identified, points are then considered part of the AR

spine if they are tagged as AR points and have the largest IVT value within five degrees

in either the zonal or meridional direction (Figure 4.3a shows an example AR object

with spine). The orientation of the AR object is defined at each spine point locally via

stereographic projection of the spine point and its contiguous neighbors, followed by linear

regression through spine points. The cross-section is then defined at each spine point as

a straight line in the stereographic projection through the origin, which corresponds to

a great circle arc perpendicular to the direction of AR orientation (Figure 4.2). Each

AR cross-section features the AR spine at the midpoint with 15 equally spaced points on

each end (∆x ≈ 55.59 km) to capture sufficient background IVT. Figure 4.3b shows an

example AR and its IVT cross-section.

Since we find that TE’s AR detection criteria tends to misclassify tropical cyclones

(TCs) and tropical easterly waves as AR objects, we exclude any points equatorward of

20◦ N/S, and furthermore apply a separate TC-detection utility also available from TE.

To summarize, TE identifies a TC as all points within an 8.0◦ GCD radius of the most

intense local sea-level pressure (SLP) minimum in a 2.0◦ GCD (a) whose SLP increases by

at least 375 Pa over a 3.6◦ radius and (b) whose 300 minus 500 hPa geopotential height

thickness decreases by six meters over 7.5◦ to detect warm-core storms. For more details

on TC detection, we refer readers to Ullrich and Zarzycki (2017) and Zarzycki and Ullrich

(2017).

4.2.2 Gaussian approximation to IVT

The cross-sectional IVT profile for each atmospheric river is approximated via a Gaussian

profile,

IV T (∆σ) = IV T0 + dIV T exp

[
−8∆σ2

wd2

]
, (4.2.2)

where ∆σ denotes the signed GCD (positive equatorward) from the peak of the AR IVT

distribution, IV T0 is the background IVT, dIV T is the intensity of the AR above the

background, and wd is herein referred to as the dynamic width. The form of this profile

is defined so that ≈ 95% of the AR IVT above the background state occurs within the
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band ∆σ ∈ [−wd/2, wd/2], namely∫ wd/2

−wd/2
IV T (x)dx∫ ∞

−∞
IV T (x)dx

= erf(
√

2) ≈ 95%. (4.2.3)

We calculate the free parameters of each AR by fitting Equation 4.2.2 to AR cross-

sections normalized by spine IVT to ensure a consistent range of values across samples.

We accomplish this using software provided under the Scientific Python package (Section

4.2.4 provides further details on the curve-fitting procedure).

Some additional complexity is introduced by the asymmetry of ARs (e.g., Figure 4.5).

While this is certainly related to the latitude-dependence of background moisture and

wind fields, it is compounded further by the cold frontal region typically present on the

poleward side of ARs (Ralph et al., 2004a; Cordeira et al., 2013; Ralph et al., 2017). To

flexibly account for this asymmetry, we compute all widths in piece-wise fashion from

the poleward and equatorward sides of each IVT cross-section. Hence, wd = wdp + wde,

where wdp and wde are the poleward and equatorward dynamic widths, respectively.

This allows us to have unequal half-widths on each side of the spine and prevents over- or

under-estimation of AR wd as a result of lateral asymmetry. Note that, hereafter, the term

“Gaussian” refers to a piece-wise Gaussian separated at the spine, as described. Figure 4.3

illustrates the utility of our piece-wise fit, since imposing a symmetric Gaussian here would

result in an overestimation of AR wd on the equatorward side, and an underestimation

on the poleward side. While this shows that AR IVT cross-sections are not captured as

Gaussian curves but as piece-wise Gaussians, we can nevertheless use the derived fitting

parameters to assess AR cross-sections.

4.2.3 Other measures of AR width

While the definition of AR dynamic width (hereafter wd) provides a measure of AR

lateral boundaries that isolates the AR’s anomaly with respect to the local background

IVT field, we nevertheless define a series of other AR widths for comparison, which we

describe below.
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Algorithmic width (wa): We initially detect our sample of ARs with the TE algo-

rithm, but only as a starting point for further analysis. Nonetheless, we include the

lateral boundary measurements garnered from the criteria described in Section 4.2.1

to evaluate its sensitivity to background climatology with respect to wd. Put more

explicitly, wa characterizes AR width as all points across a detected object featuring

L2IVT < −40000 kg m−1 s−1 rad−2 over a radius of approximately 800 km. We do not

interpolate these values but preserve their underlying grid, making this is the only dis-

crete measurement of AR width employed here. Notably since TE is primarily designed

to detect the most intense parts of the AR (the AR core), the algorithmic width tends to

be much smaller than the other width measures (as later seen in Figure 4.7).

Literature width (wl): An example in the GoM defines AR lateral boundaries with a

threshold of IV T ≥ 250 kg m−1 s−1 (AMS, 2017). We thus include a width computation

based around this threshold by finding the first point on each side of the AR spine which

drops below this value via linear interpolation to avoid under- or over-estimates associated

with IVT gradients on a relatively coarse grid. This measure exists to provide a reference

point for AR width as measured via this common threshold (e.g. Shields et al., 2018).

Impact width (wi): Finally, since IV T ≥ 250 kg m−1 s−1 is often considered important

for assessing AR impacts, we obtain a width which achieves this value from Equation 4.2.2

as:

wi = wd

√
−1

8
ln

[
IV Tref − IV T0

dIV T

]
. (4.2.4)

where IV Tref = 250 kg m−1 s−1. This equation is obtained by solving Equation 4.2.2 for

IV T (∆σ) = 250 kg m−1 s−1.

Importantly, wi is equivalent to wl for ARs that are perfectly Gaussian; as such, the

difference between these two measurements is an alternative metric for computing AR

and its best-fit Gaussian. While ARs are not perfectly Gaussian, the definition of wi here

nevertheless has the advantage of determining AR lateral boundaries using an impacts-

relevant threshold, but with the additional benefit of being described by a known function

with variables wd, IV T0, and dIV T . Hence we use wi not only to estimate impacts-

relevant changes to AR width, but also to isolate how these variables drive changes in AR
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wi under warming SST conditions.

4.2.4 Curve-fitting and software details

We fit Gaussian curves (Section 4.2.2) to AR IVT cross-sections with the Scientific Python

(SciPy) optimization package, which uses least squares to optimize the free parameters

of a function to best fit the data (Virtanen et al., 2020). The Gaussian is assumed to

be centered at the centroid of each AR object in order to minimize computation and

avoid over- or under-representation of objects as a result of their length. AR centroids

are found by the image processing package scikit-image (Walt et al., 2014), which accepts

both a binary object image as well as an “intensity image” to produce weighted statistics.

Accordingly, a field of cosine-latitude-weighted IVT is fed to scikit-image alongside the

binary AR object data to ensure that the centroid is weighted by AR intensity rather

than binary footprint. In the event that the weighted centroid does not correspond to an

AR spine point, we find the closest spine point in terms of great circle distance (GCD)

and take our sample from there.

We take cross-sections over a total GCD length of 3200 km to capture the AR back-

ground, but note this may introduce inconsistencies associated with peripheral points.

To minimize the influence of the AR periphery when fitting a Gaussian curve, we intro-

duce a simple weighting function which describes the relative uncertainty (α) of AR IVT

cross-sections as a function of GCD from the AR spine (∆σ):

α = 1 +
√∣∣∆σ∣∣ (4.2.5)

This function describes increasing error (decreasing confidence) as distance from the spine

increases. A number of such functions were evaluated, with this one eventually chosen

because it seemed to produce better agreement along the AR spine and its immediate

periphery, where this study focuses. While subjectively determined, this weighting func-

tion has the advantage of applying the most confidence to IVT in the AR spine, while

the rapidly decreasing confidence about it helps in isolating ARs from a frequently noisy

background. We use a similar weighting when evaluating the performance of our Gaus-

sian fits with respect to the AR cross-sectional IVT via a weighted root-mean-squared
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error (RMSE) calculation in order to maintain consistency with our weighted curve fits.

For reference, Figure 4.3 shows an example AR exhibiting a near-Gaussian IVT profile in

terms of RMSE, while Figures B.1-B.3 show ARs featuring higher RMSE values included

in this analysis. The weighting function for the RMSE goes as follows:

β = σ −
√∣∣∆σ∣∣ (4.2.6)

where σ is the location of the AR spine. In a qualitative sense, this function acts as the

inverse of α in that it describes rapidly decreasing weight (that is, confidence) as distance

from the spine increases.

4.2.5 Model setup

The model setup used here is identical to that used for a previous analysis of ARs (Mc-

Clenny et al., 2020), so we provide only a brief summary here. We use the Community

Earth System Model version 2 (CESM2) with Community Atmosphere Model version 5

(CAM5) physics (Neale et al., 2010) and a spectral element dynamical core with NE60

resolution under an aquaplanet (AQP) configuration. The AQP has no land, sea ice,

topography, or axial tilt (i.e., perpetual equinox conditions), and features a single-layer

“data ocean” which thermally forces the atmosphere with a fixed SST. We prescribe this

SST as an analytic function in latitude; specifically, we use the “QOBS” profile from

Neale and Hoskins (2000), while the warming scenarios feature globally uniform SST in-

creases of two, four, and six K, respectively. Other than these SST changes, we retain

default CAM5 values. We remap model output to a uniform 0.5◦ finite volume grid using

the TempestRemap software suite (Ullrich and Taylor, 2015; Ullrich et al., 2016) before

computing derived variables, detecting ARs, or performing analyses.

We recognize our use of an AQP configuration makes it impossible to directly evaluate

changes in landfall statistics (although they could still be ascertained indirectly), but we

argue that the idealizations provide benefits well worth the trade-off. First, the zonal uni-

formity of SST as well as the lack of seasonality eliminates variability in surface boundary

conditions, allowing for a relatively small sample size of ARs to have sufficiently small

confidence bounds. Meanwhile, the AQP’s atmosphere rapidly responds to the prescribed
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Figure 4.3: Example of a near-Gaussian AR in terms of RMSE. (a) IVT field (grayscale
contours). Shown also are the AR boundaries (thick, black outline), spine (thick, orange
lines), and cross-section points (blue, dotted line; bounded by points A and A′) as detected
by TE, as well as the mass-weighted AR centroid determined by scikit-image (yellow
circle). (b) Cross-section in IVT from A to A′ (black, solid curve) and the best-fit piece-
wise Gaussian (blue, dashed curve). Pink shading shows wd, while the dotted line shows
the spine location to clarify the asymmetry.
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SST, such that we only remove the first month of each integration for spin-up. Last, the

SST symmetry about the equator allows us to effectively double our sample size, to the

extent that the northern and southern hemispheres can be considered independent from

one another. Taken together, this essentially leaves us with a 60-month sample size from

a 31-month total integration; we break this total up into a series of 90-day samples which

we consider analogous to a 20-season ensemble.

4.3 Results

We begin our analysis by assessing the AR centroid cross-sections obtained by TE. After

this, we describe changes in each measure of AR width, and examine the contributions

of background IVT (IV T0) and AR intensity (dIV T ) to AR spine IVT values. We wrap

this section up with a quantitative analysis of the drivers of AR impact width.

4.3.1 AR cross-sections

Since we only use TE as a first-pass method for identifying ridges in the AR field, we follow

up our ARDT results with additional filtering before running any statistics. Specifically,

we remove an AR centroid cross-section if it meets any of the following criteria:

(a) Its maximum IVT does not exist at the midpoint of the cross-section, which occurs

when two parallel spines exist in a single cross-section.

(b) An AR grid point (as identified by TE) exists at its periphery (defined here as ∼

last 250 km on each side). We remove these since we only wish to consider isolated

events.

(c) It contains a TC grid point.

(d) Its RMSE with respect to the best-fit Gaussian (Equation 4.2.2) is 0.2 or greater.

(e) For the impact width analysis only: Its IV T0 ≥ 250 kg m−1 s−1, since this makes

it impossible to evaluate wi (Equation 4.2.4).

Table 4.1 summarizes the results of these refinements. In all, we keep the majority of

AR centroids, with the greatest losses usually related to double-spine AR objects (that
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is, objects whose maximum IVT occurs at some location other than the spine). Note that

this criterion is imposed to prevent double-counting of these double-spine objects, since

the same object can be retained for analysis once the spine point does correspond to the

maximum cross-sectional IVT.

+0K +2K +4K +6K

Total cross-sections 5706.6 (180.5) 6059.35 (168.1) 6716.2 (245.9) 7202.25 (340.3)

Total analyzed 4756.2 (146.4) 4940.3 (119.3) 5148.45 (162.5) 5241.45 (194.5)

Impacts subset 4578.4 (129.1) 4506.15 (114.6) 4376.85 (211.3) 3943.7 (291.1)

Total thrown out 950.4 (96.3) 1119.05 (98.6) 1567.75 (135.6) 1960.8 (166.2)

Double spine 760.6 (79.4) 907.55 (75.0) 1288.2 (117.3) 1594.4 (119.2)

Periphery AR points 70.2 (14.9) 109.65 (24.6) 173.55 (26.7) 237.35 (40.3)

TC points 74.15 (33.9) 39.25 (23.4) 26.5 (18.4) 22.0 (14.4)

Weighted RMSE 0.2+ 45.45 (10.9) 62.6 (10.9) 79.5 (10.0) 107.05 (15.1)

IVT0 ≥ 250* 177.8 (60.7) 434.15 (81.1) 771.6 (129.0) 1297.75 (136.2)

Table 4.1: Mean (standard deviation) AR centroid cross-section counts for each SST
run with respect to the 90-day ensembles. The first three rows show the number of AR
centroid cross-sections detected by TE, the number kept for the wd, wa and wl analyses,
and the number kept for the wi analysis, respectively. The following rows show the count
of AR centroid cross-sections removed from analysis for each criterion.

Figure 4.4 shows composite AR centroid cross-sections (hereafter simply AR cross-

sections) for each SST run. The cross-sections here feature a narrow region (∼ 1000 km) of

specific humidity (q) enhancement which extends into the mid-troposphere. Notably, this

narrow region of enhancement tilts towards the poleward flank due to deformation along

the accompanying frontal zone (Cordeira et al., 2013; Ralph et al., 2004a). Also along

the poleward flank of the AR composite there exists the upper-level jet which provides

the steering flow for these systems. In all, the composite cross-section for the Baseline

run (ostensibly the run whose SSTs are closest to present-day observations) corresponds

nicely to results obtained via dropsonde analyses by Ralph et al. (2017). Meanwhile,

the composites for the test runs show a q enhancement which is consistent with basic

thermodynamics, and a slight slowing in the upper-level jet.
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Figure 4.4: Composites of AR centroid cross-sections for each SST run. Shading shows
specific humidity (q; g/kg) while unfilled contours show wind speed (m/s). Plots are
oriented such that higher latitudes are to the left.
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4.3.2 AR Gaussian fits

We next evaluate the ability of Gaussian curves to sufficiently capture cross-sections of

AR IVT. Qualitatively speaking, most AR IVT cross-sections appear to generally follow

a skewed Gaussian shape, though there are inconsistencies worth noting (Figure 4.5). In

general, the best-fit curves tend to systematically underestimate IVT at the AR edges

(i.e., at wi and wd). The effect is slight and is likely related to the weighting function,

α (Equation 4.2.5), which generally results in IV T 250 kg m−1 s−1 at wi on each side of

the spine (Figure 4.5), and possibly slight underestimations of wd and wi (we discuss this

more in Section 4.3.4). Additionally, while we allowed for the piece-wise fit to produce

unequal half-widths on each side of the AR spine, we did not provide such flexibility

for IV T0 since we wanted a single number which corresponds to a mean background

IVT. As a result, IV T0 tends to be slightly overestimated on the equatorward side and

underestimated on the poleward side (Figure 4.5).

High-IVT points (IVT > 0.5 spine IVT ) towards AR peripheries are potentially prob-

lematic, since we desired a sample of ARs which are not closely interacting with other

high-IVT objects. In some cases, these points could belong to the same AR object; as

an example, Figure 4.3 shows an AR with a short filament of high IVT branching off to

the southwest of the main spine. Other explanations could be any number of phenomena

known to interact closely with ARs, including extratropical cyclones (Dacre et al., 2015;

Eiras-Barca et al., 2018), mesoscale frontal waves (Neiman et al., 2016; Martin et al.,

2019), or even other ARs with which they might be merging (e.g., Guan and Waliser,

2019). When it comes to the last possibility, we emphasize that while our removal of

“double spine” objects might prevent these in many cases, it can only do so in the event

that TE detects two distinct spines. Last, since we explicitly remove samples which feature

TC grid points, we do not expect they account for a substantive proportion of high-IVT

periphery points.

In any case, high-IVT points at the cross-section peripheries illustrate the utility of

the “uncertainty function” (α) used for optimizing fits (Equation 4.2.5). Since α rapidly

increases from the center point, the curve-fitting software places the most confidence in the
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Figure 4.5: (a, c, e, g) AR cross-sections and Gaussian fits for each SST run. (Left y
axis) Thin black lines show a randomly selected subsample (N = 1000) of AR IVT cross-
sections, while thin pink lines show the corresponding best-fit Gaussians (all normalized
by AR spine IVT for clarity and ease of plotting). (Right y axis) Thick, teal curves
show mean AR IVT profile, while dark purple curves show the mean Gaussian estimate
of AR IVT. The purple dotted line and circles show mean wd at IV T = mean IV T0
for reference; meanwhile, corresponding orange annotations show mean wi at IV T = 250
kg m−1 s−1, the reference value used here to determine impacts-relevant AR IVT. We
show wd and wi here for reference only, and reserve discussion of them for Section 4.3.4.
Caption continues on the next page.
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Figure 4.5: Continued from previous page. (b) Histograms of weighted RMSE for each run,
normalized by the total number of observations; note that these show the total sample,
not just the 1000 random fits used for the cross-sections. (d, f, h) (Left y axis) The thinner
purple curve shows the relative change of idealized Gaussian AR IVT, while the thicker
teal curve shows the absolute change in the mean AR IVT profile (right y axis). These
are shown here to clarify differences between plots a, c, e, and g, and will be discussed in
later sections.

AR spine and the narrow region about it. This allows us to reliably isolate the AR without

attempting to fit to these periphery points, which tended to result in broad Gaussians with

unrealistically large widths not characteristic of ARs. Likewise, the weighting function

for computing RMSE (Equation 4.2.6) is used here to ensure that these points along

the periphery are not weighted as much as errors around the spine, where we are most

confident that our IVT measurements correspond to the AR. Hence, RMSEs overall are

quite low despite our relative exclusion of peripheral IVT points while optimizing fits,

though steady rightward shifts in their distributions suggest nevertheless that Gaussian

fits increasingly struggle to capture intra-AR IVT variance under warming conditions

(Figure 4.5). Nonetheless, we can conclude that Gaussians are effective at capturing

the general shape of the AR IVT distribution away from the periphery with few free

parameters.

4.3.3 AR intensity

Now that we have examined AR IVT cross-sections and validated their respective best-fit

Gaussian curves, we assess the IVT statistics derived from them. The response of aqua-

planet AR IVT to uniform SST increases has been examined closely already (McClenny

et al., 2020), but the recent addition of the cross-section generation functionality in TE

now allows us to examine AR IVT in more detail. Namely, since the Gaussian IVT pro-

file (Equation 4.2.2) includes IV T0 and dIV T as fitting parameters, we can explicitly

evaluate changes in AR spine IVT independently from changes in the AR’s immediate

background IVT. We find that while the means and medians of all three relevant IVT pa-

rameters increase roughly linearly with SST, this increase is mostly facilitated by changes

at the highest IVT quantiles (75th and above), where IVT enhancement is largest (Figure
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4.6; Tables B.1-B.3 compare relative changes in IVT parameters at multiple quantiles).

That is, warmer sea-surface temperatures produce a greater spread in the intensity of

ARs primarily through enhancement of the most extreme ARs.

We additionally find that each IVT parameter experiences conspicuously different

relative changes: specifically, the relative enhancement in IV T0 outpaces that in dIV T ,

while the enhancement in spine IVT is consistent with its much larger contribution from

dIV T . These results are shown by the relative changes in the AR Gaussian IVT fits

(Figure 4.5f, d, h), which show a clear trough in ∆IV T at the AR spine and peaks at the

inflection points. We note that this effect is especially pronounced on the poleward side of

ARs and is attributed to thermodynamic effects; we reserve discussion of this for Section

4.3.5 where we carefully examine AR statistics on each side of the AR spine. In any case,

the overall finding that background IVT increases outpace those in AR spine IVT are

reflected in previous results: McClenny et al. (2020) found that IVT enhancement was

overall larger in non-AR grid points than in those belonging to ARs, which was attributed

to differing column responses in temperature and relative humidity between AR and non-

AR grid points. While the AR and non-AR points in McClenny et al. (2020) do not

strictly correspond to AR spine points and periphery points, respectively, this qualitative

consistency is nonetheless reassuring.

4.3.4 AR width

The overall IVT enhancement along the entire AR profile already implies AR widening

for the Gaussian AR IVT model we use here (Figure 4.1); in fact we find that all width

measures described in Section 4.2.3 systematically increase as SSTs warm (Figure 4.7),

though clear differences exist from one width to another. We begin here by detailing

results for the literature width (wl), since it acts as a direct comparison to a dropsonde

study performed by Ralph et al. (2017) and so can be contextualized within the existing

literature. Ralph et al. (2017) defined AR lateral boundaries as all points along a transect

featuring IV T ≥ 250 kg m−1 s−1 and found a mean width of 890±270 km. Insofar as the

Baseline SST scenario can be considered a proxy for present-day conditions, our finding

that mean wl (wl) = 982 km is inflated but not unreasonable. By comparison, we defined
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Figure 4.6: Box-and-whisker plots of AR IVT fit parameters (IV T0, dIV T ) and spine
IVT (IV T0 + dIV T ; shown here for reference) for each SST run (kg m−1 s−1). Means
are shown both by white circles and as annotations. Parenthetical annotations show the
relative change with respect to the Baseline mean for each test run.

wi to use the same critical threshold of IVT as wl but conditioned instead on the best-fit

Gaussian curves. Thus the result here that wi = 812 km is reasonable with respect to

Ralph et al. (2017), but appears conspicuously underestimated when compared to wl.

This is related to a systematic underestimation of Gaussian IVT at approximately ±500

km of the AR spine (Figure 4.5). As a result, wd is slightly underestimated, though

it could be improved with a more complicated fitting function. Still, the finding here

that Baseline wd = 906 km is well within reason, and it is notable that the Baseline

distributions for wd and wi are qualitatively consistent with a distribution of reanalysis

AR widths (Guan et al., 2018, see their Figure 4c): all feature a strong leftward skew

with a mode under 1000 km and a long tail extending past 2000 km.

Since Guan et al. (2018) defined width with respect to the AR bounds as found by
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Figure 4.7: Distributions of AR width by method. Curves show kernel density estimates
while shading shows the underlying histograms (bin spacing = 125 km). Annotations
show the mean width in km for each run, while values in parentheses show the change
with respect to the Baseline run expressed as a percentage.

their ARDT, our results for algorithmic width (wa) in particular highlight some of the

differences across ARDTs. Specifically, while Guan et al. (2018) found a mean AR centroid

width of approximately 850 km, we find here that wa = 429 km, indicative of what has

been pointed out in the past—that tuning TE with the parameters described in Section

4.2.1 tends to identify the highest-IVT points immediately surrounding the AR spine. In

other words, the finding here that TE produces substantially different wa results than

other algorithms matches expectations, since the criteria employed here find the AR core

rather than the entire AR object.

Given the disparate definitions of the AR widths explored here, we find it most illus-
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trative to discuss changes in relative rather than absolute terms. To that end, Figure 4.7

shows the mean AR widths for each run, as well as their fractional changes with respect

to the Baseline values. We find that mean AR width increases nearly linearly with SST

warming for all definitions studied here, though there exist marked differences in terms

of the magnitude of this slope. Namely, wd experiences the most subtle enhancement

(approximately one percent per K SST warming), while wl expands at about six times

this rate. The sensitivity of wl to SST is unsurprising given that it relies on an absolute

IVT threshold which remains static regardless of changes to background IVT. Hence the

finding that mean wl increases at approximately the same rate as mean IV T0 here (Figure

4.6) is reassuring in terms of internal consistency, but also illustrates the care with which

researchers should assess AR climate change statistics derived from ARDTs which rely on

absolute IVT thresholds. By contrast, the relatively modest enhancement in wa of 2− 3

percent per K reveals that the TE ARDT is relatively insensitive to changes in background

IVT as facilitated by its use of the Laplacian to identify ridges in the IVT field. Nonethe-

less, since wa increases more than wd, this indicates that IV T0 and/or dIV T statistics

are relevant to TE (Section 4.3.6 elaborates on this further and shows that dIV T changes

largely account for this). Since wi relies on the same critical threshold of IVT as wl, its

expansion at approximately the same rate as wl is reassuringly consistent. As far as why

wi is systematically smaller than wl despite this similarity, we attribute this mostly to

the idealized Gaussian IVT fits being imperfect representations of the actual AR profile;

from Figure 4.5 it is clear that these fits tend to slightly underestimate the mean IVT

profile at the inflection points. Nonetheless, this result does not affect our conclusions,

and certainly some of this shift can be attributed to the Gaussian fits representing an

AR isolated from surrounding objects whose IVT can easily exceed this threshold (e.g.,

ETCs, other ARs) which would spuriously inflate wl values.

4.3.5 AR skew

To deepen our understanding of the mechanisms behind the apparent AR widening, we

begin by assessing how symmetric this widening is with respect to the AR spine. Since

we define each AR width as a linear combination of half-widths calculated separately on
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each side of the AR spine, we define a skew parameter, s, as:

s = ln

(
we
wp

)
(4.3.1)

where ln is the natural logarithm and wp and we refer to the widths on the poleward and

equatorward side of the AR spine, respectively.

Taking the logarithm introduces a convenient sign into the analysis, such that a neg-

ative value for s corresponds to an AR whose wp is greater than its we, while a positive

s always means the opposite is true, and a zero indicates symmetry. Thus the finding

here that s tends to be positive (Figure 4.8) indicates that ARs tend to be broader on

their equatorward side, consistent with both the higher background moisture at lower

latitudes, as well as the cold-frontal region frequently present on an AR’s poleward side.

Meanwhile, a tendency towards more negative s values as SST increases is reflected by

systematically enhanced expansion of wp over we, and indicates that a larger proportion of

AR widening occurs on the poleward side than the equatorward side. This result follows

nicely from expectations set up by basic thermodynamics: since the Clausius-Clapeyron

(CC) relation describes an inverse function between local temperature and saturation va-

por pressure (e∗), the larger relative e∗ increases through these colder regions can result

in an enhanced broadening of the IVT field here in the absence of changes to wind speed.

That said, we do have to account for wind speed changes: returning to Figure 4.4, it is

clear that wind speeds decrease slightly through the column, especially on the poleward

sides of ARs. Given this side of an AR is frequently occupied by an accompanying ETC’s

cold front, this can be explained best by changes in ETC dynamics. In particular, this

could occur as a result of weakening ETC background-to-core sea-level pressure (SLP)

gradients, which is facilitated by decreasing background SLP in the storm-track region

and leads to a relative weakening in ETC intensity (McDonald, 2011). In any case, the

finding that relative changes in AR IVT increase overall and especially along ARs’ pole-

ward flanks (Figure 4.5d, f, h) despite these weakening winds indicates that q increases

dominate changes in IVT. While the finding that q changes dominate IVT changes in

ARs has already been discussed in-depth (McClenny et al., 2020), the cross-sections here

have the advantage of explicitly illustrating the spatial variation of this effect. In par-
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Figure 4.8: Distributions of AR skew parameter by method. Curves show kernel density
estimates while shading shows the underlying histograms (bin spacing = .125). Textual
annotations show half-widths (km) and their changes with respect to the Baseline run
(%), with values on the left corresponding to the poleward side of the AR, and values
on the right to the equatorward side. Note that this convention is consistent with all
cross-section figures for reference.

ticular, they show that a weakening AR periphery-to-core wind gradient under uniform

SST increases works in synergy with thermodynamically modulated q changes along the

poleward side to broaden the IVT field further, compounding the asymmetric widening

seen here.

4.3.6 Relating impacts and dynamics in the context of AR width

We have demonstrated increases in AR width for all definitions, but in particular the

impacts-relevant widths (that is, those conditioned on the critical threshold of IV T ≥
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250 kg m−1 s−1) show the strongest widening, in both the case of the AR IVT profiles

themselves (wl) and their Gaussian approximations (wi). While some of this can be ex-

plained by the approximately linear enhancement in IV T0 under SST warming conditions

(Figure 4.6), the simultaneous enhancement in wd also hints at an overall broadening in

the AR IVT field. Returning to our definition for wi, we can quantitatively relate changes

in wi to those in wd, IV T0, dIV T , or any combination thereof (Section 4.2.3). We eval-

uate the contribution of each via a first-order Taylor series expansion of Equation 4.2.4

with respect to each independent variable:

∆wi =
∂wi

∂wd

∣∣∣∣
B

∆wd+
∂wi

∂IV T0

∣∣∣∣
B

∆IV T0 +
∂wi

∂dIV T

∣∣∣∣
B

∆dIV T + r (4.3.2)

where r denotes a residual value, ∆X = Xt −XB for all variables, and subscripts t and

B refer to test and Baseline values, respectively. We refer to the terms on the right hand

side as the wd term, IVT0 term, and dIVT term, respectively. We compute the prefixes

for the Baseline AR cross-sections with mean wi and wd values:

∂wi

∂wd
=
wi

wd
, (4.3.3)

∂wi

∂IV T0
=

wd2

4 wi (IV Tref − IV T0)
, (4.3.4)

∂wi

∂dIV T
=

wd2

4 wi dIV T
. (4.3.5)

In words, Equations 4.3.3, 4.3.4, and 4.3.5 each describe the first-order sensitivity of

AR wi to AR wd, IV T0, and dIV T , respectively. Consequently, its derivative (Equation

4.3.2) can be used to evaluate how much each variable contributes to projected changes in

AR wi. Table 4.2 shows the value of each term in Equation 4.3.2; notably, small r values

(∼ 5−10% of the total magnitude) indicate that the linear approximations employed here

can sufficiently characterize changes in AR wi. Meanwhile, Figure 4.9 also illustrates the

contribution of each. Like Figure 4.1, Figure 4.9 shows a collection of curves corresponding

to an AR IVT Gaussian and a series of transformations on that Gaussian as each of the

three free parameters is increased in turn, but instead uses the mean Baseline Gaussian
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IVT fit as a reference curve; accordingly, each transform is computed from the +6K mean

Gaussian fit parameters, and the fitted mean +6K IVT Gaussian is also shown. Overall,

this figure summarizes findings shown in Table 4.3 as well as those garnered from figures

throughout the manuscript: first, that wi expansion far outpaces wd widening (Figure

4.7); second, that this widening is asymmetrical and characterized by greater widening

on the poleward side than the equatorward side (Figure 4.8); third, that wi enhancement

occurs mostly as a result of wd and IV T0 increases, which are nearly equal to each other

and outpace dIV T increases (Table 4.2); and last, this wd broadening occurs simulta-

neously with enhanced IV T0, whose mean steadily nears the critical threshold (Figure

4.6). Still, growing residuals with warming (Table 4.2) suggest that discrepancies in wi

measurements (generally somewhat overestimated on the poleward side and underesti-

mated on the equatorward side; Figure 4.9) indicate that a more detailed analysis may

be necessary to characterize these changes.

∆wi wd Term IV T0 Term dIV T Term r

+2K 72.4 21.8 29.5 17.3 3.8

+4K 143.3 49.1 49.3 33.3 11.7

+6K 209.8 69.9 70.0 46.1 23.7

Table 4.2: Changes in AR wi under warming SSTs, as well as the contributions of changes
in wd, IV T0, and dIV T to wi as described in Equation 4.3.2. All values have units km.

To provide some of this additional detail, we perform the analysis summarized in Table

4.2 but treat the poleward and equatorward sides of the ARs as cross-sections distinct

from one another. We accomplish this by (1) breaking up AR cross-sections into their

left (poleward) and right (equatorward) halves, starting from the spine and extending to

the last background IVT point; then (2) performing the same line-fitting procedures for

wd and wi already described, but on each AR half independently from the other. Note

that these capture more detail by having more flexibility. Specifically, fitting Equation

4.2.2 to each side separately essentially doubles the degrees of freedom from three to six

IV T parameters, allowing for more precise wd estimates and minimizing the effect of the

apparent underestimation of IV T0 along the AR poleward side and overestimation along
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Figure 4.9: Analogous to Figure 4.1, but for Gaussian fits as derived in this paper. The
thick, black curve shows the mean Gaussian IVT fit for the Baseline run, while the black,
dashed curve shows the same for the +6K run. The other curves each correspond to
a controlled, single-parameter transform on the Baseline curve derived from the +6K
data: the short, green dashes show the Baseline Gaussian but with mean +6K IV T0;
the long, orange dashes show the same, but with +6K’s mean dIV T instead; and the
solid, blue curve shows the Baseline curve but with +6K mean wd. Corresponding dots
along the y = 250 kg m−1 s−1 line show the resulting wi for each transform, which is
slightly overestimated on the poleward edge and undestimated on the equatorward edge,
for reasons already discussed (Section 4.3.2).

the equatorward side. Table 4.3 summarizes this analysis and shows an overall decrease

in r values, indicating that this additional flexibility does serve to capture more of the

variability in each AR IVT profile. In particular, it captures important differences in the

nature of AR wi changes on each side of the AR spine: whereas the wd term increasingly

dominates the wi signal on the poleward side of ARs under SST warming (Table 4.3, left),

the wi changes along the equatorward side of the AR have relatively equal contributions

from all three terms, though dIV T exceeds the others slightly and wd consistently shows

the smallest change (Table 4.3, right).

As noted in McClenny et al. (2020), and as observed here (Figure 4.7), although TE

uses a Laplacian threshold for detection of ARs that should be invariant to changes in

IV T0, it nonetheless produces wider ARs under warming conditions. The increased width
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∆wi wd Term IV T0 Term dIV T Term r

+2K 32.7 13.7 9.3 8.2 1.5

+4K 73.5 39.2 12.5 17.2 4.5

+6K 109.0 59.8 17.1 24.9 7.2

∆wi wd Term IV T0 Term dIV T Term r

+2K 38.1 11.4 11.8 13.1 1.7

+4K 67.4 18.2 22.1 24.5 2.5

+6K 101.7 28.4 31.0 37.5 4.8

Table 4.3: Same as Table 4.2, but for the poleward (top) and equatorward (bottom)
sides of the AR cross-sections. Note that the sums of like terms for each side of the AR
might not equal the corresponding term for the total AR in Table 4.2, since we allowed
additional degrees of freedom when fitting separate IV T parameters for each side.

of detected features tends to make ARs appear “less extreme” since the periphery points

added through detection have lower IVT and precipitation compared with the AR core.

In fact, if IVT0 is neglected from the change in impacts width (i.e., using Table 4.2 but

only assessing ∆wi = ∆wd+ ∆dIV T ) we would anticipate a mean AR width increase of

4.8%, 10.1% and 14.3% for the +2K, +4K and +6K simulations, which is perfectly in line

with observations in Figure 4.7. Thus we can conclusively attribute increased AR widths

in TE to broadening of ARs (wd) and intensification of ARs against the background IVT

(dIV T ).

4.4 Conclusions

This study used CAM5 in order to investigate in detail some of the physical drivers

behind the apparent warming-related AR widening observed for a variety of simulation

boundary conditions (BCs) and ARDTs (Espinoza et al., 2018; McClenny et al., 2020;

O’Brien et al., 2020b). To minimize variability related to BC differences, we use an AQP

configuration featuring an idealized reference SST profile and three test SST profiles with

uniform increases of two, four, and six K over the reference. Likewise, we seek to avoid the

sensitivity of AR width statistics to ARDT selection. We do this by only using the ARDT
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(as described in Section 4.2.1) as a first filter for AR points, instead focusing primarily

on the pointwise local maxima of the IVT field (referred to as the “AR spine”) and then

examining interpolated cross-sections through the spine. We expect our methodology

produces nearly identical results regardless of the ARDT employed. Four definitions for

the AR cross-sectional width are then contrasted: (1) the lateral boundaries found by the

ARDT (wa; Section 4.2.3), (2) wl, which defines AR width as all points along the cross-

section featuring IV T 250 kg m−1 s−1 and is used here to provide a direct comparison

to an observational study by Ralph et al. (2017); (3) wd, which computes AR width

with respect to a Gaussian fit of AR cross-sectional IVT (Equation 4.2.2); and (4) wi,

which like wl is conditioned on the critical threshold IV T 250 kg m−1 s−1, but is instead

determined with respect to the same Gaussian IVT curve as wd (Figure 4.1 provides a

schematic view of wd and wi on a Gaussian AR IVT profile).

We present a summary of our findings below in parallel with the questions outlined in

Section 1:

(a) Idealized Gaussian fits of AR IVT capture most of the variance of the AR IVT

profile (weighted RMSEs generally remain under 0.10; Figure 4.5), though these fits

benefited substantially from the use of a simple weighting function (Equation 4.2.5)

to ensure that high-IVT points at AR peripheries did not unduly influence the wd

and wi calculations. Because of asymmetries related to a skew of AR IVT toward

their equatorward flank, the fit can be improved by using a half-Gaussian on each

side of the spine.

(b) AR background IVT (IV T0) systematically increases more than AR intensity (dIV T ),

though both show nearly linear increases in their means (∼ 6% versus ∼ 4% per K

SST warming, respectively; Figure 4.6). In words, we show that changes in the lo-

cal background IVT field are enhanced with respect to those in AR peak IVT. This

finding reflects earlier results that uniform SST increases generally lead to larger

enhancements in non-AR IVT than in AR IVT (McClenny et al., 2020), though

instead featuring a partitioning of AR points between their peak IVT values and

their background environment. In all, this effect is attributed to points already dis-
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cussed in McClenny et al. (2020), which showed that AR relative humidity decreases

through the column since temperature changes aloft outpaced the prescribed SST

increases.

(c) All measures of AR width systematically increase under uniform SST warming,

though substantial variation exists in terms of the magnitudes of these relative

changes (Figure 4.7). We show that AR dynamic width (wd) is the least sensitive

with a mean increase of ∼ 1% per K, while the TE ARDT produces ARs which

expand by∼ 2.5% per K SST on average. Meanwhile, the AR widths concerned with

the impacts-relevant critical IVT threshold (IV T 250 kg m−1 s−1) show the largest

increases under SST warming: wi and wl both expand by ∼ 5 − 6% per K. As for

the smaller expansion rate seen in wi compared to wl, we cannot rule out spurious

effects associated with the curve-fitting procedure, which tends to underestimate AR

IVT at the profile’s inflection points (Section 4.3.4). That said, the Gaussian fits

from which we compute wi have the advantage of isolating the AR IVT signal from a

noisy background (Figure 4.5), suggesting that nearby high-IVT objects (e.g., other

ARs, ETCs) can inflate AR widths conditioned on this IVT threshold. In any case,

it is notable that each AR width estimate exhibits an asymmetric sensitivity to SST

warming characterized by larger relative width increases on the poleward than the

equatorward side (Figure 4.8), which is attributed to an enhanced thermodynamic

sensitivity in e∗ at lower temperatures.

(d) Mean AR wi, which corresponds to the impacts-relevant width of an AR’s idealized

Gaussian representation, widens overall at a rate of ∼ 35 km per K SST (Table

4.2). Broken down by term, we see the largest contribution to this wi expansion

comes from an enhancement in background IVT (IV T0, accounting for ∼ 13 km per

K), then changes in dynamic width (wd, adding ∼ 11.5 km per K), and the lowest

contribution from AR intensity (dIV T , of ∼ 8.2 km per K). When this analysis is

partitioned along the AR spine and examined separately for each the poleward and

equatorward sides of ARs, a clearer picture of the processes behind the asymmetric

widening discussed in (c) emerges (Table 4.3). While each side shows an equivalent
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mean widening of∼ 17.6 km per K SST warming, the contributions of each term vary

substantially across the AR spine. On the poleward side, wi increases are dominated

by wd (∼ 9 km per K) and receive comparable contributions from enhancements

in IV T0 and dIV T (∼ 3.5 and ∼ 4.2 km per K, respectively). At the same time,

wi along the equatorward side exhibits a much smaller contribution from wd (∼ 5

km per K), and larger contributions from thermodynamic enhancements in IV T0

(∼ 5.5 km per K) and dIV T (∼ 6.3 km per K) than the poleward side. The finding

that wd dominates wi increases on the poleward side is intriguing and suggests that

AR IVT profile changes here are sensitive to an enhanced breadth in the overall IVT

field which is facilitated here in part by CC scaling but also by weakening frontal

wind gradients (Figure 4.4). Our results further explain that the increase in AR

width observed in McClenny et al. (2020) using the TE ARDT is in near-perfect

agreement to increases in dIV T and wd, indicating that the TE ARDT is effective

at filtering changes in width due to increases in the background IVT.

This study carefully leveraged idealized models in two notable senses: first, the use

of an AQP model allowed us to isolate the influence of uniform SST warming on AR

IVT intensity and width; second, information about AR width and its responses to SST

warming was itself derived from idealized Gaussian fits to AR IVT cross-sections. While

these idealized approximations of AR IVT cross-sections invariably smooth out natural

variability, they have the advantage of representing AR impacts-relevant width (wi) in

terms of a known function with free parameters derived from the local IVT field for each

cross-section (Equation 4.2.4). In this framework, an increase in any of these parameters

could account for the AR wi increases, likewise elucidating the physical drivers of previ-

ously documented AR widening across warming scenarios and ARDTs (Espinoza et al.,

2018; McClenny et al., 2020; O’Brien et al., 2020b). Quantitative analysis presented here

shows that AR wd increases—that is, an overall broadening of the AR IVT profile—on

the poleward side of ARs accounts for ∼ 28% of wi widening in the warmest SST scenar-

ios (+4K and +6K), making its contribution roughly twice the magnitude of any other

(Table 4.3). While this is certainly facilitated in part by simple thermodynamic effects
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in this relatively cold AR region, we argue that dynamical effects also play a crucial role.

Namely, given the frequent presence of an ETC’s cold front along an AR’s western edge

(Ralph et al., 2017), it follows that weakening ETC SLP gradients (McDonald, 2011)

similarly weaken AR wind gradients (Figure 4.4). This finding of AR IVT poleward ex-

pansion paired with the finding that AR background IVT increases outpace those in AR

spine IVT (Figure 4.6) together suggest that researchers take care when characterizing

AR intensity in terms of maximum IVT.
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Chapter 5

Conclusions

The overarching motivation of this research was to develop confidence in conclusions about

AR responses to climate change. We proposed that this confidence could be developed best

by leveraging an assortment of simpler models. First, we minimized uncertainty related

to surface boundary conditions and complex climate change forcings by performing all

experiments within an aquaplanet. Within this aquaplanet framework we performed a

simple forcing experiment of uniform SST increases in order to insulate findings from

effects associated with a changing meridional SST gradient (and other changes) normally

found in climate change experiments. This allowed us to isolate the impact of increased

SST, a first for a global AR study.

5.1 Summary

In Chapter 2, we provided a brief overview of the wide variety of AR detection tools

(ARDTs) described in the literature. We also detailed TempestExtremes (TE), an ARDT

which is novel because it accepts a threshold for the Laplacian of IVT (L2IVT) rather

than for a “raw” IVT field, the variable on which most ARDTs depend. The use of

L2IVT allows TE to identify ARs as ridges in the IVT field. We show that this has the

advantage of isolating ARs from their background without enforcing an absolute IVT

threshold which is sensitive to background climatology, or a relative threshold which

requires percentiles that can be sensitive to the spatiotemporal extent of the calculation

(e.g., does the percentile calculation use zonal mean IVT? Does it compute new percentiles
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for climate change scenarios, or does it use present-day data?). Using L2IVT is somewhat

complicated however; analysis presented in Chapter 2 shows that it benefits from tuning

for individual models, in particular as a function of the model’s grid spacing. Nevertheless

the flexibility with respect to the changing IVT background afforded by the use of L2IVT

makes it a novel ARDT, useful in and of itself and in the context of the ARTMIP effort,

where it provides a unique point of comparison.

In Chapter 3, we tested the response of AR occurrence frequency (OF), IVT, and

precipitation rates to uniform SST increases. We found that AR OF increases overall

and mostly as a result of increased AR zonal extent, while a poleward displacement of

the AR OF maximum followed the same for the eddy driven jet. Meanwhile, we kept

with the theme of simpler models by examining changes in zonal mean AR IVT and

precipitation rate with linear decompositions of thermodynamic and dynamical contri-

butions to tease apart the individual factors leading to these changes. We find that for

AR IVT the thermodynamic contributions dominate; that is, enhanced AR IWV com-

pensates for decreasing mean AR low-level wind speeds. We noted that this increase in

AR IWV masks AR relative humidity decreases at upper levels which occur as a result of

enhanced upper-tropospheric warming with respect to the prescribed SST increases. This

upper-tropospheric warming is not surprising and results as a consequence of a dampened

moist-adiabatic lapse rate under surface warming conditions; nevertheless it is reassuring

to see the model results follow theory-based predictions.

As with AR IVT, Chapter 3 also used a simple linear model to describe changes in

AR precipitation rate. Once again, we found increasing AR moisture (in this case, qsfc

rather than IWV) and weakening AR dynamics (ω700) are at odds with one another,

though this time the weakening dynamics were sometimes sufficient to contribute to a

decrease in zonal mean AR precipitation rates. We also showed that increasing AR area

as SST increases somewhat obscures conclusions about zonal-mean AR precipitation rate,

since the expansion of AR area produced by TE resulted in the inclusion of weaker AR

periphery points featuring less vigorous precipitation.

The result of expanding ARs using the TE ARDT was unexpected because the use
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of L2IVT makes it insensitive to uniform additive IVT increases, and TE should only

produce a ∼1% wider AR for a 50% uniform multiplicative increase in IVT (Text A.1).

We hypothesized in Chapter 3 that this widening occurred as a result of a broadening in

the IVT field about an AR cross-section. Once again we investigated this by leveraging

a simpler model, in this case by characterizing AR IVT cross-sections as Gaussian curves

with three free parameters: the constant background IVT (IV T0), the intensity of the

AR peak IVT above the background (dIV T ), and the overall breadth of the IVT field

(also called the dynamic width; wd). First, we established that Gaussian curves provide

reasonable estimates of AR IVT cross-sections. We next examined changes in IV T0

and dIV T , and found that IV T0 overall exhibits larger relative increases than dIV T , in

keeping with results in Chapter 3 which showed that non-AR IVT increases at greater

rates than AR IVT for a given uniform SST increase.

After establishing the sensitivity of the IVT fit parameters in Equation 4.2.2, Chapter

4 used the Gaussian fits of the AR IVT cross-sections to define an impacts-relevant AR

width (wi) conditioned on the common critical threshold IV T ≥ 250 kg m−1 s−1 (Equation

4.2.4). We compared the wd and wi values against a literature width (wl) which was

computed simply as all points along an AR transect which exceeded the critical threshold

of IVT, and against the algorithmic width (wa), or the AR boundaries as identified by

TE. We found systematic increases in all widths, though the widths conditioned on the

critical IVT threshold (wi and wl) showed the most sensitivity to SST warming, while

wa and wd showed the lowest sensitivity.

Like the linear decompositions of AR IVT and precipitation rate into dynamical and

thermodynamic contributions used in Chapter 3, differentiating the equation describing

wi with respect to each variable provided us with a framework to study the individ-

ual contributions of each parameter to any observed changes (Equation 4.2.4). From

this analysis we found that IV T0 and wd enhancement contributed equivalently to wi

increases, with dIV T contributions trailing behind. The overall widening result is not

symmetric however: an analysis which partitioned ARs into their equatorward and pole-

ward sides revealed that the poleward sides of ARs are most sensitive to wd changes,
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while the equatorward side received nearly equal contributions from all three parameters.

We attribute the expansion of wd on the poleward side to a mix of enhanced Clausius-

Clapeyron-mediated moisture increases and a broadening lower-level wind field. Last, we

showed that TE produces wider ARs under SST warming due to enhancements in wd and

dIV T , supporting our earlier hypothesis that TE is insensitive to changes in background

IVT.

5.2 Recommendations

The works contained herein inspire us to make a few recommendations. First, in Chapter 2

we commented on the challenge of tuning TE parameters, both within a single model and

when comparing AR statistics across models. Despite the tuning already done, there could

be additional efforts towards it. One open question involves the scaling of IVT and L2IVT

to grid size—while we established some theoretical ground on that, the practical results

(Figure 2.7) suggest that further scaling efforts may improve inter-model consistency.

That said the comparison of different models makes it difficult to assess if improved scaling

can indeed improve the AR OF spread, since model differences aside from grid spacing

can contribute to discrepancies in AR statistics. Addressing this could involve a simplified

approach: rather than compare AR statistics derived from untuned and grid-size-tuned

L2IVT criteria across a collection of models, we could instead interpolate one model (e.g.,

MERRA2) to a collection of different grid sizes, thereby allowing us to examine grid size

sensitivities in an experiment which is controlled better for confounding factors.

Second, we expect that results from Chapter 3 could be further clarified by using tech-

niques developed for Chapter 4, specifically the AR spine identification and cross-section

generation procedures. For instance, in Chapter 3 we used an IVT-weighted analysis of

precipitation rates to tease apart the influence of changes in AR “core” versus periphery

points, with the rationale that AR cores tend to feature the highest IVT values along an

AR cross-section. That approach certainly provided valuable insight, but our ability now

to explicitly examine variables through an AR cross-section can be used to provide ad-

ditional insight. We are particularly interested in revisiting the linear decompositions of
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IVT and precipitation, this time evaluated at different points along the AR cross-section.

This could be as simple as defining a core about the AR spine, while AR boundaries on

each side could be determined with each of the width methods defined in Chapter 4 to

assess the sensitivity of findings to them. We could then directly assign changes in AR

variables as changes happening within the core or towards the AR periphery, giving us

valuable insight to the spatial variation of intra-AR characteristics.

Last, results from Chapters 3 and 4 are limited to an aquaplanet setting, a tightly

controlled and highly idealized framework. The advantages have already been discussed,

specifically that the simplified setting allowed us to isolate the impact of SST warming in

the absence of any other changes; still, we emphasize that aquaplanets and other simpler

models leveraged in this work (e.g., the linear IVT/precipitation rate decompositions,

the representation of AR cross-sections as Gaussians) are best viewed as tools for un-

derstanding AR responses to specific climate change forcings, rather than for predicting

future AR behavior in general. As such, we recommend that the analyses in Chapters 3

and 4 be extended to coupled models, such as those in CMIP5/6 or in the High-Resolution

Model Intercomparison Project (HighResMIP), since leveraging the model hierarchy in

such a way can allow us to raise confidence in results obtained in these more complete yet

complex climate model settings.
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Appendix A

Supplementary Information for

Chapter 3

Contents of this appendix

1. Figure A.1

2. Text A.1

3. Figures A.2 to A.7

104



Figure A.1: Zonal mean AR quantities for the “Baseline” SST run. Line colors indicate
the number of months in the sample. Black dashes show the 18-month mean +/- one
standard deviation with respect to the full ensemble.

A.1 Sensitivity of Atmospheric River Width to Lapla-

cian IVT Criterion

In this section we examine the sensitivity of the AR width to the Laplacian criteria

under a multiplicative enhancement in total IVT. We begin by considering an idealized

atmospheric river with Gaussian cross-section in IVT,

IV T (s) = IV T0 + dIV T exp(−s2/w2), (A.1.1)

where IV T (s) is the pointwise IVT at distance s meters along the cross-section, IV T0 is

the constant background IVT, dIV T is the anomalous IVT enhancement from the AR,

and w is the e-folding width of the AR. Since IV T0 is unimportant to the Laplacian

criteria, we set IV T0 = 0 in this analysis. Figure A.2 depicts two such Gaussian profiles

with e-folding width w = π/90 rad = 222 km, and a baseline dIV T = 500 kg/m/s and

dIV T = 500× 1.076 ≈ 750 kg/m/s, the latter corresponding to a 7% increase in IVT per

degree C under a +6K experiment.

The second derivative of (A.1.1) with respect to s, which is equivalent to the Laplacian
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Figure A.2: A depiction of the idealized Gaussian cross-sections used in this analysis
with dIV T = 500 kg/m/s and dIV T = 750 kg/m/s, which represent typical ARs under
baseline and +6K experiments.

for an AR with no variation perpendicular to the cross-section, is then given by

d2IV T

ds2
(s) =

dIV T (4s2 − 2w2)

w4
exp(−s2/w2), (A.1.2)

with units of kg/m/s/m2. To convert to kg/m/s/rad2, which is used in our ARDT, we

multiply by (6.37122× 106 m/rad)2. The resulting profiles of the Laplacian are depicted

in Figure A.2 along with the employed threshold of -40000 kg/m/s/rad2. As can be seen

in this figure the number of points satisfying the Laplacian threshold – that is, those

points where the curve is below the dotted line – does not significantly change even when

the strength of the AR is enhanced by 50%. To get a better handle on the magnitude of

this change we can solve numerically for the point at which the second derivative hits our

threshold and find that this occurs at s = 5263 m for the baseline AR and s = 5335 m

for the +6K AR. Thus the multiplicative enhancement results in a mere 1.4% increase in

the AR width.

106



Figure A.3: As in Figure A.2, except depicting the second derivatives of the Gaussian
cross-sections.
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Figure A.4: Zonal jets for each SST run. Filled contours show zonal-mean zonal wind
(m/s); the eddy-driven jet can be seen extending through the troposphere in the mid-
latitudes. Unfilled contours show zonal-mean zonal wind minus 850 hPa zonal wind; the
upper-tropospheric maximum seen in each panel is the subtropical jet. Colored boxes and
labels on x-axis denote analysis subregions described in the main text (Section 3.2.4).
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Figure A.5: (a) Meridional distributions of zonal mean AR (solid) and non-AR (dotted)
850 hPa wind speed. Shading shows 95% confidence intervals. (b) Relative differences
with respect to the Baseline SST (%/K), using the same line color and style conventions.
(c-f) Area-weighted mean relative change per K SST increase (blue; line style conventions
as before). Colored boxes and labels on x-axis denote analysis subregions described in the
main text (Section 3.2.4).
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Appendix B

Supplementary Information for

Chapter 4

Contents of this appendix

1. Tables B.1 to B.3

2. Figures B.1 to B.3

Q +0K +2K +4K +6K

0.05 80.28 87.81 (9.38%) 96.23 (19.86%) 104.54 (30.21%)

0.25 118.67 131.42 (10.74%) 142.56 (20.13%) 158.08 (33.21%)

0.5 147.48 165.14 (11.97%) 179.82 (21.93%) 200.48 (35.93%)

0.75 180.75 203.58 (12.63%) 223.55 (23.68%) 249.4 (37.98%)

0.95 240.2 273.05 (13.68%) 301.18 (25.39%) 338.35 (40.86%)

Mean 152.37 170.71 (12.04%) 186.91 (22.67%) 208.18 (36.63%)

Table B.1: AR IV T0 in kg/m/s for each SST run (relative changes with respect to Basline
in %) computed for a given quantile, Q.
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Q +0K +2K +4K +6K

0.05 305.9 317.46 (3.78%) 324.74 (6.16%) 331.53 (8.38%)

0.25 392.21 410.44 (4.65%) 425.73 (8.55%) 439.87 (12.15%)

0.5 481.28 513.33 (6.66%) 543.15 (12.86%) 570.88 (18.62%)

0.75 612.23 672.06 (9.77%) 730.96 (19.39%) 791.53 (29.29%)

0.95 860.92 968.32 (12.48%) 1088.12 (26.39%) 1204.84 (39.95%)

Mean 519.67 563.02 (8.34%) 605.25 (16.47%) 647.86 (24.67%)

Table B.2: Same as Table B.1, but for AR dIV T .

Q +0K +2K +4K +6K

0.05 441.9 465.5 (5.34%) 485.96 (9.97%) 507.4 (14.82%)

0.25 531.05 562.38 (5.9%) 592.08 (11.49%) 625.28 (17.74%)

0.5 630.28 678.51 (7.65%) 723.81 (14.84%) 773.09 (22.66%)

0.75 772.77 857.97 (11.03%) 932.5 (20.67%) 1016.03 (31.48%)

0.95 1045.32 1178.84 (12.77%) 1321.77 (26.45%) 1467.12 (40.35%)

Mean 672.04 733.73 (9.18%) 792.17 (17.87%) 856.04 (27.38%)

Table B.3: Same as Tables B.1 and B.2, but for AR spine IVT.
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Figure B.1: Example of an AR featuring an RMSE between 0.05 and 0.1 with respect to its
best-fit Gaussian. (a) IVT field (grayscale contours). Shown also are the AR boundaries
(thick, black outline), spine (thick, orange lines), and cross-section points (blue, dotted
line; bounded by points A and A′) as detected by TE, as well as the mass-weighted AR
centroid determined by scikit-image. (b) Cross-section in IVT from A to A′ (black, solid
curve) and the best-fit piece-wise Gaussian (blue, dashed curve). Pink shading shows wd,
while the dotted line shows the spine location to clarify the asymmetry.
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Figure B.2: As in Figure B.1, but for an AR featuring a moderate RMSE (between 0.05
and 0.1) with respect to its best-fit Gaussian.
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Figure B.3: As in Figures B.1 and B.2, but for an AR featuring a RMSE near the
maximum allowed for study here (for reference, we did not consider ARs with RMSE
> 0.2 with respect to their best-fit Gaussian curve). Since this fit is compromised mostly
by a nearby high-IVT object, this example shows nicely the utility of Gaussian curves in
isolating ARs from their environment and potential confounding objects.

114



References

AMS. Atmospheric river, May 2017. URL https://glossary.ametsoc.org/w/index.

php?title=Atmospheric_river&direction=prev&oldid=13819.

J-W. Bao, S. A. Michelson, P. J. Neiman, F. M. Ralph, J. M. Wilczak, J-W. Bao,

S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak. Interpreta-

tion of Enhanced Integrated Water Vapor Bands Associated with Extratropical Cy-

clones: Their Formation and Connection to Tropical Moisture. Monthly Weather

Review, 134(4):1063–1080, 2006. ISSN 0027-0644. doi: 10.1175/MWR3123.1. URL

http://journals.ametsoc.org/doi/abs/10.1175/MWR3123.1.

J. Bjerknes and H. Solberg. Life cycle of cyclones and the polar front

theory of atmospheric circulation. Geophysisks Publikationer, 3(1):18, 1922.

ISSN 1477-870X. doi: https://doi.org/10.1002/qj.49704920609. URL https:

//rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49704920609. eprint:

https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.49704920609.

Amy H. Butler, David W. J. Thompson, and Ross Heikes. The Steady-State Atmospheric

Circulation Response to Climate Change–like Thermal Forcings in a Simple General

Circulation Model. Journal of Climate, 23(13):3474–3496, July 2010. ISSN 0894-8755.

doi: 10.1175/2010JCLI3228.1. URL https://journals.ametsoc.org/jcli/article/

23/13/3474/32473/The-Steady-State-Atmospheric-Circulation-Response.

T.N Carlson. Mid-Latitude Weather Systems. American Meteorological Society, Boston,

1998. ISBN 1-878220-30-6.

Edmund K. M. Chang, Yanjuan Guo, and Xiaoming Xia. CMIP5 multimodel

ensemble projection of storm track change under global warming. Journal of

Geophysical Research: Atmospheres, 117(D23), 2012. ISSN 2156-2202. doi: 10.

1029/2012JD018578. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1029/2012JD018578.

115

https://glossary.ametsoc.org/w/index.php?title=Atmospheric_river&direction=prev&oldid=13819
https://glossary.ametsoc.org/w/index.php?title=Atmospheric_river&direction=prev&oldid=13819
http://journals.ametsoc.org/doi/abs/10.1175/MWR3123.1
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49704920609
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49704920609
https://journals.ametsoc.org/jcli/article/23/13/3474/32473/The-Steady-State-Atmospheric-Circulation-Response
https://journals.ametsoc.org/jcli/article/23/13/3474/32473/The-Steady-State-Atmospheric-Circulation-Response
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JD018578
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JD018578


Jason Cordeira. Mid-Latitude Dynamics and Atmospheric Rivers; conference presentation

available at: http://cw3e.ucsd.edu/. 2016. URL http://cw3e.ucsd.edu.

Jason M. Cordeira, F. Martin Ralph, and Benjamin J. Moore. The Development and

Evolution of Two Atmospheric Rivers in Proximity to Western North Pacific Tropical

Cyclones in October 2010. Monthly Weather Review, 141(12):4234–4255, 2013. doi: 10.

1175/MWR-D-13-00019.1. URL http://journals.ametsoc.org/doi/abs/10.1175/

MWR-D-13-00019.1.

H. F. Dacre, P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers.

How Do Atmospheric Rivers Form? Bulletin of the American Meteorological Society,

96(8):1243–1255, 2015. ISSN 0003-0007. doi: 10.1175/BAMS-D-14-00031.1. URL

https://journals.ametsoc.org/doi/full/10.1175/BAMS-D-14-00031.1.

Nicholas Davis and Thomas Birner. Seasonal to multidecadal variability of the width of the

tropical belt. Journal of Geophysical Research: Atmospheres, 118(14):7773–7787, 2013.

ISSN 2169-8996. doi: 10.1002/jgrd.50610. URL https://agupubs.onlinelibrary.

wiley.com/doi/abs/10.1002/jgrd.50610.

Nicholas Davis and Thomas Birner. Climate Model Biases in the Width of the Tropical

Belt. Journal of Climate, 29(5):1935–1954, March 2016. ISSN 0894-8755. doi: 10.

1175/JCLI-D-15-0336.1. URL https://journals.ametsoc.org/jcli/article/29/

5/1935/35098/Climate-Model-Biases-in-the-Width-of-the-Tropical.

Michael J. DeFlorio, Duane E. Waliser, Bin Guan, David A. Lavers, F. Martin Ralph,

and Frédéric Vitart. Global Assessment of Atmospheric River Prediction Skill. Journal

of Hydrometeorology, 19(2):409–426, February 2018. ISSN 1525-755X. doi: 10.1175/

JHM-D-17-0135.1. URL https://journals.ametsoc.org/jhm/article/19/2/409/

69586/Global-Assessment-of-Atmospheric-River-Prediction.

Michael Dettinger. Climate Change, Atmospheric Rivers, and Floods in California –

A Multimodel Analysis of Storm Frequency and Magnitude Changes. Journal of

the American Water Resources Association (JAWRA), 47(3):514–523, 2011. doi:

116

http://cw3e.ucsd.edu
http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-13-00019.1
http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-13-00019.1
https://journals.ametsoc.org/doi/full/10.1175/BAMS-D-14-00031.1
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrd.50610
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrd.50610
https://journals.ametsoc.org/jcli/article/29/5/1935/35098/Climate-Model-Biases-in-the-Width-of-the-Tropical
https://journals.ametsoc.org/jcli/article/29/5/1935/35098/Climate-Model-Biases-in-the-Width-of-the-Tropical
https://journals.ametsoc.org/jhm/article/19/2/409/69586/Global-Assessment-of-Atmospheric-River-Prediction
https://journals.ametsoc.org/jhm/article/19/2/409/69586/Global-Assessment-of-Atmospheric-River-Prediction


10.1111/j.1752-1688.2011.00546.x. URL https://ca.water.usgs.gov/pubs/2011/

climate-change-atmospheric-rivers-floods-california-dettinger.pdf.

Michael Dettinger, F. Ralph, and David Lavers. Setting the Stage for

a Global Science of Atmospheric Rivers. Eos, 96, 2015. ISSN 2324-

9250. doi: 10.1029/2015EO038675. URL https://eos.org/meeting-reports/

setting-the-stage-for-a-global-science-of-atmospheric-rivers.

Michael D. Dettinger, Fred Martin Ralph, Tapash Das, Paul J. Neiman, and Daniel R.

Cayan. Atmospheric Rivers, Floods and the Water Resources of California. Water, 3

(2):445–478, 2011. ISSN 2073-4441. doi: 10.3390/w3020445. URL http://www.mdpi.

com/2073-4441/3/2/445. Publisher: Molecular Diversity Preservation International.

Claude E. Duchon. Lanczos Filtering in One and Two Dimensions. Journal of

Applied Meteorology, 18(8):1016–1022, August 1979. ISSN 0021-8952. doi: 10.1175/

1520-0450(1979)018〈1016:LFIOAT〉2.0.CO;2. URL https://journals.ametsoc.org/

doi/abs/10.1175/1520-0450%281979%29018%3C1016%3ALFIOAT%3E2.0.CO%3B2.

Jorge Eiras-Barca, Alexandre M Ramos, Joaquim G Pinto, Ricardo M Trigo, Margarida

L R Liberato, and Gonzalo Miguez-Macho. The concurrence of atmospheric rivers and

explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Syst.

Dynam, 9:91–102, 2018. doi: 10.5194/esd-9-91-2018. URL https://doi.org/10.

5194/esd-9-91-2018.

J. Elsner and A.B. Kara. Hurricanes of the North Atlantic: Climate and Society. Oxford

University Press, 1999. URL https://rmets.onlinelibrary.wiley.com/doi/abs/

10.1002/joc.662.

Vicky Espinoza, Duane E. Waliser, Bin Guan, David A. Lavers, and F. Martin

Ralph. Global Analysis of Climate Change Projection Effects on Atmospheric Rivers.

Geophysical Research Letters, 45(9):4299–4308, 2018. ISSN 1944-8007. doi: 10.

1029/2017GL076968. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1029/2017GL076968.

117

https://ca.water.usgs.gov/pubs/2011/climate-change-atmospheric-rivers-floods-california-dettinger.pdf
https://ca.water.usgs.gov/pubs/2011/climate-change-atmospheric-rivers-floods-california-dettinger.pdf
https://eos.org/meeting-reports/setting-the-stage-for-a-global-science-of-atmospheric-rivers
https://eos.org/meeting-reports/setting-the-stage-for-a-global-science-of-atmospheric-rivers
http://www.mdpi.com/2073-4441/3/2/445
http://www.mdpi.com/2073-4441/3/2/445
https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281979%29018%3C1016%3ALFIOAT%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281979%29018%3C1016%3ALFIOAT%3E2.0.CO%3B2
https://doi.org/10.5194/esd-9-91-2018
https://doi.org/10.5194/esd-9-91-2018
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.662
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.662
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017GL076968
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017GL076968


Dargan M. W. Frierson, Jian Lu, and Gang Chen. Width of the Hadley cell in sim-

ple and comprehensive general circulation models. Geophysical Research Letters, 34

(18), September 2007. ISSN 0094-8276. doi: 10.1029/2007GL031115. URL https:

//agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007GL031115.

T. Theodore Fujita. Tornadoes and Downbursts in the Context of Generalized Plan-

etary Scales. Journal of the Atmospheric Sciences, 38(8):1511–1534, August 1981.

ISSN 0022-4928, 1520-0469. doi: 10.1175/1520-0469(1981)038〈1511:TADITC〉2.0.CO;

2. URL https://journals.ametsoc.org/view/journals/atsc/38/8/1520-0469_

1981_038_1511_taditc_2_0_co_2.xml. Publisher: American Meteorological Society

Section: Journal of the Atmospheric Sciences.

Yang Gao, Jian Lu, L. Ruby Leung, Qing Yang, Samson Hagos, and Yun Qian. Dynamical

and thermodynamical modulations on future changes of landfalling atmospheric rivers

over western North America. Geophysical Research Letters, 42(17):7179–7186, 2015.

ISSN 00948276. doi: 10.1002/2015GL065435. URL http://doi.wiley.com/10.1002/

2015GL065435. Publisher: Wiley-Blackwell.

Yang Gao, Jian Lu, and L. Ruby Leung. Uncertainties in Projecting Future Changes in

Atmospheric Rivers and Their Impacts on Heavy Precipitation over Europe. Journal of

Climate, 29(18):6711–6726, June 2016. ISSN 0894-8755. doi: 10.1175/JCLI-D-16-0088.

1. URL https://journals.ametsoc.org/doi/10.1175/JCLI-D-16-0088.1.
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Inda Dı́az, and William D. Collins. Detection of atmospheric rivers with inline un-

certainty quantification: TECA-BARD v1.0.1. Geoscientific Model Development, 13

(12):6131–6148, December 2020a. ISSN 1991-959X. doi: 10.5194/gmd-13-6131-2020.

URL https://gmd.copernicus.org/articles/13/6131/2020/. Publisher: Coperni-

cus GmbH.

Travis Allen O’Brien, Michael F. Wehner, Ashley E. Payne, Christine A. Shields,

Jonathan J. Rutz, L. Ruby Leung, F. Martin Ralph, Allison B. Marquardt Collow, Bin

Guan, Juan Manuel Lora, Elizabeth McClenny, Kyle M. Nardi, Alexandre M. Ramos,
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