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FINITE DEPTH GRAVITY WATER WAVES IN HOLOMORPHIC

COORDINATES

BENJAMIN HARROP-GRIFFITHS, MIHAELA IFRIM, AND DANIEL TATARU

Abstract. In this article we consider irrotational gravity water waves with finite bottom.
Our goal is two-fold. First, we represent the equations in holomorphic coordinates and
discuss the local well-posedness of the problem in this context. Second, we consider the
small data problem and establish cubic lifespan bounds for the solutions. Our results are
uniform in the infinite depth limit, and match our earlier infinite depth result in [8].
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1. Introduction

This article is devoted to the study of the two dimensional finite bottom gravity water
wave equations. Precisely, we consider an inviscid, incompressible, irrotational fluid evolving
in the presence of gravity. The fluid occupies a time dependent domain Ω(t) ⊂ R2 which has
flat finite bottom {y = −h} and a free upper boundary Γ(t) which is asymptotically flat to
y ≈ 0. The two parameters in the problem, i.e., the gravity g and the depth h, are allowed
to be arbitrary positive numbers. However, our results are only uniform in the range g . h,
which includes the infinite depth limit but not the zero depth limit.

The first author was supported by a Junior Fellow award from the Simons Foundation.
The second author was supported by the Simons Foundation.
The third author was partially supported by the NSF grant DMS-1266182 as well as by the Simons

Foundation.
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Figure 1. The fluid domain.

The fluid evolution is modeled by the incompressible Euler equations in Ω(t),

(1.1)











ut + u · ∇u = ∇p− gj

div u = 0

u(0, x) = u0(x).

On the bottom we have the boundary conditions for the velocity, namely

(1.2) u · j = 0, y = −h.
On the free boundary Γ(t), on the other hand, we have the dynamic boundary condition

(1.3) p = 0 on Γ(t),

and the kinematic boundary condition

(1.4) ∂t + u · ∇ is tangent to
⋃

t

Γ(t).

Under the additional assumption that the flow is irrotational, we can write u in terms of
a velocity potential φ as u = ∇φ, where φ is a harmonic function whose normal derivative
is zero on the bottom. Thus φ is determined by its trace ψ = φ|Γ(t) on the free boundary
Γ(t). Denote by η the height of the water surface as a function of the horizontal coordinate.
Then the fluid dynamics can be expressed in terms of a one-dimensional evolution of the free
interface, Precisely, for the pairs of variables (η, ψ) we have

(1.5)







∂tη −G(η)ψ = 0

∂tψ + gη +
1

2
|∇ψ|2 − 1

2

(∇η · ∇ψ +G(η)ψ)2

1 + |∇η|2 = 0,

where G represents the Dirichlet to Neumann map on the free boundary Γ(t) associated to
the Laplace equation inside the fluid domain with zero Neumann boundary condition on the
bottom. This is the Eulerian formulation of the gravity water wave equations. The second
equation above is known as Bernoulli’s law.

While the above Eulerian formulation is easy to write, it is not so convenient to use due
to the presence of the Dirichlet to Neumann map associated to the moving domain Ω(t).
Instead, viewing the choice of the parametrization of the free boundary as a form of gauge
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freedom, we employ the holomorphic coordinates here. These are obtained using the so-
called conformal method, where the domain Ω(t) is viewed as conformally equivalent to a
strip. This will significantly simplify the analysis.

This system has received considerable attention over the years. The first steps toward
understanding the local theory were due to Ovsjannikov, see [15], who used conformal co-
ordinates in order to prove local well-posedness in spaces of analytic functions. Around the
same time, in closely related work, Nalimov [14] proved the first small data result in Sobolev
spaces in the infinite depth case. Somewhat later, his approach was extended to the finite
bottom problem by Yosihara [20].

The Eulerian form of the equations, described above, emerged in [5, 21]; however, it was
only much later that this led to a satisfactory local theory. For a good description of this we
refer the reader to the more recent paper of Alazard-Burq-Zuily [1] as well as to Lannes’s
book [12].

Returning to the conformal method, the evolution equations restricted to the boundary
were independently written by Wu [19] and Dyachenko-Kuznetsov-Spector-Zakharov [6] in
the infinite bottom case in slightly different forms. Of these, it was Wu’s paper [19] where
this formulation was fully exploited to prove local well-posedness in the large data problem.
Later, in [3] Choi and Camassa re-derive the equations for a perfect fluid in the finite depth
case when taking both the gravity and capillary force into account. Their method is based
on a direct manipulation of the Euler equations, whereas the method of Dyachenko et al. [6]
is based on a variational approach. Holomorphic coordinates have been used subsequently
in several other works, for example [7, 13].

One key feature of this evolution, which led to a very large body of work, is that it admits
soliton solutions, which at low frequency/small amplitude are close to the KdV solitons. In
the periodic regime these waves are called Stokes waves and there is a continuous family of
such waves up to the maximum height wave, which has a profile with a 120 degree angle at
the top. As this is only tangentially relevant to the present work, we simply refer the reader
to the recent books of Lannes [12] for a good description of the KdV approximation, and of
Constantin [4] for the study of solitary waves.

Our goal here is somewhat different, namely to initiate the study of the long time dynamics
for the small data problem. As mentioned before, one difficulty in this regard is the presence
of the Dirichlet to Neumann map in the Eulerian formulation of the equations. In order to
bypass this difficulty we consider the equation in holomorphic coordinates, using a conformal
map of the fluid domain into a flat strip. This strategy was previously implemented by the
last two authors is several deep water scenarios, namely for gravity waves [8], capillary
waves [10] and constant vorticity gravity waves [11].

As this is the first article fully developing the holomorphic coordinates in the finite bottom
scenario, in the first part of the paper we carefully present the functional setting for our
problem, and then derive the corresponding formulation for the water wave equations in this
setting. In this article we only consider the case of the infinite strip. However, the periodic
case is equally interesting, and has received perhaps more attention in the literature over
the years.

In the holomorphic setting the coordinates are denoted by α+ iβ ∈ S := R× (−h, 0), and
the fluid domain is parametrized using the conformal map

z : S → Ω(t),
3



which takes the bottom R− ih into the bottom, and the top R into the top Γ(t). As such,
the restriction to the real line Z(α) = z(α − i0) can be viewed as a parametrization of the
free boundary Γ(t).

Our variables are the function Z(α) = α +W (α), which parameterizes the free surface,
and the trace Q(α) of the holomorphic velocity potential on the free surface. Both (W,Q)
are what we call here holomorphic functions, i.e., the trace on the upper boundary β = 0 of
holomorphic functions in the strip S, which are purely real in the lower boundary β = −1.
The space of holomorphic functions is a real algebra.

To algebraically describe the space of holomorphic functions we use the operator Th,
which is the finite bottom analogue of the Hilbert transform arising in the description of
the Dirichlet to Neumann map in the canonical domain. Precisely, Th is the multiplier with
symbol −i tanh(hξ) and real kernel − 1

2h
cosech( π

2h
α), interpreted in the principal value sense.

Then the holomorphic functions are described by the relation

Im u = −Th Re u.

The complex conjugates of holomorphic functions will be called antiholomorphic functions,
and are described by the relation Im u = Th Re u. Arbitrary functions can be expressed as
sums of holomorphic and antiholomorphic functions,

u = Phu+ P̄hu.

Here Ph projects onto the space of holomorphic functions and its complement P̄h = I −Ph

projects onto the space of antiholomorphic functions. Both can be viewed as orthogonal
projections in the Hilbert space Hh with inner product

〈u, v〉Hh
=

∫

(Th Reu · Th Re v + Im u · Im v) dα.

We note that Hh is not a space of distributions as the Hh norm does not see real constants.
However, it can be viewed as a quotient space of distributions modulo real constants.

The water wave equations in holomorphic coordinates, derived in Section 3, have the form

(1.6)











Wt + F (1 +Wα) = 0

Qt + FQα − gTh[W ] +Ph

[ |Qα|2
J

]

= 0,

where

J = |1 +Wα|2, F = Ph

[

Qα − Q̄α

J

]

.

We note here that one can freely add real constants to both W and Q; thus these equations
are consistent with the low frequency structure of the space Hh.

The above system has a Hamiltonian structure. The Hamiltonian is the total energy of
the system, which is closely related to the above inner product,

E =
g

4
〈W,W 〉 − 1

4
〈Q, T −1

h [Qα]〉+
g

2
〈WWα,W 〉.

As written it is not immediately obvious that at low frequency the last term can be controlled
by the H norm of W . However, a direct computation shows that the Hamiltonian can be
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expressed in the form

E =
g

4
〈W,W 〉 − 1

4
〈Q, T −1

h [Qα]〉+
g

2

∫

| ImW |2ReWα dα.(1.7)

Here one can also see that E remains positive definite for as long as the curve Γ(t) (i.e., the
range of W + α) remains non-intersecting.

For later use here it is will be useful to symmetrize the Q part of the above energy by
introducing the positive self-adjoint operator

Lh = (−T −1
h ∂α)

1

2 ,

so that the quadratic part of the energy is given by

E0(w, r) := g〈w,w〉+ 〈Lhr, Lhr〉.
It is then natural to look for solutions (W,Q) in the Sobolev space Hh with norm

‖(W,Q)‖2Hh
:= g‖W‖2Hh

+ ‖LhQ‖2Hh
,

which is similar to Hh for both components at low frequency, and to L2 × Ḣ
1

2 at high
frequency.

For higher regularity we will use the spaces Hk
h = 〈D〉−k

h Hh, where 〈D〉h = h−1〈hD〉.
However, these will not be applied directly to (W,Q). This is for the same reasons as in our
previous work [8], namely that, after differentiation, the system for (W,Q) has a degenerate
hyperbolic structure, so one needs to diagonalize it and work with diagonal variables instead.
This is a well known feature of the water wave equation, and we refer the reader to [1] and [12]
for the Eulerian version of this diagonalization, which is often carried out in a paradifferential
fashion. In our case, as in [8], a convenient choice for the diagonal variables is given by

(W, R) :=

(

Wα,
Qα

1 +Wα

)

.

These are also physical variables that describe the slope of the free surface (given by 1+W),
respectively the fluid velocity of the free surface.

Indeed, after differentiation one obtains a self-contained diagonal system in (W, R):

(1.8)











Wt + bWα +
1 +W

1 + W̄
Rα = (1 +W)M

Rt + bRα = i
gW − a

1 +W
,

where the double speed (advection velocity) b is given by

(1.9) b = 2Re
[

R−Ph[RȲ ]
]

, Y =
W

1 +W
.

The other (real) parameters a and M above are given by

a = 2 ImPh[RR̄α] + g(1 + T 2
h ) ReW,(1.10)

M = 2RePh[RȲα − R̄αY ].(1.11)

The parameter a also has a physical interpretation, in that g + a is the normal derivative
of the pressure on the free surface. It will be informative to write it in the form

a = a+ a1,
5



where the quadratic term

a := 2 ImPh[RR̄α],

remains in the infinite depth limit (see [8]) whereas the linear term

a1 := g(1 + T 2
h ) ReW,

is solely a feature of the finite depth case. The positivity of g+a is also critical as a necessary
well-posedness condition for the above system (the Taylor stability condition):

(1.12) −∂p
∂ν

∣

∣

∣

∣

Γ(t)

=
g + a

J
> 0.

The necessity of this condition is not immediately clear from the form of the system (1.8)
above, as this is still a quasilinear system. However, it will become clear once we consider the
linearized system in Section 5. In Section 3.4 we prove that this positivity condition remains
satisfied as long as the free surface Γ(t) remains a positive distance above the bottom;
this provides an alternate, Fourier-based proof, of the similar result obtained in [12] in the
Eulerian setting using a maximum principle based argument. Further, our proof does not
depend on the fact that Γ(t) is non-intersecting.

In the sequel we will consider solutions (W,Q) for the system (1.6) with the regularity
properties

(W,Q) ∈ Hh, (W, R) ∈ Hk
h, k ≥ 1.

To describe the lifespan of these solutions we introduce two control norms, namely

(1.13) A := ‖W‖L∞ + ‖Y ‖L∞ + g−
1

2‖〈D〉
1

2

hR‖L∞∩B0,∞
2

,

respectively

(1.14) B := g
1

2‖〈D〉
1

2

hW‖bmoh + ‖〈D〉hR‖bmoh,

where, decomposing f = f<h−1+f≥h−1 by frequency, the inhomogeneous space bmoh is given
by the norm

‖f‖bmoh = ‖f<h−1‖L∞ + ‖f≥h−1‖BMO,

where BMO is the usual space of functions of bounded mean oscillation.
At high frequencies (i.e., larger than h−1), these norms coincide with the norms in [8].

Here at least for small data A and B are controlled by the corresponding Sobolev norms of
(W,Q) and (W, R) as follows:

A . g−
1

2

(

‖(W, R)‖Hh
+ h−1‖(W,Q)‖Hh

)
1

2
(

‖(Wα, Rα)‖Hh
+ h−1‖(W, R)‖Hh

)
1

2 ,(1.15)

B . ‖(Wα, Rα)‖Hh
+ h−1‖(W, R)‖Hh

+ h−2‖(W,Q)‖Hh
.(1.16)

For large data some additional care is required due to the need to independently control Y
uniformly in L∞.

Before discussing well-posedness, we remark that as stated the problem (1.6) does not
have unique solutions due to the gauge freedom

(W (t, α), Q(t, α)) → (W (t, α+ α0(t)) + α0(t), Q(t, α + α0(t)) + q0(t)),

which corresponds to F → F + α′
0(t) and a similar choice involving q′0(t) for the projector

in the second equation.
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At the initial time we cannot do more than make an arbitrary choice (unless we assume
more decay at infinity for the initial data). However, we can fix the choice of α0 and q0 at
later times by requiring that both F and the projector in the second equation have limit 0
at −∞. This is allowed because the arguments of Ph are not only in L2, but also in L1.

Now we can state our local well-posedness result:

Theorem 1.

a) The system (1.6) is locally well-posed for all initial data (W0, Q0) with regularity

(W0, Q0) ∈ Hh, (W0, R0) ∈ H1
h, Y0 ∈ L∞.

Further, the solutions can be continued as long as our control parameter A(t) remains finite,

and

∫

B(t) dt remains finite.

b) This result is uniform with respect to our choice of parameters g . h as follows. If for
a large parameter C the initial data satisfies

g−1h−1‖(W0, Q0)‖Hh
+ g−1‖(W0, R0)‖Hh

+ ‖(W0,α, R0,α)‖Hh
+ ‖Y0‖L∞ ≤ C,

then there exists some T = T (C), independent of g, h, so that the solution exists on [−T, T ]
with similar bounds.

Here well-posedness should be interpreted in the sense of Hadamard as follows:

• Existence of solutions (W,Q) ∈ C([−T, T ];Hh), (W, R) ∈ C([−T, T ];H1
h).

• Uniqueness of solutions in the same class.
• Continuous dependence on the initial data in the same topology.
• Higher regularity: If the initial data has additional regularity (e.g. Hk

h) then the
solution has additional regularity as well.

Our second goal is to establish lifespan bounds for the small data problem. Given a
generic quasilinear problem with data of size ǫ and quadratic interactions, the standard
result is to obtain quadratic lifespan bounds, i.e., Tmax & ǫ−1. Here we show that for our
problem, despite the presence of quadratic interactions, the lifespan is nevertheless cubic,
i.e., Tmax & ǫ−2.

Theorem 2. Consider the system (1.6) with small initial data (W0, Q0),

g−1h−1‖(W,Q)(0)‖Hh
+ g−1‖(W, R)(0)‖Hh

+ ‖(Wα, Rα)(0)‖Hh
≤ ǫ.

Then the solution (W,Q) exists and satisfies similar bounds on a time interval [−Tǫ, Tǫ] with
Tǫ & ǫ−2. In addition, higher regularity also propagates uniformly on the same scale, i.e.,
for solutions as above we have

‖(W, R)‖C([−Tǫ,Tǫ];Hk
h
) . ‖(W, R)(0)‖Hk

h
+ ǫh1−k,

whenever the right hand side is finite.

We emphasize again that our results are uniform in the range of parameters g . h. In
particular in the infinite depth limit it agrees with the result in [8]. Furthermore, our setting
and our results are also invariant with respect to the scaling

(1.17) (W (t, x), Q(t, x)) → (λ−1W (t, λx), λ−1Q(t, λx)),

which corresponds to our parameters changing according to the law

(g, h) → (λg, λh).
7



Because of this, in the proofs we can freely fix one of the parameters. Precisely, after deriving
the equations we choose to fix h = 1 and work with g in the range g . 1. We will also write
T = T1 and similarly for other operators and function spaces.

We remark that one can also rescale time for a second degree of freedom in the choice of
the parameters g and h. However, our results are not invariant with respect to this second
scaling.

This result formally mirrors earlier results of the last two authors in [8] (together with
John Hunter) in the infinite bottom case, as well as [10] for infinite bottom capillary waves,
and [11] for constant vorticity gravity waves in deep water.

A common idea in all these papers is the use of the “quasilinear modified energy method,”
first introduced in [9], in order to establish long time bounds. This can be viewed as proxy
for Shatah’s normal form method [16], which cannot be directly implemented in quasilinear
problems. Instead of correcting the quadratic terms in the equation via a normal form
transformation, the basis of our “quasilinear modified energy method” is the idea that one
can more readily modify the energy functional.

Despite the formal similarity to [8], the analysis here is considerably more difficult due
to several crucial differences. In the infinite bottom case the null condition for resonant
quadratic interactions is satisfied in a stronger form, i.e., the normal form transformation is
nonsingular at zero frequency. Consequently, we are also able to obtain long time bounds
for the linearized equation, and implicitly for the differences of solutions. By contrast, only
short time bounds for the linearized equation are obtained in the present paper.

Another key difference between the two problems has to do with the existence of solitons,
i.e., localized traveling waves. While the infinite bottom problem admits no solitons, in the
finite bottom problem there are small solitons. This is most readily seen via the KdV ap-
proximation at low frequencies, which is widely discussed in the literature, see e.g. Lannes’s
book [12]. While these solitons do not play a significant role in the present paper, they
are expected to be essential elements of any investigation of the nonlinear shallow water
dynamics on any longer time scales.

We note that without surface tension these difficulties are essentially unique to the 2d prob-
lem and that the additional dispersion in 3d makes the analysis somewhat more straightfor-
ward. In the 3d case both enhanced lifespan bounds [2] and global well-posedness for small,
smooth, localized initial data [17, 18] have been established previously.

We conclude the introduction with a brief overview of the paper. We begin in the next
section with a detailed description of the conformal coordinates, as well the corresponding
spaces of “holomorphic functions” where the evolution takes place. The fully nonlinear
water wave system (1.6) is derived in Section 3, together with the differentiated quasilinear
system (1.8). We also discuss the Hamiltonian formalism there, as well as the Taylor stability
condition 1.12.

In Section 4 we study a model linear problem, which captures the quasilinear effects in
our problem, but not the quadratic semilinear interactions. We will subsequently apply the
estimates established here to both the linearized and differentiated equations.

The linearized problem is studied in Section 5. Unlike in our prior work on the infinite
bottom problem, here we are only able to prove quadratic and not cubic bounds for the
linearization. Thus, the estimates here are only useful for local well-posedness and not for
the cubic lifespan result.
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The study of the long time dynamics begins in the earnest in Section 6 with the normal
form computation. As one can see there, the resonant interactions at zero frequency produce
a zero frequency singularity in the the normal form transformation; thus one cannot use it
directly even in the low frequency analysis. In Section 7 we compute the associated normal
form energy, where repeated symmetrizations lead to cancellations of the singular part. This
is the first step in the implementation of our modified energy method.

In Section 8 we show that the normal form energies admit good quasilinear modifications,
which can be used to prove the long time bounds for the solutions. Finally, our main result
is proved in the last section.

Many of the more technical estimates in the paper are relegated to the Appendix in order
to keep the main arguments more clear and streamlined. This includes a number of Coifman-
Meyer type commutator estimates, as well as their consequences for the various parameters
in our water wave system.

2. Holomorphic coordinates

2.1. Holomorphic functions in the canonical domain. We start by considering solu-
tions to the Laplace equation in the strip S = R× (−h, 0) with mixed boundary conditions,

(2.1)















−∆u = 0 in S

u(α, 0) = f

∂βu(α,−h) = 0.

The solution may be written in the form

u(α, β) =
1√
2π

∫

p(ξ, β)f̂(ξ)eiαξ dξ,

where the Fourier multiplier p is given by

p(ξ, β) =
cosh((β + h)ξ)

cosh(hξ)
.

We note that p(D, β)f is well-defined for any f ∈ S ′(R) and that

∂kβp(ξ, β) = O(|ξ|keβ

h
〈hξ〉).

Given a real-valued solution u to (2.1) we may find a harmonic conjugate v by solving the
Cauchy-Riemann equations,

uα = vβ, uβ = −vα.
A solution is given by

v(α, β) =
1√
2π

∫

q(ξ, β)f̂(ξ)eiαξ dξ,

where the Fourier multiplier q(ξ, β) is given by

q(ξ, β) =
i sinh((β + h)ξ)

cosh(hξ)
.

On the boundary {β = 0} we have

v(α, 0) = −Thf(α),
9



where the Tilbert transform is

Thf(α) = − 1

2h
lim
ǫ↓0

∫

|α−α′|>ǫ

cosech
( π

2h
(α− α′)

)

f(α′) dα′,

is given by the Fourier multiplier −i tanh(hξ). We remark that it takes real-valued functions
to real-valued functions. We denote the inverse Tilbert transform by T −1

h . As discussed
above there is some ambiguity in its definition. For concreteness we define it to be given by
the Fourier multiplier i coth(hξ+ i0) such that T −1

h f vanishes at −∞ whenever f ∈ L1∩L2.
We will call functions on the line holomorphic if they are the restriction to the real line of

holomorphic functions in the strip and satisfy the boundary condition on the bottom. This
consists of functions u which satisfy

Im u = −Th Re u,

and forms a real algebra as can be seen from a simple application of the product formula

(2.2) uTh[v] + Th[u]v = Th

[

uv − Th[u]Th[v]
]

,

which follows from the corresponding identity for tanh ξ. The complex conjugates of holo-
morphic functions are called antiholomorphic.

2.2. Sobolev spaces. On the space of all complex valued functions we define the real inner
product

(2.3) 〈u, v〉 = 1

2
Re

∫

(1− T 2
h )u · v̄ − (1 + T 2

h )u · v dα,

where we note that −T 2
h is a non-negative operator. The corresponding Hilbert space is

denoted by Hh. Its norm can be rewritten in the form

‖u‖2Hh
=

∫

(Th Reu · Th Reu+ Im u · Im u) dα,

where one can easily see that this is non-negative, and thus a norm.

We denote by H
(h)
h , respectively H

(a)
h the subspaces of Hh consisting of holomorphic, re-

spectively antiholomorphic functions. The interesting observation, which is in effect the
motivation for our introducing the space Hh, is that its holomorphic and antiholomorphic
subspaces are orthogonal complements of each other. We remark that, restricted to either

H
(h)
h or H

(a)
h , the Hh norm can be rewritten as

‖u‖2Hh
=

∫
(

|u|2 − 1

2
u2 − 1

2
ū2
)

dα.

We will also need the associated orthogonal projections, which are denoted by Ph, respec-
tively P̄h. These are operators which are conjugated via the standard complex conjugation.
We can define these two operators in two equivalent ways. In a real fashion, we can set

Phu =
1

2

[

(1− iTh) Reu+ i(1 + iT −1
h ) Im u

]

,

P̄hu =
1

2

[

(1 + iTh) Re u+ i(1 − iT −1
h ) Im u

]

.
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In a complex fashion, we can write

Phu =
1

4

[

(2− iTh + iT −1
h )u− i(Th + T −1

h )ū
]

=
1

4

[

(1− iTh)(1 + iT −1
h )u+ (1− iTh)(1− iT −1

h )ū
]

,

respectively

P̄hu =
1

4

[

(2 + iTh − iT −1
h )u+ i(Th + T −1

h )ū
]

=
1

4

[

(1 + iTh)(1− iT −1
h )u− (1− iTh)(1− iT −1

h )ū
]

.

2.3. Conformal mappings. Given a fluid domain Ω = Ω(t) with upper boundary Γ = Γ(t)
with a prescribed Sobolev regularity, and lower boundary y = −h, our goal here is to obtain
a conformal map

z : S → Ω

with similar regularity. Here we do not assume that Γ is a graph, only that it is the upper
boundary of a simply connected domain Ω which admits a parametrization with a suitable
Sobolev regularity. Precisely, we represent the boundary Γ(t) as a parametrized curve

s→ z(s)

with the following properties:

(i) Sobolev regularity: z(s)− s ∈ Hk
h := 〈D〉−k

h L2.
(ii) Nondegenerate and non-intersecting: The map s→ z(s) is surjective and nondegen-

erate, z′(s) 6= 0.
(iii) Does not touch the bottom: Im z > −h.

Then we have:

Theorem 3.

a) Let Ω be a simply connected domain whose lower boundary consists of the line Im z = −h
and whose upper boundary is a curve Γ as above, with k > 3

2
. Then there exists a conformal

map

z : S → Ω

taking the line β = −h into itself and the line β = 0 into Γ. Further, the restriction of z
to the upper boundary β = 0 has the regularity z − α ∈ Hk

h and is unique up to horizontal
translations.

b) If in addition Γ admits a parametrization which satisfies the smallness condition

h−
3

2 (‖z‖L2 + hk‖z‖Hk
h
) ≪ 1,

then it is a graph y = y(x) satisfying similar Hk
h bounds, and the following norms are

comparable:

h−j‖y‖L2 + ‖y‖
H

j
h
≈ h−j‖z − α‖L2 + ‖z − α‖

H
j
h
, 0 ≤ j ≤ k.
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Remark 2.1. We remark here on a minor downside to the use of holomorphic coordinates in
the strip, namely that there is no canonical way to remove the horizontal translation symme-
try (unless z(s)−s has some L1 integrability perhaps). We address this issue dynamically in
our study of the water wave equations. Precisely, we make an arbitrary choice at the initial
time, but we define a unique way to propagate this choice to later times.

Proof. By rescaling it suffices to assume h = 1. To clarify the geometric context, we note
that the L2 integrability condition on the parametrization guarantees that outside a compact
set, the boundary Γ is the graph of a small Hs function.

It is easier to construct the inverse map

Ω ∋ z → ζ ∈ S.

For this we begin with the function β(z), which is defined as the unique bounded solution
to the elliptic boundary value problem











∆x,yβ = 0 in Ω

β(x,−1) = −1

β(x, y) = 0 on Γ.

Maximum principle type arguments show that β is of class C1 in Ω, and also that it has no
critical points. Since Γ is asymptotically flat, it also easily follows that

lim
x→±∞

∇β(x, y) = (0, 1).

Once we have the function β, its harmonic conjugate α is determined via the Cauchy-
Riemann equations, and satisfies

lim
x→±∞

α(x, y)

x
= 0.

It is clear that α is uniquely determined up to constants.
The generated map z → α+ iβ will then be a diffeomorphism from Ω to S. It remains to

establish the regularity properties of this map restricted to Γ, and then of its inverse.
Our goal here is to show that the map

s 7→ dα

ds

(which so far is bounded, continuous and nonzero) has the regularity

(2.4)
dα

ds
− 1 ∈ Hk−1.

As k − 1 > 1
2
, inverting we also have

ds

dα
− 1 ∈ Hk−1.

Hence by the chain rule we get

dz

dα
− 1 ∈ Hk−1, Im z(α) ∈ Hk,

as desired.
12



To prove (2.4) we use the Cauchy-Riemann equations to rewrite this in terms of the normal
derivative of β, namely

dα

ds
=
dz

ds
· dβ
dν
.

Hence we still need to show that
dβ

dν
− 1 ∈ Hk−1.

The function β − y solves the Laplace equation in Ω with Hk Dirichlet data on the top Γ
and zero Dirichlet data on the top. In addition, Γ also has Hk regularity (which implies also
C1 as k ≥ 3

2
. Then we want its normal derivative on Γ to be in Hk−1. But this follows from

standard elliptic theory; for an exposition of this which exactly fits the strip type of domains
here we refer the reader to Chapter 3 of Lannes’s book [12].

�

3. Derivation of the equations

3.1. Derivation of the fully nonlinear system. In this section we derive the fully non-
linear system (1.6) from the Euler equations (1.1), and the boundary conditions (1.2), (1.3)
and (1.4).

We start by defining the holomorphic function w by

w(t, α, β) = z(t, α, β)− (α+ iβ),

where z = x + iy : S → Ω(t) is the conformal map constructed in Section 2.3 As z is
holomorphic we have the Cauchy-Riemann equations

xα = yβ, xβ = −yα.
Let φ(t, x, y) be the velocity potential in Euclidean coordinates and take the potential in

holomorphic coordinates to be

ψ(t, α, β) = φ(t, x(t, α, β), y(t, α, β)).

We take θ to be the harmonic conjugate of ψ and define q = ψ + iθ. Applying the chain
rule, the velocity u = ∇φ is given by

(3.1) u =
1

j
(xαψα + xβψβ, yαψα + yβψβ),

where the Jacobian j has the form

j = xαyβ − xβyα = x2α + y2α.

In this section we will use capital letters to denote the trace of functions on the boundary
{β = 0}. In particular, by a slight abuse of notation, we will write Y (t, α) = y(t, α, 0). We
then have that W (t, α) = w(t, α, 0) and Q(t, α) = q(t, α, 0) are holomorphic and hence

(3.2) Y = −Th[X − α], Yα = −Th[Xα], Θ = −ThΨ.

We observe that 1 − Z−1
α =

Wα

1 +Wα

is holomorphic, so by comparing real and imaginary

parts we obtain

(3.3)
Yα
J

= Th

[

Xα

J
− 1

]

= Th

[

Xα

J

]

,
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where J(t, α) = j(t, α, 0) = |1 +Wα|2.
Using the normal (−Yα, Xα) to the free boundary we write the kinematic boundary con-

dition (1.4) in the form

(Xt, Yt) · (−Yα, Xα) = U · (−Yα, Xα),

where U(t, α) = u(t, α, 0) is the restriction of the velocity to the free boundary. Using
the expression (3.1) for the velocity in holomorphic coordinates and the Cauchy-Riemann
equations we simplify the right hand side to obtain

(3.4) XαYt − YαXt = −Θα.

Using (3.2) and (3.3) we write this in the form

Xα

J
Th[Xt] + Th

[

Xα

J

]

Xt =
Θα

J
.

Applying the product formula (2.2) to the left-hand side we obtain

(3.5) Th

[

XαXt + YαYt
J

]

=
Θα

J
.

Combining (3.4) and (3.5) we solve for Xt, Yt to obtain














Xt =
Θα

J
Yα + T −1

h

[

Θα

J

]

Xα

Yt = −Θα

J
Xα + T −1

h

[

Θα

J

]

Yα.

In terms of the holomorphic function W = (X − α) + iY we have

Wt = Xt + iYt = −i(1 + iT −1
h )

[

Θα

J

]

(1 +Wα).

If we define

F = Ph

[

Qα − Q̄α

J

]

,

then we may write this in the form

(3.6) Wt + F (1 +Wα) = 0.

Next we use (1.1) to obtain the Bernoulli equation with dimensionless gravitational con-
stant g > 0,

(3.7) φt +
1

2
|∇φ|2 + gy + p = 0.

From the dynamic boundary condition (1.3) we have p = 0.
Applying the chain rule and Cauchy-Riemann equations we obtain

φt|{β=0} = Ψt −
1

J
(XαXt + YαYt)Ψα − 1

J
(YαXt −XαYt)Θα,

1

2
|∇φ|2|{β=0} =

1

2J
(Ψ2

α +Θ2
α).
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Using the relations (3.4) and (3.5), we simplify the first of these to obtain

φt|{β=0} = Ψt − T −1
h

[

Θα

J

]

Ψα − 1

J
Θ2

α.

This leads to the equation

Ψt − T −1
h

[

Θα

J

]

Ψα +
1

2J
(Ψ2

α −Θ2
α) + gY = 0.

We write this in terms of Q = Ψ+ iΘ by applying Ph to obtain

Qt −Ph

[

T −1
h

[

Θα

J

]

Ψα +
Θ2

α

J

]

+Ph

[

1

2J
(Ψ2

α +Θ2
α)

]

− gTh[W ] = 0.

An application of the product formula (2.2) gives us

Th

[

T −1
h

[

Θα

J

]

Ψα +
Θ2

α

J

]

=
Θα

J
Ψα − T −1

h

[

Θα

J

]

Θα,

which leads to the equation

(3.8) Qt + FQα − gTh[W ] +Ph

[ |Qα|2
J

]

= 0.

Combining (3.6) and (3.8) we obtain at the fully nonlinear system (1.6).

3.2. Symmetries. Besides the gauge freedom, the system (1.6) has a number of symmetries:

(i) Translation. The equations are invariant under time and space translations, for
(t0, α0) ∈ R2

(W (t, α), Q(t, α)) 7→ (W (t+ t0, α + α0), Q(t+ t0, α+ α0)).

(ii) Reflection. We have a horizontal reflection symmetry given by

(W (t, α), Q(t, α)) 7→ (−W̄ (t,−α), Q̄(t,−α)).

(iii) Time reversal. We have a time reversal symmetry given by

(W (t, α), Q(t, α)) 7→ (W (−t, α),−Q(−t, α)).

(iv) Galilean invariance. The system has a Galilean invariance, for c ∈ R

(W (t, α), Q(t, α)) 7→ (W (t, α− ct), Q(t, α− ct)− c ((α− ct) +W (t, α− ct)) +
1

2
c2t).

However, as our choice of spaces require R to vanish at ±∞ we break the Galilean
symmetry as in terms of (W, R) the Galilean shift corresponds to the map

(W(t, α), R(t, α)) 7→ (W(t, α− ct), R(t, α− ct)− c).
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3.3. Hamiltonian structure and conserved quantities. If the free surface is given by
y = η(x), then the energy of the system in Euclidean coordinates is given by

E(η, φ) = g

2

∫

R

|η|2 dx+ 1

2

∫

R

∫ η(x)

−h

|∇φ|2 dydx.

We may write this in terms of the holomorphic variables (W,Q) as

E(W,Q) = g

4
〈W,W 〉 − 1

4
〈Q, T −1

h [Qα]〉+
g

2
〈WWα,W 〉.

We note that the additional factor of 1
2
appears here due to the use of the complex-valued

functions.
It was first observed by Zakharov [21] that the water wave system is a Hamiltonian equation

with Hamiltonian E . To see this we consider the space of holomorphic functions (W,Q) ∈ Hh

equipped with the inner product

(3.9)

〈[

W1

Q1

]

,

[

W2

Q2

]〉

:=
g

2
〈W1,W2〉+

1

2
〈LhQ1, LhQ2〉.

With respect to this inner product we have

dE(W,Q) =
[

W +WWα − T −1
h Ph

[

W̄Th[Wα]
]

Q

]

.

We claim that the system (1.6) may then be written in the form

(3.10)

[

Wt

Qt

]

=

[

0 A

C B

]

dE(W,Q),

where the operators A, B and C are given by

A[w] := −(1 +Wα)Ph

[

wα − w̄α

J

]

,

B[q] := −QαPh

[

qα − q̄α
J

]

−Ph

[

Ph[Q̄αqα] + P̄h[Qαq̄α]

J

]

,

C[w] := gPh

[

Ph

[

(1 + W̄α)Th[w]
]

+ P̄h [(1 +Wα)Th[w̄]]

J

]

.

Taking A∗ to be the adjoint ofA with respect to the inner product on the space of holomorphic
functions in Hh, we apply Lemma A.7 to obtain

L2
hC[w] = −gA∗[w], L2

hB[q] = −B∗[L2
hq],

and hence the matrix operator
[

0 A

C B

]

,

is skew-adjoint with respect to the inner product (3.9). This skew-adjoint matrix is the
representation in our setting of the symplectic form for the finite bottom system.

We now prove (3.10). We first note that

A[Q] = −F (1 +Wα), B[Q] = −FQα −Ph

[ |Qα|2
J

]

.
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It remains to consider the term involving C, which we may write in the form

gPh

[

Ph

[

(1 + W̄α)Th[w]−WαTh[w̄]
]

J

]

, w = W +WWα − T −1
h Ph

[

W̄Th[Wα]
]

.

Given holomorphic functions u, v we may write them in terms of their real parts and apply
the product formula (2.2) to obtain the identity

(3.11) Ph

[

Th[uv]− ūTh[v]− Th[ū]v
]

= Th[u]v.

Taking u = W and v = Wα we may apply this identity to the quadratic part of the numerator
to obtain

Ph

[

Th[WWα]− W̄Th[Wα]−WαTh[W̄ ] + W̄αTh[W ]
]

=WαPh[Th[W ]] +Ph

[

W̄αTh[W ]
]

.

Next we consider the cubic part of the numerator. Here we apply both the identity (3.11)
and its complex conjugate with u =W and v =Wα to obtain

Ph

[

W̄αTh[WWα]− W̄αW̄Th[Wα]−WαTh[W̄W̄α] +WαP̄h[WTh[W̄α]]
]

=WαPh

[

W̄αTh[W ]
]

.

Combining these with the linear part Ph[Th[W ]] we obtain

C
[

W +WWα − T −1
h Ph[W̄Th[Wα]]

]

= gPh

[

(1 +Wα)Ph[(1 + W̄α)Th[W ]]

J

]

= gTh[W ],

where the second equality follows from the fact that
1 +Wα

J
=

1

1 + W̄α

is antiholomorphic

and hence we may discard the inner projection operator. This completes the proof of (3.10).
As the system is invariant under translation, α 7→ α+ c, via Noether’s principle there will

be a corresponding conserved quantity. This is the horizontal momentum,

I(W,Q) = −1

2
〈LhW,LhQ〉 =

1

2
〈W, T −1Qα〉.

With respect to the above inner product on Hh we have

dI(W,Q) = −
[

g−1L2
hQ

W

]

.

A further calculation gives us that
[

Wα

Qα

]

=

[

0 A

C B

]

dI(W,Q).

3.4. Positivity of the normal derivative of the pressure. As discussed above, a neces-
sary condition for the well-posedness of (1.6) is the Taylor stability condition (1.12). In this
section we first derive the expression for the normal derivative of the pressure in holomorphic
coordinates, and then show that it remains positive for as long as the free surface remains a
positive distance away from the bottom. We remark that an alternate proof of this property,
using the maximum principle, can be found in Lannes [12]. Our proof here, based on a sum
of squares representation, provides a different insight into this problem.

From the Bernoulli equation (3.7) we may write the normal derivative of the pressure as

− ∂p

∂ν

∣

∣

∣

∣

Γ(t)

=
1

J
∂β

(

φt +
1

2
|∇φ|2 + gy

)
∣

∣

∣

∣

{β=0}

.
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Using the Cauchy-Riemann equations we obtain

∂βφt|{β=0} = −∂α
(

Th

[

Ψ2
α +Θ2

α

2J

]

+ gTh[Y ]

)

.

A further application of the Cauchy-Riemann equations yields g∂βy|{β=0} = gXα, so

−J ∂p

∂ν

∣

∣

∣

∣

Γ(t)

= g +
1

2
(∂β − Th∂α)(|∇φ|2)|{β=0} + g((Xα − 1)− Th[Yα]).

Next we define the holomorphic velocity,

(3.12) r := φx − iφy =
qα

1 + wα

.

From (3.1) we see that |∇φ|2 = |r|2, and as r is holomorphic we obtain

1

2
(∂β − Th∂α)(|r|2)

∣

∣

{β=0}
= 2 ImPh[RR̄α] = a.

Further, g ((Xα − 1)− Th[Yα]) = g(1 + T 2
h ) ReW = a1. As a consequence,

(3.13) − J
∂p

∂ν

∣

∣

∣

∣

Γ(t)

= g + a.

We now show that the Taylor stability condition (1.12) is satisfied whenever the free
surface Γ(t) is a positive distance away from the bottom {y = −1}:

Lemma 3.1. Assume that (W,Q) ∈ Hh are holomorphic, with ImW ≥ c > −h. Then we
have the pointwise bound

(3.14) g + a ≥ g(c+ h).

Proof. Using the spatial scaling discussed in the introduction, it suffices to assume that
h = 1. We recall the expression of a,

a = 2 ImP[RR̄α] + g(1 + T 2) ReW.

We will consider the two terms separately, and prove that

(3.15) (1 + T 2) ReW ≥ c, ImP[RR̄α] ≥ 0.

For the first of these, we write it in terms of ImW as follows:

(1 + T 2) ReW = −(1 + T 2)∂αT −1(ImW ).

The multiplier on the right has symbol

m(ξ) = 2ξ cosech 2ξ.

As a consequence we may write

(1 + T 2) ReW =

∫

K(α− α′) ImW (α′) dα′,

where

K(α) =
1√
2π
m̌(α) =

π

8
sech2(

π

4
α)

is non-negative, Schwartz and has integral 1. Then the first part of (3.15) follows.
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For the second part we begin by writing

2 ImP[RR̄α] = − i

2

[

(1− iT )(RR̄α)− (1 + iT )(R̄Rα)
]

.

Hence in Fourier space we have the representation

̂2 ImP[RR̄α](ζ) =

∫

ξ−η=ζ

R̂(ξ)
¯̂
R(η)K(ξ, η) dη,

where the kernel K is given by

K(ξ, η) = −1

2
((ξ + η) + (ξ − η) tanh(ξ − η)) .

As in [8], a natural idea might be to obtain a sum of squares representation of the above
integral. Naively, we could seek a decomposition of the kernel as below

K(ξ, η) =

∫

fN(ξ)fN(η) dN.

However, here we have the additional information that R is holomorphic, which naively
allows us to estimate integrals mostly concentrated where ξ, η > 0 by symmetric integrals
concentrated where ξ, η < 0. To eliminate this constraint we write everything in terms of
the real part of R, which is an arbitrary function:

R̂(ξ) = (1− tanh ξ)R̂eR(ξ).

Then the kernel K is replaced by

K1(ξ, η) = (1− tanh ξ)(1− tanh η)K(ξ, η).

Further, for real functions we have the symmetry

f̂(−ξ) = ¯̂
f(ξ),

so the above kernel can be further replaced by

K2(ξ, η) =
1

2
(K1(ξ.η) +K1(−ξ,−η)).

We compute

K2(ξ, η) =
1

2
(tanh ξ + tanh η)(ξ + η)− 1

2
(1 + tanh ξ tanh η)(ξ − η) tanh(ξ − η)

= tanh ξ tanh η

(

ξ

tanh ξ
+

η

tanh η
− (ξ − η) tanh(ξ − η)

)

.

On the other hand the following expression gives the symbol of a pointwise non-negative
form

I(ξ, η) :=

∫

(1 + tanhN)(1 + tanh(ξ −N))(1 + tanh(η −N)) dN

= ξ

(

1 +
1

tanh ξ

)(

1 +
1

tanh(η − ξ)

)

+ η

(

1 +
1

tanh η

)(

1 +
1

tanh(ξ − η)

)

,

and after symmetrization

1

2
(I(ξ, η) + I(−ξ,−η)) = ξ

tanh ξ
+

η

tanh η
− ξ − η

tanh(ξ − η)
.
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Then we can write

K2(ξ, η) =
1

2
tanh ξ tanh η (I(ξ, η) + I(−ξ,−η)) + tanh ξ tanh η K3(ξ, η),

where
K3(ξ, η) = K3(ξ − η) := 2(ξ − η) cosech(2(ξ − η)).

The quadratic form determined by the first term in K2 is non-negative. On the other hand
for the second term we take advantage of its translation invariance to write

K3(ξ − η) =

∫

g(ξ −N)g(η −N) dN,

with even, real-valued g. Indeed, taking the Fourier transform we get

ĝ2 =
1√
2π
K̂3,

or equivalently

ĝ(α)2 =
π

8
sech2(

π

4
α).

The right hand side is non-negative and its square root is a Schwartz function. This suffices
for our purposes, and yields the desired representation for K3.

�

3.5. Derivation of the quasilinear system. In this section we derive the quasilinear
system (1.8) for the holomorphic variables

(W, R) =

(

Wα,
Qα

1 +Wα

)

,

where we recall that R is the restriction of the holomorphic velocity (3.12) to the free
boundary.

As we expect mixed holomorphic-antiholomorphic terms to be lower order than purely
holomorphic terms, we first introduce the (real-valued) advection velocity

b = 2RePh

[

Qα

J

]

,

so that F = b − Q̄α

J
. We note that our earlier gauge fixing procedure corresponds to fixing

the real constant in b so that
lim

α→−∞
b(t, α) = 0.

Evidently the similar condition at positive infinity does not need to hold.
Differentiating (1.6) we obtain a self-contained quasilinear system in (Wα, Qα),















Wαt + bWαα + bα(1 +Wα) =

[

Q̄α

1 + W̄α

]

α

Qαt + bQαα + bαQα − gTh[Wα] = P̄h

[ |Qα|2
J

]

α

.

As b = b̄ we have

bα = F̄α +
1

J

(

Qαα − QαWαα

1 +Wα

− QαW̄αα

1 + W̄α

)

.

20



Grouping the highest order terms on the left hand side we obtain














Wαt + bWαα +
1

1 + W̄α

(

Qαα − QαWαα

1 +Wα

)

= −F̄α(1 +Wα) +
QαW̄αα

(1 + W̄α)2
+

[

Q̄α

1 + W̄α

]

α

Qαt + bQαα +
Qα

J

(

Qαα − QαWαα

1 +Wα

)

− gTh[Wα] = −F̄αQα +
Q2

αW̄αα

J(1 + W̄α)
+ P̄h

[ |Qα|2
J

]

α

.

As in the infinite depth case, in order to obtain favorable estimates at high frequency we
must diagonalize this system. To do this we define the operator

(3.16) A(w, q) = (w, q −Rw),

Taking W = Wα we use the diagonal variables

(W, R) = A(Wα, Qα).

We calculate

Rα =
1

1 +Wα

(

Qαα − QαWαα

1 +Wα

)

,

and obtain the equation

(3.17) Wt + bWα +
1 +W

1 + W̄
Rα =

(

Rα

1 + W̄
− bα

)

(1 +W) + R̄α.

Defining

M =
Rα

1 + W̄
+

R̄α

1 +W
− bα,

we obtain the first part of (1.8).
For the second part of (1.8), we first write

(3.18) Qαt + bQαα +
1 +W

1 + W̄
RRα − gTh[W] =

(

Rα

1 + W̄
− bα

)

(1 +W)R + P̄h

[

|R|2
]

α
,

and then calculate,

Rt =
Qαt

1 +Wα

− QαWαt

(1 +Wα)2
.

Thus, using (3.17) and (3.18), we obtain the second part of (1.8).

4. Local well-posedness for a model equation

In this section we will study the local well-posedness for a model equation, which will play
a key role, both in the study of the linearized problem in the next section, and in the study
of the differentiated equations later on. Here, and for the rest of the paper, we will assume
that h = 1, which we can do by scaling, and require uniformity with respect to g in the
range g . 1.

Our model system has the form

(4.1)















wt +Mbwα +P

[

rα
1 + W̄

]

−P

[

RαT 2w

1 + W̄

]

= G

rt +Mbrα −P

[

(g + a)T [w]

1 +W

]

= K,
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where Mb is the holomorphic multiplication operator

Mbf = P(bf).

Here both the unknowns (w, r) and the inhomogeneous terms (G,K) ∈ H are holomorphic.
The functions (W, R) are solutions to the differentiated system (1.8) and b and a are the as-
sociated advection velocity, respectively the frequency shift, which are given by the formulas
(1.9), (1.10) in terms of W and R. For convenience we recall the expressions of b, a and M
below

b = 2Re
[

R−P[RȲ ]
]

,

and
a = g(1 + T 2) ReW + 2 ImP[RR̄α], M = 2ReP[RȲα − R̄αY ].

Notably, in our analysis we will not use at all the Sobolev regularity of (W, R). Instead
we will only use the bounds for (W, R) which are available in terms of the uniform control
norms A and B. Similarly, for b and a we use only the corresponding uniform bounds also
in terms of A and B, see Lemmas A.13, A.12 in the Appendix.

A natural energy for this system is given by the quadratic part of the Hamiltonian,

(4.2) E0(w, r) = g〈w,w〉 − 〈r, T −1[rα]〉 ≈g ‖(w, r)‖2H.
However, as the equations above have variable coefficients, we instead work with an adapted
energy functional

(4.3) E
(2)
lin(w, r) = 〈w,w〉g+a − 〈r, T −1[rα]〉 = 〈w,w〉g+a + 〈Lr, Lr〉,

where for a real valued weight ω we define the weighted inner product

〈u, v〉ω =

∫

(T Re u · T Re v + Im u · Im v) ω dα.

We note that this inner product retains the orthogonality between holomorphic and anti-
holomorphic functions, and thus the projectors P and P̄ continue to play the same role.
From the Taylor stability condition (1.12) in Lemma 3.1 , and the upper bound for a in
Lemma A.13, we have

E
(2)
lin (w, r) ≈A E0(w, r)

for as long the fluid stays away from the bottom.
We also need a weighted form of the above energy functional. For a real valued weight ω

we define

(4.4) E
(2)
ω,lin(w, r) := 〈w,w〉(g+a)ω + 〈Lr, Lr〉ω .

Our main estimate for the model system is as follows:

Proposition 4.1. Let I be a time interval where A is bounded and B ∈ L1. Then in I the
following properties hold:

a) The system of equations (4.1) is well posed in H, and satisfies the estimate

(4.5)
d

dt
E

(2)
lin (w, r) = 2 〈G,w〉g+a

+ 2 〈LK,Lr〉+OA(B)E
(2)
lin (w, r).

b) Assume in addition that ω is a weight satisfying

(4.6) ‖ω‖L∞ ≤ A, ‖ω‖
bmo

1
2
≤ B, ‖(∂t + b∂α)ω‖L∞ ≤ B.
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Then we also have

(4.7)
d

dt
E

(2)
ω,lin(w, r) = 2 〈G,w〉(g+a)ω + 2〈LK,Lr〉ω +OA(B)E

(2)
lin(w, r).

Proof. We note that the bound (4.5) can be viewed as a special case of (4.7), so we will only
prove the latter. We start by calculating

d

dt
〈w,w〉(g+a)ω = 〈w,w〉[(g+a)ω]t

− 2 〈bwα, w〉(g+a)ω + 2
〈

dT 2w,w
〉

(g+a)ω
+ 2 〈G,w〉(g+a)ω

− 2
〈

(1− Ȳ )rα, w
〉

(g+a)ω
,

where we define d :=
Rα

1 + W̄
. We complete the weight of the first term appearing in the

expression above to
〈w,w〉(∂t+b∂α)[(g+a)ω] .

Using also the relation bα =M + 2Re d we separate the above time derivative into

d

dt
〈w,w〉(g+a)ω = 2 〈G,w〉(g+a)ω +D1

w +D2
w +D3

w +D4
w,

where

D1
w = 〈w,w〉(∂t+b∂α)[(g+a)ω] − 〈MT 2w,w〉(g+a)ω,

D2
w =

〈

2i Im dT 2w,w
〉

(g+a)ω
,

D3
w = − 2 〈bwα, w〉(g+a)ω +

〈

bαT 2w,w
〉

(g+a)ω
− 〈w,w〉b∂α[(g+a)ω] ,

D4
w = − 2

〈

(1− Ȳ )rα, w
〉

(g+a)ω
.

In a similar manner we expand the time derivative of the r term as

d

dt
〈Lr, Lr〉ω = 2 〈LK,Lr〉ω +D1

r +D2
r +D3

r ,

where

D1
r = 〈Lr, Lr〉(∂t+b∂α)ω

,

D2
r = − 2 〈L(brα), Lr〉ω + 〈Lr, Lr〉−b∂αω

,

D3
r = 2 〈L ((1− Y )(g + a)T [w]) , Lr〉ω .

We now successively consider all the terms above:

1. The terms D1
w and D1

r are trivially estimated using the pointwise bounds for a and its
derivatives (see Lemma A.13) and ω, as well as the pointwise bound forM (see Lemma A.15).

2. The term D2
w is expanded using the definition of our inner product as

D2
w = 2

∫

−(g + a)ωT (Im d T 2 Imw)T Rew + (g + a)ω Im d T 2Rew Imw dα.

We use the relation Imw = −T Rew to eliminate Rew and obtain

D2
w = − 2

∫

−(g + a)ωT (Im d T 2 Imw) Imw + (g + a)ω Im d T Imw Imw dα

= − 2

∫

(g + a)ω Imw
(

−[T , Im d]T 2 Imw + Im d (1 + T 2)T Imw
)

dα.
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Now we use a commutator bound

‖[T , Im d]‖L2→L2 . ‖d‖bmo

for the first term, see (A.9), and a Coifman-Meyer bound for the remaining product

‖ Im d (1 + T 2)T Imw‖L2 . ‖ Im d‖bmo‖ Imw‖L2,

using the fact that the multiplier 1 + T 2 has a rapidly decaying kernel, via (the dual of)
(A.7).

3. The term D3
w is similarly expanded as

D3
w =

∫

R

(g + a)ω Imw
{

−2T (bT −1 Imwα) + T (bαT Imw) + 2b Imwα

+bαT 2 Imw + 2bα Imw
}

dα

=

∫

R

(g + a)ω Imw
{

−2[T , b]T −1 Imwα + [T , bα]T Imw + 2bα(1 + T 2) Imw
}

dα.

To bound the integral above we use the L∞ bounds for ω and a, together with Hölder’s
inequality. The desired bounds for this integral are a consequence of the commutator bounds

‖[T , b]‖H−1→L2 . ‖bα‖bmo, ‖[T , bα]‖L2→L2 . ‖bα‖bmo,

which can be found in (A.9).

4. The term D2
r . For simplicity we introduce the holomorphic variable s := Lr. Further,

we expand

−〈L(brα), Lr〉ω =
〈

L(bL2T (r)), Lr
〉

ω
= 〈L(bLT (s)), s〉ω .

Then

D2
r = 2

∫

R

ω Im s (T LbL+ LbLT ) Im s− bωα(Im s)2 dα

= 2

∫

R

ω Im s (T LbL+ LbLT + ∂αb+ b∂α) Im s dα

= 2

∫

R

ω Im s ([T L, b]L+ L[b, LT ]) Im s dα.

Thus we need an L2 bound for the double commutator

‖[[T L, b], L]‖L2→L2 . ‖bα‖bmo,

which is established in the Appendix, see (A.6).

5. The term D4
w +D3

r . This has the form

D4
w +D3

r =− 2
〈

(1− Ȳ )rα, w
〉

(g+a)ω
+ 2 〈L ((1− Y )(g + a)T [w]) , Lr〉ω

= 2
〈

(1− Ȳ )T Ls, w
〉

(g+a)ω
+ 2 〈L ((1− Y )(g + a)T [w]) , s〉ω .

This has some commutator structure, so we expect to get the bound

|D4
w +D3

r | . (‖Y ‖
bmo

1
2
+ ‖a‖

bmo
1
2
+ ‖ω‖

bmo
1
2
)‖w‖H‖s‖H,

with the implicit constant depending on the L∞ norm of the same parameters Y, a and ω.
To see this we divide the analysis into several steps.
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First we commute L across ω, and estimate the difference

|〈Lz, s〉ω − 〈z, Ls〉ω| . ‖ω‖
bmo

1
2
‖z‖H‖s‖H.

Expanding as above, this reduces to the commutator bound (see Lemma A.2)

‖[L, ω]‖L2→L2 . ‖ω‖
bmo

1
2
.

We apply this to z = (1−Y )(g+a)T [w] and s = Lr. This reduces our problem to estimating
the difference

−2
〈

(1− Ȳ )rα, w
〉

(g+a)ω
− 2

〈

(1− Y )(g + a)T [w], T −1rα
〉

ω
.

Next we insert g + a inside via the estimate

〈(g + a)z, w〉ω − 〈z, w〉(g+a)ω . ‖g + a‖
bmo

1
2
‖z‖

H
−

1
2
‖w‖H,

which reduces to the commutator bound (see (A.9))

(4.8) ‖[g + a, T ]‖
H−

1
2 →L2

. ‖g + a‖
bmo

1
2
.

We apply this with z = (1− Ȳ )rα to reduce our problem to estimating the difference

−2
〈

(1− Ȳ )(g + a)rα, w
〉

ω
− 2

〈

(1− Y )(g + a)T [w], T −1rα
〉

ω
.

Finally, with e = (1 − Ȳ )(g + a) ∈ bmo
1

2 and z = T −1rα, it remains to estimate the
difference

|〈eT z, w〉ω + 〈z, ēT w〉ω| . (‖e‖L∞‖ω‖
bmo

1
2
+ ‖e‖

bmo
1
2
‖ω‖L∞)‖w‖H‖z‖

H
−

1
2
.

This vanishes if ω is constant. Else, writing e = f + ig, it reduces to the commutator bounds

‖[ω, T f + fT ]‖
H−

1
2 →L2

. (‖f‖L∞‖ω‖
bmo

1
2
+ ‖f‖

bmo
1
2
‖ω‖L∞),

respectively
‖[ω, T gT ]‖ . (‖f‖L∞‖ω‖

bmo
1
2
+ ‖f‖

bmo
1
2
‖ω‖L∞),

which follow by repeated application of bounds of the form (4.8).
�

5. The linearized equation

In this section we first calculate the linearization of (1.6) and then prove that the corre-
sponding linearized system is well-posed in H.

We take the linearized variables at (W,Q) to be (w, q) = (δW, δQ) and compute

δR =
qα −Rwα

1 +W
, δF = P [m− m̄] , R̄δR = n,

where we define

m =
qα − Rwα

J
+

R̄wα

(1 +W)2
, n =

R̄(qα − Rwα)

1 +W
.

We then obtain the linearized equations

(5.1)

{

wt + Fwα +P[m− m̄](1 +W) = 0

qt + Fqα +P[m− m̄]Qα − gT [w] +P[n+ n̄] = 0.
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As F = b− R̄

1 +W
and P = 1− P̄ we may write this system in the form

(5.2)











wt + bwα +
qα −Rwα

1 + W̄
= 2(1 +W) Re P̄[m]

qt + bqα − gT [w] +
R(qα − Rwα)

1 + W̄
= 2i Im P̄[n] + 2QαRe P̄[m].

This is a degenerate hyperbolic system with a double speed b, so in order to produce good
energy estimates at high frequency we introduce diagonal variables. Following [8], a natural
choice would be to take (w, r) = A(w, q) = (w, q−Rw). This would work at high frequencies,
but not at low frequencies as we cannot make sense of the product Rw for w ∈ H. So instead
we work with

(w, r) = (w, q +RT 2w).

We observe that (w, r) ≈ A(w, q) when w is at frequencies ≫ 1 whereas (w, r) ≈ (w, q) when
w is at frequencies ≪ 1.

In terms of the diagonalized variables (w, r) we have

m = −W̄(rα −RαT 2[w]−R(1 + T 2)[wα])

J
+

R̄wα

(1 +W)2
,

n =
R̄(rα −RαT 2[w]− R(1 + T 2)[wα])

1 +W
,

where we have harmlessly removed the leading order holomorphic component of m that
vanishes after projection to the space of antiholomorphic functions in (5.2). We then obtain
the diagonalized system,

(5.3)















wt + bwα +
rα

1 + W̄
− RαT 2[w]

1 + W̄
= G

rt + brα − (g + a)T [w]

1 +W
= K,

where

G = 2(1 +W) Re P̄[m] +
R(1 + T 2)[wα]

1 + W̄
,

K = 2i Im P̄[n]− R[1 + T 2, b]wα +R(1 + T 2)[wt + bwα] +
gW − a

1 +W
(1 + iT )T [w].

Here, for brevity in the notation, we have kept the wt+ bwα term as a part of K, rather then
substituting it from the first equation. This is harmless since 1 + T 2 has a Schwartz symbol
so this term will only play a perturbative role.

While (w, r) are holomorphic, it is not immediately clear that (5.3) preserves the space of
holomorphic functions so we apply the projection P to obtain

(5.4)















wt +Mbwα +P

[

rα
1 + W̄

]

−P

[

RαT 2[w]

1 + W̄

]

= PG

rt +Mbrα −P

[

(g + a)T [w]

1 +W

]

= PK,
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which now has the form of the model equation (4.1). Our main result for the linearized
system (5.4) is the following Theorem:

Theorem 4. Suppose that there exists a solution (W,Q) to (1.6) on a time interval [−T, T ]
such that (W,Q) ∈ C([−T, T ];H) and (W, R) ∈ C([−T, T ];H1). Then the linearized equa-
tion (5.4) is locally well-posed in H on the interval [−T, T ], and the corresponding solution
(w, r) ∈ C([−T, T ];H) satisfies the estimate

(5.5) ‖(w, r)(t)‖H . exp

(

C

∫ t

0

‖(g 1

2W, R)(s)‖
H1×H

3
2
ds

)

‖(w, r)(0)‖H,

where the implicit constant depends only on A and supt∈[−T,T ] g
− 1

2‖(g 1

2W, R)(t)‖
L2×H

1
2
.

We remark that (w, q) = (Wα, Qα) is a solution to (5.1), for which we will prove cubic
lifespan bounds. Following [8], one might hope to also establish cubic lifespan bounds for
small initial data for the linearized system (5.4). Unfortunately this is not the case and we
expect that cubic lifespan bounds for the linearized system will fail on account of a breaking
of symmetry when (w, q) 6= (Wα, Qα). One can view this as a reflection of the fact that the
quadratic low frequency interactions are stronger here than in the infinite depth case.

In order to prove Theorem 4 it will suffice to obtain a priori estimates for ‖(PG,PK)‖H
and apply Proposition 4.1. However, in stark contrast to the infinite depth case [8] we will
be unable to control ‖(PG,PK)‖H only in terms of the pointwise norms A,B and the energy

E
(2)
lin (w, r). The difficulty arises due to the presence of nonlocal terms in the expression

Re P̄[m] appearing in both G and K. Here we will make use of the fact that PS0 : L
1 → L∞,

which leads to bounds in terms of the energy norms of (W, R).
As a consequence, we have the following Proposition:

Proposition 5.1. We have the estimate

(5.6) ‖(PG,PK)‖H .
A,g

−
1
2 ‖(g

1
2 W,R)‖

L2×H
1
2

(

B + ‖(g 1

2W, R)‖
H

1
2×H1

)

‖(w, r)‖H.

Proof. We decompose

G = G1 +G2, K = K1 +K2 +K3 +K4,

where,

G1 = 2(1 +W) Re P̄[m], G2 =
R(1 + T 2)[wα]

1 + W̄
,

K1 = 2i Im P̄ [n], K2 = −R[1 + T 2, b]wα,

K3 = R(1 + T 2)(wt + bwα), K4 =
gW − a

1 +W
(1 + iT )T [w],

and estimate each term separately.

1. Bounds for G1. We may estimate

‖PG1‖H . ‖P̄[m]‖H + ‖WRe P̄[m]‖L2 .

We first prove that

(5.7) ‖P̄[m]‖H .A g
− 1

2B‖(w, r)‖H.
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As P̄ vanishes when applied to holomorphic terms, we write

P̄[m] = −[P̄, Ȳ ](1− Y )rα + [P̄, dW̄](1− Y )T 2[w]

+ P̄[Ȳ (1− Y )R(1 + T 2)wα] + [P̄, R̄](1− Y )2wα.

For the first, second and fourth terms we apply the commutator estimate (A.14) and the
product estimate (A.15) with the estimate (A.16) for Y and the estimate (A.23) for d. For
the third term we simply use that 1 + T 2 has Schwartz symbol and that ‖R‖L∞ . B.

For the second term in G1 we first decompose according to the frequency of Re P̄[m],

WRe P̄[m] = WP≥1Re P̄[m] +WS0Re P̄[m].

For the high frequency component we use the estimate (5.7) for P̄[m] to obtain

‖WP≥1Re P̄[m]‖L2 . ‖W‖L∞‖P̄[m]‖H .A g
− 1

2AB‖(w, r)‖H.
For the low frequency component we are unable to estimate S0Re P̄[m] in L2, so instead we
estimate

‖WS0Re P̄[m]‖L2 . ‖W‖L2‖S0Re P̄[m]‖L∞ .

It then remains to show that

(5.8) ‖S0Re P̄[m]‖L∞ .A g
− 1

2‖(g 1

2W, R)‖
H

1
2 ×H1

‖(w, r)‖H.
For the first term in m we use that we use that S0P : L1 → L∞ to obtain

‖S0P̄[Ȳ (1− Y )rα]‖L∞ . ‖S0(Ȳ (1− Y )rα)‖L1 .

Considering this to be the product of Ȳ (1−Y ) and rα we may only have high-high frequency
interactions and hence

‖S0(Ȳ (1− Y )rα)‖L1 .
∑

k≈k′

‖Pk[Ȳ (1− Y )]‖L2‖Pk′[rα]‖L2

. ‖Ȳ (1− Y )‖
H

1
2
‖Lr‖H

.A ‖W‖
H

1
2
‖Lr‖H,

where the final line follows from the Moser estimate (A.10). For the second and third terms
in m we may straightforwardly estimate

∥

∥

∥

∥

RαȲ

1 +W
T 2[w]

∥

∥

∥

∥

L1

+

∥

∥

∥

∥

RȲ

1 +W
(1 + T 2)wα

∥

∥

∥

∥

L1

.A ‖R‖H1‖w‖H.

For the final term in m we consider it to be a product of R̄ and (1− Y )2wα to obtain

‖S0(R̄(1− Y )2wα)‖L1 .
∑

k≈k′

‖Rk‖L2‖Pk[(1− Y )2wα]‖L2 . ‖R‖H1‖(1− Y )2wα‖H−1 .

The estimate (5.8) then follows from the product estimate (A.15).

2. Bounds for G2. Here we simply use that 1 + T 2 has Schwartz symbol to obtain
∥

∥

∥

∥

P

[

R(1 + T 2)wα

1 + W̄

]
∥

∥

∥

∥

H

.A B‖w‖H.

3. Bounds for K1. As K1 is purely imaginary we have

‖LP[i Im P̄[n]]‖H . ‖LP̄[n]‖H.
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We then write

P̄[n] = [P̄, R̄](1− Y )rα − [P̄, R̄](1− Y )RαT 2[w]− P̄

[ |R|2
1 +W

(1 + T 2)wα

]

,

and may estimate each term similarly to the proof of (5.7) to obtain

‖LP̄[n]‖H .A B‖(w, r)‖H.

4. Bounds for K2. We start by dividing K2 up according to frequency balance using the
paraproduct operator TR as

R[1 + T 2, b]wα = TR[1 + T 2, b]wα + (R− TR)[1 + T 2, b]wα.

When R is at low frequency we may estimate

‖TR[1 + T 2, b]wα‖
H

1
2
. ‖R‖L∞‖[1 + T 2, b]wα‖

H
1
2

and for the remaining terms we apply the paraproduct estimate (A.1) to obtain

‖(R− TR)[1 + T 2, b]wα]‖
H

1
2
. ‖R‖

bmo
1
2
‖[1 + T 2, b]wα‖L2 .

As a consequence,

‖LPK2‖H . g
1

2A‖[1 + T 2, b]wα‖
H

1
2

We then decompose using paraproducts,

[1 + T 2, b]wα = [1 + T 2, Tb]wα + [1 + T 2, b0]w≤4 + (1 + T 2)Twα
b− T(1+T 2)wα

b

+ (1 + T 2)Π[b≥1, wα]−Π[b≥1, (1 + T 2)wα],

and estimate each of these terms as follows: for the first two terms we apply the commutator
estimate (A.8), for the third and fourth terms the estimate (A.7) and for the final two terms
we apply the paraproduct estimate (A.1). The estimate forK2 then follows from the estimate
(A.18) for b.

5. Bounds for K3. We may estimate similarly to K2 to obtain

‖LPK3‖H . ‖R‖
bmo

1
2
‖(1 + T 2)[wt + bwα − 2(1 +W)S0Re P̄ [m]]‖

H
1
2

+ ‖R‖
H

1
2
(1 + ‖W‖L∞)‖S0Re P̄ [m]]‖L∞ .

For the first term we estimate as for G1 using that 1 + T 2 has Schwartz symbol to obtain

‖(1 + T 2)[wt + bwα − 2(1 +W)S0Re P̄ [m]]‖
H

1
2
.A g

− 1

2B‖(w, r)‖H,
and for the second term we may simply apply the estimate (5.8).

6. Bounds for K4. As T [w] is holomorphic we have

(1 + iT )T [w] = (1 + T 2) ReT [w].

We may then apply the paraproduct estimates (A.1) and (A.7) with the estimates (A.20)
for a and (A.16) for Y to obtain

∥

∥

∥

∥

gW− a

1 +W
(1 + iT )T [w]

∥

∥

∥

∥

H
1
2

.
(

g‖Y ‖
bmo

1
2
+ ‖a‖

bmo
1
2

)

‖w‖L2.

This completes the proof of (5.6).
�
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6. Normal forms

The goal of this section is to algebraically compute a normal form correction for the system
(1.6) for (W,Q) as a translation invariant bilinear form. We recall that the aim of the normal
form transformation is to eliminate the quadratic terms in the equation. Precisely, at least
formally the normal form variables (W̃ , Q̃) will solve a nonlinear equation where all the
nonlinear terms are cubic and higher order. In this article we will not use such an equation
directly for three reasons:

(i) The equation for the normal form variables (W̃ , Q̃) is not self-contained, instead it
still uses the original variables (W,Q) in the nonlinearity.

(ii) The system (1.6) is fully nonlinear and the normal form transformation does not mix
well with the nonlinear structure.

(iii) The symbols for the normal form transformation are singular precisely when the
output has frequency zero.

Instead, in the next section we use the normal form transformation in order to produce
a cubic normal form energy that has the property that its time derivative along the flow
is of quartic and higher order. Interestingly (and very usefully) the normal form symbol
singularities do not carry over to the normal form energy; this is due to cancellations arising
after repeated symmetrizations.

Incidentally, we remark that when considering the linearized equation some of these sym-
metrizations are lost, which is why we cannot prove cubic energy estimates for the linearized
flow.

6.1. The resonance analysis. If we take (W,Q) = 0 in the linearized system (5.1) we
obtain the system

(6.1)

{

wt + qα = 0

qt − gT [w] = 0,

which has dispersion relation
τ 2 = gξ tanh ξ.

As a consequence we see that solutions split into right-moving and left-moving components
with dispersion relations τ = ±g 1

2ω(ξ), respectively, where

ω(ξ) = − sgn ξ
√

ξ tanh ξ.

To understand bilinear resonant interactions we define the function

∆(ξ, η, ζ) = ω(ξ) + ω(η) + ω(ζ).

Then resonant two wave interactions correspond to solutions to the system
{

∆(±ξ,±η,±ζ) = 0

ξ + η + ζ = 0.

As ω is sublinear, the only solutions occur when at least one of ξ, η, ζ vanishes.
Symmetrizing the ∆ function, we define the resonance function Ω by

Ω(ξ, η, ζ) = ∆(ξ, η, ζ)∆(ξ,−η,−ζ)∆(ξ,−η, ζ)∆(ξ, η,−ζ)
= J(ξ)2 + J(η)2 + J(ζ)2 − 2J(ξ)J(η)− 2J(η)J(ζ)− 2J(ζ)J(ξ),
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on the set P = {ξ + η + ζ = 0}, where J(ξ) = ω(ξ)2 = ξ tanh ξ. This vanishes quadratically
on each of the lines ξ = 0, η = 0, respectively ζ = 0. The function Ω will play a key role in
all computations which follow.

6.2. Expansion to cubic order. In order to construct normal forms for (W,Q) we first
expand F to cubic order as

Λ≤3F = Qα −QαWα −P
[

QαW̄α − Q̄αWα

]

+QαW
2
α +P

[

(QαW̄α − Q̄αWα)(Wα + W̄α)
]

,

where, for a sufficiently smooth function f : C2 → C we define Λ≤kf to select the terms of
polynomial order ≤ k in the Taylor expansion of f at zero.

We may then rewrite (1.6) as

(6.2)

{

Wt +Qα = G[2] +G[3] +G[4+]

Qt − gT [W ] = K [2] +K [3] +K [4+],

where the quadratic terms are given by

G[2] = P[QαW̄α − Q̄αWα], K [2] = −Q2
α −P

[

QαQ̄α

]

,

the cubic terms are given by

G[3] =WαP
[

QαW̄α − Q̄αWα

]

−P
[

(QαW̄α − Q̄αWα)(Wα + W̄α)
]

,

K [3] = Q2
αWα +QαP

[

QαW̄α − Q̄αWα

]

+P
[

QαQ̄α(Wα + W̄α)
]

,

and G[4+], K [4+] contain only quartic and higher order terms.

6.3. Normal forms. By considering parity, we seek holomorphic normal form corrections
of the form







W̃ = W +Bh[W,W ] +
1

g
Ch[Q,Q] +Ba[W, W̄ ] +

1

g
Ca[Q, Q̄]

Q̃ = Q + Ah[W,Q] + Aa[W, Q̄] +Da[Q, W̄ ],

so that the normal form variables (W̃ , Q̃) satisfy

(6.3)

{

Λ≤2[W̃t + Q̃α] = 0

Λ≤2[Q̃t − gT W̃ ] = 0.

Here the operators Bh, Ch, Ba, Ca, Ah, Aa, Da are translation invariant bilinear forms,
which can be described via their symbols, as below:

Bh[W,W ] =
1

2π

∫

Bh(ξ, η)Ŵ (ξ)Ŵ (η)ei(ξ+η)α dξdη

Ba[W, W̄ ] =
1

2π

∫

Ba(ξ, η)Ŵ (ξ)
¯̂
W (η)ei(ξ−η)α dξdη.

To determine these symbols uniquely we assume that Bh, Ch are symmetric.
For the subsequent construction of the normal form energies we will interpret all symbols

as functions on the plane P = {ξ + η + ζ = 0}. For notational convenience we will adopt
this convention in the following computations. In the context of bilinear operators we may
interpret ζ = ζ(ξ, η) := −(ξ + η). For this reason we will compute holomorphic symbols at
(ξ, η) and mixed holomorphic-antiholomorphic symbols at (ξ,−η).
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6.3.1. Holomorphic products. The holomorphic terms Ah, Bh and Ch are generated by the
holomorphic part of the quadratic nonlinearity, i.e., the first term in K [2]. Comparing holo-
morphic terms at the quadratic level we obtain a linear system for the symbols





ξ + η −2η −2 tanh ξ
−ξ 0 tanh(ξ + η)

− tanh η tanh(ξ + η) 0









Ah(ξ, η)
Bh(ξ, η)
Ch(ξ, η)



 =





0
iξη
0



 .

From the first row we have

Ah =
2ηBh

ξ + η
+

2 tanh ξCh

ξ + η
.

We then calculate the symmetrizations

(ξAh)sym =
2ξηBh

ξ + η
+

(ξ tanh ξ + η tanh η)Ch

ξ + η
,

(tanh ηAh)sym =
(ξ tanh ξ + η tanh η)Bh

ξ + η
+

2 tanh ξ tanh ηCh

ξ + η
.

Plugging this into the second row we obtain,

((ξ + η) tanh(ξ + η)− ξ tanh ξ − η tanh η)Ch = iξη(ξ + η) + 2ξηBh,

and into the third row,

((ξ + η) tanh(ξ + η)− ξ tanh ξ − η tanh η)Bh = 2 tanh ξ tanh ηCh.

As a consequence we obtain the solutions

Ah(ξ, η) =
2iηJ(ξ) (J(ζ)− J(ξ) + J(η))

Ω
,

Bh(ξ, η) = −2iζJ(ξ)J(η)

Ω
,

Ch(ξ, η) = −iξηζ (J(ζ)− J(ξ)− J(η))

Ω
.

6.3.2. Mixed terms. The mixed terms Aa, Ba, Ca and Da are generated by the mixed
holomorphic-antiholomorphic part of the quadratic nonlinearity. As above, we write the
mixed holomorphic-antiholomorphic terms as a linear system









ξ + η −η − tanh ξ 0
0 −ξ − tanh η ξ + η
−ξ 0 tanh(ξ + η) −η

− tanh η tanh(ξ + η) 0 − tanh ξ

















Aa(ξ,−η)
Ba(ξ,−η)
Ca(ξ,−η)
Da(ξ,−η)









=









1
2
i(1− coth(ξ + η))ξη

−1
2
i(1− coth(ξ + η))ξη

1
2
i(1− tanh(ξ + η))ξη

0
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We solve this system to obtain

Aa(ξ,−η) = − e2ζ

e2ζ + 1

{

(J(η) + η)
Bh(ξ, η)

ζ tanh η
+ (J(ξ)− ξ)

Ch(ξ, η)

ξζ

}

,

Ba(ξ,−η) = e2ζ

e2ζ − 1

{

(J(ζ)− (ξ − η))
Bh(ξ, η)

ζ
+ (ηJ(ξ)− ξJ(η))

Ch(ξ, η)

ξηζ

}

,

Ca(ξ,−η) = e2ζ

e2ζ − 1

{

(ηJ(ξ)− ξJ(η))
Bh(ξ, η)

ζ tanh ξ tanh η
+ (J(ζ)− (ξ − η))

Ch(ξ, η)

ζ

}

,

Da(ξ,−η) = − e2ζ

e2ζ + 1

{

(J(ξ)− ξ)
Bh(ξ, η)

ζ tanh ξ
+ (J(η) + η)

Ch(ξ, η)

ηζ

}

.

6.4. Symbol classes and asymptotics for the normal form. Here we consider the
symbols arising in the normal form, and describe their size and regularity. These are needed
in order to have good L2 and Lp multilinear bounds.

From the perspective of high frequency bounds, we are interested in the interactions
between one high negative frequency and one low frequency. Here we expect only the symbols
Bh, Ba, Ah and Da to play a role; the remaining symbols Ch, Ca and Aa (which do not
appear at all in the infinite bottom case) will decay rapidly in the above regime. For the
former symbols, on the other hand, we will need to compute second order expansions around
ξ = 0 (for Bh and Ah) respectively around η = 0 (for Ba, Ah and Da). However, due to the
linear component of the normal derivative of the pressure, we will also require an expansion
for Ch near η = 0.

From the perspective of low frequency analysis, we do not have any low frequency pointwise
control on ReW and ReQ. Hence we will need to show that ReW and ReQ do not appear
undifferentiated in our cubic energy functional. This requires certain cancellations to happen
(akin to a null condition). For this we will need to exactly compute almost all of the above
symbols at ξ = 0 and at η = 0.

We will interpret all symbols as functions on the plane P = {ξ+ η+ ζ = 0}. In this plane
we consider three distinguished lines ξ = 0, η = 0, ζ = 0. The symbol regularity will depend
on the distance d to these lines and on the radius ρ,

d = 1 +min{|ξ|, |η|, |ζ |}, ρ = 1 +max{|ξ|, |η|, |ζ |}.
For a weight σ which is slowly varying with respect to these scales we denote by S(σ) the
class of symbols s on P which satisfy

|(d∂)α(ρ∂ρ)βs| . cαβσ.

We begin our discussion with the expression Ω, for which we have:

Lemma 6.1.

a) The symbol Ω restricted to P is non-positive and belongs to S(dρ).
b) The symbol Ω vanishes quadratically on the three lines and is elliptic elsewhere,

T 2(ξ)T 2(η)T 2(ζ)Ω−1 ∈ S(d−1ρ−1).

c) We have the following expansion in the region |η| ≪ −ξ:
Ω(ξ, η, ζ) = 4J(η)ξ + (η + J(η))2 + S(eξ) = −4J(η)ζ + (η − J(η))2 + S(e−ζ).
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d) On the line η = 0 we have the limit

lim
|η|→0

η−2Ω(ξ, η, ζ) = J ′(ξ)2 − 4J(ξ) =: Λ(ξ) < 0.

The proof is a fairly straightforward algebraic computation and is omitted. We remark
that part (b) is consistent with the fact that in our problem two wave resonances appear
only when either an input frequency or the output frequency is zero. Part (c) is relevant in
our high frequency analysis, while part (d) is needed for the low frequency cancellation.

Now we successively consider the symbols in our normal form analysis:

The symbol Bh. Here by inspection we see that all the zeros of Ω are canceled by the
numerator, except for a simple zero at ζ = 0. Then the natural regularity statement is
obtained after multiplication with T (ζ). Precisely, we have

(6.4) T (ζ)Bh(ξ, η) ∈ S(ρ).

For the high frequency asymptotics in the region |η| ≪ −ξ we have the expansion

(6.5) Bh(ξ, η) = − i

2

(

ξ − (η − J(η))2

4J(η)

)

+ S(d2ρ−1).

On the other hand, at η = 0 we have

Bh(ξ, 0) =
2iξJ(ξ)

Λ(ξ)
.

The symbol Ch. Again all the zeros of Ω are canceled by the numerator, except for a
simple zero at ζ = 0. Further, the difference J(ξ) + J(η) − J(ζ) decays exponentially if ξ
and η have the same sign,

J(ξ) + J(η)− J(ζ) = O(e−|ξ| + e−|η|), ξη > 0.

We then obtain the size of Ch as

(6.6) T (ζ)Ch(ξ, η) ∈
{

S(ρ min{|ξ|, |η|}) ξη < 0
S(d−Nρ) ξη > 0.

The asymptotics in the region |η| ≪ −ξ are

Ch(ξ, η) = −iη(η + J(η))

4J(η)

(

ξ − (η − J(η))2

4J(η)

)

+ S(d3ρ−1).

Finally, we also need

Ch(ξ, 0) =
iξ2J ′(ξ)

Λ(ξ)
.

The symbol Ah. As before, we remove the zero at ζ = 0 to obtain the regularity

(6.7) T (ζ)Ah(ξ, η) ∈
{

S(|η|) ηζ < 0
S(d−N |η|) ηζ > 0.
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Since Ah is not symmetric, we need asymptotics both near ξ = 0 and η = 0. First we
consider the region |η| ≪ −ζ . Here we have

(6.8) Ah(ξ, η) = −iη(η + J(η))

2J(η)

(

1 +
(η − J(η))2

4ξJ(η)

)

+ S(d3ρ−1),

where the leading order term vanishes (which is consistent with the infinite bottom problem).
Next, we consider the region |ξ| ≪ −η:

(6.9) Ah(ξ, η) = −i
(

η +
J(ξ)2 − ξ2

4J(ξ)

)

+ S(d2ρ−1).

Finally, we compute

Ah(ξ, 0) =
2iJ(ξ)J ′(ξ)

Λ(ξ)
, Ah(0, η) =

4iηJ(η)

Λ(η)
.

Next we consider the symbols for the mixed terms, namely Aa, Ba, Ca and Da. Here we
will continue to consider (ξ, η, ζ) ∈ P and compute the symbols at (ξ,−η).

The symbol Aa. The symbol Aa(ξ,−η) decays exponentially in all directions except near
the half-lines {ξ = 0, η < 0} and {ζ = 0, ξ < 0}. Precisely, we have

(6.10) T (ζ)Aa(ξ,−η) ∈
{

S(d−N |ξ|) |ξ| ≪ −η or |ζ | ≪ −ξ
S(ρ−N) elsewhere.

.

Finally, we have

Aa(ξ, 0) =
i

Λ(ξ)(e2ξ + 1)
[2J(ξ)− ξJ ′(ξ) + J(ξ)J ′(ξ)] .

The symbol Ba. This is similar to Bh, in that

(6.11) T (ζ)Ba(ξ,−η) ∈ S(ρ).

In the region |η| ≪ −ξ we have the asymptotics

(6.12) Ba(ξ,−η) = −iξ + S(d2ρ−1).

Finally, we do not need the exact expressions for Ba(ξ, 0) and Ba(0,−η), only the fact that
they are purely imaginary.

The symbol Ca. The symbol Ca(ξ,−η) decays exponentially away from the region
{0 < ξ ≪ −η} and the half-line {ζ = 0, η < 0}. Precisely,

(6.13) T (ζ)Ca(ξ,−η) ∈







S(|ξ|ρ) 0 < ξ ≪ −η or |ζ | ≪ −η
S(d−N |ξ|ρ) 0 < −ξ ≪ −η or |ζ | ≪ −ξ
S(ρ−N) elsewhere.

.

Finally, on the two lines we have

Ca(ξ, 0) =
iξ

Λ(ξ)(e2ξ − 1)
[2J(ξ)− ξJ ′(ξ) + J(ξ)J ′(ξ)] ,

Ca(0,−η) = − iη

Λ(η)(e2η − 1)
[2J(η)− ηJ ′(η)− J(η)J ′(η)] .
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The symbol Da. The symbol Da(ξ,−η) decays exponentially away from the region
{0 < −ξ ≪ −η} and the half-line {η = 0, ξ < 0}. Precisely,

(6.14) T (ζ)Da(ξ,−η) ∈







S(|ξ|) 0 < −ξ ≪ −η or |η| ≪ −ξ
S(d−N |ξ|) 0 < ξ ≪ −η or |ζ | ≪ −η
S(ρ−N ) elsewhere.

.

We will only require its high frequency asymptotics in the region |η| ≪ −ξ:
(6.15) Da(ξ,−η) = −iξ + S(d2ρ−1),

which are similar to those for Ba.
Finally, we also need

Da(0,−η) = − i

Λ(η)(e2η + 1)
[2J(η)− ηJ ′(η)− J(η)J ′(η)] .

7. The normal form energy.

The aim of this section is to use the normal form computation in the previous section to
produce a normal form energy, i.e., an energy functional which is accurate to quartic order.
We summarize our result as follows:

Proposition 7.1. For each n ≥ 1 there exists a normal form energy En
NF = En

NF (W, R)
with the following properties:

a) Algebraic properties. En
NF (W, R) has only quadratic and cubic terms,

Λ≥4En
NF (W, R) = 0,

and its quadratic part is given by the linear energy

Λ≤2En
NF (W, R) = E0(∂

n−1W, ∂n−1R).

Further, En
NF (W, R) is accurate to quartic order, i.e.,

(7.1) Λ≤3 d

dt
En

NF (W, R) = 0

along the flow of (1.6).

b) Qualitative description. En
NF has the form

En
NF (W, R) = E0(∂

n−1W, ∂n−1R) + gB(W,W,W) + A(W, R, R),

where A and B are translation invariant trilinear forms. Further, there is a decomposition

En
NF = En

NF,high + En
NF,low,

with

En
NF,high = E0(∂

n−1W, ∂n−1R) + gBhigh(W,W,W) + Ahigh(W, R, R),

En
NF,low = gBlow(W,W,W) + Alow(W, R, R),

where the forms Bhigh and Ahigh, respectively Blow and Alow are characterized as follows:
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(i) Case n ≥ 2. Then the forms Bhigh, Ahigh are given by

(7.2)

Bhigh(W,W,W) := 〈∂n−1W, ∂n−1W〉−4nReW+ 1

2
(1+T 2) ReW,

Ahigh(W, R, R) := −〈∂n−1R, T −1∂n−1Rα〉−4nReW− 1

2
(1+T 2)ReW

− 2〈W∂(n−1)R, T −1∂(n−1)Rα〉+ 2〈∂(n−2)WRα, T −1∂(n−1)Rα〉,
whereas the forms Blow and Alow have symbols Blow(ξ, η, ζ), Alow(ξ, η, ζ) in the class

Blow ∈ S(dρ2n−3), Alow ∈ S(dd1ρ
2n−3) + S(ρ2n−2),

where d, ρ are defined as before and d1 = min{|η|, |ζ |} is the smaller of the two R frequencies.
(ii) Case n = 1. Then the forms Bhigh, Ahigh are given by

(7.3)
Bhigh(W,W,W) := 〈W,W〉−4ReW+ 1

2
(1+T 2) ReW,

Ahigh(W, R, R) := −〈R, T −1Rα〉−4ReW− 1

2
(1+T 2) ReW − 2〈RW, T −1Rα〉,

and the forms Blow and Alow have symbols Blow(ξ, η, ζ), Alow(ξ, η, ζ) in the class

Blow ∈ S(ρ−1), Alow ∈ S(1).

The remainder of this section is devoted to the proof of the above proposition. To start
with we give a brief description of the types of trilinear forms B and A that we will work
with. These trilinear forms are translation invariant so they can be described in terms of their
symbols. Precisely, one can represent any such trilinear form B(W,W,W ) and A(W,Q,Q)
as

B(W,W,W ) =
2√
2π

Re

∫

ξ+η+ζ=0

B(ξ, η, ζ)Ŵ (ξ)Ŵ (η)Ŵ (ζ) dξdη,

A(W,Q,Q) =
2√
2π

Re

∫

ξ+η+ζ=0

A(ζ, ξ, η)Ŵ(ζ)Q̂(ξ)Q̂(η) dξdη.

At the same time, we also need trilinear forms which involve complex conjugates. How-
ever, the functions W and Q are holomorphic, and thus their Fourier transforms satisfy the
relations

(7.4)
¯̂
W (−ξ) = e2ξŴ (ξ),

¯̂
Q(−ξ) = e2ξQ̂(ξ).

These relations allow us to uniquely represent all the cubic terms in the normal form energy
functional in the above form without any conjugates. The price to pay is that we need to
allow such exponentials in our symbol classes. However, this happens in a very limited way.
To account for this we introduce the following notation

Definition 7.2. Given any class of symbols S(σ) on the plane P = {ξ + η + ζ = 0}, we
denote by ES(σ) the linear span of symbols in {S(σ), e±2ξS(σ), e±2ηS(σ), e±2ζS(σ)}.

We note than any trilinear form with symbols in the class ES, acting on holomorphic
functions, can be written as a sum of trilinear forms with symbols in S, but where complex
conjugation is also allowed.

Also we note that for any such trilinear form, its symbol is uniquely determined up to
symmetries, i.e., for the symmetric part of the above symbols. Indeed, symmetrizations
will play a crucial role in our computations because they will allow us to gain some critical
cancellations.
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The aim of this section is to determine the symbols A, B above, and to study their
properties.

7.1. From normal forms to normal form energies. As a first step in the proof of the
proposition, here we obtain a preliminary normal form energy Ẽn

NF (W,Q) of the form

Ẽn
NF (W,Q) = E0(∂

nW̃ , ∂nQ̃),+gB̃(W,W,W ) + Ã(W,Q,Q)

so that the key property (7.1) holds. The natural expression for the normal form energy is
provided by the normal form transformation computed in the previous section. Precisely,
we will take

Ẽn
NF (W,Q) = Λ≤3E0(∂

nW̃ , ∂nQ̃)

= E0(∂
nW, ∂nQ) + 2g〈∂nW, ∂nW [2]〉 − 2〈T −1∂n+1Q, ∂nQ[2]〉.

In view of the equations (6.3) the property (7.1) is automatically satisfied. It remains to
express the trilinear forms above involving the normal form corrections W [2], Q[2] as trilinear
forms B̃(W,W,W ) and Ã(W,Q,Q).

Given the expressions for W [2] and Q[2], the trilinear form B̃ is as follows:

B̃(W,W,W ) =
2√
2π

Re

∫

ξ+η+ζ=0

ζ2n(
¯̂
W (−ζ))− Ŵ (ζ))Bh(ξ, η)Ŵ (ξ)Ŵ (η) dξdη

+
2√
2π

Re

∫

ξ+η+ζ=0

ζ2n(
¯̂
W (−ζ))− Ŵ (ζ))Ba(ξ,−η)Ŵ (ξ)

¯̂
W (−η) dξdζ.

We can put these two integrals together using the relation (7.4) to obtain

B̃(ξ, η, ζ) = (e2ζ − 1)ζ2n(Bh(ξ, η) + e2ηBa(ξ,−η)).

Further, we can symmetrize B̃ with respect to the three variables, as well as with respect to
the reflection symmetry1

B̃(ξ, η, ζ) → ¯̃B(−ξ,−η,−ζ).

We denote the symmetrization of B̃ by B̃sym, which can be used instead of B̃. As mentioned
before, this symmetrization is very important, not only in order to uniquely describe the
trilinear form, but also because it allows us to eliminate small denominators in the symbol
for B̃ (even though such singularities do appear in the normal form).

1Here we use the fact that the trilinear forms Ã, B̃ are real valued.
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We can perform a similar computation for Ã:

Ã(W,Q,Q) =
2√
2π

Re

∫

ξ+η+ζ=0

ζ2n(
¯̂
W (−ζ))− Ŵ (ζ))Ch(ξ, η)Q̂(ξ)Q̂(η) dξdη

+
2√
2π

Re

∫

ξ+η+ζ=0

ζ2n(
¯̂
W (−ζ))− Ŵ (ζ))Ca(ξ,−η)Q̂(ξ) ¯̂Q(−η) dξdζ

+
2√
2π

Re

∫

ξ+η+ζ=0

coth ζ ζ2n+1(
¯̂
Q(−ζ))− Q̂(ζ))Ah(ξ, η)Ŵ (ξ)Q̂(η) dξdη

+
2√
2π

Re

∫

ξ+η+ζ=0

coth ζ ζ2n+1(
¯̂
Q(−ζ))− Q̂(ζ))Aa(ξ,−η)Ŵ (ξ)

¯̂
Q(−η) dξdζ

+
2√
2π

Re

∫

ξ+η+ζ=0

coth ζ ζ2n+1(
¯̂
Q(−ζ))− Q̂(ζ))Da(ξ,−η)Q̂(ξ) ¯̂W (−η) dξdζ.

This yields the symbol for Ã, namely

Ã(ζ, ξ, η) = ζ2n(e2ζ − 1)
(

Ch(ξ, η) + e2ηCa(ξ,−η)
)

+ ξ2n+1(e2ξ + 1)
(

Ah(ζ, η) + e2ηAa(ζ,−η) + e2ζDa(η,−ζ)
)

.

Again, this can be further symmetrized with respect to ξ and η, as well as with respect to
the reflection symmetry to obtain the symbol Ãsym.

7.2. The properties of the symbols Ãsym and B̃sym. A crucial step in our analysis is
to understand the properties of the symbols Ãsym and B̃sym. In this we have two goals. In
terms of low frequencies, we want to show that we can extract factors of ξηζ , so that Ẽn

NF

depends only on the differentiated variables Wα and Qα. In terms of high frequencies we
seek to find the leading terms in the expansion of the symbols for Ã and B̃ near the axis
ξ = 0, η = 0 and ζ = 0. These are as follows:

Lemma 7.3.

a) The symbols Ãsym and B̃sym can be expressed in the form

Ãsym ∈ ξηζES(ρ2n−1), B̃sym ∈ ξηζES(ρ2n−2).

b) The leading order terms in B̃sym in the region |η| ≪ ξ have the form

B̃sym = − i

48
e2ξξ2n

(

8nη − (η + J(η))2

J(η)

)

− i

48
e−2ζζ2n

(

8nη +
(η − J(η))2

J(η)

)

+ ηES(dρ2n−1).

(7.5)

c) The leading order terms in Ãsym in the region |ζ | ≪ ξ are as follows:

Ãsym =
i

16
e2ξξ2nη

(

8nζ +
J(ζ)2 − ζ2

J(ζ)

)

− i

16
e−2ηη2nξ

(

8nζ − J(ζ)2 − ζ2

J(ζ)

)

+ ζES(dρ2n).

(7.6)

d) The leading order terms in Ãsym in the region |η| ≪ ζ are as follows:

Ãsym =
1

4
ie2η+2ζξ2n+1η + ηES(d2ρ2n−1) + ηES(ρ2n).(7.7)
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Proof. We successively establish the desired properties for Ãsym and B̃sym. To simplify the

bookkeeping we introduce the notation
sym
= to describe the relation between two symbols

which have the same symmetrization.

1. The symbol B̃sym. We recall that

B̃(ξ, η, ζ) = (e2ζ − 1)ζ2n
(

Bh(ξ, η) + e2ηBa(ξ,−η)
)

.

Using symmetries, the Bh contribution to B̃sym is given by obtained by symmetrizing the
expression

B̃h,sym sym
= ζ2n(e2ζ − 1)Bh(ξ, η)

sym
= 2ζ2n sinh2 ζBh(ξ, η)

sym
= −iζ2n(e2ζ − e−2ζ)

J(ξ)J(η)J(ζ)

Ω(ξ, η, ζ)
.

This is a smooth symbol. Further, since the exponential factor is odd and all other factors
are even, its symmetrization vanishes on all three diagonals.

For the Ba part we simplify using the reflection symmetry,

B̃a,sym sym
= ζ2n−1e−2ξ{(J(ξ + η)− (ξ − η))Bh(ξ, η) + (tanh ξ − tanh η)Ch(ξ, η)}
sym
= iζ2n(e2ξ − e−2ξ)

J(ξ)J(η)J(ζ)

Ω(ξ, η, ζ)
+ i

ζ2n(e2ξ + e−2ξ)

2Ω(ξ, η, ζ)
K(ξ, η),

where
K(ξ, η) = 2(ξ − η)J(ξ)J(η)− (ηJ(ξ)− ξJ(η))(J(ζ)− J(ξ)− J(η)).

The symmetrization of the first term vanishes on the diagonals as the first two factors are
even, respectively odd, and the fraction is fully symmetric. The same applies for the last
term, where all we need to use for K is that it is odd and antisymmetric.

Next we consider the high frequency asymptotics. Simply by considering separately the
size of each component above, we obtain B̃sym ∈ ES(ρ2n+1), which suffices outside a small
conical neighborhood of the diagonals. We need to improve this near the diagonals so we
consider the case |η| ≪ |ξ|, |ζ |. Here we need to compute the principal part of B̃sym modulo
lower order terms, i.e., symbols in ES(d2ρ2n−1).

The terms containing e±2η are exponentially small compared to e±2ξ and e±2ζ so we can
neglect them. We can also neglect terms with the η2n factor. Further, there can be no
polynomial cancellation arising from the exponentials so we might as well consider them
separately. Hence we consider the leading order coefficient Lξ of e2ξ in the region where
ξ > 0 (and thus ζ < 0). Neglecting lower order terms we compute

−iΩLξ =
1

3
(−ξ2n + 1

2
ζ2n)J(ξ)J(η)J(ζ) +

1

12
ζ2nK(ξ, η)

= − 1

3
(−ξ2n + 1

2
ζ2n)ξζJ(η) +

1

12
ζ2n(2ξ(ξ − η)J(η)− ξ(η − J(η))2)

=
1

3
(ξ2n − ζ2n)ξζJ(η)− 1

12
ζ2nξ(η + J(η))2

=− 1

3
2nξ2nζηJ(η)− 1

12
ζ2nξ(η + J(η))2.

Thus, dividing by Ω we obtain

−iLξ = − 1

12
2nξ2nη +

1

48
ζ2n

(η + J(η))2

J(η)
.
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There is a second relevant term in the same region, namely the one with the e−2ζ factor,
which is obtained by the reflection symmetry and yields the complex conjugate of the previous
contribution. Thus we get the statement in the proposition.

2. The symbol Ãsym. We recall the expression for Ã:

Ã(ζ, ξ, η) = (e2ζ − 1)ζ2nCh(ξ, η) + (e−2ξ − e2η)ζ2nCa(ξ,−η)
+ ξ2n+1(e2ξ + 1)(Ah(ζ, η) + e2ηAa(ζ,−η) + e2ζDa(η,−ζ)).

Using the reflection symmetry for the first term we have

Ã(ζ, ξ, η)
sym
= 2ζ2n sinh2 ζ Ch(ξ, η) + (e−2ξ − e2η)ζ2nCa(ξ,−η)

+ ξ2n+1(e2ξ + 1)(Ah(ζ, η) + e2ηAa(ζ,−η) + e2ζDa(η,−ζ)).

We first verify that the symbol Ãsym vanishes on the edges. The edge ζ = 0 requires
that Ãsym(0, ξ,−ξ) = 0. This needs no computation, instead it is a consequence of the

fact that Ã above is smooth and purely imaginary. Indeed, the symmetry in (ξ, η) corre-
sponds to Ã(0, ξ,−ξ) → Ã(0,−ξ, ξ), whereas the reflection symmetry corresponds to the

transformation Ã(0, ξ,−ξ) → −Ã(0,−ξ, ξ).
It remains to compute the edge ξ = 0, i.e., Ãsym(−η, 0, η). In view of the symmetries and

the fact that Ã is purely imaginary, we have

4Ãsym(−η, 0, η) = Ã(−η, 0, η) + Ã(−η, η, 0)− Ã(η, 0,−η)− Ã(η,−η, 0).
So we proceed to compute

Λ(η)Ã(−η, 0, η) = (e−2η − 1)η2nΛ(η)Ch(0, η) + (1− e2η)η2nΛ(η)Ca(0,−η)
= iη2n+1

(

−e−2ηJ(η)J ′(η) + 2J(η)− ηJ ′(η)
)

− 2iη2n+1J(η)J ′(η).

A similar computation yields

Λ(η)Ã(−η, η, 0) = (e−2η − 1)η2nΛ(η)
(

Ch(η, 0) + Ca(η, 0)
)

+ (e2η + 1)η2n+1
(

Ah(−η, 0) + Aa(−η, 0) + e−2ηDa(0, η)
)

=− iη2n+1
(

−e−2ηJ(η)J ′(η) + 2J(η)− ηJ ′(η)
)

− i(4 + 3e2η + 3e−2η)η2n+1J(η)J ′(η)i(e2η − e−2η)η2n+1(2J(η)− ηJ ′(η)).

Combining these two we get Ãsym(−η, 0, η) = 0.

Finally we compute the high frequency asymptotics for Ãsym. To be precise, we have
Ãsym ∈ ES(ρ2n+2) and we compute its symbol modulo lower order terms in ES(d2ρ2n) near
the edge ζ = 0, respectively ES(d2d1ρ

2n−1) + ES(d1ρ
2n) near the edges ξ = 0 and η = 0.

Here Aa and Ca do not contribute to the principal part so we drop them.
First we consider the case when ζ is small and ξ and η are large. Neglecting terms with a

ζ2 factor we are left with

ξ2n+1(e2ξ + 1)(Ah(ζ, η) + e2ζDa(η,−ζ)).
We only need to retain the factors with e±2ξ and e±2η, which leaves us with

ξ2n+1(e2ξAh(ζ, η) + e−2ηDa(η,−ζ)).
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In view of the symmetries it suffices to compute the coefficient Lξ of e2ξ when ξ > 0. This
is given by, after symmetrization,

Lξ =
1

4
(ξ2n+1Ah(ζ, η) + η2n+1Da(−ξ, ζ))

=
1

4

[

−iξ2n+1

(

η +
J(ζ)2 − ζ2

4J(ζ)

)

+ iη2n+1ξ

]

= iηξ2n
(

n

2
ζ +

J(ζ)2 − ζ2

16J(ζ)

)

,

as required in the proposition.
Lastly, we consider the case when η is small, neglecting Aa, Ca and all the η3 terms.

Here Da also does not contribute. Thus, as both Ah and Ch are odd and purely imaginary,
applying the symmetries we need to consider the expression

1

2
ζ2n(e2ζ + e−2ζ)Ch(ξ, η) +

1

4
ξ2n+1(e2ξ − e−2ξ)Ah(ζ, η).

By symmetry it suffices to consider the case that ζ > 0 and ξ < 0. Thus, the leading order
terms in the region |η| ≪ ζ are given by

e2ζ
(

ξ2ne2η − ζ2n
) iη(J(η) + η)

8J(η)

(

ξ − (J(η)− η)2

4J(η)

)

.

Using that

(e2η − 1)
iη(J(η) + η)

8J(η)
=

1

4
iηe2η,

and ignoring lower order terms we are left with

1

4
iξ2n+1ηe2η+2ζ − n

4
iξ2nη2e2η+2ζ J(η)− η

J(η)
− 1

16
iξ2nηe2η+2ζ (J(η)− η)2

J(η)
.

The second and third symbols yield contributions in the class ηES(ρ2n) and hence they can
be neglected. Thus, we are left with only the leading term,

1

4
iξ2n+1ηe2η+2ζ ,

and the final claim of the lemma follows.
�

7.3. The high-low decomposition of Ã and B̃. The normal form energy is conserved
to quartic order but, as our problem is quasilinear, we expect that its time derivative will
contain more derivatives of (W,Q) than we want. The idea is then to remedy this issue
by adding quartic (and higher order) quasilinear corrections to the normal form energy.
Fortunately, in this problem it suffices to correct only the leading order terms in the normal
form energy. Because of this, it is convenient to split the normal form energy into a leading
part plus a lower order part,

Ẽn
NF = Ẽn

NF,high + Ẽn
NF,low,
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which corresponds to the decomposition of the trilinear forms Ã and B̃ as

(7.8) Ã = Ãhigh + Ãlow, B̃ = B̃high + B̃low.

The decomposition of the symbols is already given in the previous lemma, here we just
compute the terms in the leading order part. To understand this decomposition it is useful
to separate the generic case n ≥ 2 from n = 1. For larger n we have:

Lemma 7.4. Let n ≥ 2. Then the trilinear forms Ã, B̃ admit a decomposition as in (7.8)
where the symbols of Ãlow, B̃low satisfy

(7.9) B̃low ∈ ξηζES(dρ2n−3), Ãlow ∈ ξηζES(dd1ρ
2n−3) + ξηζES(ρ2n−2),

and the forms Ãhigh, B̃high are given by

(7.10)

B̃high(W,W,W ) = 〈W (n),W (n)〉−4nReWα+
1

2
(1+T 2)ReWα

,

Ãhigh(W,Q,Q) = −〈Q(n), T −1Q(n+1)〉−4nReWα−
1

2
(1+T 2) ReWα

+ 2〈QαW
(n), T −1Q(n+1)〉+ 2n〈QααW

(n−1), T −1Q(n+1)〉.
On the other hand for n = 1 we have the more accurate result

Lemma 7.5. Let n = 1. Then the trilinear forms Ã, B̃ admit a decomposition as in (7.8)
where Ãlow, B̃low satisfy

(7.11) B̃low ∈ ξηζES(ρ−1), Ãlow ∈ ξηζES(1),

and Ãhigh, B̃high are given by

(7.12)
B̃high(W,W,W ) = 〈Wα,Wα〉−4ReWα+

1

2
(1+T 2)ReWα

,

Ãhigh(W,Q,Q) = −〈Qα, T −1Qαα〉−4ReWα−
1

2
(1+T 2) ReWα

.

We remark that the difference in sign in the coefficient of
1

2
(1+T 2) ReWα above accounts

exactly for the linear part of the normal derivative of the pressure, namely a1. The second
line in Ãhigh in (7.10) is also natural and is due to the fact that (W,Q) is not a good set of
variables for the differentiated equations. Instead, in the next subsection we switch from Qα

to the diagonal variable R and the bulk of these terms will disappear.

Proof of Lemma 7.4. We successively consider all the contributions in the leading part of
Ãsym and B̃sym.

1. The contribution of B̃high. This is given by the symbol

B̃high = − i

48
e2ξξ2n

(

8nη − (η + J(η))2

J(η)

)

+ symmetries.

There are twelve symmetries, and after applying them all we obtain

(7.13) −
∫

|W (n)|2
(

4nReWα − 1

2
(1 + T 2) ReWα

)

dα.

Modulo lower order terms which can be included in B̃low this agrees with the expression for
B̃high in the lemma.
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2. The contribution of Ãhigh with high frequencies on Q. This is given by the symbol

Ãhigh = e2ξiξ2nη

(

n

2
ζ +

J(ζ)2 − ζ2

12J(ζ)

)

+ symmetries.

There are four symmetries, and after applying them all we obtain

(7.14)

∫

Re(iQ̄(n+1)Q(n))

(

4nReWα +
1

2
(1 + T 2) ReWα

)

dα.

Modulo lower order terms which can be included in Ãlow this agrees with the first term in
the expression for Ãhigh in the lemma.

3. The contribution of Ãhigh with high frequency on W . This is given by the symbol

1

4
e2η+2ζ(iξ)n+1(iζ)nη +

n

4
ie2η+2ζ(iξ)n+1(iζ)n−1η2 + symmetries.

There are four symmetries so we get the expression

2Re

∫

iQ̄(n+1)W (n)Qα dα + 2nRe

∫

iQ̄(n+1)W (n−1)Qαα dα,(7.15)

which up to lower order terms is equivalent to the second line in Ãhigh.
�

Proof of Lemma 7.5. This follows the same steps as in the previous proof, with the only
difference that some terms which were previously distinct are now combining.

1. Contribution of B̃high. We may write

Bsym = Lξe
2ξ + symmetries,

where the full symbol is given by

−12iΩLξ = −(6ζη + ξ2)J(ξ)J(η)J(ζ)− ξζJ(ξ)2J(η)− ξηJ(ξ)2J(ζ)

− ζηJ(ξ)3 − ζ2J(ξ)J(η)2 − η2J(ξ)J(ζ)2.

Again it suffices to consider the region ξ ≫ |η|. A similar computation to before gives us
that

Lξe
2ξ =

1

6
iξηζe2ξ − 1

24
iξζ(η + J(η))2J(η)−1e2ξ + ξηζES(ρ−1).

Applying the symmetries and observing that the leading order term is already symmetric in
η, ζ we obtain B̃high.

2. Contribution of Ãhigh. Again we may write

Ãsym = Lξe
2ξ + Lζe

2ζ + symmetries,

where the full symbols

−4iΩLξ = ξη(η2 + ζ2 − 2ξ2)J(ζ)(J(ζ)− J(ξ)− J(η))

+ ξ2η(ζ − η)J(ξ)(J(ξ)− J(η)− J(ζ))

+ ξη2(ζ − η)J(ξ)(J(ξ)− J(η) + J(ζ)),
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−4iΩLζ = ξη(ξ2 + η2 − 2ζ2)J(ζ)(J(ζ)− J(ξ)− J(η))

− ξ2η(ξ − η)J(ζ)(J(ξ)− J(η)− J(ζ))

− ξη2(ξ − η)J(ζ)(J(ξ)− J(η) + J(ζ)).

In the region where ξ ≫ |ζ | a similar computation to before gives us that

Lξe
2ξ =

1

4
iξηζ(ξ − η)e2ξ +

1

16
iξ2η(J(ζ)2 − ζ2)J(ζ)−1e2ξ + ξηζES(1).

The first term gives us part of the term

−〈Qα, T −1Qαα〉−4ReWα
,

and the second term gives us

−〈Qα, T −1Qαα〉− 1

2
(1+T 2) ReWα

.

In the region where ζ ≫ |η| the coefficients Lζ and L−ξ of e
2ζ and e−2ξ respectively combine

to give

Lζe
2ζ + L−ξe

−2ξ = −1

4
iξηζ(ξ − η)e2ζ+2η + ξηζES(1),

which combines with the the first part of Ãhigh to give the rest of the term

−〈Qα, T −1Qαα〉−4ReWα
.

�

7.4. The normal form energy in the diagonal variables (W, R). The normal form

energy Ẽn
NF constructed so far is expressed in terms of the variables (W,Q). Since we can

smoothly extract factors of ξηζ from the symbols Ã, B̃, it is clear that one can view both Ã
and B̃ as trilinear forms in (Wα, Qα),

B̃(W,W,W ) = B̃1(W,W,W), Ã(W,Q,Q) = Ã1(W, Qα, Qα),

where their symbols satisfy

B̃1 ∈ ES(ρ2n−2), Ã1 ∈ ES(ρ2n−1).

The same procedure applied separately to the high frequency parts Ãhigh, B̃high respectively

the lower order terms Ãlow, B̃low yields the forms Ã1,high, B̃1,high, respectively Ã1,low, B̃1,low,
where the former are given for n ≥ 2 by (see Lemma 7.4)

B̃1,high(W,W,W) = 〈W(n−1),W(n−1)〉−4nReW+ 1

2
(1+T 2) ReW

Ãhigh(W, Qα, Qα) = − 〈T −1Q(n)
α , Q(n−1)

α 〉−4nReW− 1

2
(1+T 2)ReW

+ 2〈T −1Q(n)
α , QαW

(n−1)〉+ 2n〈T −1Q(n−1)
α , QααW

(n−1)〉,
(7.16)

and the symbols for the latter have regularity

B̃1,low ∈ ES(dρ2n−3), Ã1,low ∈ ES(dd1ρ
2n−3) + ES(ρ2n−2).

In order to conclude the proof of Proposition 7.1 we need one last step, namely to further
switch from (W, Qα) to the diagonal variables (W, R). This is still a purely algebraic
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computation, where we only need to insure that the original normal form energy Ẽn
NF (W,Q)

and the new one En
NF (W, R) agree to cubic order,

Λ≤3
(

Ẽn
NF (W,Q)− En

NF (W, R)
)

= 0.

We caution the reader that at this point, by a slight abuse of notation, we switch the meaning
of the Λ operators. Whereas previously these were taken with respect to the expansion in
the (W,Q) variables, from here on we use instead the expansion in the (W, R) variables.
It is a simple observation that the above relation has identical meaning in both frames of
reference, and this allows for a smooth transition between one setting and the other.

To fulfill the above requirement each of the terms in Ẽn
NF is treated as follows, based on

the relation Qα = R(1 +W):

• The term B̃1(W,W,W) is left unchanged.

• The term Ã1(W, Qα, Qα) is replaced by Ã1(W, R, R).
• The term 〈W (n),W (n)〉 = 〈W(n−1),W(n−1)〉 is left unchanged.
• The term 〈Q(n), T −1Q

(n)
α 〉 is replaced by the expression

Λ≤3〈[R(1 +W)](n−1), T −1[R(1 +W)](n−1)
α 〉.

Rewriting the last expression as

Λ≤3〈[R(1+W)](n−1), T −1[R(1+W)](n−1)
α 〉 = 〈R(n−1), T −1R(n−1)

α 〉+2〈[RW](n−1), T −1R(n−1)
α 〉,

we can write our final normal form energy as

En
NF (W,R) = E0(W

(n−1),R(n−1))−2〈[RW](n−1), T −1R(n−1)
α 〉+ B̃1(W,W,W)+ Ã1(W,R,R),

which is as required in Proposition 7.1, with

B(W,W,W) = B̃1(W,W,W), A(W, R, R) = Ã1(W, R, R)− 2〈[RW](n−1), T −1R(n−1)
α 〉.

By construction this has all the properties in part (a) of Proposition 7.1, as well as the
required symbol regularity properties for the trilinear part. It remains to compute the high
frequency parts Bhigh and Ahigh. For Bhigh there is nothing to compute, as we can take

Bhigh = B̃1,high,

with B̃1,high as in 7.4.
For Ahigh on the other hand we expand

〈[RW](n−1), T −1R(n−1)
α 〉 = 〈R(n−1)W, T −1R(n−1)

α 〉+ 〈W(n−1)R, T −1R(n−1)
α 〉

+ (n− 1)〈W(n−2)Rα, T −1R(n−1)
α 〉+ l.o.t.

The last two terms cancel with the last two terms in Ã1,high(W, R, R) so we obtain

Ahigh = −〈T −1R(n), R(n−1)〉−4nReW− 1

2
(1+T 2)ReW

− 2〈(R(n−1)W, T −1R(n−1)
α 〉+ 2〈RαW

(n−2), T −1R(n−1)
α 〉

as needed in part (b(i)) of Proposition 7.1. To complete the proof of Proposition 7.1 we
apply an identical computation for the case n = 1.
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8. Higher order energy estimates

The main goal of this section is to establish two energy bounds for (W, R), and their
higher derivatives. Precisely, we will seek to obtain first short and then long time bounds
for the time dependent quantities

Nn := ‖(g 1

2W, R)‖
Hn−1×H

n−
1
2
, n ≥ 1.

For n = 0 we will instead set
N0 := ‖(W,Q)‖H,

which is closely related to the conserved energy.
Our first result is a quadratic bound, which applies to all solutions independently of the

size of the initial data. This is needed for our local well-posedness result in Theorem 1.
Precisely, the large data result is as follows:

Proposition 8.1. For any n ≥ 1 there exists an energy functional En,(2)(W, R) with the
following properties:

(i) Norm equivalence:

En,(2)(W, R) ≈A E0(∂
n−1W, ∂n−1R) +OA(N

2
n−1).

(ii) Quadratic energy estimates for solutions to (8.3):

d

dt
En,(2)(W, R) .A BN2

n.

Here we allow lower order errors in the energy equivalence, and thus, the bound for Nk for
instance is obtained by reiterating the above estimates for 1 ≤ n ≤ k, and using the energy
conservation as a starting point which corresponds to n = 0.

Our second estimate is a cubic bound which only applies for small solutions, and is used
to prove our cubic lifespan result in Theorem 2. The small data result is as follows:

Proposition 8.2. For any n ≥ 1 there exists an energy functional En,(3) which has the
following properties as long as A≪ 1:

(i) Norm equivalence:

(8.1) En,(3)(W, R) = E0(∂
n−1W, ∂n−1R) +O(A)N2

n.

(ii) Cubic energy estimates:

(8.2)
d

dt
En,(3)(W, R) .A ABN2

n.

The first step in the analysis will be to isolate the main part of the systems for (W, R)
and for their derivatives, and derive quadratic energy estimates for it. A key part in this will
be played by the model system studied in Section (4). This model system plays the same
role in this paper as the linearized system played in the analysis of the infinite depth water
waves, (see [8]). However, this correspondence is incomplete, in that here we do not have
cubic estimates for the linearized system, but we do have them for the system in (W, R)
and also for its higher derivatives.

We will first differentiate the equations, and prove the large data result using the bounds for
the model problem in Proposition 4.1. Then we consider the small data problem, and combine
the prior high frequency analysis with the normal form energy derived in the previous section.
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8.1. The case n = 1. We begin by looking at the (W, R) system (1.8). This is a self-
contained diagonal system in these variables, which we rewrite in a form which is similar to
the model problem in Proposition 4.1:

(8.3)















Wt + bWα +
1

1 + W̄
Rα − Rα

1 + W̄
T 2W = G

Rt + bRα − (g + a)T [W]

1 +W
= K,

where

G := (1 +W)M − Rα

1 + W̄
(1 + T 2)[W], K := −2i

ImP
[

RR̄α

]

1 +W
− aT [W]

1 +W
.

In order to view this system as an evolution in the space of holomorphic functions, we project
(8.3) onto the space of holomorphic functions via the projection operator P:

(8.4)















Wt + bWα +P

[

1

1 + W̄
Rα

]

−P

[

Rα

1 + W̄
T 2W

]

= PG

Rt + bRα −P

[

(g + a)T [W]

1 +W

]

= PK.

We also recall here the expressions of b, a and M

b = 2Re
[

R−P[RȲ ]
]

,

and

a = gW+ igT [W] + 2 ImP[RR̄α], M = 2ReP[RȲα − R̄αY ].

To this system we associate the positive definite linear functional energy E
(2)
lin (W, R) given

by (4.3). The main result of this subsection establishes energy bounds for the system (8.4),
thus proving the n = 1 part of Proposition 8.1

Proposition 8.3. The above energy applied to solutions of projected system (8.4) satisfies
the following estimates:

i) Norm equivalence:

E
(2)
lin (W, R) ≈A ‖(W, R)‖2H.

ii) Cubic energy estimates:

d

dt
E

(2)
lin (W, R) .A BN2

1.

Here the energy equivalence follows directly from the positivity and boundedness of a, see
Proposition 1.12 and Lemmma A.13. The second estimate in the proposition relies on the
estimates obtained in (4.5). Precisely, in order to obtain the quadratic energy estimates for
the large data, it suffices to prove a priori bounds for ‖(PG,PK)‖H. These a priori bounds

will be in terms of the pointwise control norms A, B and the energy E
(2)
lin(W, R):

Lemma 8.4. The following estimates for the lower order terms (PG,PK):

(8.5) ‖(PG,PK)‖H .A BN1.
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Proof. We begin with the estimate for G:

‖PG‖H . ‖PM‖H + ‖P[WM ]‖L2 .A (B + AB)‖R‖
H

1
2
.

To bound K we estimate each of the terms separately. Thus, for the first term we estimate

‖ 〈D〉
1

2

[

P
[

Im P̄[R̄Rα]
]

(1− Y )
]

‖H . ‖ 〈D〉
1

2 P̄[R̄Rα]‖H + ‖ 〈D〉
1

2 P̄[R̄Rα]Y ‖H
. ‖R‖bmo1‖R‖H 1

2
+ ‖Y ‖

bmo
1
2
‖ 〈D〉

1

2 R‖L∞‖R‖
H

1
2

.A (B + AB)‖R‖
H

1
2
.

This is a direct consequence of the commutator estimate (A.14) together with the Y estimate
derived in (A.16). As for the second term, we use the estimates derived for a and Y in (A.20)
respectively (A.16), to arrive at

‖aT [W](1− Y )‖
H

1
2
. (‖a‖

bmo
1
2
+ ‖a‖L∞‖Y ‖

bmo
1
2
)‖W‖L2.

�

For the small data problem it is of further interest to track the solutions on larger time
scales in order to prove Proposition 8.2. This is done at the end of this section.

8.2. The case n = 2. We recall that the system (1.8) for (W, R) is given by














Wt + bWα +
1

1 + W̄
Rα +

Rα

1 + W̄
W = (1 +W)M

Rt + bRα − gT [W]

1 +W
+

ia

1 +W
= 0,

where a is the same as in the infinite depth gravity water waves

a := 2 ImP[RR̄α].

We differentiate with respect to α in order to obtain a system for (Wα, Rα),














Wαt + bWαα +
[(1 +W)Rα]α

1 + W̄
= −bαWα − (1 +W)RαȲα +WαM + (1 +W)Mα

Rαt + bRαα − gT [Wα]

1 +W
+

gT [W]

(1 +W)2
Wα +

iaα
1 +W

− ia

(1 +W)2
Wα = −bαRα,

and rewrite it as follows














Wαt + bWαα +
[(1 +W)Rα]α

1 + W̄
= −bαWα − (1 +W)RαȲα +WαM + (1 +W)Mα

Rαt + bRαα −
[

(g + a)T [Wα]

(1 +W)2

]

=
ia− gT [W]

(1 +W)2
(1 + iT )Wα − iaα

1 +W
− bαRα.

We recall that

(8.6) M =
Rα

1 + W̄
+

R̄α

1 +W
− bα,
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and use this definition to simplify the system above














































Wαt + bWαα +
[(1 +W)Rα]α

1 + W̄
=

(

M − Rα

1 + W̄
− R̄α

1 +W

)

Wα

− (1 +W)RαȲα +WαM + (1 +W)Mα

Rαt + bRαα −
[

(g + a)T [Wα]

(1 +W)2

]

=
ia− gT [W]

(1 +W)2
(1 + iT )Wα − iaα

1 +W

+

(

M − Rα

1 + W̄
− R̄α

1 +W

)

Rα.

To align this more closely with the linearized equation and express the system in a manner
similar to [8], we introduce the auxiliary holomorphic variable

R = (1 +W)Rα.

Then it becomes










































Wαt + bWαα +
Rα

1 + W̄
+

Rα

1 + W̄
Wα = − R̄α

1 +W
Wα +RȲα + 2WαM + (1 +W)Mα

Rt + bRα −
[

(g + a)T [Wα]

(1 +W)

]

=
ia− gT [W]

(1 +W)
(1 + iT )Wα + (R̄αRα − iaα) + 2RM

− 2

(

Rα

1 + W̄
+

R̄α

1 +W

)

R.

Here, we have isolated on the left the leading part of our equations. The goal is to interpret
the terms on the right hand side as perturbative (with one exception, which is only due to
the low regularity setting, see below). In addition, for the cubic bound we will also need to
pay attention to the quadratic part of the terms in the equations.

In order to simplify our bookkeeping we define two types of error terms for the above
system. These are denoted by err(L2) and err(H

1

2 ), which correspond to the two equations.
A similar strategy was employed in [8]. However, unlike in [8], here we also include bounded
quadratic terms into the error, rather than explicitly keeping track of them. This simplifies
the argument somewhat, at the expense of getting a less precise expression for the normal
form energy.

The bounds for these errors are in terms of the control variables A, B, as well as the L2

type norm N2, where

N2 := ‖(g 1

2W, R)‖
H1×H

3
2
.

The acceptable errors in the Wα equation are denoted, by err(L2) and are of two types,
err(L2)[2] and err(L2)[3]. The first one, err(L2)[2], consists of quadratic terms which satisfy
the bounds

‖T PG‖L2 . BN2, ‖G‖
H

−
1
2
. AN2.

By err(L2)[3] we denote the cubic and higher counterpart of err(L2)[2], which contains terms
G which satisfy the estimate

‖T PG‖L2 .A ABN2, ‖G‖
H

−
1
2
.A A

2N2.
50



The acceptable errors in the R equation are denoted by err(H
1

2 ) and are of two types,

err(H
1

2 )[2] and err(H
1

2 )[3]. The first one, err(H
1

2 )[2], consists of quadratic terms K that
satisfy the bounds

‖T PK‖
H

1
2
. BN2, ‖K‖L2 . AN2.

By err(H
1

2 )[3] we denote terms in K which satisfy the estimates

‖T PK‖
H

1
2
.A ABN2, ‖K‖L2 .A A

2N2.

Remark 8.5. Compared to [8], above we define N2 in a more relaxed, inhomogeneous
fashion. This is in part caused by the lack of scaling. It is reasonable because here we work
with the system for the differentiated variables (W, R) or their higher counterparts, which
is used to bound the high frequencies of the solutions.

A key property of the space of errors is contained in the following lemma:

Lemma 8.6. Let Φ be a function which satisfies

(8.7) ‖Φ‖L∞ . A, ‖Φ‖
bmo

1
2
. B.

Then, we have the multiplicative bounds

(8.8) Φ · err(L2) = err(L2), Φ · err(H 1

2 ) = err(H
1

2 ).

The proof of the lemma is relatively straightforward and is left for the reader.
We now return to system above and expand some of the terms. We begin with the terms

containing M . For this we will make use of the bounds we have established for M in the
Appendix:

(8.9) ‖M‖L∞ . AB, ‖M‖
H

1
2
. AN2, ‖Mα‖L2 . AN2.

Precisely, the M terms in the equations satisfy

M(1 +Wα) +MαW = err(L2), MR = err(H
1

2 ).

The first claim is a straightforward consequence of the pointwise bound for M and the L2

bound forMα. For the second, we recall thatR = Rα(1+W), which together with Lemma 8.6

allows us to only estimate MRα. The H
1

2 bound for MRα follows after a Littlewood-Paley
decomposition of the product: the bounds for the low-high and balanced interactions are
a direct consequence of (8.9), and the bounds for high-low interactions are obtained by
combining (8.9) and Lemma A.9.

Next we consider the expression

ia− gT [W]

(1 +W)
(1 + iT )Wα =

ia− gT [W]

(1 +W)
(1 + T 2) ReWα,

which we claim belongs to err(H
1

2 ). To prove our claim, we split the above expression into
a quadratic part and a cubic and higher term,

−gT [W](1 + T 2) ReWα + (ia+ gT [W]W)(1− Y )
[

(1 + T 2) ReWα

]

.
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We may then apply the paraproduct estimates (A.1) and (A.7) with the estimates (A.20)
for a (which also applies to the component a of a) and (A.16), (A.17) for Y to obtain:

‖(ia + gT [W]W)(1− Y )
[

(1 + T 2) ReWα

]

‖
H

1
2

.
{

A
(

‖a‖
bmo

1
2
+ ‖Y ‖

bmo
1
2

)

+
(

g‖ 〈D〉
1

2 W‖bmo‖W‖L∞ + ‖W‖L∞‖Y ‖
bmo

1
2

)}

‖Wα‖L2.

Similarly, for the quadratic part we obtain

‖gT [W](1 + T 2)(ReWα)‖
H

1
2
.A AN2.

Next we consider the difference

R̄αRα − iaα = 2P̄[RαR̄α] + i ImP[RR̄αα].

For this we bound

‖R̄αRα − iaα‖L2 . AN2, ‖PT (R̄αRα − iaα)‖
H

1
2
. BN2.

Taking into account all the above bounds, it follows that our system can be rewritten in
the form



























Wαt +bWαα +
Rα

1 + W̄
+

Rα

1 + W̄
Wα = 2RȲα − 2

R̄α

1 +W
Wα + err(L2)

Rt +bRα −
[

(g + a)T [Wα]

(1 +W)

]

= −4Re

(

Rα

1 + W̄

)

R+err(H
1

2 ).

One might wish to compare this system to the model system (4.1), for which we obtained
the nice energy estimates in (4.5), and use these estimates to prove quadratic energy bounds

provided that the right hand side terms are bounded in L2, and H
1

2 respectively.
Unfortunately we still have terms on the right which cannot be bounded as error terms,

i.e., in L2 ×H
1

2 . This matches similar issues appearing in the infinite depth case in [8]. To
deal with these terms we use the same conjugation with respect to a real exponential weight
e2φ, where φ = −2Re log(1 + W), which was previously used in [8]. When implementing
such a transformation, we are not only able to eliminate the unbounded terms pointed out
above, but we also manage to cast our system in a similar form as the model system in (4.1).

To see this, we compute

φα = −2Re
Wα

1 +W
, (∂t + b∂α)φ = 2Re

Rα

1 + W̄
− 2M.

We denote the weighted variables by

w := e2φWα, r := e2φR.

Before explicitly writing down the resulting equations, we remark that by Lemma 8.6 we
have

e2φerr(L2) = err(L2), e2φerr(H
1

2 ) = err(H
1

2 ),
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which simplifies the transformed system to























wt + bwα +
rα

1 + W̄
− Rα

1 + W̄
T 2w = err(L2)

rt + brα −
[

(g + a)T [w]

(1 +W)

]

= err(H
1

2 ).

Here we have also harmlessly replaced w by −T 2w in the last term on the left in the first
equation. The difference is easily included in the error as 1+T 2 has a Schwartz symbol. This
is done in order to bring the above equations more in line with the model linear problem.

Unfortunately our new variables (w, r), are not exactly holomorphic; the last system
contains both holomorphic and also antiholomorphic components. To remedy this issue
we need to project the system via the projection P, and also work with the projected
variables (Pw,Pr). At this point one might legitimately be concerned that restricting to
the holomorphic part would remove a good portion of our variables. However this is not the
case, as one can verify that the a similar argument as the one in Lemma 3.4 from [8] applies
to the finite depth case:

Proposition 8.7. The energy of (Pw,Pr) above is equivalent to the energy of (Wα, Rα):

(8.10) ‖(Pw,Pr)‖H ∼A ‖(w, r)‖H ∼A ‖(Wα, Rα)‖H modulo AN2.

Unlike in [8], here we allow for lower order errors in order to account for the L2 unbound-
edness of P at low frequencies. Once we do that, it remains to prove only a high frequency
bound, for which the same argument as in [8] applies.

We are now ready to write the system for (Pw, Pr), namely

(8.11)



























Pwt +P [bPwα] +P

[

Prα
1 + W̄

]

−P

[

Rα

1 + W̄
T 2Pw

]

= G2 +Perr(L2)

Prt +P [bPrα]−P

[

(g + a)T [Pw]

(1 +W)

]

= K2 +Perr(H
1

2 ),

where (G2, K2) contain all the additional terms,



















G2 := −P

[

Rα

1 + W̄
(1 + T 2)Pw

]

−P
[

bP̄wα

]

−P

[

P̄rα
1 + W̄

]

−P

[

Rα

1 + W̄
P̄w

]

K2 := −P
[

bP̄rα
]

+P

[

(g + a)T [P̄w]

(1 +W)

]

.

The goal here is to prove that G2 = err(L2) and K2 = err(H
1

2 ), but this is straightforward
as they all have a nice commutator structure; the proof is left for the reader. We denote the
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last set of variables by (Pw, Pr) := (w, r); these solve the system

(8.12)



























wt +P [bwα] +P

[

rα

1 + W̄

]

−P

[

Rα

1 + W̄
T 2w

]

= Perr(L2)

rt +P [brα]−P

[

(g + a)T [w]

(1 +W)

]

= Perr(H
1

2 ).

Therefore, we can now apply the energy bounds obtained for the toy model (4.1) to the
system (8.12). Now the result of Proposition (8.1) follows from the energy estimates for the
model system (4.1), namely (4.5); further, if n = 2 then we can take

En,(2)(W, R) = E
(2)
lin(w, r).

The last goal is to obtain cubic lifespan bounds for the small data problem, which would
correspond to proving Proposition (8.2). We address this question later in this section.

8.3. The case n ≥ 3. We follow the same strategy as in the case n = 2 and derive the
equations for (W(n−1), R(n−1)). For this, we start with the system (1.8) and differentiate
(n − 1) times. For this we will estimate the errors in terms of Nn which measures (n − 1)
derivatives of W and R, with constants that depend on the control norms A and B.

The acceptable errors in the W(n−1) equation are denoted, as before, by err(L2) and are
of two types, err(L2)[2] and err(L2)[3]. The first one, err(L2)[2], consists of holomorphic
quadratic terms in G of the form that satisfy the bound

‖T PG‖L2 . BNn and ‖G‖
H−

1
2
. ANn.

By err(L2)[3] we denote the cubic counterpart of err(L2) of G, which satisfies the estimate

‖T PG‖L2 .A ABNn, ‖G‖
H−

1
2
.A A

2Nn.

The acceptable errors in the R(n−1) equation are denoted, as before, by err(H
1

2 ) and are

of two types, err(H
1

2 )[2] and err(H
1

2 )[3]. The first one, err(H
1

2 ), consists of holomorphic
quadratic terms in K that satisfy the bound

‖T PK‖
H

1
2
. BNn, ‖K‖L2 . ANn.

By err(H
1

2 )[3] we denote terms in K which satisfy the estimates

‖T PK‖
H

1
2
.A ABNn, ‖K‖L2 .A A

2Nn.

We begin by differentiating the terms in the W equation. For the b term, after standard
estimates, we have

∂(n−1)
α (bWα) = bW(n−1)

α + (n− 1)bαW
(n−1) + err(L2)

= bW(n−1)
α + (n− 1)

(

Rα

1 + W̄
+

R̄

1 +W

)

W(n−1) + err(L2).

Here we have used the relation (8.6), and also the L∞ bound for M .
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Continuing, we apply the same analysis for the (n−1) derivative of the next term appearing
in the W equation

(8.13) ∂(n−1)
α

(1 +W)Rα

1 + W̄
=

[

(1 +W)R(n−1)
]

α

1 + W̄
+

Rα

1 + W̄
W(n−1) + err(L2).

Here we have again isolated the terms which cannot be placed into the error.
Similarly, using the bounds for M in Lemma A.15, the last component of the W equation

is

∂(n−1)
α [(1 +W)M ] = (1 +W)∂(n−1)

α M + err(L2) = (1 +W)∂(n−1)
α 2ReP

[

RȲα − R̄αY
]

.

Because of the differentiation, there are no low frequency issues here. Distributing derivatives
inside, the terms with derivatives on the antiholomorphic factors are all errors, so we are
left only with the terms where all derivatives apply to the holomorphic factors. Harmlessly
discarding the projection we arrive at

∂(n−1)
α [(1 +W)M ] = 2(1 +W) Re

[

R(n−1)Ȳα − R̄αY
(n−1)

]

+ err(L2)

= − R̄α

1 +W
W(n−1) + err(L2).

Next, we differentiate the R equation. We begin with

∂(n−1)
α (bRα) =bR

(n−1)
α + (n− 1)bαR

(n−1) + b(n−1)Rα + err(H
1

2 ).

In the second term we use again the relation (8.6) and the boundedness of M . In the third
term, only the holomorphic part of b yields a nontrivial contribution, and that only when all
derivatives apply to Y . Discarding again the projection, we obtain

∂(n−1)
α (bRα) = bR(n−1)

α + (n− 1)

(

Rα

1 + W̄
+

R̄α

1 +W

)

R(n−1) +
Rα

1 + W̄
R(n−1) + err(H

1

2 ).

For the remaining terms in the R equation we write

(8.14) ∂(n−1)
α

(

gT [W]

1 +W

)

=
gT [W(n−1)]

1 +W
− gT [W]

(1 +W)2
W(n−1) + err(H

1

2 ).

Lastly, using the bound for a in Lemma A.13, we have

(8.15) ∂(n−1)
α

(

ia

1 +W

)

=
ia(n−1)

1 +W
− ia

(1 +W)2
W(n−1) + err(H

1

2 ).

In the first term we can discard the a1 component of a into the error. In the contribution of
a = 2 ImP[RR̄α], only the holomorphic part has an interesting component, precisely when
all the derivatives fall on R. Hence we obtain

(8.16)
ia(n−1)

1 +W
=

R̄α

1 +W
R(n−1) + err(H

1

2 ).

In the second term in (8.15), we substitute iW(n−1) with −T [W(n−1)] modulo a negligible
error. Thus, together with(8.14), (8.15) and (8.16) we arrive at

− ∂(n−1)
α

(

gT [W]

1 +W
− ia

1 +W

)

= −(g + a)T [W(n−1)]

(1 +W)2
− R̄α

1 +W
R(n−1) + err(H

1

2 ).
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Combining the above equations we obtain the differentiated system


















W
(n−1)
t + bW(n−1)

α +

(

(1 +W)R(n−1)
)

α

1 + W̄
+

Rα

1 + W̄
W(n−1) = G

R
(n−1)
t + bR(n−1)

α − (g + a)T [W(n−1)]

(1 +W)2
= K,

where














G = −n R̄α

1 +W
W(n−1) − (n− 1)

Rα

1 + W̄
W(n−1) + err(L2)

K = −n
(

Rα

1 + W̄
+

R̄α

1 +W

)

R(n−1) + err(H
1

2 ).

The following step is to better diagonalize the system, and for this we only need to modify
the R(n−1) equation by using the known substitution R := (1 + W)R(n−1) (see [8]). We
obtain















W
(n−1)
t + bW(n−1)

α +
Rα

1 + W̄
+

Rα

1 +W
W(n−1) = G

Rt + bRα − (g + a)T [W(n−1)]

1 +W
= K1,

where

K1 = −(n + 1)
RαR

1 + W̄
− n

R̄αR

1 +W
+ err(H

1

2 ).

To deal with the mildly unbounded terms on the right we proceed in two steps using the
same idea as in [8]. First we implement a new holomorphic substitution

R̃ := R− RαW
(n−2) + (2n− 1)WαR

(n−2).

With the exception of a couple of terms (see also [8]), the contribution of the added quadratic
correction is cubic and lower order, so we obtain


















W
(n−1)
t + bW(n−1)

α +
R̃α

1 + W̄
+

Rα

1 +W
W(n−1) = −n

(

R̄α

1 +W
+

Rα

1 + W̄

)

W(n−1)+ err(L2)

R̃t + bR̃α − (g + a)T [W(n−1)]

1 +W
= −n

(

Rα

1 + W̄
+

R̄α

1 +W

)

R̃+ err(H
1

2 ).

At this point we are in a similar situation as we were in the case n = 2. Precisely, we still
have unbounded terms on the right, and the goal is to eliminate them. The second step is
to use the same procedure as in the case n = 2, which is to multiply the equations by enφ,
where φ = −2Re log(1 +W). After standard estimates, and using also Lemma 8.6, we can

write a system for (w := enφW(n−1), r := enφR̃):














wt + bwα +
rα

1 + W̄
+

Rα

1 +W
w = err(L2)

rt + brα − (g + a)T [w]

1 +W
= err(H

1

2 ).

As (w, r) are no longer holomorphic, we will need to project them via the projection P. We
denote the projected variables (Pw,Pr) by (w, r), and write the equations for them. As we
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have seen in the case n = 2, we obtain some additional terms which we can express as com-
mutators. Moreover, these additional terms can be easily bounded using the commutators
estimates obtained in the Appendix to obtain the system

(8.17)















wt +P[bw]α +P

[

rα

1 + W̄

]

+P

[

Rα

1 +W
w

]

= P[err(L2)]

rt + P [brα]−P

[

(g + a)T [w]

1 +W

]

= P[err(H
1

2 )].

Now, we modify this system one last time in order to be able to compare it with the model
system (4.1), and after one rather straightforward estimates we can rewrite it as

(8.18)















wt +P[bw]α +P

[

rα

1 + W̄

]

−P

[

Rα

1 +W
T 2[w]

]

= P[err(L2)]

rt + P [brα]−P

[

(g + a)T [w]

1 +W

]

= P[err(H
1

2 )].

In order to be able to apply the estimates obtained for the model system in (4.1), we
need to ensure that the energy of (w, r) is equivalent to the one of (W(n−1), R(n−1)). This is
summarized in the following proposition:

Proposition 8.8. The energy of of (w, r) above is equivalent to the one of (W(n−1), R(n−1)),

(8.19) ‖(w, r)‖H ≈A ‖(w, r)‖H ≈A ‖(W(n−1), R(n−1))‖H ≈A modulo ANn.

A similar result can be found in [8] (see Lemma 3.5). The proof of the above proposition
is quite similar, and we leave it as an exercise for the reader.

Now the result of Proposition (8.1) follows from the energy estimates for the model system
(4.1), namely (4.5) applied to (8.18); to obtain the result we use the energy functional

E
n,(2)
high (W, R) = E

(2)
lin(w, r).

The further goal is to obtain cubic lifespan bounds, which would correspond to proving
Proposition (8.2). The key to that is to produce a suitable modified cubic energy. This is
done in the next subsection. However, here we will discuss the leading part of the modified
cubic energy, which is given by

E
n,(3)
high (W, R) = E

(3)
high(w, r) := E

(2)
lin(w, r)−E

(2)
ω,lin(w, r), where ω =

1

4
(1 + T 2) ReW.

Remark 8.9. Comparing E
n,(3)
high (w, r) with the corresponding version appearing in the in-

finite depth case, one will notice that the are some differences. On one hand, the second
component of the above energy is specific to the finite bottom case, and does not appear at
all in the infinite bottom problem. On the other hand, the last three terms in the quasilinear
cubic energy from [8] are no longer showing up in the above leading energy. Mainly, this is
because here we use better bookkeeping of the errors, and those terms are now reclassified
as admissible error terms. In other words, here they are incorporated into the lower order
component of the quasilinear modified energy we seek to construct.

We claim that we have favourable bounds for the time evolution of this energy. Precisely,
we have
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Proposition 8.10. Let (w, r) be defined as above. Then

a) Assuming that A≪ 1, we have

(8.20) E
(3)
high(w, r) = E0(W

(n−1), R(n−1)) +O(A)N2
n.

b) The solution of (w, r) of (8.17) satisfies the following energy estimate

(8.21)
d

dt
E

(3)
high(w, r) .A BN2

n, Λ≥4 d

dt
E

(3)
high(w, r) .A ABN2

n.

The proof is a straightforward application of Proposition (4.1). To see that, one needs to

verify that the real weight ω =
1

4
(1+T 2) ReW satisfies the required bounds (4.6). But this

is true in view of Lemma A.13, as ω is a multiple of the a1 component of a.

8.4. The quasilinear modified energy for n ≥ 2, small data. In this section we con-
struct an n-th order energy with cubic estimates, En,(3), which satisfies the bounds in Propo-
sition 8.2. This energy is obtained following the method introduced in [8](the quailinear
modified energy method), which we now describe by splitting it into several steps:

1. Construct the normal form energy. This has been accomplished in the previous
Section 7, but for convenience we outline the process here. Formally, it begins with the
construction of a normal form transformation whose aim is to eliminate the quadratic terms
in the equation (1.6) for (W,Q). The normal form variables (W̃ , Q̃) are given by

{

W̃ =W +W [2] = W +Bh[W,W ] + 1
g
Ch[Q,Q] +Ba[W, W̄ ] + 1

g
Ca[Q, Q̄]

Q̃ = Q+Q[2] = Q + Ah[W,Q] + Aa[W, Q̄] +Da[Q, W̄ ],

where the bilinear multipliers arising here are defined in Section 6. A full description of these
symbols is given later in the same section. What matters is that the normal form variables
(W̃ , Q̃) solve an equation of the form

{

Λ≤2(W̃t + Q̃α) = 0

Λ≤2(Q̃t − gT W̃ ) = 0.

Following Section 7, its associated cubic normal form energy functional is

Ẽn
NF (W,Q) = Λ≤3E0(∂

nW̃ , ∂nQ̃)

= E0(∂
nW, ∂nQ) + 2g〈∂nW, ∂nW [2]〉 − 2〈T −1∂n+1Q, ∂nQ[2]〉.

This is chosen so that the following relation holds

(8.22) Λ≤3 d

dt
Ẽn

NF (W,Q) = 0.

Here we discard the quartic terms in E0(∂
nW̃ , ∂nQ̃) as on one hand they are both highly

unbounded, and on the other hand they do not affect the last relation above. Further,
unlike the cubic terms, the quartic terms carry no intrinsic meaning as the normal form
transformation is only uniquely determined up to cubic terms.

As we show in the proof Proposition 7.1, the normal form energy Ẽn
NF (W,Q) can be

expressed up to quartic terms as a function of diagonal variables (W, R) in the form

En
NF (W, R) = E0(∂

n−1W, ∂n−1R) + gB(W,W,W) + A(W, R, R).
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with trilinear forms A and B whose symbols we have computed.
We further remark that while the normal form expression has singularities at frequency

zero, no such singularities are present in the normal form energy. This is due to symmetriza-
tion cancellations akin to some form of null condition. Even better, neither W nor Q can
appear undifferentiated in the above cubic terms.

The chief disadvantage of the normal form energy, which due to the fact that our problem
is quasilinear, is that the quartic and higher terms in its time derivative d/dtEn

NF are highly
unbounded. Thus there is no hope to prove the bound (8.2) for it, neither does (8.1) hold,
for that matter.

To better isolate the above difficulty, we have decomposed the normal form energy into
two parts,

En
NF = En

NF,high + En
NF,low,

where

En
NF,high(W, R) = E0(∂

n−1W, ∂n−1R) + gBhigh(W,W,W) + Ãhigh(W, R, R),

En
NF,low(W,Q) = gBlow(W,W,W) + Alow(W, R, R).

Here the lower order part is quite complicated algebraically, but has the virtue that it does
not cause difficulties neither in (8.1) nor in (8.2). The high frequency part, on the other
hand, has the advantage that we can compute it explicitly. Precisely, by Proposition 7.1 we
have

(8.23)

Bhigh(W,W,W) := 〈∂n−1W, ∂n−1W〉−4nReW+ 1

2
(1+T 2)ReW,

Ahigh(W, R, R) := −〈∂n−1R, T −1∂n−1Rα〉−4nReW− 1

2
(1+T 2)ReW

− 2〈W∂(n−1)R, T −1∂(n−1)Rα〉+ 2〈∂(n−2)WRα, T −1∂(n−1)Rα〉.
This is the part we need to further modify and adapt to the quasilinear structure of our

problem.

2. Construct the quasilinear modified energy. Here we construct the quasilinear
modified energy En,(3), starting from the normal form energy En

NF (W, R). Inspired by the
expression for the high frequency part En

NF,high(W, R) of the normal form energy, one is

naturally led to consider the high frequency quasilinear modified energy E
(3)
high(w, r) where

(8.24) E
(3)
high(w, r) :=E

(2)
lin(w, r)−

1

4
E

(2)
ω,lin(w, r).

Comparing the two, we would like them to agree to cubic order. This is not exactly the case,
however the next best thing happens, namely that the cubic part of the difference is lower
order:

Lemma 8.11. The trilinear form Λ≤3(En
NF (W, R)− E

(3)
high(w, r)) is a lower order form in

(W, R), where n ≥ 1.

The lemma is proved later in this section.
Based on this, we define

En,(3) = E
n,(3)
high + E

n,(3)
low ,
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where

E
n,(3)
low = En

NF,low + Λ≤3(En
NF − E

n,(3)
high (w, r)).

This guarantees that we have the relation

(8.25) Λ≤3En,(3) = Λ≤3En
NF .

3. En,3 is a good quasilinear cubic energy. In other words we want to prove that the
estimate in Proposition (8.10) holds. In view of (8.22) and (8.25) it follows that for solutions
to (1.6) we have

(8.26) Λ≤3 d

dt
En,(3) = 0.

Thus, we obtain
d

dt
En,(3) = Λ≥4 d

dt
E

n,(3)
low + Λ≥4 d

dt
E

n,(3)
high .

This relation allows us to split the task of proving bounds for En,(3) into separate bounds for
the high, respectively the low frequency part. Precisely, it remains to establish the following:

Lemma 8.12. The high frequency part E
n,(3)
high satisfies the bounds

(8.27) E
n,(3)
low = ‖(∂n−1W, ∂n−1R)‖2H +O(A)N2

n,

respectively

(8.28)

∣

∣

∣

∣

Λ≥4

(

d

dt
E

n,(3)
high

)
∣

∣

∣

∣

.A ABN2
n.

Lemma 8.13. The (cubic) low frequency part E
n,(3)
low satisfies the bounds

(8.29) E
n,(3)
low = O(A)N2

n,

respectively

(8.30)

∣

∣

∣

∣

Λ≥4

(

d

dt
E

n,(3)
low

)
∣

∣

∣

∣

.A ABN2
n.

To conclude the proof of Proposition 8.2 it remains to prove the three lemmas above.
This is the same argument as in [8], but here it is slightly more complicated, at least at the
computational level.

Proof of Lemma 8.11. We first expand the expression Λ≤3(En
NF,high(W, R) − 1

2
E

(3)
high(w, r))

for the case n ≥ 3 and express the result in terms of (W, R). Up to cubic terms the expansion
of (w, r) is

{

Λ≤3w = W(n−1) − 2nP[ReW ·W(n−1)]

Λ≤3
r = R(n−1) − 2nP[ReW · R(n−1)] +WR(n−1) −RαW

(n−2) + (2n− 1)WαR
(n−2).

Before substituting the expansion of (w, r) into the energy formulas, we observe that the
projection P can be dropped off; moreover the last term in the quadratic expansion of r
only contributes to lower order terms based on the definition provided in the earlier section.
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Thus, we can also omit this term. The explicit quadratic and cubic terms showing up in the

expression of E
(3)
high(w, r)) are

(8.31)

Λ≤3E
(3)
high(w, r)) = Λ≤3

(

E
(2)
lin(w, r)−

1

2
E

(2)
ω,lin(w, r)

)

=
〈

W(n−1),W(n−1)
〉

g
+
〈

LR(n−1), LR(n−1)
〉

+
〈

W(n−1),ReW ·W(n−1)
〉

−4ng
+
〈

W(n−1),W(n−1)
〉

gω

−
〈

T −1R(n),−4nReW ·R(n−1) + 2R(n−1)W − 2RαW
(n−2)

〉

− 1

2

〈

W(n−1),W(n−1)
〉

gω
− 1

2

〈

LR(n−1), LR(n−1)
〉

ω
,

where ω = (1 + T 2) ReW.
It remains to compare the result with the expression of Λ≤3En

high,NF (W, R), which we
recall below:

Λ≤3En
NF,high(W, R) = E0(∂

n−1W, ∂n−1R) + gBhigh(W,W,W) + Ahigh(W, R, R),

where Bhigh(W,W,W), Ahigh(W, R, R) are given in (7.2).
First we observe that the first line of the expansion in (8.31) is in fact E0(∂

n−1W, ∂n−1R).
The terms on the second line in (8.31) together with the first term on la last line are the terms
appearing in gBhigh modulo a commutator, which yields a lower order term; the commutator
is

[T ,ReW] ReW(n−1).

We return to the remaining terms in (8.31) and observe that the first term in the expansion
of the inner product on the third line together with the last term on la last line match (after
integrating by parts) the first term in the expansion of Ahigh, (7.2), up to the commutators

[L, ω] Im(LR(n−1)), [L, ω]T Re(LR(n−1)),

which are again lower order terms.
Lastly, the last two terms, −

〈

T −1R(n), 2R(n−1)W
〉

and
〈

T −1R(n), 2RαW
(n−2)

〉

, are a per-
fect match to the remaining terms in Ahigh.

For the case n = 2 the computation is similar but simpler. The last three terms in Λ≤3

no longer appear, whereas in the expression for Ahigh(W, R, R) in (7.2) the last two terms
also cancel.

�

Proof of Lemma 8.12. This is a direct consequence of Lemma (8.10).
�

Proof of Lemma 8.13. We recall that En,3
low is a trilinear expression of the form

En,3
low = gBlow(W,W,W) + Alow(W, R, R),

where Blow and Alow are translation invariant trilinear forms. To begin with, we note that
the exact form of the terms in En,3

low is irrelevant here. All that matters is their symbol class,
which we now recall. In the case of Blow, the symmetric symbol Blow(ξ, η, ζ) satisfies

Blow ∈ ES(dρ2n−3),
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while in the case of A, the symbol Alow(ξ, η, ζ) is only symmetric in the last two variables
and satisfies

Alow ∈ ES(ρ2n−2) + ES(dd1ρ
2n−3).

Here d, d1 measure the distance to the axes as follows:

d = 1 +min{|ξ|, |η|, |ζ |}, d1 = 1 +min{|η|, |ζ |}.
We recall that we can eliminate the exponentials in the symbols at the expense of replacing
some of the arguments (W, R) by their complex conjugates.

We begin with the estimate (8.29). By applying a standard trilinear Littlewood-Paley
decomposition combined with a standard separation of variables argument we can thus write
Blow as a sum of a rapidly convergent series

Blow(W,W,W) =
∑

1≤j≤k

2j2(2n−3)k
∑

m

∫

χm,1
j,k (D)Wj · χm,2

j,k (D)Wk · χm,3
j,k (D)Wk dα.

Here complex conjugates are also allowed, and the symbols χm,i
j,k (ξ) have the following prop-

erties:

(i) They are smooth on the respective dyadic scales 2j, respectively 2k uniformly with
respect to j, k.

(ii) They are rapidly decaying in m, also uniformly with respect to j, k.

In particular the multipliers χm,i
j,k (D) are uniformly bounded in all Lp spaces and rapidly

decaying with respect to m. Hence, we immediately obtain the following bound for Ãlow:

|Blow(W,W,W)| .
∑

1≤j≤k

2j2(2n−3)k‖Wj‖L∞‖Wk‖2L2

. sup
j

‖Wj‖L∞

∑

k

2(2n−2)k‖Wk‖2L2

≤ g−1AN2
n.

The computation is only slightly more involved for Alow. We only discuss the ES(dd1ρ
2n−3)

part, as the analysis for the lower homogeneity part ES(ρ2n−2) is similar but simpler. We
need to consider two cases depending on whether theW factor or anR factor is low frequency.
We obtain

|Alow(W,R,R)| .
∑

1≤j≤k

2j2(2n−2)k‖Wj‖L∞‖Rk‖2L2 + 22j2(2n−3)k‖Rj‖L∞‖Wk‖L2‖Rk‖L2

. sup
j

‖Wj‖L∞

∑

k

2(2n−1)k‖Rk‖2L2+sup
j

2
j
2‖Rj‖L∞

∑

k

2(2n−
3

2
)k‖Wk‖L2‖Rk‖L2

≤ AN2
n.

Now consider the bound (8.30), where we write

Λ≥4 d

dt
Blow(W,W,W) = 3Blow(Λ

≥2∂tW,W,W),

respectively

Λ≥4 d

dt
Alow(W, R, R) = Alow(Λ

≥2∂tW, R, R) + 2Alow(∂tW,Λ≥2R,R).
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For the time derivatives of W and R we separate the leading order transport term, precisely
its paraproduct part, writing

Λ≥2∂tW = (∂t + Tb∂α)W − Tb∂αW,

and similarly for R. Here by a slight abuse of notation we include the contribution of the low
frequencies in b in Tb. This is because we do not have good control over the low frequencies
of b, so these cannot be bounded perturbatively, and instead must be treated only in a
commutator type fashion.

The first term has better regularity, and its contribution is treated perturbatively. Pre-
cisely, a computation similar to the one above applies provided we can establish the pointwise
bounds

(8.32) ‖Λ≥2(∂t + Tb∂α)W‖B0,∞
∞

+ g−
1

2‖Λ≥2(∂t + Tb∂α)R‖
B

1
2
,∞

∞

.A AB,

respectively the L2 bounds

(8.33) ‖Λ≥2(∂t + Tb∂α)W‖
H

n−
3
2
+ g−

1

2‖Λ≥2(∂t + Tb∂α)R‖Hn−1 .A ANn.

Both of these are proved in Lemma A.16 in the Appendix.
For the contribution of the transport term, on the other hand, we need to capture some

cancellation. We discuss the case of the form Blow, as Alow is similar. In the product case,
this cancellation is a simple integration by parts, based on the formula

∫

b∂αW1W2W3 +W1b∂αW2W3 +W1W2b∂αW3 dα = −
∫

bαW1W2W3 dα,

where the derivative is moved onto b. In our case, however, we need to contend instead with
factors which at frequency 2j have the form χj(D)(b<j∂αWj).

As a preliminary observation, we remark that we can commute out the coefficient b<j , by
writing

χj(D)(b<j∂αWj) = b<jχj(D)∂αWj + [χj(D), b<j]∂αWj.

Here the commutator term can be expressed in the form

[χj(D), b<j]∂αWj = L(∇b<j ,Wj),

where L stands for a translation invariant bilinear form with integrable kernel. Then one
can directly use the bounds in Lemma A.12 for b to show that this term satisfy the same
bounds as in (8.32), (8.33), and thus can be treated perturbatively.

Once we have discarded the commutator term, we can include χj(D) into Wj for brevity,
and then we are left with having to estimate an expression of the form

I =

∫

b<j∂αWj ·Wk ·Wk +Wj · b<k∂αWk ·Wk +Wj ·Wkb<k∂αWk dα.

Separating the expression b<k in all factors we can integrate by parts and obtain

I = −
∫

∂αb<kWj ·Wk ·Wk dα−
∫

b[j,k]∂αWj ·Wk ·Wk dα.

Now in the first integral we group the product ∂αb<kWk, which again satisfies the same
bounds as in (8.32), (8.33). In the second integral the derivative yields a 2j factor, and now
the expression 2jb[j,k] is even better than ∂αb<k. �
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8.5. The quasilinear modified energy for n = 1, small data. In this section we con-
struct a first order energy with cubic estimates, E1,(3), which satisfies the bounds in Proposi-
tion 8.2. This energy is obtained following the same procedure as in the case n ≥ 2 presented
before, but with some minor computational differences, which we now describe.

One main source of differences is the expression for Ahigh which is slightly different here.
Also in this case it is no longer meaningful to do the exponential conjugation. Because of
this, it is now convenient to set up the quasilinear correction to the normal form energy in
a more direct fashion,

E
1,(3)
high = E

(3)
high(W, R) + E(3),a(W, R),

where the extra component

E(3),a(W, R) = −2〈W,W2〉+ 2〈R,WT −1Rα〉

mirrors the similar correction in the infinite bottom case [8].
An advantage of doing this is that the remaining lower order cubic part

E
1,(3)
low = Blow(W,W,W) + Alow(R,R,W)

contains only terms whose symbol is not only lower order on the diagonals but also away
from them, namely their symbols satisfy

(8.34) Blow ∈ S(ρ−1), Alow ∈ S(1).

This is due to the similar gain in Proposition 7.1.
With these definitions we remark that Lemma 8.11 is still valid. For that we need to match

the terms in Λ≤3(En
NF,high(W, R)) to the terms in Λ≤3(1

2
E

1,(3)
high (W, R)). The computations

are similar to the ones we did for the case n ≥ 2 but simpler.
Further, the statements of Lemmas 8.12, 8.13 remain unchanged. It remains to prove

Lemmas 8.12,8.13 in this context.

Proof of Lemma 8.12, n = 1. The bound (8.27) is straightforward. The E
(3)
high part of (8.28)

is also exactly as before in view of Lemma 8.4. It remains to prove the extra correction
E(3),a(W, R) also satisfies (8.28). For convenience we state this in a separate lemma:

Lemma 8.14. The cubic correction E(3),a satisfies the bounds

(8.35) E(3),a .A AN
2
1,

respectively

(8.36)

∣

∣

∣

∣

Λ≥4

(

d

dt
E(3),a

)
∣

∣

∣

∣

.A ABN2
1.

Proof. The first bound is straightforward, but the second does require some computations.
We consider both correction terms

I1 =
〈

W,W2
〉

, I2 =
〈

R,WT −1Rα

〉

,

and discuss each of them separately.
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To estimate their derivatives it is easiest to use the unprojected form (1.8) of the equations
for W and R, which for our purposes here we write in the form

(8.37)







(∂t + b∂α)W = −bα(1 +W) + R̄α := G

(∂t + b∂α)R = i
gW − a

1 +W
:= K.

For G and K we only need their quadratic parts and higher,

G2+ = −bαW +P[RȲ ]α, K2+ = −(igW − a1)W + a

1 +W
.

Then we have

Λ≥4

(

d

dt
I1

)

= −
〈

bWα,W
2
〉

− 〈Wα, 2bWWα〉+
〈

G2+,W2
〉

+ 2
〈

W,WG2+
〉

.

Distributing derivatives and using Corollary A.8, we separate the terms with undifferen-
tiated b as

−
〈

bWα,W
2
〉

−
〈

Wα, b∂α(W
2)
〉

=−
〈

bWα,W
2
〉

++
〈

T −1∂α[bT W],W2
〉

=
〈

(−b∂α + T −1∂αbT )W,W2
〉

.

Note that we can express this as the sum of two terms, as shown below
〈

T −1∂α[b , T ]W,W2
〉

+
〈

bαW,W2
〉

,

where both can be easily controlled by ABN1 using Lemma A.9 followed by Lemma A.18.
The contribution of G2+ is harmless since all the terms in G2+ are bounded in L2,

‖G2+‖L2 .A BN1.

We now return to the last correction term, I2:

Λ≥4

(

d

dt
I2

)

= 〈Rt,WT −1Rα〉+ 〈Rt,WT −1Rα〉+ 〈Rt,WT −1Rα〉.

The argument for this expression is slightly more involved. We proceed as in the proof of
Lemma 8.13, but with some extra care. We begin with a Littlewood-Paley decomposition

〈R,WT Rα〉 =
∑

k,k1,k2≥0

〈Pk1R,Pk2WT −1Pk3Rα〉,

and similarly for the time derivative. For the above summand to be nonzero, we need the
two highest frequencies to be comparable. We first distinguish two easier cases:

(i) If min{k, k1, k2} . 1, and the time derivative applies to the low frequency. Then the
time differentiated factor is bounded in L2 ∩ L∞, and the two remaining factors are
estimated in L2 or L∞ as needed.

(ii) If k < k1 = k2, then we take advantage of the fact that our factors are holomorphic,
and thus have exponential decay at positive frequencies. Thus we obtain an e−Nk1

gain which is more than enough for all our estimates.

This leaves us with two principal cases, namely the sums:

J1 = ∂t
∑

k>4

∫

R̄kWkR≤k,α dα, J2 = ∂t
∑

k>4

∫

R̄kW≤kRk,α dα.

65



To estimate their time derivatives we use again the decomposition

∂tW = (∂t + Tb∂α)W − Tb∂αW, ∂tR = (∂t + Tb∂α)R − Tb∂αR.

For the first term in each decomposition we have the estimates in Lemma A.16. Using
them, the bounds for the corresponding contributions to J1 and J2 are somewhat tedious
but routine. It remains to consider the Tb contributions, which are

J b
1 =

∑

k>4

∫

b<kR̄k,αWkR≤k,α + R̄kb<kWk,αR≤k,α + R̄kWk∂α(TbR̄≤k,α) dα,

J b
2 =

∑

k>4

∫

b<kR̄k,αW≤kRk,α + R̄kTbW≤k,αRk,α + R̄kW≤k∂α(b<kRk,α) dα.

Integrating by parts we rewrite these integrals as

J b
1 =

∑

k>4

∫

R̄kWk∂α((Tb − b<k)R̄≤k,α) dα,

J b
2 =

∑

k>4

∫

R̄k(Tb − b<k)W≤k,αRk,α dα.

Here the expressions (Tb−b<k)R̄≤k,α, respectively (Tb−b<k)W≤k,α are of the same type as the
expressions considered in Lemma A.16 as part of (∂t + Tb∂α)R, respectively (∂t + Tb∂α)W.
Thus they also satisfy the bounds in Lemma A.16, and the desired conclusion follows.

�

Proof of Lemma 8.13, n = 1 . Because of the better bounds for the lower order terms in
(8.34), this proof is straightforward and is omitted. �

�

9. Proof of the main results

Given the estimates obtained in the previous sections both for the main evolution 1.6 and
for the linearized equation, the proof of the main results in Theorem 1 and Theorem 2 are
fairly routine. Thus, in this section we provide an outline of the proofs only. For a more
in-depth exposition of arguments of this type we refer the reader to the earlier article [8]
devoted to the infinite depth problem. We will however emphasize the differences between
the finite and infinite depth case.

Proof of Theorem 1, outline. Due to scaling considerations we can work with h = 1 and
g . 1. The main steps in the proof are as follows:

1. Existence of regular solutions. Here we start with initial data (W,Q)(0) ∈ L2 × H
1

2

and (W, R)(0) ∈ Hn ×Hn+ 1

2 with n ≥ 2, which has extra regularity both at low frequency
and at high frequency. For such data, local in time solutions are constructed as weak limits
of solutions for a frequency localized system. In doing this it is convenient to work with the
differentiated equation (1.8), in order to have the equations in diagonalized form. For this
the argument in [8] applies almost identically.
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We note one advantage of working with the holomorphic coordinates, namely that the free
water surface is not required to be a graph. If it were not for this, we could simply use the
local well-posedness result in [1] or [12].

2. Uniqueness of regular solutions. Here we consider two solutions (W1, Q2) and (W2, Q2)
with regularity (Wj , Qj) ∈ C([0, T ];H) and (Wj, Rj) ∈ C([0, T ];Hn) with n ≥ 2, and show
that if their initial data agree then the two solutions must be equal. Note that while more
regularity is assumed at high frequency, that is no longer the case at low frequency.

For the proof one subtracts the two sets of equations, estimating the difference of the
two solutions for the differentiated equation (1.8). The key point is that up to perturbative
terms, the difference (w, r) = (W1−W2, R1−R2) solves a linear system similar to our model
evolution for the linearized equation (5.4). Then one can conclude the proof of uniqueness
in a standard manner using Gronwall’s inequality.

3. Lifespan bounds in terms of the H1 size of the data. The lifespan of solutions con-
structed above depends both on the Hn size of the data (W, R)(0) and on g. Here we show
that we can in effect obtain lifespan bounds which depend only on the H1 size of the data
and which are independent of g. To be precise, we take initial data which satisfy the bounds

(9.1) ‖(W,Q)(0)‖H ≤ gM0, ‖(W, R)(0)‖H ≤ gM0, ‖(Wα, Rα)(0)‖H ≤ M0,

as well as the pointwise bounds

(9.2) ‖Y (0)‖L∞ ≤ K0, ImW + 1 ≥ c0 > 0.

Then we will show that there exists T = T (M0, Y0, c0) so that the solutions exist on [−T, T ]
with similar bounds.

For the proof we use a bootstrap argument, assuming that the following bounds hold in
[0, T ]:

(9.3) ‖(W,Q)‖H ≤ gM, ‖(W, R)‖H ≤ gM, ‖(Wα, Rα)‖H ≤ M,

as well as the pointwise bounds

(9.4) ‖Y ‖L∞ ≤ K, W + 1 ≥ c > 0.

Then we need to show that for a suitable choice of M, K, c depending on M0, K0 and c0 but
not on g we can improve all these bounds. Through the following computations we denote
by C0 various constants which only depend on M0 and K0.

We begin by observing that by Sobolev embedding our control parameters satisfy

A,B ≤ C(M,K), a ≥ cg.

Hence by the energy estimates for the differentiated equation in Proposition 8.1 we obtain

‖(W, R)(0)‖H ≤ gc−1C0(1 + tC(M,K)), ‖(Wα, Rα)‖H ≤ c−1C0C(K)(1 + tC(M,K)),

where the K dependence in the second bound is caused by the need to invert a 1+W factor,
see [8] for a full argument.

To bound (W,Q) in time we use the equations directly to obtain

‖(W,Q)‖H ≤ g(C0 + tC(M,K)).

To bound Y in L∞ we reuse the argument in [8], which yields

‖Y (t)‖2L∞ ≤ C0(1 + tC(M,K)).
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Finally, to bound ImW from below we use directly the W equation to obtain

(∂t + ReF∂α) ImW = (1 + ReWα) Im

(

R

1 + W̄

)

,

which yields

inf
α∈R

1 + ImW (t, α) ≥ c0 − tC(M,K).

Summarizing, in order to close the bootstrap we need to have the bounds

M > C0c
−1C(K)(1 + tC(M,K)), K2 > C0c

−1(1 + tC(M,K)), c < c0 − tC(M,K).

This is achieved by first choosing c = c0/2, then K large enough K2 = 2C0c
−1 next M large

enough M = 2C0C(K)c−1, and finally a small enough T < T (M,K, c).

4. Hn solutions for n ≥ 2. Here we relax our low frequency regularity assumption for the
data to (W,Q)(0) ∈ H, while keeping the high frequency regularity (W, R)(0) ∈ Hn, n ≥ 2,
and prove that solutions still exist. By Step 2, such solutions are also unique. To obtain such
solutions we consider a sequence of data (Wn, Qn)(0) with regularity (Wn, Qn)(0) ∈ L2×H 1

2

so that

(Wn, Qn)(0) → (W,Q)(0) in H, (Wn, Rn)(0) → (W, R)(0) in H2.

This is easily achieved by cutting off the low frequencies

(Wn, Qn)(0) = P>−n(W,Q)(0).

For n large enough this family of data is uniformly bounded in the sense of (9.1), so by the
previous step they generate solutions (Wn, Qn) with uniform bounds life-span. But then the
estimates on the linearized equation in Section 5 show that the sequence (Wn, Qn) converges
to some (W,Q) uniformly in the H topology. Due to the uniform bounds on (Wn, Qn)
this linearly yields (Wn, Qn) → (W,Q) in H2−. Thus R is well defined and we also have
(Wn, Rn) → (W, R) in H1. Using now the uniform bounds on (Wn, Rn) we obtain weak
convergence (Wn, Rn) → (W, R) in H2, and strong convergence in all weaker topologies.
Thus we have obtained the desired solutions (W,Q).

5. Rough solutions. Here we show that the solution operator constructed above for data
(W,Q)(0) ∈ H with (W, R)(0) ∈ H2 extends continuously to data with only (W,Q)(0) ∈ H
and (W, R)(0) ∈ H1.

Indeed, consider some data which only satisfies the latter requirement. Then we regularize
the data (W,Q)(0) to (Wn, Qn)(0) = P<n(W,Q)(0). This linearly guarantees convergence

|(Wn, Qn)(0)− (W,Q)(0)| → 0 in H2,

which also shows that Wn(0) → W(0) uniformly, and also

(Wn, Rn) → (W, R) in H1.

Now we turn our attention to the key point, which is to improve this last convergence to
H1. We will in effect do slightly better than that, and for this we need to work with slowly
varying frequency envelopes. Precisely, we have the following:
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Lemma 9.1. Let {cn}n≥0 be a slowly varying frequency envelope for (W, R)(0) in H1. Then
we have the estimate

2
3

2
n‖(Wn, Rn)(0)− P<n(W, R)(0)‖H + 2−n‖(Wn, Rn)(0)‖H2 .A cn.

We note that this lemma not only shows that (Wn, Rn)(0) → (W, R)(0) in H1, but also
that they share the common cn frequency envelope.

Proof. We drop the “(0)” notation for this proof. Only the R part of the bounds is nontrivial.

Expressing all in terms of R and W , for the first expression above we need to bound in H
1

2

the difference
1

1 + P<nW
P<n[R(1 +W)]− P<nR =

1

1 + P<nW
(P<n[RW]− P<nRP<nW).

We will bound the last difference in L2 using the usual paradifferential decomposition. We
can express it as

P<N [RW]− P<nRP<nW = Π(PnR,PnW) + [P<n, R<n−4]PnW + [P<n,W<n−4]PnR.

Estimating the high frequency factors in L2 and the low frequency factors in L∞ we obtain

‖P<n[RW]− P<nRP<nW‖L2 . A2−
3

2
ncn.

The Rn bound in the second expression above is easier and is left for the reader. �

Once we have uniform bounds for (Wn, Rn)(0) in H1, by the previous step it follows that
the corresponding solutions (Wn, Rn) have a uniform life-span, with uniform bounds. Our
next goal is to show that the frequency envelope bounds are inherited also by the solutions.

Lemma 9.2. Let (Wn, Qn) be the solutions associated to the initial data as above. Then we
have the estimates

(9.5) ‖(Wn+1, Qn+1)− (Wn, Qn)‖H .A,B 2−2n

(9.6) ‖(Wn, Rn)‖H2 .A,B 2ncn,

respectively

(9.7) ‖(Wn+1, Rn+1)− (Wn, Rn)‖H .A,B 2−ncn.

Proof. Given theH2 bound for the initial data (Wn, Qn)(0) in the previous lemma, the bound
(9.6) is a direct consequence of our higher order energy bounds.

For (9.5) we will use instead the linearized equation. Precisely, we now interpret n as a
continuous parameter. Then the functions

(w, q) =
d

dn
(Wn, Qn)

solve the linearized equation, and have initial data (w, q)(0) = Pn(W,Q)(0) localized at fre-
quency 2n. Considering now the diagonalized variables (w, r) = (w, q+RT 2w), an argument
similar to the proof of Lemma 9.1 shows that their data satisfies

(9.8) ‖(w, r)(0)‖H . 2−2ncn.

Applying the bounds for the linearized equation Theorem 5.1 we extend the estimate (9.8)
along the flow,

(9.9) ‖(w, r)‖H . 2−2ncn
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For the estimate (9.7) we first bound the high frequency part using the H2 bound (9.6).
Precisely,

‖P>n+1(Wn+1, Rn+1)‖H + ‖P>n(Wn, Rn)‖H . 2−ncn,

where the constant is independent of n.
To bound the low frequency part we define

(w1, r1) =
d

dn
(Wn, Rn).

We observe that in terms of (w, r) we have

(w1, r1) = (wα, rα +Rn(1 + T 2)wα + (Rn)αT 2w).

A simple application of the usual Littlewood-Paley trichotomy then yields the estimate

(9.10) ‖P<n(w1, r1)‖H .A 2n‖(w, r)‖H.
From the estimate (9.9) we gain an H bound for (w, q), which integrated between [n, n+1]

yields (9.5). On the other hand, we have

d

dn
P<n(Wn, Rn) = P<n(w1, r1) + Pn(Wn, Rn),

where the second term may again be bounded using (9.6). Integrating (9.10) we obtain (9.7).
�

The bounds in the last lemma insure not only that the sequence (Wn, Qn) converges
strongly to a solution (W,Q) in the sense that

(Wn, Qn) → (W,Q) uniformly in H2

(Wn, Rn) → (W, R) uniformly in H1

but also that (W, R) inherits the same frequency envelope {cn} in H1.
Once we have constructed the rough solutions (W,Q) as the unique limit of the regularized

problems, the frequency envelope bounds easily lead to continuous dependence with respect
to data. This is a standard argument; for which we refer the reader to [8].

�

Proof of Theorem 2, outline. Using the spatial scaling , it suffices to assume that h = 1.
Given the initial data (W,Q)(0) for (1.6) satisfying

g−1‖(W,Q)(0)‖H + g−1‖(W, R)(0)‖H + ‖(Wα, Rα)(0)‖H ≤ ǫ,

we consider the solutions on a time interval [0, T ] and seek to prove the estimate

(9.11) g−1‖(W,Q)(t)‖H + g−1‖(W, R)(t)‖H + ‖(Wα, Rα)(t)‖H ≤ Cǫ, t ∈ [0, T ],

provided that T is much smaller than ǫ−2. In view of our local well-posedness result this
shows that the solutions can be extended up to time Tǫ = Cǫ−2, concluding the proof of the
theorem.

In order to prove (9.11) we use a bootstrap argument; we make the bootstrap assumption

(9.12) g−1‖(W,Q)(t)‖H + g−1‖(W, R)(t)‖H + ‖(Wα, Rα)(t)‖H ≤ 2Cǫ, t ∈ [0, T ].

From (9.12), and by Sobolev embedding theorem, (1.15) and (1.16), our control norms A
and B satisfy

A,B . Cǫ.
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To bound (W,Q) in time we directly use the conserved energy E . Using the expression
(1.7) for E we see that

E = (1 +O(A))E0(W,Q).

Hence, using the bootstrap assumption (9.12) we obtain

‖(W,Q)‖H . g(ǫ+ Cǫ2).

The bound for (W, R) can be obtained from the cubic energy estimates already established
for the differentiated equation in Proposition 8.2. To obtain such a bound we first need to
recall that the cubic energy estimate in there is in terms of the control norm N1, which is
now taken uniformly in time. Explicitly, we integrate (8.2) in time

(9.13) E1,(3)(W, R)(t) . E1,(3)(W, R)(0) + TABN2
1,

and use (8.1) to obtain

(9.14) E0(W, R)(t) . E0(W, R)(0) + TABN2
1 + AN2

1.

We further need control of N1 norm, and this follows from

(9.15) N2
1 .A E0(W,Q) + E0(W, R),

where the first term on the right is needed in order to account for the low frequencies in
(W, R). Thus, we arrive at

‖(W, R)‖2L∞(0,T ),H .E0(W, R)(0) + TAB sup
t∈[0,T ]

(E0(W,Q)(t) + E0(W, R)(t))

+ A sup
t∈[0,T ]

((E0(W,Q)(t) + E0(W, R)(t)),

and using the bootstrap assumptions (9.12) we get

‖(W, R)‖H . g(ǫ+ TC2ǫ3 + Cǫ2).

The bound (Wα, Rα) is obtained in the same way as above

‖(Wα, Rα)‖2L∞(0,T ),H . E0(W, R)(0)

+ TAB sup
t∈[0,T ]

(E0(W,Q)(t) + E0(W, R)(t) + E0(Wα, Rα)(t))

+ A sup
t∈[0,T ]

((E0(W,Q)(t) + E0(W, R)(t) + E0(Wα, Rα)(t)),

and using the bootstrap assumptions (9.12) we get

‖(Wα, Rα)‖H . ǫ+ TC2ǫ3 + Cǫ2.

Hence, the estimate in (9.11) follows provided that C ≫ 1 and T ≪ C−1ǫ−2. Similar
bootstrap argument applies for higher derivatives. �
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Appendix A. Multilinear estimates

A.1. Some harmonic analysis results. In this section we collect a number of elementary
estimates that will allow us to adapt the estimates established in infinite depth case [8] to
the finite depth setting.

We take an inhomogeneous Littlewood-Paley decomposition I = S0+
∑

j≥1 Pj and denote

f0 = S0f, fj = Pjf, j ≥ 1.

We define the inhomogeneous Besov space Bs,p
q with norm

‖f‖q
B

s,p
q

=
∑

j≥0

‖〈D〉sfj‖qLp,

with the usual modification when q = ∞. We also define the inhomogeneous space bmo of
functions of bounded mean oscillation with norm

‖f‖bmo = ‖f‖BMO + ‖f0‖L∞ ,

where

‖f‖BMO = sup
Q

1

|Q|

∫

Q

|f − fQ| dα, fQ =

∫

Q

f dα,

and the supremum is taken over all intervals Q ⊂ R. We recall that B0,∞
2 ⊂ bmo ⊂ B0,∞

∞ .
We define the corresponding bmo-Sobolev spaces by

‖u‖bmos = ‖〈D〉su‖bmo.

We define the paraproduct operators

Tfg =
∑

j>4

f<j−4gj, Π[f, g] =
∑

|j−k|≤4
j,k≥0

fjgk,

and the associated product decomposition

fg = Tfg + Tgf +Π[f, g].

We then have the following estimates (see for example [8, Propositions 2.2, 2.6]):

Lemma A.1 (Paraproduct bounds).
a) Coifman-Meyer paraproduct estimates. For 1 < p <∞ and s, σ ≥ 0,

(A.1)
‖〈D〉sT〈D〉σuf‖Lp . ‖f‖bmos+σ‖u‖Lp,

‖〈D〉sΠ[f, 〈D〉σu]‖Lp . ‖f‖bmos+σ‖u‖Lp.

b) Besov endpoint estimates. For s ≥ 0,

(A.2)
‖〈D〉sT〈D〉σuf‖L∞ . ‖f‖Bs+σ,∞

2

‖u‖
B

0,∞
2

, σ > 0

‖〈D〉sΠ[f, 〈D〉σu]‖L∞ . ‖f‖Bs+σ,∞
2

‖u‖B0,∞
2

, σ ≥ 0.

c) BMO endpoint estimates. For s ≥ 0,

(A.3)
‖〈D〉sT〈D〉σuf‖bmo . ‖f‖bmos+σ‖u‖bmo, σ > 0

‖〈D〉sΠ[f, 〈D〉σu]‖bmo . ‖f‖bmos+σ‖u‖bmo, σ ≥ 0.
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The following bounds, which are direct consequences of the classical Coifman-Meyer esti-
mates, are closely related:

Lemma A.2 (Commutator bounds).
a) Let M ∈ S1 be a smooth Fourier multiplier with principal symbol homogeneous of order

1. Then for 1 < p <∞ we have the estimate

(A.4) ‖[M, f ]u‖Lp . ‖fα‖L∞‖u‖Lp.

b) Let M ∈ Ss be a smooth Fourier multiplier with principal symbol homogeneous of order
s with 0 ≤ s < 1. Then for 1 < p <∞ we have the estimate

(A.5) ‖[M, f ]u‖Lp . ‖T f‖bmos‖u‖Lp.

We also need the following more involved estimate:

Lemma A.3. The following double commutator bound holds:

(A.6) ‖[[T L, b], L]‖L2→L2 . ‖bα‖bmo.

Proof. We consider the paradifferential decomposition of the multiplication by b. For the
map

u → Tub,

we have the bounds

‖Tub‖H1 . ‖u‖L2‖bα‖bmo, ‖Tub‖L2 . ‖u‖H−1‖bα‖bmo,

which follow from the first estimate in (A.1). Thus we can neglect the commutator structure.
Similarly, for the map

u→ Π[u, b],

we have the bounds

‖Π[u, b]‖H1 . ‖u‖L2‖bα‖bmo, ‖Π[u, b]‖L2 . ‖u‖H−1‖bα‖bmo,

from the second estimate in (A.1), and again we can neglect the commutator structure.
It remains to consider the contribution of Tb. For this we write

[Tb, T L]u =
∑

k

[b<k−4, T L]uk =
∑

k

2−
k
2Bk(∂αb<k−4, uk),

where Bk are translation invariant bilinear operators with uniformly integrable kernels. Com-
muting again we have

[[Tb, T L], L]u =
∑

k

∑

k

2−
k
2Bk([∂αb<k−4, L], uk) =

∑

k

2−kCk(∂
2
αb<k−4, uk),

where again Ck are translation invariant bilinear operators with uniformly integrable kernels.
Then we can bound

‖[[Tb, T L], L]u‖L2 .
∑

k

2−k‖∂2αb<k−4‖L∞‖uk‖L2 . ‖bα‖B0,∞
∞

‖u‖L2,

which suffices. �

We will make use of the following estimates for rapidly decaying Fourier multipliers:
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Lemma A.4. Let S be a Fourier multiplier with Schwartz symbol. Then for all real s, σ,
1 ≤ p ≤ ∞ and N ≥ 0 we have the estimate

(A.7) ‖〈D〉sSTf〈D〉σu‖Lp + ‖〈D〉sTfS〈D〉σu‖Lp .N ‖f‖
B

−N,∞
∞

‖u‖Lp.

Further, we have the commutator estimate

(A.8) ‖〈D〉s[S, Tf ]〈D〉σu‖Lp .N ‖T f‖
B

−N,∞
∞

‖u‖Lp.

Proof. This is a standard argument based on the classical Littlewood-Paley trichotomy. Due
to the frequency localization of the paraproduct operator Tf , the rapid decay in the symbol
of S transfers to both the input u, the factor f and to the output. This directly leads to the
derivative gains in the Lemma. �

The next result serves to bound commutators with the Tilbert transform T :

Lemma A.5. Let M be a Fourier multiplier whose symbol m(x) is bounded with m′(ξ) in
the Schwartz class. Then for 1 < p <∞ and s ≥ 0 we have the commutator estimates

(A.9)

‖〈D〉s[M, f ]〈D〉σu‖L2 . ‖T f‖bmos+σ‖u‖L2, σ ≥ 0

‖〈D〉s[M, f ]〈D〉σu‖L∞ . ‖T f‖Bs+σ,∞
2

‖u‖B0,∞
2

, σ > 0

‖〈D〉s[M, f ]〈D〉σu‖bmo . ‖T f‖bmos+σ‖u‖bmo, σ > 0.

Proof. By hypothesis we can split the multiplier M as

M = m(∞)P>10 +m(−∞)P<−10 + S,

where P>10 and P<−10 are multipliers whose symbols are smooth cutoff functions selecting
the indicated frequency regions, and S has Schwartz kernel. For the commutator with P>10

(and similarly with P<−10) we have

〈D〉s[P>10, Tf ]〈D〉σu>20 ≡ 0, 〈D〉s[P>10, f0]〈D〉σu0 ≡ 0.

The estimates then follow from Lemma A.1 as in the infinite depth case [8].
For the second term we write

〈D〉s[S, f ]〈D〉σu = 〈D〉s[S, Tf ]〈D〉σu+ 〈D〉s[S, f0]〈D〉σu≤4 + 〈D〉sST〈D〉σuf

− 〈D〉sTS〈D〉σuf + 〈D〉sSΠ[f≥1, 〈D〉σu]− 〈D〉sΠ[f≥1, S〈D〉σu].
The first and second terms term may be estimated using (A.8). The remaining terms may
be estimated using Lemma A.1. �

Finally we recall two Moser estimates, the first of which is classical, and the second from [8].

Lemma A.6. Let F be a smooth function such that F (0) = 0 then for s ≥ 0 and u ∈ L∞∩Hs

we have the Moser estimate

(A.10) ‖F (u)‖Hs .‖u‖L∞ ‖u‖Hs.

Similarly, for u ∈ bmos we have

(A.11) ‖F (u)‖bmos .‖u‖L∞
‖u‖bmos.
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A.2. Holomorphic functions on the strip. We recall the projection to holomorphic func-
tions is given by

Pu =
1

2

[

(1− iT ) Reu+ i(1 + iT −1) Im u
]

=
1

4

[

(2− iT + iT −1)u− i(T + T −1)ū
]

.

As a consequence,

RePu =
1

2

[

Re u− T −1 Im u
]

=
1

4

[

(1 + iT −1)u+ (1− iT −1)ū
]

,

ImPu = −1

2
[T Re u− Im u] =

1

4i
[(1− iT )u− (1 + iT )ū] .

We also recall the definition of the inner product, which is given by

〈u, v〉 =
∫

T Re u · T Re v + Im u · Im v dα

=
1

2
Re

∫

(T u · T v̄ + u · v̄) + (T u · T v − u · v) dα.

It is useful to understand the adjoints of multiplication operators with respect to this inner
product:

Lemma A.7. Let f be a complex-valued function. With respect the inner product 〈·, ·〉 the
adjoint of the operator Mf is

(A.12) M
∗
fu = T −1(P− P̄)

[

f̄T P[u]
]

.

Proof. Using that T ReP[v] = − ImP[v] and that T is skew-symmetric we may write the
inner product as

〈Mfu, v〉 =
∫

Re[fu] · T ImP[v]− Im[fu] · T ReP[v]

= −
∫

T Re u · T −1 Im(f̄T P[v]) + Im u · Re(f̄T P[v]).

As a consequence we have

M∗
fv = −T −2 Im(f̄T P[v])− iRe(f̄T P[v]).

Comparing this to the expression for P we obtain the formula (A.12). �

The following immediate consequence of the above Lemma is very handy to use:

Corollary A.8. If u and v are holomorphic functions in H then we have

(A.13) 〈fT u, v〉 = −〈u, f̄T v〉.

As our function spaces H, H lose a derivative at low frequency in the real component, for
a space X of complex-valued functions we define the norm

‖f‖2HX = ‖T Re f‖2X + ‖ Im f‖2X,
with the shorthand H = HL2. We will frequently use the following estimate for the commu-
tator with the projection to holomorphic functions:
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Lemma A.9. For s ≥ 0 we have the estimates

(A.14)
‖〈D〉s[P, f ]〈D〉σT g‖H . ‖f‖Hbmos+σ‖g‖H, σ ≥ 0

‖〈D〉s[P, f ]〈D〉σT g‖HL∞ . ‖f‖
HB

s+σ,∞
2

‖g‖
HB

0,∞
2

, σ > 0.

Proof. We may write the real and imaginary parts of the commutator as

T Re[P, f ]〈D〉σT g = 1

2
[T ,Re f ]〈D〉σ Im g − 1

2
[T , Im f ]〈D〉σT 2Re g

− 1

2
Im f(1 + T 2)〈D〉σT Re g,

Im[P, f ]〈D〉σT g = −1

2
[T ,Re f ]〈D〉σT Re g +

1

2
[T , Im f ]〈D〉σT Im g

+
1

2
Im f〈D〉σ(1 + T 2) Im g.

The estimates then follow from the commutator estimate A.9 and the paraproduct estimates
(A.1), (A.2) and (A.7), using that the operator 1 + T 2 has Schwartz symbol. �

Finally we prove the following lemma that allows us to estimate the product of two holo-
morphic functions in negative Sobolev spaces:

Lemma A.10. If f, g are holomorphic then for s > 0 and 2 ≤ p, q ≤ ∞ satisfying 1
p
+ 1

q
= 1

2

we have the estimate

(A.15) ‖fg‖H−s . ‖f‖Lp‖g‖B−s,q
2

.

Proof. For each j ≥ 0 we decompose

‖Pj[fg]‖L2 = ‖Pj[fg≤j+10]‖L2 + ‖Pj[fg>j+10]‖L2 .

The first term may now be estimated using dyadic decomposition. For the second term both
f, g must be localized at comparable dyadic frequencies ≫ 2j . In particular, one term must
be localized at negative wavenumbers and the other at positive wavenumbers. However, as
both terms are holomorphic we may harmlessly apply the projection P to each term, which
is rapidly decaying on positive wavenumbers. �

A.3. Water wave related bounds. We begin with the following result for the function Y
which follows directly from [8, Lemma 2.5] and Moser type estimates:

Lemma A.11. The function Y =
W

1 +W
satisfies the bounds

(A.16) ‖Y ‖
bmo

1
2
.A g

− 1

2B,

respectively

(A.17) ‖Y ‖Hn−1 .A g
− 1

2Nn, n ≥ 1.

Next we consider the advection velocity b:
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Lemma A.12. The the advection velocity b satisfies the estimates

‖T b‖
bmo

1
2
.A g

1

2A, ‖T b‖bmo1 .A B.(A.18)

respectively

(A.19) ‖T b‖
Hn−

1
2
.A Nn, n ≥ 1.

Proof. We write b = b1 + b2 where

b1 = 2ReR, b2 = −2ReP[RȲ ].

For b1 we have the estimate
‖T b1‖bmos ≤ ‖R‖bmos.

For b2 we may write P[RȲ ] = [P, R]Ȳ so

‖T b2‖bmos = ‖T Re[P, R]Ȳ ‖bmos.

As Y is antiholomorphic we have

T Re[P, R]Ȳ =
1

2
[T ,ReR] Re Ȳ − 1

2
[T , ImR] Im Ȳ − 1

2
ImR(1 + T 2) Re Ȳ .

For the first two terms we may use the commutator estimate (A.9) to obtain

‖[T ,ReR] Re Ȳ ‖bmos + ‖[T , ImR] Im Ȳ ‖bmos . A‖R‖bmos .

For the final term we simply use that 1 + T 2 has Schwartz symbol to estimate

‖ ImR(1 + T 2) Re Ȳ ‖bmos . A‖R‖bmos .

The proof of the L2-type bound follows in a similar manner. �

Next we prove a number of estimates for the real frequency shift a. Our estimates are
similar to [8, Proposition 2.6] although the present case is slightly more involved due to the
different projector P, as well as the extra term in a.

Lemma A.13. The following bounds hold for the frequency shift a:

(A.20) ‖a‖L∞ .A gA, ‖a‖
bmo

1
2
.A g

1

2B,

(A.21) ‖a‖Hn−1 .A g
1

2Nn

(A.22) ‖at + baα + g(1 + T 2) ReRα‖L∞ . gAB.

Proof. We recall that a = a+ a1 where

a = 2 ImP[RR̄α], a1 = g(1 + T 2) ReW.

We will prove the bounds in the Lemma separately for a and for a1.

1. L∞, bmo
1

2 and Hn−1 bounds. For a1 we use that 1+T 2 has Schwartz symbol to obtain

‖a1‖L∞ . g‖W‖L∞, ‖a1‖bmo
1
2
. g‖W‖

bmo
1
2
, ‖a1‖Hn−1 . g‖W‖Hn−1.

For a we use that PR̄α = 0 to write ImP[RR̄α] = Im[P, R]R̄α. We then apply the
commutator estimate (A.14) to obtain

‖a‖L∞ . ‖R‖2
B

1
2
,∞

2

, ‖a‖
bmo

1
2
. ‖〈D〉 1

2a‖L∞ . ‖R‖2
B

3
4
,∞

2

,
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and for the second of these we apply the interpolation estimate

‖R‖2
B

3
4
,∞

2

. ‖〈D〉 1

2R‖L∞‖R‖bmo1 .

For the Hn−1 estimate we first differentiate

∂n−1a = 2 Im

n−1
∑

k=0

P[R(k)R̄(n−k)].

If k ≥ 1 then we estimate by interpolation and if k = 0 then we apply the commutator
bound (A.14).

2. Transport equation bounds. For a1 we calculate

(∂t + b∂α)a1 + g(1 + T 2) ReRα = g(1 + T 2) Re [Wt + bWα +Rα]− ig[T , b]Wα.

The first term may be bounded using Lemmas A.1, A.4, the estimate (A.24) forM and that
1 + T 2 has Schwartz symbol. For the second term we apply the commutator estimate (A.9)
to obtain

‖g[T , b]Wα‖L∞ . g‖T b‖
B

3
4
,∞

2

‖W‖
B

1
4
,∞

2

.

By interpolation,

‖T b‖
B

3
4
,∞

2

. ‖T b‖
1

2

bmo
1
2

‖T b‖
1

2

bmo1
, ‖W‖

B
1
4
,∞

2

. ‖W‖
1

2

L∞‖W‖
1

2

bmo
1
2

.

and we may then apply the estimate (A.18) for b.
For a we have

(∂t + b∂α)a = 2 Im[P,P [Rt + bRα]]R̄α + 2 Im[P, R]∂αP̄
[

R̄t + bR̄α

]

+ 2 Im
(

b∂αP[RR̄α]−P
[

bRαR̄α

]

−P
[

R∂αP̄(bR̄α)
])

.

For the first two terms we apply the commutator estimate (A.14) to obtain
∥

∥2 Im[P,P [Rt + bRα]]R̄α

∥

∥

L∞
+
∥

∥2 Im[P, R]∂αP̄
[

R̄t + bR̄α

]
∥

∥

L∞

. ‖ ImP [Rt + bRα] ‖
B

1
4
,∞

2

‖R‖
B

3
4
,∞

2

.

We observe that

ImP [Rt + bRα] =
1

2
(g + a) ReY − 1

2
a+

1

2
T [(g + a) ImY ] ,

and hence

‖ ImP [Rt + bRα] ‖
B

1
4
,∞

2

. ‖a‖
B

1
4
,∞

2

(1 + ‖Y ‖L∞) + (g + ‖a‖L∞)‖Y ‖
B

1
4
,∞

2

.

and the estimate follows from interpolation and the estimates (A.20) for a and (A.16) for Y .
For the final term appearing in at + baα we must ensure that b does not appear undiffer-

entiated at low frequency. We start by dividing up dyadically according to the frequency of
the holomorphic term R:

b∂αP[RR̄α]−P
[

bRαR̄α

]

−P
[

R∂αP̄(bR̄α)
]

=
∑

j≥0

fj ,

where
fj = b∂αP[RjR̄α]−P

[

bRα,jR̄α

]

−P
[

Rj∂αP̄(bR̄α)
]

.
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We then decompose each fj = fhigh
j + f low

j according to the frequency balance of b and R,

fhigh
j = b>j∂αP[RjR̄α]−P

[

b>jRα,jR̄α

]

−P
[

Rj∂αP̄(b>jR̄α)
]

,

f low
j = b≤j∂αP[RjR̄α]−P

[

b≤jRα,jR̄α

]

−P
[

Rj∂αP̄(b≤jR̄α)
]

.

When b is at high frequency we write

fhigh
j = b>j∂α[P, Rj]R̄α − [P, b>jRα,j]R̄α − [P, Rj]∂αP̄(b>jR̄α).

Taking the imaginary part and applying the commutator estimate (A.14) we obtain

‖ Im fhigh
j ‖L∞ . 2j‖b>j‖

B
1
4
,∞

2

‖Rj‖L∞‖R‖
B

3
4
,∞

2

.

Summing over j ≥ 0 we obtain
∑

j≥0

‖ Im fhigh
j ‖L∞ . ‖b>0‖

B
3
4
,∞

2

‖R‖
B

1
2
,∞

2

‖R‖
B

3
4
,∞

2

,

and the estimate follows from interpolation and the estimate (A.18) for b.
When b is at low frequency we write

f low
j = ∂α[b≤j ,P](RjR̄α)− b≤j,α[P, Rj]R̄α +P[Rj∂α[P, b≤j]R̄α].

Again we apply the commutator estimate (A.14), using that b≤j,α is real-valued, to obtain

‖ Im f low
j ‖L∞ . 2

3

8
j‖T b≤j‖

B
7
8
,∞

2

‖Rj‖L∞‖R‖
B

3
4
,∞

2

.

Summing over j ≥ 0 we obtain
∑

j≥0

‖ Im f low
j ‖L∞ . ‖T b‖

B
3
4
,∞

2

‖R‖
B

1
2
,∞

2

‖R‖
B

3
4
,∞

2

.A AB,

which completes the proof of (A.22). �

We now estimate some of the secondary auxiliary functions d and M :

Lemma A.14. We have the estimate

(A.23) ‖d‖bmo .A B.

Proof. We recall that
d = Rα(1− Ȳ ).

As a consequence it suffices to show that

‖RαȲ ‖bmo . AB.

Decomposing using paraproducts we have

RαȲ = TRα
Ȳ + TȲRα +Π[Rα, Ȳ ].

We then use (A.3) to estimate

‖TRα
Ȳ ‖bmo . ‖〈D〉 1

2R‖L∞‖Y ‖
bmo

1
2
, ‖Π[Rα, Ȳ ]‖bmo . ‖Rα‖bmo‖Y ‖bmo.

For the remaining term we are unable to use (A.3), but we can obtain a similar estimate
by relaxing bmo to L∞ for the low frequency term (see [8, Proposition 2.2]),

‖TȲRα‖bmo . ‖Y ‖L∞‖Rα‖bmo.
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The estimate (A.23) then follows.
�

Lemma A.15. The function M satisfies the pointwise bounds

(A.24) ‖M‖L∞ . AB,

as well as the Sobolev bounds for n ≥ 1

(A.25) ‖M‖
Hk− 3

2
.A ANk, ‖M‖Hk−1 .A g

− 1

2BNk.

Proof. We start with the proof of (A.24). We first decompose M = M0 +M≥1 into a low
and high frequency part.

For the high frequency part we first write M in the form

M = 2Re[P, R]Ȳα − 2Re[P, Y ]R̄α,

and then use (A.14) to obtain

‖M≥1‖L∞ . ‖TM‖L∞ . ‖R‖
B

3
4
,∞

2

‖Y ‖
B

1
4
,∞

2

. AB.

For the low frequency part we face an additional difficulty compared to the infinite depth
case, which is due to the low frequenct unboundedness of the projector P. To address this
we observe that M has a certain null structure, by writing

M = 2ReP[RȲα − Y R̄α] = Re[RȲα − Y R̄α]− T −1∂α Im(RȲ ).

Applying the projection S0 we obtain

‖M0‖L∞ . ‖Π[R, Ȳα]‖L∞ + ‖Π[Y, R̄α]‖L∞ + ‖Π[R, Ȳ ]‖L∞ .

We may then estimate these terms using (A.2) to complete the proof of (A.24). The proof
of (A.25) is similar. �

Lemma A.16. The following estimates hold:

(A.26) ‖Λ≥2(∂t + Tb∂α)W‖
B

0,∞
∞

+ g−
1

2‖Λ≥2(∂t + Tb∂α)R‖
B

1
2
,∞

∞

.A AB,

respectively the L2 bounds

(A.27) g−
1

2‖Λ≥2(∂t + Tb∂α)R‖Hn−1 .A ANn, n ≥ 1,

and

(A.28) ‖Λ≥2(∂t + Tb∂α)W‖
H

n−
3
2
.A ANn, n ≥ 2.

If instead n = 1 then for each k there is a decomposition

P<kΛ
≥2(∂t + Tb∂α)W = F 1

k + F 2
k ,

so that

(A.29) ‖F 1
k ‖L2 .A BN1, ‖F 2

k ‖L2 .A 2
k
2AN1.
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Proof. We recall the equations for (W, R):










Wt + bWα +
1 +W

1 + W̄
Rα = (1 +W)M

Rt + bRα = i
gW − a

1 +W
.

We begin with the pointwise bounds. For the M term we use (A.24). Next we estimate
∥

∥

∥

∥

W − W̄

1 + W̄
Rα

∥

∥

∥

∥

bmo

. ‖Rα‖bmo

∥

∥

∥

∥

W − W̄

1 + W̄

∥

∥

∥

∥

L∞

+ ‖R‖
B

3
4
,∞

2

∥

∥

∥

∥

W − W̄

1 + W̄

∥

∥

∥

∥

B
1
4
,∞

2

. AB,

which is akin to the bmo bound for d. For the Y term in the second equation we use (A.16)

as well as the algebra property for bmo
1

2 . The same applies for the a term in combination
with (A.20).

It remains to bound the b terms, where we carefully note that no low frequencies of b are
included here. Then using (A.18) we have

‖(b− Tb)Wα‖L∞ . ‖T b‖
B

3
4
,∞

2

‖W‖
B

1
4
,∞

2

. AB,

respectively

‖(b− Tb)Rα‖bmo
1
2
. ‖T b‖

B
3
4
,∞

2

‖R‖
B

3
4
,∞

2

. AB.

Next we consider the L2 bounds. For the M term we use a standard Littlewood-Paley
decomposition together with (A.24) and (A.25). For the a term we similarly use (A.20) and
(A.21). For the b paradifferential remainder we use (A.18) and (A.19). The other terms
follow in standard bilinear fashion.

In the case n = 1 the same method applies once we have produced a convenient decom-
position of (∂t + Tb∂α)W. Precisely, all contributions go to F 1

k except for those arising from

the terms (b<k+4 − Tb)Wα, respectively
1 +W

1 + W̄
R<k+4,α.

�
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