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Abstract 
In term series problems where multiple mental models can 
be constructed, partial-order models can be created as mental 
representations, which make it easier to perceive the 
symmetry of the terms. To test these hypotheses, we 
categorized multi-model (indeterminate) term series 
problems according to the patterns of partial-order models 
that could be constructed, and analyzed the reasoning 
performance for each pattern. These results suggest that 
reasoners tend to use the symmetry of terms to reduce the 
cognitive load of reasoning. Analysis of the patterns of 
incorrect answers also suggests that attempts to exploit the 
symmetry of the term may be biased, leading to errors in 
reasoning. 

Keywords: mental model; term series problem; annotation; 
symmetry bias; preferred model; partial-order model 

Introduction 
The term series problem is the problem of reasoning from 
the premises that “A is larger than B” and “B is larger than 
C” to “A is larger than C,” “A is the largest,” and so on. In 
some studies, this is called a linear syllogism or relational 
reasoning. The term series problem has been the subject of 
many reasoning studies because it is the simplest category 
of deductive reasoning problems and the variables can be 
easily manipulated in experiments. 

De Soto, London, and Handel (1965) and Huttenlocher 
(1968) reported that reasoners working on the term series 
problem construct spatial representations in which terms 
are arranged according to the order described in the 
premises. For example, given the premises “A is larger than 
B” and “B is larger than C,” the representation ABC is 
constructed (where the terms on the left are larger; if the 
term on the right is larger, it becomes CBA). The idea that 
such spatial representations are constructed during 
reasoning was subsequently embraced by mental model 
theory (Johnson-Laird, 1983; Johnson-Laird & Byrne, 
1991).  

Term series problems are problems in which more than 
one model can be constructed. For example, given the 
premises that “A is larger than B” and “A is larger than C,” 
two models can be constructed, ABC and ACB, because it 
is not known whether B or C is larger. Such problems are 
called multiple-model problems (because more than one 
model can be constructed) or indeterminate problems 
(because the order of all the terms is not fixed to one).  

It is worth remarking that the term “model” in the above 
line of studies has been almost exclusively meant to express 
a total-order model. As all term series problems consider 
some kind of order relationship among the terms, we 
briefly summarize the mathematical notions of order. One 

of the minimally axiomized notions of order is preorder. In 
any preordered set with an order operator ≥, it holds (1) 
reflexivity: 𝑥 ≥ 𝑥  and (2) transitivity:	𝑥 ≥ 𝑧	if 𝑥 ≥ 𝑦 and 
𝑦 ≥ 𝑧 for any members 𝑥, 𝑦, and 𝑧 in it. Partial-order is a 
restricted order property on top of the preorder. In any 
partial-order set with an order operator ≥ , it holds (1) 
reflexivity, (2) transitivity, and (3) antisymmetry: 𝑥 = 𝑦, if 
𝑥 ≥ 𝑦 and 𝑦 ≥ 𝑥. Total-order is further restricted: In any 
total-order set with an order operator ≥ , it holds (1) 
reflexivity, (2) transitivity, (3) antisymmetry and (4) 
totality: 𝑥 ≥ 𝑦 or 𝑦 ≥ 𝑥 holds for any pair of the members 
𝑥 and 𝑦 in it.  

Previous studies on term series problems have implicitly 
assumed that participants build their mental models in the 
form of total-order. This is because there are “multiple 
mental models” for what they call indeterminate problems, 
while in fact there is one and no more than two models in 
the form of partial-order for the indeterminate problems. 
Namely, the count of “models” may depend on which class 
of order relationships is (implicitly or explicitly) assumed 
in each study. Thus, “indeterminate term series problem” 
can be defined by any term series problems with a set of 
assumptions that admits multiple total-order mental 
models, while “determinate term series problem” is then 
defined by that which admits only a single total-order 
mental model. 

With this in mind, we review previous studies on 
indeterminate term series problems as follows. Early 
research predicted that the difficulty of indeterminate 
model problems would be proportional to the number of 
total-order models that could be constructed (Byrne & 
Johnson-Laird, 1989). However, subsequent research 
found that there was no correlation between reasoning 
performance and the number of total-order models in 
indeterminate problems (Knauff, Rauh, Schlieder & Strube, 
1998; Vandierendonck, De Vooght, Desimpelaere & 
Dierckx, 1999). Based on these results, the researchers 
concluded that not all total-order models are constructed in 
solving the indeterminate term series problem. Rather, only 
one or a few total-order models are constructed, and some 
additional mental models may be constructed, if required.  

Related Research 
Preferred model theory has been proposed as a theory of 
cognitive processes in the indeterminate problem. 
According to this theory, one preferred total-order model 
should be constructed as a mental representation for 
solving an indeterminate problem. Jahn, Knauff and 
Johnson-Laird (2005) analyzed responses to indeterminate 
term series problems and found that when multiple terms 
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are equally appropriate for a given question, the term 
appearing in the earlier read premise tends to be placed next 
to the referred term in the model, whereas those appearing 
in the later read premise tend to be placed outside. For 
example, if the premises are read in the order “A is to the 
left of C” and “B is to the left of C,” then of the two terms 
(A and B) to the left of the referred term C, A, which is read 
first, is placed immediately to the left of C, and B is placed 
beyond it, creating the model BAC. This principle later 
became known as the first free fit principle (fff-principle). 
Rauh et al. (2005) argued that alternative models are 
created by revising parts of the preferred model. However, 
if the model revision is done incorrectly, the model can 
become inconsistent with the given premises. Such errors 
can be prevented by annotations added to a preferred model. 
The role of annotations is to instruct the reasoner as to 
which parts of the model can be changed and to what extent. 
For example, in the example above, the annotation “to the 
left of C” is given to the term B, which was not allowed to 
be adjacent to the referred term C. The annotation shows 
that B can move anywhere if it is to the left of C; therefore, 
an alternative model ABC can be constructed by replacing 
B with A in the preferred model BAC, whereas model ACB 
cannot be constructed because B cannot be placed to the 
right of C.  

The PRISM proposed by Ragni and Knauff (2013) is a 
computational model that constructs preferred models with 
annotations following the fff-principle in spatial relational 
reasoning problems. PRISM creates a preferred model by 
placing terms according to the fff-principle on a two-
dimensional spatial array that simulates spatial working 
memory. In addition, PRISM generates alternative models 
by repeatedly swapping the positions of annotated terms 
and their adjacent terms in a model, starting with a 
preferred model. An important parameter in PRISM is the 
number of focus operations; the focus moves one cell at a 
time on the spatial array, and operations such as inserting 
terms are performed on the cell where the focus is located. 
The number of focus operations increases each time the 
focus moves or an operation such as term insertion is 
performed. In PRISM, the number of focus operations is a 
measure that explains the difficulty of term series problems 
and why indeterminate problems are more difficult than 
determinate problems. 

Apart from annotated preferred models such as those 
implemented in PRISM, another alternative form of mental 
representation in the indeterminate problem is the partial-
order model, in which the order relationship is expressed 
by a tree-like network rather than a linear sequence. For 
example, in Table 1, 2M-FS shows the partial-order models 
that can be constructed from the premises that “A is larger 
than B,” “B is larger than C,” and “B is larger than D.” 

A class of order relations, where any pair of elements 
needs to have some order relation, is called total-order. 
Another class of order relations that accepts some pair of 
elements without any order relationship is called partial-
order. The preferred models essentially assume a total-
order relationship in mental representation, whereas the 
partial-order model admits not only total-order but also 
partial-order models. In Table 1, the total-order models that 
can be constructed from the respective partial-order models 
are included. For example, in 2M-FS of Table 1, D can be 

inserted anywhere to the right of B; thus, ABDC can be 
constructed by inserting it between B and C, and ABCD 
can be constructed by inserting it to the right of C.  
 

Table 1: All possible partial-order models that satisfy 
some term series problem with three premises and four 
terms (the more the term is on the left side, the larger the 
term is). A line between terms indicates that the 
relationship between them is described in premises. 
Relationships between terms not connected by a line are 
unknown. Each type is named using the number of total-
order models and the direction of fork. For example, “3M” 
in 3M-FL means that three total-order models can be 
created, and “FL” means that there is a fork on the larger 
side. It becomes “FS” if there is a fork on the smaller side. 
 

Type Total-
order 
models 

Partial-order model 

1M ABCD  
2M-FL ADBC 

DABC 
 

2M-FS ABCD 
ABDC 

 
3M-FL ABDC 

ADBC 
DABC  

3M-FS ADBC 
ABDC 
ABCD  

5M ACBD 
ACDB 
ABCD 
CABD 
CADB 

 

6M-FL ABCD 
ACBD 
BACD 
BCAD 
CABD 
CBAD 

 

6M-FS ABCD 
ABDC 
ACBD 
ACDB 
ADBC 
ADCB 

 

 
There are reports supporting partial-order models (note 

that in these previous studies, the partial-order model is 
referred to as the isomeric model). Schaeken, Van der 
Henst and Schroyens (2007) allowed participants to use a 
paper and pencil when solving indeterminate term series 
problems. One group of participants drew partial-order 
models and performed better than the other group, which 
did not draw them. The authors considered this result as 
evidence that reasoners construct a partial-order model in 
their mental representation. Vandierendonck, Dierckx, and 
De Vooght (2004) also reported that their experimental 
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results could be better explained by considering that 
reasoners do not immediately construct partial-order 
models when reading the premises, but first construct an 
annotated model and then elaborate it to construct a partial-
order model when necessary. 

Hypothesis 
As aforementioned, in the indeterminate term series 
problem, the idea that reasoners construct models with 
annotations or forks has been favored in previous research. 
Of the ideas in previous studies, we consider the partial-
order model to be promising, because it is easier to perceive 
the symmetry of the term pairs in the partial-order model. 
If there is a pair of terms, such as C and D in 2M-FS in 
Table 1, such that the model is compatible with the premise 
even if one term and the other are swapped, then the terms 
are defined as symmetric. If we recognize that C and D are 
symmetric, we can easily see that they are both the third or 
fourth-largest, and that ABCD and ABDC can be 
constructed as total-order models. It is believed that it is 
possible to efficiently reason problems with symmetric 
term pairs by recognizing the symmetry of the terms. 
However, for problems without symmetric term pairs, such 
as in 3M-FS in Table 1, this efficiency is not possible.  

We hypothesize that reasoners construct partial-order 
models as their mental representations and that the 
difficulty of term series problems is correlated with the 
structure of the partial-order models to be constructed. To 
explain our hypothesis in detail, it is useful to categorize 
term series problems according to the type of partial-order 
model that satisfies given premises. We can test our 
hypotheses by analyzing the correlation between the type 
of partial-model and reasoning performance. In this study, 
we focus on a class of term series problems with four terms 
and three premises, because such a class of problems offers 
a minimal set of a wide variety of partial-order models. 
Eight possible partial-order models satisfy four-term series 
problems with three premises and four terms (Table 1). 
Each graph in Table 1 depicts a partial-order model with 
the terms A, B, C, and D, and the series of terms below each 
graph (e.g., ABCD) show the list of possible total-order 
model(s) satisfying the corresponding problem. Each type 
of problem corresponds to a unique partial-order model, but 
has one or more total-order models. 

One may find some symmetric structures in some partial-
order models. For example, the 2M-FL has the term A and 
D exchangeable—that is, exchanging A and D does not 
affect the graph essentially. Likewise, C and D in 2M-FS; 
A, B, and C in 6M-FL; and B, C, and D in 6M-FS are 
mutually exchangeable. These types of partial-order 
models are called symmetric—their graph structures are 
invariant under the exchange of a particular subset of 
vertices. The other types are asymmetric. For example, 
exchanging any of the four terms in 3M-FL would create 
another partial-order model that does not follow the same 
premises.  

We hypothesize that this symmetry structure in partial-
order models plays a role in the reasoning of term series 
problems, as symmetry in partial-order models reduces the 
cognitive load in reasoning. In other words, the reasoner 
does not need to accurately identify and locate every term 

in the problem if some pairs of terms in the partial-order 
models are exchangeable (i.e., symmetric). This hypothesis 
also predicts that the problems with 3M-FL and 3M-FS are 
more difficult than those with 2M-FL and 2M-FS, because 
3M-FL and 3M-FS look “symmetric” but are actually not. 
If the reasoner employs reasoning strategies exploiting the 
symmetric structure of partial-order models, 3M-FL and 
3M-FS can be rather confusing, as their graph shapes are 
similar but not as symmetric as 2M-FL and 2M-FS, 
respectively.  

Experiment 
According to the symmetry hypothesis, problems with 
symmetric term pairs (2M-FL, 2M-FS, 6M-FL, and 6M-
FS) are easier to solve than their asymmetric counterparts 
(3M-FL, 3M-FS, and 5M), resulting in higher correct 
response rates and shorter average correct response times. 
To test this hypothesis, we manipulated the types of partial-
order models and the place of the term to be questioned. 
There are 8 graphs (Table 1) × 4 term positions = 32 
patterns of term series problems were used in our 
experiment. In our term series problems, the participants 
were asked to answer all the terms that possibly take the k-
th largest place among the four terms. For example, the 
correct answer to the second place in a problem with 3M-
FL is “A, B, and D” (Table 1).  

The results of this experiment were analyzed using the 
correct response rate and average response time for each 
pattern, treating only those cases in which all terms were 
selected without excess or deficiency as correct (for 
response times, only data from correct responses were 
considered and averaged). Participants were recruited 
online to participate in the experiment. The experimental 
code was created using PsychoPy, open-source software 
for creating psychological experiments, and was run on the 
Pavlovia server service (https://pavlovia.org/). This 
allowed anyone with access to the URL provided by 
Pavlovia to participate in the experiment online. 

Participants 
The 80 participants were recruited using CrowdWorks 
(http://crowdworks.jp), a Japanese crowdsourcing service 
(applicants had to be Japanese speakers between the ages 
of 20 and 65 years). One of the participants spent an 
unusually long time answering a question (just under 45 
min); therefore, this piece of data was excluded from the 
analysis because it was considered a source of noise. 

Procedure 
The participants were informed of the URL of the Pavlovia 
site and they began the experiment by navigating to the site.  

The experimental screen displayed all three premises and 
one question simultaneously. The three premises were 
arranged one sentence at a time from top to bottom, and 
below them was a question text that asked, “What is the k-
th largest possibility? (Please select all),” where k = 1, 2, 3, 
or 4. The four checkboxes were arranged horizontally to 
select the terms that needed to be answered. Below that was 
a button for submitting the answer. The setup ensured that 
participants could not accidentally skip to the next question. 
The time from when the question screen was displayed to 
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when the “Answer” button was pressed was recorded as the 
response time for the question. 

All premises were in the form “A is larger than B”; the 
opposite phrase “smaller than” was not used in any trial. 
The letters A, B, C, and D were used as terms in the 
premises. The format of the questions was designed such 
that the position of the term and the order of the premises 
changed randomly from time to time. 

Block Design 
Each participant solved 75 term series problems, consisting 
of practice, fixed, and random blocks of 3, 40, and 32 
questions, respectively. The practice block was intended to 
familiarize the participants with the experimental 
procedure, so that every participant was aware that there 
could be more than one term as the answer. In the fixed 
block, each of the five consecutive questions asked about 
the same partial-order model with the same set of premises, 
and the place (rank) of the terms to be answered only varied 
across these consecutive questions. As this process was 
conducted for all eight partial-order models, the number of 
questions in this block was 40 (5 × 8). The five consecutive 
questions were asked randomly, with the restriction that the 
first question was asked about any first to fourth rank, and 
the second through fifth questions asked about all ranks 
from 1 to 4 within those four questions. The fixed block 
was expected to extract the time required to search the 
model because only the rank to be answered changed, and 
the model construction was supposed to be completed in 
the first question as long as it was memorized through the 
remaining four questions.  

In the random block, each of the 32 patterns (4 places of 
terms to be answered x 8 partial-order models) were 
presented once in a randomized order. As participants had 
already experienced each question pattern once in the fixed 
block, the random block was expected to produce results 
without additional effort owing to unfamiliarity, which can 
occur when questions are new to participants.  

At the end of the experiment, participants were directed 
to Google Forms to answer whether they had used writing 
utensils during the experiment. Of the 79 participants, 24 
did not use a writing utensils at all, while the remaining 55 
used a writing utensils for at least one question. The 
experimental results and discussions described below did 
not differ significantly between the two groups, so this 
paper does not delve into the impact of writing utensils 
usage.   

Result 

Analysis of Reasoning Performance 
The percentage of correct answers for each of the 32-
pattern questions in the random block and the average 
response times for correct answers are shown in Figure 1. 
As predicted, correct answer ratios were higher and correct 
response times were shorter for questions where the term 
pairs were symmetric (2M-FL, 2M-FS, 6M-FL, and 6M-
FS) than for those where they were not (3M-FL, 3M-FS, 
and 5M). This trend was also observed for the fixed block 
(not shown). This suggests that participants reasoned 
efficiently with term symmetry, supporting this hypothesis. 

 

 

 
 
Figure 1: Experimental result of four-term series problems. 
 

Preferred Model and Symmetry Hypothesis 
We also analyzed whether the preferred model theory could 
account for this result, but we found this unlikely, as 
follows: Consider PRISM, a simulation program that 
implements the preferred model theory to solve the 
question of all the largest possible terms in 6M-FL. The 
correct answers are all three, A, B, and C. To answer this 
question correctly using PRISM, one would have to first 
construct a preferred model, then modify that preferred 
model twice to generate two alternative models, and 
construct three total-order models. As this process requires 
many focus operations, one would expect the time required 
to answer correctly to be longer. In fact, the average correct 
response time for 6M-FL is equal to or shorter than the 
average correct response time for 1M, which does not 
require the construction of an alternative model.  

However, this result can be explained if we consider that 
the participants constructed the partial-order model and 
recognized that the three terms A, B, and C on the side 
larger than D are symmetric to each other. Using the 
symmetry of the terms, one can immediately see that D, 
which is on the side smaller than the three terms, is the 
fourth-largest and that the possible ranks of A, B, and C are 
first, second, or third. 

To numerically analyze the factors that contribute to 
reasoning performance, a logistic regression was run to 
predict correct (set to 1) and incorrect answers (set to 0). 
For each question, the features that seemed likely to 
contribute to the performance were extracted from the 
structure of the partial-order models. The features defined 
by focus operations in PRISM were extracted as candidate 
explanatory variables, and features with high correlation 
were removed to avoid multicollinearity; 12 features 
remained. Logistic regression with an intercept was 
performed on these features, and the standardized partial 
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regression coefficients for each feature, as well as the p-
values and t-values for the t-test with the null hypothesis 
that the standardized partial regression coefficient was zero, 
were also obtained. An explanation of each feature and the 
results of the logistic regression (standardized partial 
regression coefficients, t-values, and p-values) are 
presented in Table 2. The standardized partial regression 
coefficients for the features that were significant (p < 0.05) 
were (e), (f), (g), (h), (k), and (l). None of the effects of the 
three features extracted from PRISM ((a), (b), and (c)) were 
significant.  

Although it is difficult to fully explain all these results 
theoretically, we believe that there is an explanation for the 
negative value of (k) and the positive value of (l). As the 
number of answer terms ((k)) increases, it becomes more 
difficult to answer them without over- or under-answering, 
which has a negative impact on the ease of answering them 
correctly. However, even if the number of correct terms is 
large, if they are symmetric (i.e., if (l) is 1), the difficulty 
decreases. For example, the question asking for the second-
largest term in 3M-FL and the question asking for the first-
largest term in 6M-FL both had three correct answers, but 
the percentage of correct answers in the latter was 
approximately twice that in the former. This may be 
because the latter question can be efficiently answered by 
exploiting the symmetry of the three correct answer terms. 

Analysis of Error Patterns 
The symmetry hypothesis predicts a particular type of error 
in reasoning for indeterminate term series problems. In 
other words, reasoning on asymmetric but partially 
symmetric partial-order models such as 3M-FS, 3M-FL, 
and 5L induces more error responses toward symmetric-
biased patterns. Therefore, we examined the error patterns 
of term series problems with less than 50% correct 
questions. Specifically, the error patterns for the four 
questions were analyzed: the question about the second-
largest term in 3M-FL, the third-largest term in 3M-FS, and 
the second- and third-largest terms in 5M. Table 3 shows 

the most frequent incorrect answer patterns committed by 
participants for each of the four question types, along with 
the percentage of that pattern among all incorrect answers 
for each question. Incorrect answers to each question 
showed a bias toward certain patterns. For all four types of 
questions, the correct answers were subsets of the three 
terms, and approximately half the incorrect answers missed 
one specific term, answering only B and D in the question 
asking for the second-largest term in 3M-FL, B and D in 
the question asking for the third-largest term in 3M-FS, A 
and C in the question asking for the second-largest term in 
5M, and B and D in the question asking for the third-largest 
term in 5M. This trend was the same for both the random 
and fixed blocks (the ratios shown in Table 3 are the result 
of mixing both blocks). 

We found that the symmetry(-like) structure in the 
partial-order model was again the key to explaining the bias 
in the error patterns. Note that the pattern that accounted 
for approximately half the incorrect answers to each of the 
four types of questions was the pattern that answered only 
two terms with identical horizontal axis coordinates in the 
partial-order model. In 2M-FL, 2M-FS, 6M-FL, and 6M-
FS, terms with the same horizontal axis coordinates were 
symmetric, but not in 3M-FL, 3M-FS, and 5M. However, 
it is possible that many participants misinterpreted these 
terms as symmetric. In this case, a partial-order model was 
created with lines drawn between AD in 3M-FL, CD in 
3M-FS, and BC in 5M, which should not exist. Under this 
illusory partial-order model, it would be correct to answer 
B and D to the question asking for the second-largest term 
in 3M-FL and the third-largest term in 3M-FS, A and C to 
the question asking for the second-largest term in 5M, and 
B and D to the question asking for the third-largest term in 
5M. Even if an illusory model was constructed, the correct 
answers to the questions asking for the third- and fourth-
largest terms of 3M-FL, the first- and second-largest terms 
of 3M-FS, and the first- and fourth-largest terms of 5M 
would not change. In contrast, the correct answers changed 
for questions that asked for the first-largest term in 3M-FL 

 
Table 2: Standardized partial regression coefficients, t-value, and p-value derived from logistic regression for correct 

answer ratio. The asterisk at each letter with parentheses indicate the variable has its coefficient significantly larger or 
smaller than zero (p-value < 0.05). 

 
 Explanation of features Coefficient t-value p-value 
(a) the number of times the focus moves through a cell in PRISM -0.03 -0.10 0.917 
(b) the number of times the focus places a term in a cell in PRISM 0.03 0.25 0.801 
(c) the number of times the focus changes the direction of movement in 

PRISM 
-0.13 -0.89 0.372 

(d) the number of all possible total-order models that can be constructed -0.65 -1.32 0.185 
(e)* 1 if the fork is on the larger side in the partial-order model, 0 otherwise -1.27 -4.15 < .001 
(f)* 1 if the fork is on the smaller side in the partial-order model, 0 otherwise -1.08 -3.61 < .001 
(g)* the maximum number of terms that can be connected without branching 

in the partial-order model 
-1.91 -2.75 0.006 

(h)* 1 if the question asks for the first-largest term, 0 otherwise 0.23 2.70 0.007 
(i) 1 if the question asks for the second-largest term, 0 otherwise -0.07 -1.03 0.301 
(j) 1 if the question asks for the fourth-largest term, 0 otherwise 0.13 1.58 0.113 
(k)* Number of correct answers -0.83 -7.06 < .001 
(l)* 1 if more than one term is correct answer and they are symmetric, 

0 otherwise 
0.39 2.61 0.009 
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and the fourth-largest term in 3M-FS. Analysis of the error 
patterns in these questions showed that approximately half 
the incorrect answers in the first-largest term question in 
3M-FL were answered with only A, and approximately half 
the incorrect answers in the fourth-largest term question in 
3M-FS were answered with only C. Both patterns are 
consistent with the illusion model. Based on the results of 
the present study, it is possible that the misidentification of 
non-symmetric terms as symmetric may have biased the 
error patterns. 
 

Table 3: For each question where the correct answer ratio 
was less than 50%, the top three most frequently occurring 
incorrect answer patterns and the proportion of those 
patterns to the number of incorrect answers in each 
question. 
 

Problem Correct 
answer 

Incorrect 
answer 

Proportion 
 

3M-FL 
2nd-largest 

A, B, D B, D 57% 
A, D 20% 
B 8% 

3M-FS 
3rd-largest 

B, C, D B, D 45% 
C, D 36% 
C 6% 

5M 
2nd-largest 

A, B, C A, C 54% 
B, C 15% 
A 5% 

5M 
3rd-largest 

B, C, D B, D 61% 
B, C 17% 
D 4% 

 
We examine whether PRISM can explain this bias in 

error patterns. For example, in the question asking for the 
second-largest term in 3M-FL, approximately 50% of the 
incorrect answers listed B and D, missing the presence of 
A. Here, in about a third of the cases where the incorrect 
answers were B and D, the first two premises were “A is 
larger than B” and “B is larger than C,” and the third and 
final premise was “D is larger than C.” In such a case, 
according to PRISM, the first two premises construct a 
model ABC, and when the last premise is read, a preferred 
model DABC is created with the annotation “larger than C” 
assigned to D. As the second-largest term in this preferred 
model is A, it is unlikely that reasoners would overlook A 
when asked about the second-largest term. Similarly, in the 
3M-FS question asking for the third-largest term, 
approximately 50% of the incorrect answers listing B and 
D overlooked the presence of C. In about one-third of the 
cases where only B and D were answered, the first two 
premises were “A is larger than B” and “B is larger than C,” 
and the third and final premise was “A is larger than D.” In 
this case, PRISM would construct a preferred model ABCD 
with D annotated as “smaller than A,” so it is unlikely that 
C would be overlooked when asked for the third-largest 
term. As the three premises were presented simultaneously 
in this experiment, participants did not necessarily read the 
premises in the order in which they were arranged. Perhaps 
participants read the premises in the order in which they 
were most comfortable, which would be in 3M-FL and 3M-
FS, where the first two premises are “A is larger than B” 

and “B is larger than C.” This order did not cause 
indeterminacy until the third and final premises were read. 
The reading order is the same as that described above. 
Therefore, if we assume that participants read the premises 
in the order in which they were arranged or in the order in 
which they felt comfortable, PRISM is unlikely to 
reproduce the error pattern bias observed in this experiment. 

General Discussion 
The purpose of this study was to investigate the class of 
mental model reasoning on indeterminate term series 
problem constructs, annotated total-order models or partial-
order models. In previous studies, these two classes of 
models supported distinct sets of empirical studies. In this 
study, we hypothesized that partial-order models are likely 
to be employed in reasoning indeterminate term series 
problems, and proposed a strategic use of symmetry in 
partial-order models. As this hypothesized symmetry is 
generally available only in partial-order models and not in 
total-order models with or without annotations, the 
symmetry hypothesis would exclusively assume partial-
order models. 
   To test our hypothesis, we investigated reasoning 
behaviors on a minimal set of term series problems with 
several variations in partial-order models and analyzed the 
correct ratio and error rates.  
   Our analysis suggested that the symmetry hypothesis was 
consistent with the results of the present experiment; 
however, it would be difficult to explain it with annotated 
total-order models such as PRISM. 

According to Goodwin and Johnson-Laird (2005), 
reasoners develop different strategies to make their 
reasoning more efficient. These strategies reflect the nature 
of the problem they are working on. The questions in this 
experiment were in a format that asked participants to 
answer all terms that could be assigned a particular rank. It 
is possible that the format of the questions forced the 
participants to develop strategies for constructing partial-
order models. In other words, if the same format as in 
previous research (e.g., asking participants to judge the 
validity of the description of the relationship between 
certain terms or simply asking them to answer all possible 
models that could be constructed) was used, it is possible 
that inferences could have been made using a procedure 
such as PRISM. However, even in the fixed block, in which 
participants may not have had time to become familiar with 
the partial-order model, the percentage correct, average 
correct response time, and error patterns followed the same 
trend as in the random block. This suggests that the 
reasoning strategy using the term symmetry does not 
require familiarization with or learning of mental models 
suitable for a given set of premises. In this sense, symmetry 
use in indeterminate term series problems is likely to be a 
more general strategy or a cognitive bias that may enhance 
human reasoning performance in certain situations. 

One adaptive aspect of this “symmetry bias” in term 
series reasoning is to reduce cognitive load. This symmetry 
bias may have allowed more efficient reasoning for 
problems with smaller working memory if the partial-order 
models were symmetrical.  
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