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Abstract 

Many advanced tumors produce excessive amounts of Transforming Growth Factor-β 
(TGF-β) which, in normal epithelial cells, is a potent growth inhibitor. However, in onco-
genically activated cells, the homeostatic action of TGF-β is often diverted along alternative 
pathways. Hence, TGF-β signaling elicits protective or tumor suppressive effects during the 
early growth-sensitive stages of tumorigenesis. However, later in tumor development when 
carcinoma cells become refractory to TGF-β-mediated growth inhibition, the tumor cell 
responds by stimulating pathways with tumor progressing effects. At late stages of malignancy, 
tumor progression is driven by TGF-β overload. The tumor microenvironment is a target of 
TGF-β action that stimulates tumor progression via pro-tumorigenic effects on vascular, 
immune, and fibroblastic cells. Bone is one of the richest sources of TGF-β in the body and a 
common site for dissemination of breast cancer metastases. Osteoclastic degradation of bone 
matrix, which accompanies establishment and growth of metastases, triggers further release 
of bone-derived TGF-β. This leads to a vicious positive feedback of tumor progression, driven 
by ever increasing levels of TGF-β released from both the tumor and bone matrix. It is for this 
reason, that pharmaceutical companies have developed therapeutic agents that block TGF-β 
signaling. Nonetheless, the choice of drug design and dosing strategy can affect the efficacy of 
TGF-β therapeutics. This review will describe pre-clinical and clinical data of four major 
classes of TGF-β inhibitor, namely i) ligand traps, ii) antisense oligonucleotides, iii) receptor 
kinase inhibitors and iv) peptide aptamers. Long term dosing strategies with TGF-β inhibitors 
may be ill-advised, since this class of drug has potentially highly pleiotropic activity, and de-
velopment of drug resistance might potentiate tumor progression. Current paradigms for the 
use of TGF-β inhibitors in oncology have therefore moved towards the use of combinatorial 
therapies and short term dosing, with considerable promise for the clinic. 

Key words: Transforming growth factor-β (TGF-β) 

Introduction 

Targeting a tumor promoting agent for neutral-
ization seems like a clear-cut strategy for cancer 
therapy. But what if the tumor promoter of interest 
can be tumor suppressive in a different context? And 
what if the molecule or signaling pathway of interest 
has a broad impact on multiple biological programs? 
How might this influence therapeutic strategies, or 

alter the outcome of targeting this agent? This review 
seeks to stimulate discussion of these questions 
through exploring the Transforming Growth Factor–β 
(TGF-β) signaling pathway as a target in oncology.  

TGF-β Structure and Signaling  

In 1978 DeLarco and Todaro described the par-
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tial purification of Sarcoma Growth Factors (SGFs) 
and their ability to induce anchorage-independent 
growth in normal rat kidney cells [1-2]. Two years 
later, Roberts et al. [3] and Moses et al. [4] inde-
pendently purified TGF-β as one component of SGF. 
These findings initiated both, the description of the 
TGF-β ligands and the birth of the TGF-β signaling 
field [4-6]. TGF-β is now known to be the most potent 
growth inhibitor for normal epithelial, hematopoietic 
and immune cells, and plays an important function in 
normal tissue homeostasis [7]. TGF-β ligands are 
members of the TGF-β superfamily, a family which is 
comprised of more than 30 closely related proteins 
including bone morphogenetic proteins (BMPs), ac-
tivins, inhibins and nodal [8]. In humans three 
isoforms of TGF-β (TGF-β1, TGF-β2 and TGF-β3) have 
been described [7]. These isoforms share 75% amino 
acid sequence homology and have demonstrated 
comparable signaling activities in vitro while expres-
sion patterns of the three isoforms differ between cell 
and tissue types [9], and knockout mouse studies 
have demonstrated distinct roles for the different 
isoforms in vivo [10]. TGF-β ligands are secreted from 
the cell as homodimers in their latent precursor form, 
which are activated at the responding cell surface by 
proteolytical cleavage of the latency-associated pep-
tide (LAP). In its latent form TGF-β cannot bind to its 
receptor, thus processing of the propeptide into its 
active state is of regulatory importance for TGF-β bio-
availability. Despite the great shared homology be-
tween TGF-β ligands, LAP isoforms (LAPβ1, β2, β3) 
share only 34-38% amino acid homology suggesting a 
mechanism for differential TGF-β regulation. For 

example, direct interaction of vβ6 integrin with the 
RGD-integrin binding site in LAPs of latent TGF-β1 
and TGF-β3 can efficiently activate the signaling cas-
cade. In contrast, the LAP isoform of TGF-β2 is unique 
in lacking this RGD-binding sequence and therefore 

cannot be activated by vβ6 integrin [11-12]. The ma-
ture TGF-β2 homodimer is also unique in having a 
much lower binding affinity for the TGF-β type II 
receptor, due to inter-isoform divergence at ami-
no-acids Lys25, Ile92, and Lys94 of the mature bioac-
tive TGF-β2 peptide [13-14]. TGF-β2 is therefore de-
pendent on β-glycan for high affinity binding to the 
signaling receptor complex and, unlike TGF-β1 and 
TGF-β3, shows weak activity on endothelial and 
hematopoietic cells that do not express β-glycan 
[13-14].  

Active TGF-β1 and 3 bind with high affinity and 
selectivity to the transmembrane TGF-β type II re-
ceptor (TβRII). This in turn recruits and activates the 
TGF-β type I receptor (TβR1 or ALK5) (Figure 1). Ac-
tivated TβR1 then initiates canonical Smad signaling 

by phosphorylation of receptor-associated Smads 
(R-Smads), Smad2, and Smad3. The activated 
R-Smads form a stable heterohexameric complex with 
Smad4, the common mediator Smad, and translocate 
into the nucleus. In association with other DNA 
binding transcription factors, the Smad complex at-
tains high affinity binding to Smad-binding elements 
within the promoter region of TGF-β target genes, 
culminating in TGF-β dependent transcription [15]. 
TGF-β can also signal through mechanisms inde-
pendent of Smad activation, including the PI3 kinase, 
MAPK, TRAF6-TAK1 and RhoA-Rock pathways [16] 
(Figure 1). The canonical Smad pathway is central to 
the growth inhibitory action of TGF-β, however, the 
relative contribution of Smad and non-Smad path-
ways to other TGF-β induced processes, such as EMT 
and apoptosis, is still the subject of continued inves-
tigation.  

The role of TGF-β signaling in tumorigen-
esis and progression 

One of the key functions of TGF-β signaling is to 
maintain epithelial, endothelial and hematopoietic 
cell homeostasis (Figure 2). However, in pathological 
situations its homeostatic action is hijacked and di-
verted along several alternative routes, particularly 
during cancer progression when loss of tumor sup-
pressors and mutation of oncogenes disrupt the in-
tracellular signaling networks of the tumor cell. The 
current consensus is that TGF-β signaling has a dual 
role in cancer. TGF-β signaling elicits a preventative 
or tumor suppressing effect during the earlier stages 
of tumorigenesis, when the epithelial cells retain ex-
quisite growth sensitivity to this ligand. Later in tu-
mor development, when carcinoma cells become re-
fractory to TGF-β-mediated growth inhibition and 
acquire oncogenic mutations, the intracellular signal-
ing circuitry of the cells is altered leading to tumor 
progressing effects, acting via an array of cellular and 
molecular mechanisms [17] (Figure 2).  

On the whole, the most commonly mutated 
TGF-β pathway genes in cancer are TGFBR2, TGFBR1, 
SMAD4 and SMAD2 [18]. Mutations are invariably 
loss of function, and tend to be restricted to cancers of 
the GI tract, such as colon, pancreas, and gastric can-
cer. They have been observed particularly in cancers 
that have acquired microsatellite instability (MIS). 
Concordantly, TGFBR2 is a mutational hotspot for 
MIS inactivation due to possession of a 10 base-pair 
poly-adenine repeat within its coding sequence [19]. 
In breast and skin cancer, however, TGF-β pathway 
mutations are uncommon. A study of 34 matched 
primary and recurrent breast tumors demonstrated 
that, despite no detection of TGFBR2 mutations in 
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primary tumors, 12% of recurrent breast tumors con-
tained receptor activity-attenuating point mutations. 
These findings suggest that, in the minority of breast 
tumors that do mutate TGFBR2, this is a late event 
[20]. Likewise, mutations in TGFBR1 are relatively 
rare in breast or skin cancer [18]. Loss of heterozy-
gosity (LOH) on chromosome 18q, that harbors 
SMAD4, is seen in 30% of breast tumors, but specific 
SMAD4 mutations within this large region of LOH are 
only seen in 12% of tumors [21]. On the other hand, 
LOH at either SMAD2 and/or SMAD4, which are 
closely linked on human chromosome 18q, was re-
ported in the majority of 17 human skin squamous cell 
carcinoma (SCC) specimens examined. However, in 
this study it is not clear which gene(s) were driving 
the large regions of LOH, since mutational studies 
were not undertaken. Nevertheless, the authors re-
ported down-regulation of Smad proteins in many 
human skin SCC tumors [22]. Whether this was due to 
mutation, epigenetic or transcriptional 

down-regulation of the genes remains to be revealed. 
In conclusion, it appears that rewiring rather than 
mutation of the TGF-β signaling pathway drives ma-
lignant transformation of skin and breast tumor cells.  

Mouse models of breast and skin cancer have 
been used by numerous investigators to demonstrate 
the biphasic role of TGF-β during tumorigenesis. The 
ideal therapeutic design would be suppression of the 
oncogenically-acquired TGF-β tumor promoting ac-
tivity while reactivating the cell autonomous, tumor 
suppressive arm of the TGF-β signaling pathway. 
However, there does not appear to be a definitive 
“switch” from tumor suppressor to promoter, but 
rather a multitude of genetic, epigenetic and cellular 
events involving both the tumor cell and the tumor 
microenvironment. The lack of a “switch” from tumor 
suppressor to promoter may present a challenge on a 
case by case basis, in determining dosing strategies 
required to achieve strong efficacy with minimal ad-
verse effects.  

 

 

Figure 1: TGF-β signaling pathway. TGF-β ligand is secreted as a latent precursor protein, bound to LAP. Activation of TGF-β involves cleavage of LAP 

from the ligand, which then binds to the type II receptor, and drives hetero-tetramerization with the type I receptor. The canonical signaling pathway 
involves phosphorylation of R-Smads (mainly Smad2 and Smad3) by activated TβRI. Phosphorylated R-Smads form a complex with the Co-Smad (Smad4), 

which translocates into the nucleus to bind gene promoters and activate expression of target genes. There are several non-canonical (non-Smad) signaling 

pathways, whereby TGF-β signals through the TGF-β receptors to activate TGF-β activated kinase 1 (Tak1), Ras and PI3K as well as other pathways. 
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Figure 2: Dual roles for TGF-β signaling during tumorigenesis. TGF-β is a multipotent cytokine that is involved in many cellular processes. 

Moreover, its action is context-dependent. In the normal untransformed cell it functions as an inducer of apoptosis while at the same time controlling cell 
differentiation and proliferation. Moreover, TGF-β1 is fundamentally implicated in many aspects of tumorigenesis by directly acting on the tumor cell as well 

as influencing the tumor microenvironment. During early stages of tumorigenesis it inhibits proliferation of transformed cells but at later stages it supports 
tumor growth, and enhances tumor invasion and metastasis, macrophage recruitment, tumor angiogenesis and systemic and local tumor immunosup-

pression. Black arrows indicate TGF-β action. 

 

TGF-β as Tumor Suppressor 

 The tumor suppressive role of TGF-β signaling 
has been manifested in many mouse models in which 
TGF-β1 was over-expressed or under-expressed, 
demonstrating the importance of growth suppression 
at early stages of tumorigenesis [23-27]. TGF-β sig-
naling is capable of opposing mitogenic stimuli, 
mainly by inhibiting cell cycle progression through 
G1-arrest, but also by inducing apoptosis (Figure 2). 
The anti-proliferation effects of TGF-β are mediated 
by suppression of c-Myc via mobilization of cy-
clin-dependent kinase inhibitors, p15, p21 and p27. 
Interestingly however, disruption of TGF-β signaling 
in the absence of a proliferative signal or oncogenic 
mutation does not induce cell proliferation [28]. In the 

mouse skin model, TGF-1 over-expression acts in a 
tumor suppressive manner [23, 29] and Tgfb1 genetic 
haplo-insufficiency results in enhanced papilloma 
numbers [24]. While these studies plainly demon-
strate the tumor suppressive action of TGF-β, its 
mechanism(s) may be multifold. In addition, to the 
clear cytostatic effects of TGF-β [30-32], in some epi-
thelial cell types this ligand can also induce apoptosis 

[33-36] as well as senescence [37-40]. In particular, 
Boulanger and Smith [41-43] postulated that TGF-β 
acted as a tumor suppressor by inducing senescence 
of the mammary stem cell population since this ligand 
was able to diminish the self-renewing capability of 
pluripotent epithelial cells of the mammary gland.  

Using genetic knockout studies, TGF-β signaling 
has also been shown to be a “guardian of the ge-
nome”. In keratinocytes, gene knockout of Tgfb1 or 
expression of a dominant negative version of the type 
II receptor, ΔTβRII, resulted in enhanced genomic 
instability and subsequently, increased rates of aneu-
ploidy and chromosome breaks preceding accelerated 
malignant transformation [44]. Barcellos-Hoff’s group 
provided mechanistic evidence for a more central role 
of TGF-β signaling in maintenance of genomic stabil-
ity. They demonstrated in vitro and in vivo that the 
DNA damage response, specifically phosphorylation 
of ATM and downstream targets p53, Chk2, and 
Rad17, is impaired by genetic loss of Tgfb1 or phar-
macological inhibition of TβRI [45-46]. The above 
studies indicate that loss of TGF-β signaling in early 
tumorigenesis provides the tumor with a growth ad-
vantage, and an environment conducive to accumu-
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lation of further mutations by down-regulating the 
DNA repair pathway. It is for these reasons, that in-
hibition of the TGF-β signaling pathway has not been 
considered by some as an appropriate global thera-
peutic strategy for oncology.  

 Tumor Promotion by TGF-β 

In addition to the view that TGF-β is predomi-
nantly tumor suppressing, this signaling pathway 
clearly also has a major role in tumor progression 
(Figure 2). The current consensus is that TGF-β sig-
naling stimulates tumor progression through three 
broad biological effects: 1) cell autonomous induction 
of epithelial to mesenchymal transition (EMT) [47]; 2) 
dampening of immune surveillance, both cell au-
tonomously and non-cell autonomously [48]; and 3) 
indirect facilitation of tumor cell proliferation via its 
effects on stromal fibroblasts, angiogenesis and ECM, 
that in turn modulate the tumor cell [28, 49-50]. Once 
the tumor cell has undergone certain genetic and/or 
epigenetic changes that attenuate the growth sup-
pressive pathway of TGF-β, targeted over expression 
of TGF-β1 can drive malignant progression and me-
tastasis. This has been seen in both, the mouse mam-
mary and the skin tumor models [25, 29, 51-52] as well 
as melanoma, prostate cancer and other types of tu-
mor [49], and is consistent with the fact that many 
advanced human and murine tumors secrete this 
ligand in abundance [53-58]. Even once the growth 
inhibitory pathway is attenuated, both breast carci-
noma cells and skin SCC cells can still respond to 
TGF-β in other ways, such as altered transcriptional 
programs that result in enhanced tumor cell migra-
tion, invasion, extravasation and cell survival [17, 59], 
as well as by changes in the profile of cytokines that 
the tumor cell secretes. These in turn contribute to 
recruitment and polarization of macrophages and 
neutrophils [60], as well as tumor cell evasion from 
host cell immune surveillance.  

Epithelial to Mesenchymal Transition in Mi-

gration and Invasion  

 The term epithelial to mesenchymal transition 
(EMT) describes a multi-step event during which cells 
lose numerous epithelial characteristics and gain the 
properties typical for mesenchymal cells. Transitions 
in cell phenotype from epithelial to mesenchymal 
(EMT) or mesenchymal to epithelial (MET), play a 
crucial role during embryonic development and tu-
morigenesis, and require complex changes in gene 
expression, cell architecture and migratory and inva-
sive behavior. Studies on human and mouse tumors 
suggest that the same molecular processes that drive 
developmental EMT are reactivated in the tumor cell 

to drive tumor progression towards invasive meta-
static carcinomas [61].  

One of the essential molecules for formation and 
maintenance of the epithelial phenotype is the adhe-
sion molecule E-cadherin (encoded by Cdh1) which is 
typically located at cell-cell adhesion junctions. Loss 
of E-cadherin is consistently observed during EMT 
and is currently regarded as a hallmark of EMT 
[62-63]. At the same time, up regulation of Snail, Slug, 
Vimentin, and Fibronectin leads to acquisition of mo-
tility and invasive properties, and allows the cells to 
migrate through the extracellular matrix and form 
metastases at distant sites [64]. The TGF-β/Smad 
pathway is sufficient for a complete phenotypic 
switch in the transcriptional program from epithelial 
to a mesenchymal cell type [29, 65-68]. Of note, the 
extent of cellular and molecular changes that occur 
along the pathway towards EMT depends on both the 
cell type and the number of acquired oncogenic mu-
tations. Some epithelial cells undergo only a limited 
amount of change towards EMT. Nevertheless, even 
small alterations in migration and cellular plasticity 
can impact invasion and metastasis significantly. In 
certain model systems, epithelial cells can undergo a 
complete loss of expression of all epithelial molecular 
markers accompanied by acquisition of a completely 
fibroblastoid or even myofibroblastoid phenotype. 
This is specifically true in the mouse skin model of 
chemically-induced carcinoma, where there can be 
frequent appearance of fibroblastic spindle cell carci-
noma (SpCC) that are ultimately derived from 
keratinocytes of squamous cell carcinoma (SqCC) that 
have undergone EMT. In this system, the spindle 
phenotype is driven by TGF-β, but dependent on 
synergy with activation of the oncogenic H-ras sig-
naling pathway [69-70]. Such an overt EMT of the 
entire tumor does not generally occur during human 
tumorigenesis. When EMT does occur it often does so 
transiently and reversibly yet is still induced by 
TGF-β/Smad signaling [71]. This variable extent of 
EMT in different systems, and the contribution of 
EMT towards metastasis, has resulted in some confu-
sion in the literature as to how to define EMT and how 
central this event is to the spread of cancer [68]. In our 
view, this phenomenon is an important driver of tu-
mor dissemination, and can be both TGF-β dependent 
and independent. HGF, acting through the Met re-
ceptor, is a major player in inducing EMT inde-
pendently of TGF-β. Indeed, studies from the Moses 
lab [72-73] have shown that genetic inhibition of 
TGF-β signaling within tumor stromal cells can po-
tentiate invasion and metastasis, specifically through 
elevation in HGF/Met signaling to the adjacent tumor 
cell.  
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It should be noted that EMT is sufficient but not 
necessary for invasion or metastasis because these 
two processes can each occur without EMT, often 
supported by co-migratory bone marrow-derived 
cells of the tumor stroma [74]. It has therefore been 
hypothesized that EMT is irrelevant to cancer pro-
gression, in part because many tumor metastases tend 
to be epithelial rather than mesenchymal. However, 
EMT is known to be plastic and reversible [61, 71], 
until or unless the mesenchymal phenotype becomes 
fixed by subsequent epigenetic changes and/or fur-
ther genetic mutations. EMT might occur transiently 
to promote cancer cell intravasation into the blood or 
lymph systems, but the phenotype of the tumor at the 
secondary metastatic site is determined by the stromal 
compartments of that site, rather than the innate 
properties of the tumor cell. Indeed, during cancer 
spread there must be selection for cells that not only 
move and survive in the vascular and/or lymphatic 
systems, but that can re-establish a colony at a sec-
ondary site. This sequence of events has been mod-
eled by the metastatic skin carcinoma cell line, E4. 
This SqCC carcinoma line reversibly transforms from 
fully epithelial to fully mesenchymal in culture, de-
pendent on the addition of TGF-β [70, 75-76]. When 
injected subcutaneously into a mouse, it grows as a 
spindle tumor that depends on TGF-β for its spindle 
phenotype. In contrast, if E4 cells are injected in-
tra-peritoneally to colonize the peritoneal cavity, they 
form squamous colonies on the mesothelial lining of 
the abdomen [70]. The plasticity and reversibility of 
EMT in response to changing local TGF-β levels is 
therefore clearly demonstrated in vitro and in vivo.  

Epithelial to Mesenchymal Transition in Driv-

ing the Stem Cell Phenotype  

Regardless of its role in migration and invasion, 
TGF-β induced EMT might be even more attractive as 
a druggable target because TGF-β induced EMT is 
thought to drive cells towards a more “stem cell-like” 
phenotype. Mesenchymal Stem Cells (MSCs) were 
first reported in the hematopoietic system, but have 
more recently been described in many solid tumors, 
such as breast, colon and brain [77]. It has been re-
ported that induction of EMT either by TGF-β1 or its 
downstream targets, Snail or Twist, promoted the 
expression of cell surface markers associated with 
cancer stem cells (CSCs) in immortalized human 
mammary epithelial cells (HMECs) [77]. Furthermore, 
TGF-β can polarize CSCs into a multi-potential cell. 
Battula et al. [78] demonstrated that HMECs stably 
expressing TGF-β1, Snail, or Twist, exhibited a cell 
surface marker profile very similar to that of MSCs. 
Along with expression of these stem cell surface 

markers, TGF-β -induced HMECs showed a remark-
able similarity of 70% in gene expression profile to 
bone marrow-derived MSCs. Indeed, these cells were 
more similar to MSCs than to other mammary tumor 
cell types.  

Interestingly, it has been demonstrated that 
MSCs preferentially home to wounds and to tumors 
[78-81] , a property shared by EMT-induced HMECs 
(EMT-HMECs). In vitro, EMT-HMECs invaded to-
wards breast cancer cells (MDA-MB-231 cells) at sim-
ilar rates to that of bone marrow-derived MSCs, and 
in vivo they were able to home to wounded tissue in a 
similar fashion to MSCs [78]. This TGF-β induced 
stem cell-like phenotype may therefore be critical for 
tumor progression and metastasis because of its ef-
fects on tumor cell dissemination and homing, as well 
as colony-initiating activity. It was therefore postu-
lated that inhibiting TGF-β may reduce the “stem 
cell-like” compartment of the tumor. This is also im-
portant as cancer stem cells are attributed with having 
enhanced chemotherapeutic drug resistance [82-83].  

Dampening of Immune Surveillance and 

Pro-Tumorigenic Polarization of Myeloid Cells  

Lastly, TGF-β can suppress or modulate the 
immune response. Broadly speaking, many of the 
TGF-β signaling effects on both adaptive and innate 
immune cells of the tumor microenvironment result 
from the ability of this cytokine to polarize innate 
immune cells towards an alternative differentiation 
status. Macrophages and neutrophils of the innate 
immune system are attracted towards TGF-β in the 
tumor, and driven towards a “type 2” phenotype by 
this ligand [84-85]. The type 2 macrophage or neu-
trophil is thought to be a relatively immature state of 
the cell which is consistent with the role of TGF-β in 
maintenance of primitive stem-like phenotypes. Re-
gardless of whether the type 2 phenotype represents 
arrested or alternative differentiation, the outcome is 
the same, namely a cell that delivers pro-tumorigenic 
cytokines to the tumor milieu [17]. TGF-β blunts the 
normal anti-tumor functions of type 1 differentiated 
T-cells, macrophages and neutrophils, and stimulates 
the release of pro-tumorigenic cytokines (including 
IL-11 and yet more TGF-β), from type 2 immune cells 
[48]. Thus TGF-β signaling within the tumor micro-
environment suppresses the fully differentiated an-
ti-tumor “cytotoxic” arm of the immune system. Ge-
netic mouse models of T cell–specific loss of TGF-β 
signaling (CD4 promoter driven ΔTβRII) showed en-
hanced tumor eradication due to increased tu-
mor-specific cytotoxic T lymphocyte (CTL) response 
compared to wild type littermates [86]. In line with 
these results, inhibition of TGF-β signaling by mono-
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clonal antibodies also led to increased cytotoxic activ-
ity of CTLs [87].  

Additionally, it has recently been observed that 
IL-17 expressing, and thus tumor promoting, TH cells 
(TH17) are elevated within the tumor-infiltrating 
lymphocyte population (TILs) of melanoma and 
breast cancers [88]. These effects may be tumor 
type-specific since other studies have shown a de-
crease of TH17 cells in ovarian cancer and 
non-Hodgkin’s lymphoma [89-90]. Appearance of 
tumor-associated TH17 cells is linked to the influence 
of TGF-β on the fate of CD4+ precursors. These nor-
mally differentiate into tumor suppressing Tregs, but in 
the presence of TGF-β and IL-6 are diverted to dif-
ferentiate along the TH17 pathway. The transcription 
factors RORγt and STAT3 are known to be critical for 
the development of TH17 cells, and TGF-β induced 
Smad2 binds and synergizes with RORγt to drive the 
TH17 arm of CD4+ cell differentiation [91].  

One mechanism through which TH17 cells may 
promote tumorigenesis and/or progression is by 
promoting angiogenesis. IL-17 is a well-established 
angiogenic cytokine that stimulates migration and 
cord formation of endothelial cells in vitro and of 
blood vessel formation in vivo [92]. These observations 
suggest that the true efficacy of TGF-β inhibitors may 
be through their ability to reprogram the tumor mi-
croenvironment.  

Therapeutic Targeting of TGF-β signaling 

As a result of the wide variety of effects of TGF-β 
on tumorigenesis, blockade of TGF-β and its signaling 
pathway provides multiple therapeutic opportunities 
(Figure 3). There are many TGF-β signaling antagonist 
agents under development at both the pre-clinical and 
clinical stages. The major classes of TGF-β inhibitors 
addressed in this review include ligand traps [1], an-
tisense oligonucleotides (ASO) [5], small molecule 
receptor kinase inhibitors [4], and peptide aptamers 
[6]. Ligand traps serve as a sink for the excess TGF-β 
produced by tumor cells and fibroblasts during cancer 
progression, which increases with aggressiveness and 
tumor stage [28, 34, 93-94]. Ligand traps include an-
ti-ligand neutralizing antibodies and soluble decoy 
receptor proteins that incorporate the ectodomains 
from either TβRII or TβRIII/betaglycan protein. Neu-
tralizing antibodies have been raised against indi-
vidual ligands or may be designed to block all three 
isomers. ASOs can also be used to reduce the bioa-
vailability of active TGF-β ligands in the local tumor 
microenvironment by blocking TGF-β synthesis. 
ASOs are single-stranded polynucleotide molecules, 
13-25 nucleotide in length, that hybridize to comple-
mentary RNA, inhibiting mRNA function, and pre-
venting protein synthesis through accelerated mRNA 
degradation by RNase H [95].  

 

Figure 3: Inhibition of TGF-β signaling pathway. The TGF-β signaling pathway is often elevated in human tumors, and thus a clinical target. This has 

led to the development of a range of anti-TGF-β-signaling drugs for cancer therapy. The four major classes of TGF-β inhibitors include ligand traps (e.g. 

1D11 or Fresolimumab), antisense oligonucleotides (ASO) like Trabedersen, small molecule receptor kinase inhibitors such as LY2109761 or LY2157299, 

and peptide aptamers (e.g. Trx-SARA). 
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Another therapeutic strategy is to block TβRI ac-
tivity through the use of small molecule receptor ki-
nase inhibitors that act via ATP-competitive inhibition 
of the kinase catalytic activity of the receptor. Lastly, 
targeting intracellular TGF-β signaling molecules, 
such as Smads, is possible with the use of peptide 
aptamers, although this is the least explored thera-
peutic strategy. Aptamers are small peptide molecules 
containing a target-binding and a scaffolding domain 
that stabilize and interfere with the function of the 
target. Aptamers may therefore be designed specifi-
cally against Smad2 versus Smad3, and against mul-
timeric transcriptional complexes containing Smads 
and other transcription factors, transcriptional 
co-activators, or co-repressors. This approach there-
fore lends itself to design of more specific targets 
downstream of the receptor, and thus has the poten-
tial for targeting specific subsets of TGF-β responses. 
This review will describe current pre-clinical and 
clinical data related to these four major sub-classes of 
TGF-β antagonists.  

Pre-clinical Data 

Ligand traps 

Pre-clinically, breast cancers that metastasize to 
the bone have been a focus of anti-TGF-β antibody 
studies. The bone is the principal reservoir of TGF-β 
in the body, where it plays an osteogenic function in 
regulation of both bone mass and bone matrix prop-
erties. In cancer, the normal remodeling balance be-
tween bone resorption and formation is disrupted. In 
the case of osteolytic bone metastasis, there is an in-
crease in osteoclastic bone resorption, resulting in 
excessive secretion of active TGF-β into the bone mi-
croenvironment, which in turn triggers a positive 
feedback loop of TGF-β tumor promoting activity 
[96]. Anti-ligand antibody therapy has the potential to 
stop this vicious cycle, by neutralizing the excess pool 
of TGF-β. Genzyme Corporation (now owned by 
Sanofi), developed a pan-neutralizing anti-mouse 
TGF-β monoclonal antibody, 1D11, which binds all 
three TGF-β isoforms and reduces their biological 
activity. In the 4T1 immune competent mouse model 
of breast cancer metastasis to the lung, treatment with 
1D11 demonstrated suppression of metastasis. While 
inhibition of angiogenesis was reported in the pri-
mary tumor, the main mechanism of action appeared 
to be a robust enhancement of the CD8+ T-cell medi-
ated antitumor immune response [97]. Tumor-derived 
TGF-β polarizes CD8+ lymphocytes to promote tu-
morigenesis by inhibiting tumor cell apoptosis and 
supporting tumor vascularization through the induc-
tion of IL-17. Nam et al. [87] demonstrated that 1D11 

treatment reduced IL-17 levels in the tumor microen-
vironment and enhanced tumor apoptosis in the 4T1 
mouse breast cancer model.  

  On top of the efficacy of 1D11 in inhibiting tu-
mor burden it has also been shown that treatment 
with 1D11 can rescue bone loss due to osteolytic bone 
metastasis in breast cancer models. In vivo treatment 
with 1D11 reduced osteolytic lesions in the 
MDA-MB-231 cardiac injection model. One proposed 
mechanism of TGF-β-supported metastasis is through 
TGF-β induced expression of Gli2 (GLI family zinc 
finger 2), a hedgehog signaling molecule. Gli2 regu-
lates the expression of parathyroid hormone related 
protein (PTHrP) a major osteolytic factor [96]. In vitro, 
treatment of MDA-MB-231 cells with 1D11, showed 
reduced expression of both Gli2 and PTHrP, and 
treatment in vivo significantly lowered the number of 
osteoclasts per millimeter in mouse long bones bear-
ing tumor metastases, as determined by TRAP stain-
ing in drug-dosed versus vehicle control mice. In the 
same mouse model it was further reported that an-
ti-TGF-β treatment increased bone volume and im-
proved bone architecture [98].  

 An alternative approach to avert TGF-β signal-
ing is the employment of recombinant Fc-fusion pro-
teins containing the soluble ectodomain of either 
TβRII (TβRII-Fc) or the type III receptor, betaglycan. 
The in vivo expression of TβRII-Fc has shown to re-
duce the incidence of breast tumor metastasis in 
transgenic mice [99]. Administration of TβRII-Fc in 
the MMTV-PMT transgenic mouse model also 
demonstrated an increase in apoptosis in primary 
tumors, as well as a reduction in metastasis [93]. Ad-
ditionally, treatment of MDA-MB-231 human breast 
cancer cells with the soluble betaglycan ectodomain in 
a xenograft mouse model, also demonstrated a block 
to both angiogenesis and metastasis [100]. More re-
cently, expression of the soluble type II receptor 
TβRII-Fc has been coupled to an oncolytic adenovirus 
(Ad.sTβRII-Fc) and infection of MDA-MB-231 cells 
with Ad.sTβRII-Fc in vitro, inhibited TGF-β signaling. 
When administered directly into subcutaneous 
MDA-MB-231 tumors in nude mice, this resulted in 
reduction of tumor growth [101]. Furthermore, Hu et 
al. [102] evaluated the systemic administration of 
Ad.sTβRII-Fc on breast cancer bone metastases in a 
nude mouse model. Their study demonstrated that 
intravenous delivery of Ad.sTβRII-Fc resulted in viral 
replication and expression of TβRII-Fc in skeletal tu-
mors as well as a signification reduction of primary 
tumor growth and osteolytic bone destruction.  

Antisense oligonucleotides (ASOs)  

The reduction of TGF-β synthesis by ASOs is 
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another therapeutic strategy to reduce excess TGF-β 
levels within the tumor microenvironment. ASOs are 
designed to hybridize to their complementary RNA 
sequence and accelerate mRNA degradation. How-
ever, ASOs have some limitations which need to be 
taken into account when using them. These limita-
tions include unpredictable RNA binding affinity, 
possible non-specific/off target effects and the chal-
lenge of delivery of relatively large molecules into the 
target cell. In the TGF-β1-driven metastasis mouse 
model of PyMT–induced mammary cancer, TGF-β1 
ASOs partially reduced tumor metastasis. A partial 
rather than full reduction in metastasis was attributed 
to further autocrine TGF-β production, synthesized in 
cancer and/or stroma cells [94]. These results high-
light a possible limitation of the ASO strategy. 

 Among the TGF-β ligands, TGF-β2 has a unique 
role in both glioblastoma and pancreatic cancer, since 
its expression correlates with poor clinical outcome. In 
fact, it has been reported that TGF-β2, but not TGF-β1, 
induces a pronounced immunosuppressive pheno-
type in these tumor types through the activation of 
Foxp3 [103]. Therefore, ASOs to TGF-β2 have been 
investigated as an approach for treatment of pancre-
atic cancer. AP12009 (Trabedersen) was developed by 
Antisense Pharma as an ASO specifically targeting 
human TGF-β2 RNA, and previously shown to inhibit 
TGF-β2 expression, decrease cellular proliferation and 
migration of glioma cells in vitro [104]. This drug 
produced promising results for treatment of glio-
blastoma in the clinic (see below). In an orthotopic 
mouse model of human metastatic pancreatic cancer, 
using the L3.6pl human pancreatic cancer cell line 
implanted into the pancreases of BALB/Cnu/nu mice, 
treatment with AP 12009 demonstrated a significant 
reduction in tumor growth, vascularization, and me-
tastasis [105].  

Small molecule receptor kinase inhibitors 

 In spite of the fact that ligand traps and ASOs 
limit the bioavailability of the active TGF-β ligands, 
they fail to directly block receptor signaling. Small 
molecule inhibitors of the TGF-β receptor kinases 
have an advantage here, although reduced drug 
specificity of kinase inhibitors compared to ASOs or 
monoclonoal antibodies may be a challenge. Current 
preclinical data suggest that the majority of small 
molecule inhibitors of TβRI/ALK5 also inhibit the 
related activin and nodal receptors, ACVR1B/ALK4 
and ACVR1C/ALK7, but with reduced affinity 
[106-108]. The targeting of receptor kinases by small 
molecules has been an abundant area of experimental 
drug development in the last few years precisely be-
cause of ease of drug production and the practicality 

of drug delivery by the oral route.  
GlaxoSmithKline has developed a small mole-

cule inhibitor of TβRI, SB-431542, which has now been 
widely used in basic research studies. For example, in 
vitro it has been shown to block TGF-β induced tran-
scription of fibronectin and collagen in renal epithelial 
carcinoma cells, as well as inhibit the proliferation of 
glioma and osteosarcoma cells [109]. However, this 
drug is pharmacokinetically unstable, a major hurdle 
to in vivo studies. Ki26894, also a TβRI/ALK5 kinase 
inhibitor, has been shown to block TGF-β signaling, 
invasion, and motility of the bone metastatic breast 
cancer cell line, MDA-MB-231-D. Ki26894 treatment of 
nude mice one day prior to intra-cardiac inoculation 
of MDA-MB-231-D cells resulted in decreased metas-
tasis and prolonged mouse survival [110]. The use of 
TβRI/ALK5 inhibitor LY364937, in a 
MDA-MB-435-F-L orthotopic xenograft model into 
nude mice, also demonstrated reduction in the for-
mation of early bone and lung metastases after treat-
ment [111]. Similar findings with the TβRI inhibitor 
SD-208 (Scios Inc.), showed that tumor cell 
pre-treatment with drug before tumor inoculation 
into a mouse model of human melanoma, prevented 
the development of osteolytic bone metastases com-
pared with vehicle. Additionally, mice with estab-
lished bone metastases showed a significant reduction 
in size of osteolytic lesions after four weeks of SD-208 
treatment compared to vehicle-treated mice [112]. 

TGF-β secretion by tumors suppresses the anti-
tumor immune response. Dendritic cells (DCs) play 
an important role in this response through antigen 
presentation and activation of cytotoxic T lympho-
cytes (CTLs). In this context, Tanaka et al. [113] re-
ported a microenvironment-mediated anti-tumor ef-
fect of SB-431542 treatment in vitro through induction 
of DC maturation. Using an orthotopic model of colon 
carcinoma it was observed that intra-peritoneal ad-
ministration of SB-431542 significantly induced can-
cer-specific CTL activities. Furthermore, treatment 
with SB-431542 or another TβRI inhibitor, Ki26894 in 
an in vitro model of Multiple Myeloma (MMy) also 
demonstrated that TGF-β signaling affected tumor 
stromal cell differentiation. Blockage of TGF-β sig-
naling with either of these inhibitors released stromal 
cells from MMy-induced differentiation arrest, re-
sulting in terminal differentiation of osteoblasts (OBs) 
from mesenchymal stem cells. The OBs were then in 
turn able to inhibit MMy cell growth in the bone 
marrow and prevented bone destruction. These re-
sults suggest that TGF-β suppression of OB differen-
tiation not only accelerates bone loss but also creates a 
tumor niche to enhance tumor growth and survival 
[114].  
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 The objective of TGF-β inhibition is to target its 
tumor promoting properties, both cell autonomous 
and microenvironmental, while avoiding inhibition of 
its tumor suppression arm. This goal begs the fol-
lowing question: How long should TGF-β signaling 
be suppressed and what are the long term effects of 
this suppression? LY2109761, a dual inhibitor of 
TβRI/II has shown promising effects on inhibiting the 
formation of metastases in several short term mouse 
tumor models, including breast [115], colon [116], and 
pancreatic [117] cancer. However, in a long term drug 
dosing study in a mouse model of chemically-induced 
skin carcinogenesis, a new phenomenon for this drug 
class has emerged. We demonstrated that despite the 
ability of LY2109761 to inhibit EMT in vitro, and de-
spite its short-term effects in suppressing components 
of SpSC EMT in vivo, sustained pharmacologic inhibi-
tion of TGF-β signaling led to biochemical resistance 
of tumor cells to the drug. This led to undesirable and 
oppositional effects in driving EMT, with the potential 
for promoting further carcinoma progression. The 
tumors acquired constitutively elevated levels of 
P-Smad2, despite the presence of the drug, that drove 
expression of genes characteristic of invasion, in-
flammation, and ”stemness” [76]. 

 It is in fact a dirty little secret of chemotherapy 
that most cancers do acquire resistance to cytotoxic 
drugs. Clinically, many small molecule inhibitors 
such as EGFR (erlotinib), ABL/PDGFR/KIT 
(imatinib), and VEGFR/RAF/PDGFR (sorafenib), 
have produced impressive initial clinical responses, 
including disease remission in a subset of patients. 
However, this outcome is habitually followed by 
eventual disease progression [118-119]. This incon-
venient fact emphasizes the need to understand both 
the acute and chronic effects of signaling pathway 
suppression. In the case of Ly2109761 it would appear 
that the tumor cells acquired biochemical resistance to 
a non-cytotoxic drug. Clearly, for this to happen there 
must be some selective advantage to the tumor in 
driving resistance. Elucidating the mechanisms of 
Ly2109761 drug–resistance, whether it is acquired or 
due to outgrowth of a pre-existing cell population, 
should lead to an understanding of alternative path-
ways that might drive the cancer cell. Various hy-
potheses exist based on studies with inhibitors of 
Her2 and Raf kinases in various tumor types. These 
include negative feedback loops, the re-wiring of the 
signaling pathway via alternative downstream effec-
tors, and mutational activation of the drug target, 
namely the kinase receptor [119-122]. The paradoxical 
activation of the therapeutic target suggests that long 
term suppression of a signaling pathway may not be 
efficacious when used as monotherapy.  

Peptide Aptamers 

Another possible strategy to block TGF-β sig-
naling for cancer is to interfere with the TGF-β sig-
naling molecules, the Smads, that act downstream of 
the type I receptor. This may be achieved by using 
peptide aptamers. Peptide aptamers, as the name 
suggests, are small peptides that can bind specifically 
to certain proteins. They have two domains, a tar-
get-binding domain and a scaffolding domain that 
stabilizes the resultant molecular complex. A few 
peptide aptamers have been designed that bind to 
Smad2 and Smad3, consequently disrupting their 
interactions with Smad4. The Trx-SARA aptamer is an 
example. Treatment with Trx-SARA has been re-
ported to reduce the levels of Smad2/3 in complex 
with Smad4 after TGF-β stimulation. Furthermore, 
Trx-SARA treatment has been shown to inhibit 
TGF-β-induced EMT in NMuMG murine mammary 
epithelial cells in vitro [123].  

Clinical Data  

Ligand traps 

Fully humanized pan-TGF-β monoclonal neu-
tralizing antibodies were developed by Genzyme for 
use in patients, including Lerdelimumab [124-125], 
Metelimumab [126] and GC-1008 (Fresolimumab) 
[127]. Here we will focus on publically available re-
sults from the GC-1008 trials. Genzyme sponsored a 
two part clinical trial of GC-1008 in patients with ad-
vanced renal cell carcinoma (RCC) and malignant 
melanoma (MM). Preliminary data from Part 1 of this 
study was presented at the 2008 ASCO Annual 
Meeting [127]. Part 1 was a multi-center Phase I/II 
safety and efficiency trial of GC-1008 in a cohort of 
patients, mainly with advanced MM (n=22) but also 
including a single patient with RCC (n=1), all of 
whom had at least one prior failed therapy [127]. The 
patients were treated by intravenous administration 
of GC-1008 at one of six dosages (0.1, 0.3, 1, 3, 10 or 15 
mg/kg). If there were no dose limiting toxicities 
(DLTs) within the first 28 days of first dosing, three 
further doses were administered at two week inter-
vals. No DLTs were observed and thus 15 mg/kg was 
determined to be the highest safe dose tested. Stand-
ard Response Evaluation Criteria in Solid Tumors 
(RECIST) was used to determine clinical response of 
the tumors. Patients achieving stable disease (SD) or 
partial responses (PR) were offered extended treat-
ment with the drug for four further doses at two 
weeks intervals. As reported in 2008, five patients had 
achieved SD or better and therefore received extended 
treatment. Furthermore, of those five responders, 
three patients had mixed responses, including 
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shrinkage of metastases in liver and at other sites. One 
MM patient achieved a PR with a greater than 75% 
reduction in the target lesion. The most frequently 
reported drug-related side effects were skin rash-
es/lesions including eruptive non-malignant kera-
toacanthomas (KA) and squamous cell carcinoma 
(SCC) on sun-damaged skin, as well as gingival 
bleeding and fatigue.  

The objective of the second part of the trial was 
to determine the frequency of GC-1008 induced ad-
verse skin events in patients with MM. Patients in this 
part of the study received intravenous dosing of 
GC-1008 at 10 mg/kg or 15 mg/kg on study days 0, 
28, 42 and 56 [128]. Biopsies of non-melanoma skin 
lesions from MM patients who had received multiple 
doses of the antibody in Part 1 of the trial were also 
screened by histopathology for KA versus SCC. KA 
and well-differentiated SCC are difficult to distin-
guish from each other, but the current interpretation 
of the data is that GC-1008-associated skin lesions 
were predominantly non-malignant KA which often 
spontaneously resolved or improved after discontin-
uation of the drug. The severity of skin lesion devel-
opment appeared to be associated with the higher 
dose and longer duration of GC-1008 exposure in 
these oncology trials, since neither KA nor SCC were 
observed in single dose Phase I trials for idiopathic 
pulmonary fibrosis or focal segmental glomeru-
lo-sclerosis [128].  

Antisense oligonucleotides (ASOs) 

AP12009 (Trabedersen) is an ASO that specifi-
cally inhibits TGF-β2 expression. It was initially tested 
in a Phase I/II study in patients with high-grade 
glioma where AP 12009 treatment showed a signifi-
cant survival benefit over standard chemotherapy 
[104]. In more recent studies, the Antisense Pharma 
group who developed this drug moved into the 
treatment of advanced pancreatic carcinoma (PanCa, 
stage III/IV, n=23), malignant melanoma (MM, stage 
III/IV, n=5), and colorectal carcinoma (stage III/IV, 
n=5), and undertook a dose escalation trial. Patients 
received i.v. Trabedersen monotherapy as a second to 
fourth line therapy, with escalating doses in one of 
two treatment schedules (schedule 1: 7 days on, 7 
days off; schedule 2: 4 days on, 10 days off; both up to 
10 cycles). AP12009 was well-tolerated, with the only 
adverse event being transient thrombocytopenia. 
Phase II selected a dose of 140 mg/m2/d to treat 
PanCa and MM according to schedule 2 dosing. Me-
dian overall survival of the PanCa patients (n=9) had 
not yet been reached as of December 2010 (12.9 
months in Dec. 2010). One of the nine PanCa patients 
had a complete response of liver metastasis while 

other promising efficacy data included 1 metastatic 
DTIC-(5-(3,3-dimethyl-1-triazeno)-imidazole-4-carbox
amide) resistant melanoma patient who was still alive 
19.7 months after the start of treatment (status Dec 
2010). Additionally, three other patients with stage IV 
melanoma, were treated with Trabedersen as the third 
or fourth line of therapy, and survived for 11.4, 13.8, 
and 18.6 further months [129]. Earlier clinical trials of 
Trabedersen in glioblastoma suggested that the effect 
of this drug might be through alterations in host im-
munity, since intra-tumoral injection of Trabedersen 
into a patient with multiple brains tumors not only led 
to regression of the target tumor, but to reduction of 
tumors in the contralateral brain hemisphere [130].  

Receptor kinase inhibitors 

LY2157299 is a small molecule inhibitor which is 
selective for the kinase domain of the type 1 TGF-β 
receptor. LY2157299 is currently in a Phase I escala-
tion study in patients with metastatic malignancies. 
The goals of this study are to determine the safety and 
pharmacokinetics of LY2157299. 28 patients with 
Grade IV glioma have so far been treated by 2008 
[131]. In a previous First Human Dose (FHD) study, 
patients with advanced/metastatic malignancies were 
divided into cohorts of 3 patients each and treated 
with 40 mg or 80 mg LY2157299 daily. These doses 
were well tolerated and pharmacokinetic profiles 
were consistent with the pre-clinical based pharma-
cokinetic/pharmacodynamic modeling [131]. To de-
termine a potential maximum tolerated dose, patients 
were treated in a new FHD study at 160, 240 and 300 
mg/day, 14 days on 14 days off, with 6 – 12 patients at 
each dosage level. Standard evaluation criteria, car-
diac safety and tumor responses were assessed. Two 
drug-related dose limiting toxicities included pul-
monary embolism and thrombocytopenia in the se-
cond cycle of drug dosing, but no medically signifi-
cant cardiotoxicities were observed. At the lowest 
dose of 160 mg/day, three patients were treated for 
>20 cycles. Currently the study is reporting 3 con-
firmed PR at 160 mg/day and 1 unconfirmed PR at 
300 mg/day. In some patients, down regulation of 
P-Smad2 levels, as a biomarker, in peripheral blood 
mononuclear cells indicated that drug target inhibi-
tion was effective at the 160 mg/day dose level, and at 
this dose an anti-tumor response was seen in at least 3 
patients with durable responses beyond 1 year. The 
current conclusions of the study are that the 14 days 
on/ 14 days off treatment is safe at all dose levels and 
a maximum tolerated dose was not observed. Given 
the overall safety profile and likely anti-tumor effect, 
LY2157299 is being investigated in Phase II studies 
[132]. 
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Developing Concepts and Future Prospects 

While clearly TGF-β signaling inhibition results 
in a significant reduction in metastasis in mouse 
models, clinically the effects have been less robust 
then hoped for. Additionally, it has been more diffi-
cult to demonstrate inhibition of primary tumors. 
These facts suggest that combinatorial therapy may 
increase the efficacy of TGF-β inhibitors in a clinical 
setting. Ionizing radiotherapy is known to induce 
TGF-β in both the tumor and tumor microenviron-
ment. This increase in TGF-β results in an enhanced 
DNA damage response [46]. Therefore, treatment 
with a TGF-β inhibitor would sensitize the tumor to 
the radiation. In the subcutanecous 4T1 breast cancer 
mouse model, animals treated with the pan TGF-β 
neutralizing antibody 1D11 24 hours prior to radio-
therapy showed marked reduction in primary tumor 
growth compared to the single agent treatment group 
[133]. Additionally, the TβRI/II kinase inhibitor 
LY2109761 in combination with temozolomine (clini-
cal standard) and radiotherapy in a glioblastoma 
model delayed tumor growth compared to controls 
[134]. The TβRI kinase inhibitor LY2157299 in combi-
nation with temozolomine and radiotherapy is in a 
Phase I trial in glioma patients (clinical trial ID 
NCT01220271). Additionally, a clinical trial evaluat-
ing the effects of the neutralizing TGF-β antibody, 
GC-1008, in combination with radiotherapy in meta-
static breast cancer is currently recruiting participants 
(clinical trial ID NCT01401062).  

Furthermore, it has been previously shown 
through knockdown of the TGF-β signaling pathway 
that loss of TGF-β signaling can enhance the thera-
peutic efficacy of various cytotoxic agents such as 
rapamycin [135] and doxorubicin [136]. In the 4T1 
mouse model of triple negative breast cancer the 
combination of ixabepilone (a microtubule stabilizer), 
capecitabine (a pyrimidine analogue) and the TGF-β 
pan neutralizing antibody 1D11 demonstrated reduc-
tion in primary tumor growth and metastasis [137]. 
The combination of ixabepilone and capecitabine has 
shown some effectiveness in breast cancer patients 
which have failed anthracyclin and taxane therapy 
[138]. A clinical trial evaluating the effects the TβRI 
kinase inhibitor LY2157299 in combination with gem-
citabine (nucleoside analog) in metastatic pancreatic 
cancer is currently recruiting participants (clinical trial 
ID NCT01373164).  

Conclusions 

TGF-β has a predominant role in a variety of 
cancer types during progression and metastasis. In-
creased quantities of TGF-β in the tumor and tumor 

microenvironment promote tumorigenesis by induc-
ing EMT, re-programming of immune surveillance, 
and/or indirect facilitation of tumor cell proliferation, 
thereby making it a very druggable target. To date, 
there are three major therapeutic designs targeting 
TGF-β in clinical trials: TGF-β antibodies, antisense 
oligonucleotides, and receptor kinase inhibitors. Each 
of these strategies has different pharmacokinet-
ic/pharmacodynamic properties and mechanisms of 
action. These differences have distinct limitation in 
respect of delivery, specificity and toxicity. However, 
all strategies are faced with the fact that TGF-β sig-
naling is involved in many normal physiological 
functions. As highlighted by the LY2109761 
DMBA/TPA mouse study long term suppression of 
this pathway may lead to harmful off-target effects. 
With this concern in mind, TGF-β inhibitors may be a 
therapeutic benefit within a combinatorial therapy 
setting for oncology. This may be especially true for 
multiple myeloma and breast cancer, where attenua-
tion of TGF-β signaling may not only reduce meta-
static spread but also help maintain bone mass in pa-
tients with osteolytic metastases.  
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