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Similarity and Strategic Effects in Recognition Memory

Gregory E. Cox, George Kachergis, Richard M. Shiffrin
(grcox, gkacherg, shiffrin)@indiana.edu
Department of Psychological and Brain Sciences, Cognitive Science Program, Indiana University
1101 E. Tenth St., Bloomington, IN 47405 USA

Abstract marginalizing the effects of potentially idiosyncratic stimuli.

. . N . Th I llow for ne-grain rametric manipulation of
We introduce a class of arti cial stimuli that lack preexperi- ey also allow for ne-grained parametric manipulation o

mental associations or encoding strategies. In a set of recogni- inter-item similarity. Because these stimuli do not, a priori,
tion memory experiments using these stimuli, we manipulate suggest any particular encoding strategies, we can also inves-

the similarity between studied items and between targets and tigate the effect of manipulating item valence on encoding
foils, thus investigating the effects of pure perceptual similar- ’

ity. We also assign values to studied items in order to induce thereby implicitly making some items more “important” than
encoding strategies that might emphasize encoding distinctive others (Kachergis, Recchia, & Shiffrin, 2011). We present re-
or overlapping features. Applying a stochastic signal detec- g jts from a set of recognition memory experiments in which

tion model to these data, we nd that blocked presentation and L L
increased category size lead to poorer encoding of individual the similarity and valence among studied items and between

items, indicating that participants fail to encode distinctive fea-  targets and foils is manipulated. The effects of these manipu-

tures when list homogeneity is increased. Further, items as- |ations are interpreted within the context of a stochastic signal
signed a negative value are encoded more poorly, a sign that .
participants may attempt to nd overlapping features among detection model of memory.

negative items.

Keywords: recognition memory; categorization; similarity. EXperiment 1
] Episodic memory experiments typically present items with no
Introduction indication of their relative importance, making it unclear why

The manipulation of similarity between items in memory hasparticipants might devote more effort toward encoding some
served as a rich source of evidence for models of memorytems rather than others. In the current experiment, we use
Perhaps the most famous of these is the DRM paradignthe valence of an item—whether it is worth positive or nega-
in which studying a list of semantically-related items leadstive points—to indicate relative importance. Some conditions
to greater false recall and recognition of other semanticallycontained eight positive-valued objects, while others con-
related items (Roediger & McDermott, 1995). Within a single tained four positive-valued (+10 points) and four negative-
list, increasing the number of exemplars from a given semanvalued objects (-10 points).
tic or orthographic category leads to higher false alarm rates We also manipulated the perceptual similarity of the eight
to category members (Shiffrin, Huber, & Marinelli, 1995). objects in the study list: they were either all similar (i.e.,
And despite overall high performance, the semantic similarityl category), all dissimilar (8 categories), or comprised of
among visual objects (e.g., cars, backpacks) leads to greattwo categories of four similar objects. Perceptual categories
interference (Konkle, Brady, Alvarez, & Oliva, 2010). might or might not align with valence categories. In either
The kinds of stimuli used in these experiments tend to be&ase, the question is whether a homogeneous list is encoded
things with which participants have a great deal of experi-better or worse, and whether manipulating valence leads to in-
ence, e.g., words, colors, or common objects. Because of thigfeased discriminability between study items. To better pull
experience, participants come to the experiment with potenapart issues of similarity, we use different foil types during a
tially idiosyncratic encodings or strategies (this would seen2-alternative forced choice (2AFC) recognition test. Foils can
to be particularly true of verbal stimuli). This is exempli ed be from the same perceptual category as the target, from a dif-
by the classic “own-race” bias, in which face recognition isferent studied category (if there were two studied categories),
superior for member's of one's own race due to greater expoor from a novel category.
sure and a corresponding ability to attend to relevant featureéub'ects
of the face (Meissner & Brigham, 2001). As a result of these J
kinds of idiosyncrasies, it is sometimes dif cult to make in- 133 undergraduates at Indiana University participated to re-
ferences about memory processes in general, since one migive course credit.
need to appeal to processes that are speci ¢ to the stimuli Oét. i
participants employed. imutll
In this paper, we introduce a novel class of stimuli for Each stimulus was a light gray blob (50 pixels in di-
recognition and categorization experiments that avoids somameter). Its boundary, denotet{q), was generated by
of these problems. Because the stimuli are entirely novel anfourier synthesis in polar coordinates according (q) =
dif cult to verbalize, we eliminate most effects of prior ex- 32 i %expf codli (g+ fi)]g, wherew; andf; are the weight
perience. They are also randomly generated for each list arehd phase, respectively, of the component with frequency
each participant, minimizing interference between lists andShepard & Cermak, 1973). Eight stimuli were created for



(a) Category 1 (b) Category 2

Figure 1: Example blob stimuli from two categories.

Figure 3: Data and predictions for Experiment 1.

the participant pressed the space bar to immediately choose

whichever microbe they were currently under. If the par-

ticipant failed to select one of the two objects, they lost 30
Figure 2: Screenshot of a single trial, in which the partic-points and were told to try to select one of the objects on
ipant chose an unstudied (i.e., neutral) microbe. Feedbackery trial. Participants running score, tallied across all con-
appeared only after the decision was made. ditions, is shown throughout testing in the upper left corner

) of the screen.
each blob category (although less than 8 may end up in the Subjects participated in each of the ten unique study con-

experiment) by rst randomly selecting a set of initial phasesditions twice, for a total of 20 blocks, each with eight trials.

0 i— 7... ]
fi, i=1:::12 for .each component. Then, to create 8 ex Condition order was counterbalanced across subjects.
emplars, the relative phase of two componeftsandf s,

were set to 8 equally-spaced values in the rd0g2p), e.9., Results
fa2 £3f9+ B;f3+ B;::0 wheref§ is the randomly cho- o . _
sen initial phase, and similarly fdrs. Pilot studies using 22 participants were excluded from analysis because their
multidimensional scaling—not reported here due to spac@Verall performance was not signi cantly greater than chance
constraints—established that, even given the random natufed31 for 160 trials). Accuracy results for the remaining 111
of these stimuli, individual exemplars were discriminable andParticipants are shown in Figure 3. An accurate response
more similar within categories than between. Example stimin one in which the participant selects the item with great-
uli are shown in Figure 1. est valence: selecting the old item if it is positive or the foil
New items were generated for each participant for each of the studied item is negative. An analysis of variance on
20 blocks such that participants saw no stimulus more thaf® number of perceptual categories (1, 2, or 8), the valence
once. Each study block contained eight objects, each pairegPmposition of the study list (mixed or univalence), and the
with a value, either +10 or -10. Participants studied eacHoil type (similar, other, or novel) shows signi cant main ef-
object-value pair for four seconds, in randomized order. ~ fects of the number of categorie§ (@;110 = 10:94, p <
:001), valence compositior(1;110) = 20:73, p <:001),
Procedure and foil type F(2;61) = 32:88, p<:001). Signi cant inter-
Participants were instructed that they would be playing eactions were: number of categories by valerfe€2(220) =
game in which their goal would be to maximize their points 27:80, p < :001), study distribution by valence composition
by studying and remembering “alien microbes”, some of(F(2,220 = 15:58, p <:001), and number of categories by
which are good (positive points), and some of which are baalence by foil type (4,440 = 7:65, p<:01). All other
(negative points). After studying, two microbes would fall interactions had-values less than one.
from the top of the screen, one of which had been on the pre- Accuracy in conditions with one perceptual category (i.e.,
ceding study list, and they would have to choose the morall similar) was worse than accuracy in conditions with eight
valuable microbe (novel microbes were always worth zeroor two categoriesNl; = :62, Mg = :66, M = :65). Ac-
points). At the start of each test trial, the two choice itemscuracy in conditions with only positive items was superior
would appear horizontally separated by 200 pixels and vertito accuracy in conditions with both positive and negative
cally separated from the participant's agent (which is initially items Mpos = :66; Mpoth = :62), but there was no signif-
equidistant between the two options) by 210 pixels, movingcant difference in overall accuracy between positive and
downward at a constant rate of 1 pixel per frame (at a renegative items in the mixed-valence conditioMsgs= :60,
fresh rate of 60 Hz) on 15" CRT monitors with a resolution Mpeg = :62; t(110) = :81, p = :42). Overall accuracy was
of 800x600 pixels. Participants made their choice by usindower when foils were similar to targets than when they were
the arrow keys to move a small arrow-shaped agent under thenique; however within the univalence condition, accuracy
microbe they wanted to choose (see Figure 2). The trial endedas higher for similar foils than for foils from a different cat-
when the chosen microbe fell into the participant's agent oregory, a perplexing “similar-foil” effect originally found by



Tulving (1981).

Experiment 2

In Exp. 2 we examined recognition memory for lists com-

posed of either two perceptual categories, or all unique stim-

uli. Unlike Exp. 1, all of the stimuli were given positive

values in this experiment. For lists with two categories, we

examined the effect of interleaving vs. blocking the two cate-

gories during study. Prior work has shown that inductive cat-

egories are best learned from interleaved training (Carvalho

& Goldstone, 2012). However, we were interested to see if

more interference would come from blocking—which sepa- Figure 4: Data and predictions for Experiment 2.

rates the categories in time and may lead to more prototype-

like encoding—or from seeing the categories mixed, whichtYPe F(4;146) = 3:43,p<:01). The larger the category, the

might make it easier for participants to learn distinctive fea-Worse people got at discriminating similar foils from exem-

tures of the items. plars of that category, but the better they became at discrimi-
For the two-category lists, category was varied: equal size@ating category members from unique foils.

(4 and 4) or unequally sized (6 and 2). More exemplars A Model

gives more opportunities to form a category representation,

but with the potential cost of greater confusability. On theTo better understand the effects of category size, valence, and

other hand, a small category may be better remembered dl!;éocking/interleaving, we introduce a stochastic Signal detec-

to its distinctiveness. tion model. This model aims not to be a detailed process
) model; rather, it is hoped that the parameter estimates ob-
Subjects tained from this model will provide a deeper understanding of
86 undergraduates at Indiana University participated to rethe memory and decision processes that generated our data.
ceive course credit. Although this model is similar to the Generalized Context
) ] Model (GCM; Nosofsky, 1986), we do not have pairwise sim-
Stimuli and Procedure ilarity ratings for each stimulus and subject. Therefore, we

The same stimuli and procedure were used as in Exp. 1.  directly estimate item similarities in the model, rather than

) the parameters of GCM's exponential similarity rule. Fur-
Design ther, unlike our model, GCM does not assume noise in the
Each study list contained 8 blobs, and participants performedensory/memory representations of item; however, stochastic
18 study-test blocks. Two blocks were comprised of uniquenoise has been shown to be critical for explaining the Tulving
study items (i.e., 8 categories of size 1), which were testedimilar-foil effect (Hintzman, 1988; Clark, 1997). In making
against either unique foils or foils that were similar to the tar-the assumption of stochastic noise, our model is quite similar
get. There were four blocks with two studied categories (4o the NEMO model (Kahana & Sekuler, 2002).
exemplars each). In two of these blocks, the categories were We assume that each of the two choice items is compared
interleaved, and in the other two the categories were blockedo the memory traces of all eight items from the study list.
Finally, there were 12 blocks with two unequally-sized cate-Each comparison produces a match value that is proportional
gories. In the two-category blocks, foils could be from theto both the similarity between the choice item and the mem-
same category as the target, the other studied category, ory item as well as the encoding strength of the memory item.
novel. Match values may also be weighted by the retrieved valence
for each item, which may or may not have been stored cor-
Results rectly. The participant then selects the item with the higher
Twelve participants were removed because their overall acsummed match.
curacy was not signi cantly above chance. Data from the re- R
maining 74 participants were analyzed in terms of their prob-1 "€ Match Distribution
ability of choosing the correct (in this case, old) item (seeWe assume that the match value between a choice item and a
Figure 4). An ANOVA on category size (1, 2, 4, or 6 exem- memory trace is normally distributed with a mean value that
plars), list type (blocked, interleaved, or other) and foil typedepends on both the similarity between the choice item and
(similar, dissimilar, or novel) shows a signi cant main effect the trace and the encoding strength of the trace. The variance
of foil type (F(2;73) = 37:63, p < : 001)-all other F-values of any match is assumed to be a consthtthus, any vari-
were less than 1. Accuracy was lower when foils were simi-ation in the mean match value can be thought of as varying
lar to targets than when they were unique, or drawn from théhe signal-to-noise ratio. If there are two choice items Bnd
other categoryNlsimilar = :62; Munique= :76; Mother = :66).  study items, there are the2match values which are jointly
There was a signi cant interaction of category size and foilnormally distributed. This joint distribution is characterized



by the vector of A mean match values and thsl2 2N ma- suchthapy =1 wandsj= 8s2. Although the mean dif-
trix of their covariances. Then, the distribution of the differ- ference is the same, the similarity between the target and foil
ence in summed match between the two choice items can reduces the variance such that more of the difference distri-
expressed as a linear function of the joint match distribution.bution falls above zero, leading to greater accuracy and an
We assume the mean match value of an item to itself is lexplanation for the Tulving effect (Tulving, 1981; Hintzman,
the mean match value between two independently generatel®88; Clark, 1997).
blobs is zero, and the mean match between two blobs from th
same category iw, 0< w< 1. In addition, the match values
between items of the same category jaositively correlated
(with valuer, 0< r < 1). This correlation arises from shared
category features: if a choice item shares a feature with on
item from category A, it is likely to share that feature with

Encoding strength We allow items to vary in the strength
with which they are encoded; a less strongly encoded trace
will lead to a weaker match. Encoding strength may vary
asa function of, for example, study time, but may also vary
as a function of task structure, e.g., category size. To know

other category A items since items within a category will tend\'\/heﬂt-'er Sl_JCh afn d_efff'fect ?X'.Sts' we as sume t;'a; thihexemplars
to share features. Conversely, if a choice item pOSSGSSESO’cfl categories of different size may be encoded with varying

feature that is absent from a category A item, that feature Wilﬁtrgnglth. Lhe encodtmg strgngth of a catetge_(lfy,f a free
also tend to be absent from other category A items. variable. However, 10 avold over-parametérization, we as-

For example, say the study list consists\oE 4 items, Sume that singletons—items from categories of size 1—are
with 2 items from one category and 2 items from another. Ifencoded with strength 1 and only allow the strengths of items
on a given trial, the foil is completely novel, the mean matchfrom larger category sizes to vary.

vector would beu=[1;w; 0;0;0;0;0; 0]T and the covariances Encoding strength has a multiplicative effect on match

between the match values would be , strength. Thus, generalizing from the above examples,
s rs> 0 0 0 0 0 0 the mean match value for an old choice item g =
5% 302 rgz 8 8 8 8 So[1+w(No 1)], whereso is the encoding strength for the
s= 0 rs2 s2 0 0 0 0 category from which the old item is drawn amg is the
0 0 0 0 st 0 0F ber of it tudied from the old cat Similarl
O o o0 o0 2 2 o o number of items studied from the old category. Similarly,
8 8 8 8 8 8 s? rs? the mean match value for a new itemus = syNnw, where
rs S

sy andNy are the encoding strength and number of studied
where the rst 4 match values are matches to the target anilems for the category from which the new item is drawn. If
the second 4 are matches to the foil. the new item is novel (there were no similar items studied),
The probability of selecting an old item is the probabil- thenNy = 0 andpy = 0. The mean and variance of the dif-

ity that the difference in the summed match between thderence distribution can then be expressed

old and the new item exceeds zero. The distribution of this
difference can be obtained by applying the linear operator
k=[11211 1, 1; 1 1]T to the multivariate match dis-
tribution. This operator simply sums the target match values
and subtracts the foil match values. The resulting difference

Hd= Ho ,UN= So[l+w(No 1) snNaw 4 1)

C
s3=2s2 N+r@d N(Ni 1) 1(0O=N)IN3  (2)
i=1

distributiond is also normal with meapq and variances3: ~ whereCis the number of categories in the study INStjs the
) T .t number of studied exemplars from categarandI( ) is an
d N pg;sg ;Ha= K| sg=k Sk indicator function that equals one when its argument—in this

case, whether the old and new item are drawn from the same

In this examplepg = 1+ w ands3 = (8+ 8r)s2. Then, the _ _ _
category—is true and is zero otherwise.

probability of selecting the old item is the probability that a
sample from this difference distribution lies above zero, i.e.\jalence All study items in both experiments were paired
q=1 F( H4=Sq)- with a valence, although only in Experiment 1 were there neg-

théf égs/;ﬁgriiedra;vt?i;r?e%;?ﬁ Ottrf]]:rsgtlfr“']ceﬁed ﬁé%o{ﬁé t]f‘o'?lniative valences. Thus, we re-frame the recognition task as se-
novel because trne target andsfon were stﬂfgenerated inddsecting the item with the highest valence, rather than with the

pendently from one another. However, the match between thiighest match value. Incorporating valence introduces other
foil and the 2 stud|edT|tems from the othezr category Ie?ds {@omplications: 1) just as there is variability in the strength
H=[Lw0;0ww 0,0]", soug = 1 wandsg=(8+8r)s=.  with which items are encoded, there is likely to be variability

If, however, the foil is drawn from the same category as thep, the probability that the valence of an item is encoded; 2)

ggétgé?ytgﬁtr?ﬁg gcf’,;ﬂgr?gén ge%sog'éhse foil is from a d'ﬁeremdifferential attention to negative and positive items may lead

3 to different encoding strengths depending on valence; and 3)

2 2 2 2 .. . . . .
P S A positive and negative valences may be given different weight
0 0 s%2 rs2 0 0 at the decision stage.

0 0 rs? s? 0 0

S=

0

0

0
8 : For each category, we assume there is a probability of
0

[eNeoNoNoleNe]

rs2 rs2 0 0 s2 rs?

rs?2 rs2 0 0 rs? s? encoding its valence when it is positivp;,, and when it is

0 0 0 0 0 0 s?2 rs? :

6o 0o 0 0 0 0 re? g2 negative,q. If the valence of a category has not been en-



Table 1: Priors and posterior means and 95% HDI's for eactExperiment 1
parameter in the model. See main text for details.

Observed and predicted mean probabilities of choosing the

Exp.] Param. Prior Posterior mean (95% HDI) . A
T [t G(0:00L0:000)  0.096 (0.048-0.173) old item are shown in Figure 3.
1
r G 2(0:001,0:00) 0.128 (0.072-0.208) Category size As mentioned above, the encoding strength
‘r"’ BB((i: B g'igi gg-g?gzg'gggg of a singleton was set equal to 1. The encoding strength for
S G(0:0010:001)  0.945 (0.784-1.123) an item from a category with 8 exemplasg)(was credibly
Sg (G(0:001,0:00) 0.776 (0.632-0.927) less than that of both a singleton (95% HDI for % = [0.08,
lh %&8588}; 8588% g-%g Eé-ggg—g-gzgg 0.37]) and an item from a category with 4 exemplas 95%
D B(li 1) ' 0.784 (0:711—0:855) HDI forsy s5=[0.06, 0.29]_}. Th_e encoding strength of_a 4-
s B(1;1) 0.889 (0.670-0.999) item category was not credibly different from that of a single-
Ps B(1;1) 0.578 (0.482-0.660) ton (95% HDI fors, 1 =[-0.22, 0.12]). Overall, then, items
| g(éf ég) 500 8-1‘112 (8-82?8-%? from categories with more exemplars tend not to be encoded
G( T 0'](30.'0'201 0.140 (0'071_0'247) as strongly. This could be a result of failure to encode distinc-
' 2.( 001,0:003) 0.140 (0. o ) tive features of items in favor of more holistic, prototype-like
v D 0-329(0.284-0.578) epresentations (Homa, Dunbar, & Nohre, 1992). It may also
r B(1;1) 0.038 (0.001-0.124) repres ions , Dunbar, : : y als
S ((0:00%0:001)  0.879 (0.725-1.053) result from a threshold process in which only those memory
s G(0:001;0:001)  0.638 (0.518-0.774) i e ;
o G000L0:00) 0516 (0.4100.635) :rall(ces thf\F artﬁ suf C|entl)t/_3|m|lar toa .pf]?be aretactlvated and
% G0:0010:001)  0.493 (0.411-0.584) ake part in the recognition process; if more traces are ac-

tive, this introduces noise into the comparison process that
coded, we assume that the participant “guesses” that it is pogan harm performance (e.g., Hintzman, 1988).
itive with probability % This retrieved valencwqO is used at

decision instead of the true studied valenceRegardless of Valence Participants give credibly greater weight to (re-

whether the valence is retrieved correctly, if a category Waéneved) negative values when deciding between two choice

0 . Co
assigned a negative valence at study, the encoding strenglfﬁms.(the 95% HDI fol is greater th"?“? 1), indicating that
of the exemplars from that category is multiplied by a factorParticipants are loss-averse at the decision stage. Valence also

h, h > 0, which allows for negatively valenced items to be has_an impact on _encoding:_ The erjcoding strength f_or anitem

encoded with either greater or lower delity. Finally, at the a;sugned g_negatlve va:)lue IS credl_bly reduced relative to one

decision stage, if theetrievedvalence of an item is negative, with a p05|.t|.ve one (95% HDI foh IS less than 1). Further,

its match is weighted by, which can re ect loss aversion the proqulhty of corre_ctlyencodlng the value increases whgn

(I > 1) orrisk-seekingl( < 1). Thus, the nal expression for the po§|t|ve and negatlve items are from two perceptgally dis-

the mean of the difference distribution is tinct 4-item categories, rather than from the same 8-item per-

ceptual category (95% HDI fquy, ps =[.11, .31]; 95% HDI
Ly = v%uohl(vo<0)| 1(\3<0) \/RluNh'(VN<O)| I(VR<0) 3) forgs s =[.55, .99]). Thus, although participants clearly

want to avoid negative items, they encode the perceptual fea-

Individual differences  For simplicity, we assume thatindi- tures of those items more poorly.

viduals differ only in their encoding variability, i.es2. The )

value ofs2 for a participant is assumed to be drawn from EXperiment 2

a group Gamma distribution parameterized by a meand  Opserved and predicted mean probabilities of choosing the
standard deviation (shape:—z, ratert—z). All other parameters  old item are shown in Figure 4.

are assumed shared between participants. Category size As in Experiment 1, categories with fewer

studied exemplars tend to be encoded more strongly. Single-

Parameter Estimation . :
ns are encoded more strongly than 6-item categories (95%

t
To obtain parameter estimates, the model was implementeﬁDI for 1 s = [0.42, 0.59]) and 4-item categories both
as a hierarchical Bayesian model in JAGS (Plummer, 2011).Dlockeol (95% HDI for 1 s = [0.37, 0.59]) and interleaved

Given the predicted probability of choosing the old itegy) ( (95% HDI for 1 sy = [0.24, 0.49]), but not 2-item cate-

f9$ eayc_h of th?lT _t)otal trials, the.likelihooq is Bernoulli: gories (95% HDI for 1 s, = [.05, .28]). 2-item categories
Oi1a' (1 @)™ ', wherey, = 1if the old item was cho- 20 o coded more strongly than 6-item categories (95% HDI
sen on triali and is zero_otherW|se. Prior distributions were ¢ S S = [0.29, 0.48]), blocked 4-item categories (95%
Ieﬁ vague. Posterior e_stlmates are based ona samplg of 50005, fors, s =[0.23, 0.50]), and interleaved 4-item cate-
points from the posterior, after 1000 samples of burn-in. gories (95% HDIfos, sy = [0.12, 0.38]). Finally, although
Model Fits interleaved 4-item categories are encoded more strongly than

) _ 6-item categories (95% HDI fa, s =[0.06, 0.24)), thisis
The model was t to each experiment separately. The prior

distributions and estimated posterior means and 95% Highest 11,y parameters are said to be credibly different if the 95% HDI
Density Intervals (HDI's) are given in Table 1. of their posterior difference excludes zero.



not true for blocked 4-item categories (95% HDI &g s cial stimuli and a reasonably open-ended model can be used
=[-0.07, 0.10)). to jointly investigate a variety of memory phenomena in a
reasonably “pure” setting, with minimal preexperimental as-
5sociations or strategies. A fruitful avenue of future research

blocked presentation (95% HDI fag S = [0.02, 0.25]). would be to vary between-category similarity in order to dis-

This implies that a category size effect may not be due solel)(;gverr\\:vzeglItesz/ti)r?tcc;{nev ng CflfenE[IyVSI:nilLar ;ﬁ Ier?]d t?]itth?j
to the number of studied exemplars; after all, if a list con-ooserved blocke erieaved efiect. varying the magnitude

. ) . f val rather than j valen will provide more infor-
tains more items from a category, those items are also morg VaIues, ather than just valence, provide more info

likely to be studied together if the study list is randomly or- mation_ about_induce_d strategic enco_ding effects. In_addition,
dered. It would appear that increased category size as we n entire mot|(_)n trajectory was obta_lned on each t”a.d Of. the
as blocked study may independently contribute to weaker erpresent experllments; future gnaIyS|s qf this datg will yield
coding of exemplars, leading to a representation that is morg\:g more insight than the simple choice behavior reported

“prototypical”.

Blocked vs. interleaved Interleaved presentation results
in stronger encoding of the individual exemplars than doe
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