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Scheduling and Fluid Routing for Flow-Based
Microfluidic Laboratories-on-a-Chip
Wajid Hassan Minhass, Jeffrey McDaniel, Member, IEEE, Michael Raagaard,

Philip Brisk, Member, IEEE, Paul Pop, Member, IEEE, and Jan Madsen

Abstract—Microfluidic laboratories-on-a-chip (LoCs) are
replacing the conventional biochemical analyzers and are able
to integrate the necessary functions for biochemical analysis on-
chip. There are several types of LoCs, each having its advantages
and limitations. In this paper we are interested in flow-based
LoCs, in which a continuous flow of liquid is manipulated
using integrated microvalves. By combining several microvalves,
more complex units, such as micropumps, switches, mixers, and
multiplexers, can be built. We consider that the architecture
of the LoC is given, and we are interested in synthesizing an
implementation, consisting of the binding of operations in the
application to the functional units of the architecture, the schedul-
ing of operations and the routing and scheduling of the fluid flows,
such that the application completion time is minimized. To solve
this problem, we propose a list scheduling-based application map-
ping (LSAM) framework and evaluate it by using real-life as well
as synthetic benchmarks. When biochemical applications contain
fluids that may adsorb on the substrate on which they are trans-
ported, the solution is to use rinsing operations for contamination
avoidance. Hence, we also propose a rinsing heuristic, which has
been integrated in the LSAM framework.

Index Terms—High level synthesis, microfluidics, system-on-
chip.

I. INTRODUCTION

LABORATORIES-ON-A-CHIP (LoCs) integrate multiple
biochemical processing components (e.g., dispensers, fil-

ters, mixers, separators, and detectors) into a single device,
shrinking benchtop-scale chemical and biological analysis to
the submillimeter scale [1]. Compared to conventional bio-
chemical analyzers, LoCs offer advantages such as reduced
sample and reagent volume, faster and higher throughput
biochemical processing, and ultrasensitive detection, with mul-
tiple assays (biochemical “algorithms”) being integrated into
the same chip [2]. LoCs have been proposed for many applica-
tions, including clinical and point-of-care diagnostics, prenatal
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screening, automated drug discovery, DNA analysis, enzy-
matic and proteomic analysis, cancer and stem cell research,
food control testing, environmental monitoring, and biological
weapons detection, among others [1], [3]–[12].

The key technology that has enabled many LoC designs is
the integrated microvalve [13]–[15]. Microvalves can be com-
bined to form larger components such as peristaltic pumps,
mixers, multiplexers, and latches, among others [1], [16], [17],
while integration density has advanced faster than Moore’s
Law [18]. For example, a commercial LoC featuring 25 000
integrated microvalves that can run 9216 polymerase chain
reactions (PCRs) in parallel has been available since 2008 [19].

Historically, LoCs have been designed manually using
computer-aided design (CAD)/drawing software such as
AutoCAD1 and SolidWorks.2 LoC designers could benefit
from fully automated software tools that adapt semiconduc-
tor very large-scale integration (VLSI)/CAD algorithms and
design methodologies to microfluidics. Initial efforts in this
direction focused on device-level physical modeling of com-
ponents [20], [21], yielding full-custom bottom-up design
methodologies that remain mostly manual; once the chip is
designed, the application is mapped onto the LoC based on
some nebulous understanding of component functionality and
application needs [22]; this process repeats each time the
application or architecture changes.

A. Contribution
This paper focuses on the application mapping phase of an

mVLSI design flow. At this point, the mVLSI device architec-
ture has been defined and its physical topology has been laid
out. The physical layout determines the length of the fluidic
connections (channels) between the components that perform
biochemical operations; lacking this information, the appli-
cation mapper cannot determine a-priori the fluid transport
latencies between components. Our application mapper adapts
list scheduling [23] to perform scheduling and binding and
uses Dijkstra’s [24] algorithm to compute routing paths. These
heuristics are fast, scalable, and yield good quality results.

Fluids transported between components may leave residue
behind in the flow channel path, which could contaminate the
next fluid that is transferred through those channels. Suppose
that we want to transport fluid f from component mi to compo-
nent mj. First, component mj must be rinsed if it has been used
previously. Then, our application mapper will insert rinsing
operations into the schedule to ensure that a contamination-
free path Pi,j from mi to mj is available for f. After transporting
fluid from mi to mj, the mapper does not immediately rinse mi;

1http://www.autodesk.com/products/autocad/overview
2http://www.solidworks.com/

0278-0070 c⃝ 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:paupo@dtu.dk
mailto:jmcda001@ucr.edu
mailto:philip@cs.ucr.edu
http://ieeexplore.ieee.org
http://www.autodesk.com/products/autocad/overview
http://www.solidworks.com/
http://www.ieee.org/publications_standards/publications/rights/index.html


616 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

instead, the mapper waits until a new operation is bound to
mi at a later point in the schedule before rinsing mi. To the
best of our knowledge, this paper represents the first effort to
integrate scheduling and rinsing into the mVLSI application
mapping process.

Second, our mapper eliminates an unrealistic assumption
about fluid transport that has been present in all prior work.
Suppose that we want to transport fluid f from mi to mj. Simply
finding a routing path pi,j and opening all microvalves on the
path is insufficient; although there will be some natural dif-
fusion of fluid from mi into the open channels, the actual
transport of f’s full quantity must be actuated by pressure.
Therefore, it is also necessary to compute subpaths pIn,i from
an input port mIn to mi and pj,Out from mj to an output port
mOut. This creates a longer path Pi,j = pIn,i · pi,j · pj,Out, where
· is the path concatenation operator. mIn must inject a specific
fluid type called buffer, which is a solution chosen for nonre-
activity with assay fluids that also ensures pH-stability. Using
buffer ensures that the transport process does not inadvertently
contaminate fluid f.

Prior work on application mapping has provided each com-
ponent with implicit input and output ports, which are not
modeled in the LoC architecture. Implicit I/O ports trivialize
the computation of subpaths pIn,i and pj,Out, which connect
mi and mj to their respective implicit input and output ports.
Implicit I/O ports, however, are problematic because the total
number of I/O ports in an mVLSI LoC is limited as a design
rule. For example, the Stanford Microfluidic Foundry3 has a
hard limit of 35 “hole punches” (flow and control I/O ports).
Thus, adding implicit ports to each component is only feasible
for very small LoC designs.

Our application mapper eliminates the assumption of
implicit I/O ports. Each fluid transport operation uses a full
flow path Pi,j, including subpaths pIn,i from an explicit input
port mIn and pj,Out to an explicit output port mOut. All rins-
ing operations are handled similarly: each rinse path starts at
an input, includes at least one contaminated channel or com-
ponent, and ends at an output. Eliminating these assumptions
makes our application mapper considerably more realistic than
prior work on the topic.

B. Related Work
We are primarily concerned with prior work on mVLSI

application mapping. We also discuss relevant work on archi-
tecture synthesis (an automated approach to derive a system
specification and schematic from a high-level specification of
an assay), as well as fluid routing and rinsing. We do not dis-
cuss tangentially related problems such as control synthesis or
physical design, which are beyond the scope of this paper; the
algorithms presented here can be integrated into an mVLSI
design flow in a manner that is independent of the choice of
algorithms and heuristics that solve these problems.

1) Application Mapping: This paper is a direct exten-
sion of the first paper on application mapping published by
Minhass et al. [25], which also employed list scheduling.
This paper differs in terms of how routing is performed.
Minhass et al. [25] explicitly enumerated different routing
paths between pairs of components, which is inefficient non-
scalable. In a follow-up work, Minhass et al. [26] replaced
the heuristic approach with a constraint solver that simultane-
ously performs scheduling and resource binding, but ignoring

3http://web.stanford.edu/group/foundry/Basic%20Design%20Rules.html

fluid routing; this approach yields optimal solutions, but does
not scale to large designs. Dinh et al. [27] introduced a simi-
lar optimal approach, based on clique finding, which includes
the possibility of temporary storage using fluidic memory
components.

Further optimization can be achieved through application-
specific storage assignment, and temporarily “caching” fluids
in channels that are temporarily unused [28]; the drawback
of this approach is that channels allocated for storage cannot
be used for fluid transport, possibly leading to longer rout-
ing paths and slower fluid transport times. The algorithms
presented in this paper can support caching by designating
each fluid channel as a storage component that can be routed
through when empty.

Li et al. [29] added several new constraints to the applica-
tion mapping process: immediate execution, mutual exclusion,
and parallel execution. Immediate execution requires two
dependent assay operations to be scheduled one-after-the-
other without delay (other than fluid transport latency); mutual
exclusion requires that several operations must be scheduled
in distinct chip components; and parallel execution requires
multiple operations to be scheduled concurrently. Although
the assays that we use for evaluation do not require these
constraints, it is straightforward to extend our mapping heuris-
tic to account for them. Additionally, Li et al. [29] described
how to modify an mVLSI application mapper to account for
sieve valves, which partially close in order to trap large parti-
cles without stopping the flow of fluid and smaller particles.
Particles trapped by the sieve valves may be prewashed prior
to mixing to increase the input concentration, or post-washed
after mixing to collect products; pre- and post-washing of par-
ticles are explicit operations that are stated as part of the assay
procedure. They should not be confused with the rinsing pro-
posed in this paper for decontamination purposes. Although
the assays that we use for evaluation do not require sieve
valves, it is straightforward to extend our mapping heuristic
to account for the transport of particles to sieve valves and to
include pre- and post-washing operations as part of the routing
process.

This paper differs from the preceding application mappers
in two key respects. First, we track contaminated components
and fluid channels and include rinsing steps to decontaminate
them during the fluid routing process. Second, we eliminate
the assumption that each component has implicit I/O ports,
thereby yielding more realistic assumptions about how fluid
transport can be achieved in practice.

2) Reliability-Aware Application Mapping:
Tseng et al. [30], [31] developed a greedy resource bind-
ing technique that tries to minimize the number of fluid
transfers. Their objective was to improve LoC reliability
by minimizing the amount of valve switching required to
execute the assay; in principle, this technique could also
improve performance by reducing both routing overhead
and number of rinsing steps that are needed to remove
contamination.

Tseng et al. [32] introduced a reliability-aware application
mapper targeting a reconfigurable 2-D microvalve array. The
key innovation is to reconfigure the array so that different
groups of valves act as pumps at different times over the exe-
cution of a bioassay as a form of wear-leveling. To the best of
our understanding, mVLSI LoCs are discarded after a single
use, so we are not concerned about long-term reliability issues
such as wear leveling.

http://web.stanford.edu/group/foundry/Basic%20Design%20Rules.html
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3) Architecture Synthesis: Architecture synthesis is the
process of deriving an LoC architecture from a high-level
assay specification. Unlike high-level synthesis for semicon-
ductors [23], mVLSI architecture synthesis requires flow layer
physical design to be performed first in order to determine
fluid channel lengths, which are needed to determine routing
latencies [33], and, in our case, rinsing latencies.

Eskesen et al. [34] add redundancy during architecture syn-
thesis so that the resulting LoC can tolerate some nonzero
number of microvalve and channel failures. In principle, our
mapper is compatible with any LoC architecture, regardless of
whether or not redundancy is present. In principle, the pres-
ence of additional routing resources may increase the amount
of fluid that can be transported in parallel; if this is possible,
then our mapper can implicitly take advantage of the redun-
dant resources when failures occur; similarly, it can map assays
onto a device with some amount of failure as long as at least
one routable path is available for every transport operation that
is required.

4) Fluid Routing and Rinsing: Su et al. [35] developed
algorithms for concurrent fluid routing in a reconfigurable
microvalve array. The algorithm decomposes long routes into
shorter L-shaped subpaths. This algorithm was not integrated
into a larger application mapper and seems unlikely to gener-
alize to arbitrary planar topologies; thus it is too restrictive to
be compatible with the application mapper presented here.

Hu et al. [36] developed a rinsing algorithm to decontam-
inate an LoC after use. To the best of our knowledge, this
is the only fluid router, other than ours, which eliminates
the assumption of implicit ports. One drawback is that it is
requires construction of a rinsing path dictionary, similar to
the prior work on application mapping by Minhass et al. [25],
which suffers from scalability issues. The rinsing algorithm
does account for variations in the amount of contamination
in different components and channels, and different molecular
species of contaminants, yielding heterogeneous rinse times;
although we do not account for these effects in our implemen-
tation, it is straightforward to modify our mapper to account
for them.

II. SYSTEM MODEL

A. Technology Overview
1) Fluid Transport in PDMS Chips: A simple microflu-

idic chip can be formed by patterning fluid channels into one
layer of polydimethylsiloxane (PDMS), a cheap, rubber-like
elastomer, and mounting the PDMS layer on top of a rigid
substrate, such as a glass slide. The rigid substrate provides
the “floors” of each channel, while the walls and ceilings
are patterned in the PDMS layer. Holes are punched into the
PDMS layer to provide I/O access to the channel network.

Applying pressure from a pressurized source such as a
syringe pump injects fluid into the chip. Transporting pressur-
ized fluid through a channel displaces the fluid or gas which
previously occupied the space. Thus, fluid injection can be
used either to dispense a new fluid into the chip or to dis-
pense a different fluid from one location in the chip to another.
When injecting fluid, some displaced fluid at the end of the
path connection must flow out of the chip; otherwise, accumu-
lated backpressure will eventually damage the chip, rendering
it unusable. Thus, every input, output, or fluid transport oper-
ation requires a connection from an input port to an output
port.

Fig. 1. Multilayer PDMS microvalve [1], [13].

Fig. 2. Switch configurations with (a) one valve, (b) three valves creating a
T-junction, and (c) four valves creating a four-way intersection.

2) Integrated Microvalve Technology: Microvalves are
formed by stacking two or three PDMS layers on top of one
another. One layer is patterned with fluid flow channels (as
in the preceding section), while the others are patterned with
control channels. As shown in Fig. 1, a microvalve is formed
at points where a control channel (red) crosses a fluid channel
(blue); push-down (up) valves are formed where the control
channel crosses above (below) the flow channel.

The control layer is connected to an external pressure source
through a control pin z1. The microvalve is normally open
(“0”; no pressure); pressurizing the control channel closes the
microvalve (“1”), inducing the elastic control layer to pinch
the underlying flow layer (point a). Thus, opening and clos-
ing valves dynamically reconfigures fluidic pathways on the
mVLSI flow layer. Larger and more useful components can be
formed by considering one or more microvalves in conjunction
with the fluidic channels that they control [37].

The integrated microvalve is the basic building block of
mVLSI technology, akin to the transistor. Although many
microvalve technologies have been proposed over the past
20 years, we limit our discussion here to mVLSI valves
formed using multilayer soft lithography, assuming two-layer
fabrication with push-down valves [1], [13].

3) Switches: Fig. 2(a) depicts a single microvalve switch,
which restricts/allows fluid flow in a channel. Fig. 2(b) and (c)
shows three- and four-microvalve switches that control fluid
flow through fluid channel junctions. mVLSI LoCs can be
viewed as a netlist of components which are connected by
a network of routing channels. The switches open and close
fluidic pathways through the network, enabling transport of
fluid from one component to another.

4) Microfluidic Mixer: mVLSI components can be con-
structed using channels, microvalves, and switches as building
blocks. We introduce the pneumatic mixer [38] as an example.
As shown in Fig. 3(a), a mixer can be implemented using nine
microvalves, labeled v1–v9; three other valves, v10–v12 provide
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(a)

(b) (c)

Fig. 3. Microfluidic mixer. (a) Schematic view, Ip1. (b) Conceptual view. (c) Operational phases.

an external switch to direct the flow of fluid leaving the mixer.
A mixer can be viewed as a netlist of four components: the
switches, s1–s3 and one peristaltic pump (itself, a component
comprising three microvalves connected in series), as shown
in Fig. 3(b). Switches s1 and s2 control I/O access, while s3
directs the output of the mixer to waste or to other compo-
nents in the chip (not shown). The mixer has five operational
phases, as shown in Fig. 3(a) and (c).

1) Input 1 (Ip1): Switches s1 and s2 provide an open path
through the top of the mixer and s3 opens the path to
waste. Fluid f1 flows into the top of the mixer; the excess
is transported to waste.

2) Input 2 (Ip2): Switches s1 and s2 provide an open path
through the bottom of the mixer (isolating the fluid on
top) and s3 opens the path to waste. Fluid f2 flows into
the bottom of the mixer; the excess is transported to
waste.

3) Mix: Switches s1 and s2 close I/O access to the mixer
and create a closed loop through the pump. Actuating
microvalves {v4, v5, v6} in a peristaltic sequence induces
pumping action, which actively mixes the two fluids in
the closed loop.

4) Output 1 (Op1): Switches s1 and s2 provide an open
path through the top of the mixer and s3 opens the path
into the remainder of the chip. The top half of the mixed
fluid is transported into the chip for further processing.

5) Output 2 (Op2): Switches s1 and s2 provide an open
path through the top of the mixer; s3 opens the path
to waste. The bottom half of the mixed fluid is trans-
ported to waste and is discarded; alternatively, it could be
transported elsewhere in the chip for further processing.

The fluid samples that are to be mixed do not need to occupy
the full channel length from the Input to the upper half of the
mixer. Rather each sample may occupy a certain length on
the flow channel. The process of measuring the length of each
fluid sample is called metering and is carried out by trans-
porting the sample between two valves that are a fixed length
apart [39]. Once the top half is filled, v7 and v2 close, stopping
the flow and blocking the fluid sample in the upper half of the
mixer. Since we know the flow rate (mm/s) and the sample vol-
ume (in mm, measured in terms of length through metering),
the time until the mixer gets filled can be easily calcu-
lated, hence optical feedback to ensure correct metering is not
necessary.

TABLE I
COMPONENT LIBRARY (L ): FLOW LAYER MODEL

TABLE II
MIXER: CONTROL LAYER MODEL

B. Component Model
The microfluidic mixer, described previously, is just one of

many possible components in an mVLSI LoC. We character-
ize each component using a dual-layer modeling framework
consisting of a flow layer model and a control layer model.

1) Flow Layer Model: The flow layer model L = (P , C,
H) of each component is characterized by a set of operational
phases P , execution time C, and geometrical dimensions H.
Table I shows flow layer models for eight commonly utilized
microfluidic components [40]. The geometrical dimensions
H are given as length×width and are scaled, with a unit
length being equal to 150 µm (e.g., length 10 corresponds
to 1500 µm). Table I lists the different operational phases of
each component: for some components, the phases must be
serialized, as in the case of the mixer.

2) Control Layer Model: While the flow layer model cap-
tures the high-level behavior of each component, the control
layer model captures microvalve actuation details required to
operate it. As an example, Table II presents the control layer
model of the mixer shown in Fig. 3, showing the status of each
microvalve during each operational state. During the “mix”
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(a) (b)

(c) (d) (e)

Fig. 4. (a) Example LoC architecture containing two mixers, one heater, one detector, and one filter. (b) Sequencing graph representation of the experiment
to be run on the LoC. The arrows from the source to the first operations are implicit fluid input operations which will be bound to input components as shown
in (c)–(e). (c) First two operations, mix o1 and mix o2, have been previously bound and scheduled on Mixer1 and Mixer2, respectively. The heat o3 is bound
to Heater1 during phase 1. (d) Fluids are then routed from their respective inputs to Heater1, the component executing o3. The operation is then scheduled
to execute once all fluids have arrived. (e) Filter operation o4 is now ready to schedule, but Filter1 is contaminated and so it o4 is unable execute without
nullifying the results of the experiment.

state where the peristaltic actuation sequence for valve set {v4,
v5, v6} is dynamic [38].

An mVLSI LoC is typically controlled by a host PC that
issues control signals at the granularity of the control layer
model; the host may also perform data acquisition and signal
processing operations [41] as needed.

C. Architecture Model
An mVLSI LoC architecture is modeled as a topology graph

(or netlist) A = (N , D), e.g., as shown in Fig. 4(a), where
N = M ∪ S is a set of vertices (M is the set of components;
S is the set of switches) and D is a finite set of edges represent-
ing fluid channel segments. In principle, a channel segment can
support transport of fluid in either direction; however, there are
cases where the direction of flow may affect the correctness

of the bioassay due to imperfections in the route. Therefore,
we represent each directional channel segment with a directed
edge di,j ∈ D and each bidirectional channel segment with a
pair of directed edges di,j and dj,i. Bidirectional fluid channel
segments must satisfy two constraints.

1) Fluid cannot simultaneously flow through di,j and dj,i.
2) Without loss of generality, any fluid that contaminates

(rinses) di,j implicitly contaminates (rinses) dj,i as well.
A flow path, Pi,j, is a subset of one or more directed edges

of D , representing a directed channel between any two ver-
tices ni, nj ∈ N using a chain of directed edges in D [e.g.,
in Fig. 4(a), PIn1,Mixer1 = (dIn1,S1 , dS1,S2 , dS2,Mixer1 ) represents
a flow path from vertex In1 to vertex Mixer1]. Fluid transport
using a flow path is analogous to a circuit-switched network:
the entire flow path is reserved until the completion of the
fluid transfer (e.g., until the fluid reaches Mixer1); unlike a
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TABLE III
ALLOCATED COMPONENTS (M )

circuit switched network, the fluid transport leaves residue, so
the flow path must be rinsed before a subset of its edges can
be used again for fluid transport.

Two flow paths overlap if they share at least one directed
edge, di,j. This means that they can only be utilized in a serial-
ized fashion (including the overhead of rinsing). For example,
flow paths PIn1,Mixer1 and PHeater1,Mixer1 = (dHeater1,S5 , dS5,S2 ,
dS2,Mixer1 ) overlap because they share dS2,Mixer1 .

Let troute(di,j) be the routing latency of di,j, i.e., the time
required for a fluid sample to traverse di,j. Let troute(Pi,j)
= ∑

dk,l∈Pi,j
troute(dk,l) denote the routing latency for flow

path, Pi,j, which is the sum of the routing latencies of Pi,j’s
constituent edges. We assume a flow rate of 10 mm/s [41].

D. Biochemical Application Model
We model a biochemical application using a sequencing

graph [42] G = (O, E), which is directed, acyclic and polar,
i.e., there is a source vertex that has no predecessors and a sink
vertex that has no successors. Fig. 4(b) shows an example.

Each vertex oi ∈ O represents an operation that will be
scheduled and bound onto an architecture component in M ,
denoted by binding function FOp : O → M . The latency of
oi when bound to mj is a known constant.

The edge set, E , models the dependency constraints in the
assay, i.e., an edge ei,j ∈ E from oi to oj indicates that the
fluid output of oi is then input to oj. If the fluid output from
oi cannot be used immediately by oj [e.g., it has to wait for
another operation to finish on component FOp(oj)], it has to
be stored in a “storage unit” (see Table I [39] or in an other-
wise unused routing channel on-chip [28]). An operation has
one incoming edge for each input phase of the corresponding
component, and at most one edge for each output phase; if it
has fewer outgoing edges than the number of output phases,
the remaining fluids are transported to waste.

All inputs to a given operation must arrive at its compo-
nent before an operation can execute. All outgoing edges from
the source vertex in the sequencing graph must be bound to
input reservoirs (to ensure that the correct fluids are input to
the device) and all incoming edges to the sink vertex must
be bound to output or waste reservoirs. We assume that each
input operation dispenses the correct volume of fluid through
metering [13]. The sequencing graph model does not explicitly
represent rinsing operations for cross-contamination removal;
they are inserted as part of the application mapping process.

III. PROBLEM FORMULATION

Given a characterized mVLSI component library, L , an
mVLSI LoC architecture, A , and a bioassay modeled as a
sequencing graph, G , we wish to synthesize an implementa-
tion ! = <T , F >, where T is the schedule and F is the
binding. Specifically, T =< TOp, TPath, TRinse > , where TOp is

the operation schedule (set of operation start times), TPath is
the schedule of fluid transfers, and TRinse is the schedule of
rinse paths. Similarly, F = <FOp, FPath, FRinse>, where FOp
is the binding of operations to components and FPath and
FRinse are the respective bindings of fluid transfers and rinse
paths to routing channels. The objective of the scheduler is to
minimize the bioassay completion time, denoted as δG .

Each operation, oi has a corresponding ready time, tready(oi),
start time, tstart(oi), and finish time, tfinish(oi). The ready
time is the earliest time at which oi may execute based
on the finishing times of oi’s predecessors; oi’s start and
finish times are computed by the schedule; it follows that
tready(oi) ≤ tstart(oi) < tfinish(oi). Each dependency edge ei,j
may be associated with a fluid transfer operation. If FOp(oi) ̸=
FOp(oj), then oi and oj are bound to different components, and
a fluid transport operation is required to move the fluid from
oi to oj, whose respective start and finish times are tstart(ei,j)
and tfinish(ei,j); fluid transport operations do not have ready
times. If FOp(oi) = FOp(oj), then oi and oj are bound to the
same component, eliminating the need to transport fluid.

Rinse paths are implicit, i.e., they are not represented explic-
itly by operations in the sequencing graph. When a rinse
path Rk is scheduled and bound, its start and finish times are
denoted tstart(Rk) and tfinish(Rk), respectively.

A legal schedule must satisfy the following constraints.
1) Operational: Each operation oi is bound to one compo-

nent mj = FOp(oi), and mj is capable of executing oi.
2) Dependence: For each dependency edge ei,j, operation oi

must first finish, followed by the complete fluid transfer
(if needed) followed by the start of operation oi, i.e.:
tfinish(oi) ≤ tstart(ei,j) ≤ tfinish(ei,j) ≤ tstart(oj).

3) Resource: No two assay operations can be bound to the
same component at the same time, i.e., if FOp(oi) =
FOp(oj) then either tfinish(oi) ≤ tstart(oj) or vice-versa.

4) Routing: No two flow paths (including rinse paths) can
be bound to the same component at the same time, i.e., if
FPath(ei,j)∩FPath(ek,l) ̸= ∅, then tfinish(ei,j) < tstart(ek,l),
or vice-versa. Similarly, no two fluid routing paths
(including rinse paths) whose execution intervals overlap
can be bound to the same channel segment.

5) Cross-Contamination (Operations): No operation can be
bound to a component at a time when the component is
contaminated. Let oi and oj be operations whose fluids
are incompatible, and let m = FOp(oi) = FOp(oj); with-
out loss of generality, assume that tfinish(oi) < tstart(oj).
Then there must exist a rinse path Rk that includes com-
ponent m such that tfinish(oi) ≤ tstart(Rk) < tfinish(Rk) ≤
tstart(oj).

6) Cross-Contamination (Channel Segments): No flow
path can be bound to a contaminated routing channel
segment. This constraint is analogous to the cross-
contamination constraint for operations stated above.

The function op(mi) refers to the operation most recently
scheduled and bound to component mi; this can be treated as
an inverse binding function in which the time interval during
which the operation is scheduled is implicit.

IV. SCHEDULING, ROUTING,
AND RINSING HEURISTIC

We propose a list scheduling-based application map-
ping (LSAM) heuristic to schedule and bind assay operations
onto an mVLSI LoC. The inputs are a sequencing graph, G ,
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and an mVLSI LoC architecture A . Initially, we will ignore
the issues of cross-contamination and rinsing; we will discuss
them later in Section IV-E.

A. List Scheduling Overview
List scheduling [23] inserts operations that are ready to be

scheduled into priority queue Q, and dequeues them in pri-
ority order. Each operation is enqueued when the last of its
predecessors have been scheduled; this ensures that vertices
are dequeued in topological order, regardless of priority.

The priority of operation oj is the maximum sum of opera-
tion latencies along any path in the sequencing graph from oj
to the sink. Intuitively, operations with high priorities are more
likely to be on the critical path, so dispatching them earlier
tends to reduce the length of the schedule.

When operation oj is dequeued, it is first bound to a qual-
ified component m′ (i.e., m′ must be capable of executing oj)
before oj can be scheduled. Binding occurs prior to scheduling
because fluid routing latencies are not known a-priori. If m′
contains any fluid that will not be used by oj, then that fluid
must be bound to a routing path and transported elsewhere;
similarly, any fluid required by oj that is not presently in m′
must be bound to a routing path and transported into m′; oj
can only be scheduled to execute on m′ once both of the afore-
mentioned routing latencies are determined. Once oj is bound
and scheduled, each successor is examined and inserted into
Q if it becomes ready.

B. LSAM
Algorithm 1 presents pseudo-code for LSAM (without sup-

port for rinsing). LSAM’s main loop dequeues operation oi,
from Q and processes it in three phases.

1) Phase 1 (Lines 6– 21): Iterates through all qualified
components m ∈ M and computes the earliest time
t at which m becomes available to execute the next
operation; this process is described in further detail in
Section IV-C. oj is bound to m′ (line 18) whose available
time t′ is minimum among all components. In Fig. 4(c),
o3 is bound to component Heater1. Phase 1 also binds
fluid transport operations to routing paths, including:

a) the removal of fluid from m′ that is not used by oj
(lines 19 and 20);

b) transport of fluids used by oj from elsewhere
on the chip to m′ (discussed in further detail in
Section IV-D).

2) Phase 2 (Lines 22– 29): Computes the latest time that
all input fluids to oj arrive at component m′, denoted t′′.
Clearly, t′′ ≥ t′, since fluids cannot arrive at m′ before
m′ is ready to accept them. Phase 2 first schedules each
of oj’s fluidic dependencies ei,j; ei,j was bound to flow
path Pi,j during a prior iteration which scheduled and
bound oi. Line 25 schedules the fluid transport operation,
yielding start and finish times tstart(ei,j) and tfinish(ei,j).
Lines 26 and 27 then update t′′ if tfinish(ei,j) > t′′. After
scheduling each requisite transfer of fluid to m′, phase 2
sets tstart(oj) to t′′ (line 28) and schedules oj to execute
on m′ starting at tstart(oj) (line 29). In Fig. 4(d), the fluid
is routed from component In5 through Filter1 to Heater1.
Once it has arrived (7.21 s), heat o3 is scheduled on
Heater1.

3) Phase 3 (Lines 30– 34): Enqueues successor ok of oj
in Q if ok is ready to be scheduled; ok’s ready time
tready(ok) is initialized to the latest finish time among

Algorithm 1 LSAM: Simplified Version With
Rinsing Disabled

1: function SCHEDULE(G , A)
2: Q← source
3: repeat
4: oj ← DEQUEUE(Q)
5: m′ ← ∅, t′ ← ∞
6: ◃ Phase 1: Find best component
7: for each qualified component, m ∈M do
8: t←∞
9: if ∃ei,j ∈ E |oi=op(m) then

10: t← tfinish(op(m))
11: else if op(m) ̸= ∅ then
12: t← tfinish(op(m))+

ROUTINGESTIMATE(op(m), m, tready(oj))
13: else
14: t← tready(oj)

15: t← ROUTINGESTIMATE(oj, m, t)
16: if t < t′ then
17: t′ ← t, m′ ← m
18: FOp(oj)← m′
19: if op(m)′ ̸= ∅ then
20: BINDTOSTORAGE(m′)
21: FPath(oj)← Pi,j ← BINDINPUTS(oj, m′, t′)

22: ◃ Phase 2: Schedule oj and flow paths
23: t′′ ← t′
24: for each ei,j ∈ E do
25: TPath(ei,j)← SCHEDULEEDGE(ei,j, Pi,j, t′)
26: if tfinish(ei,j) > t′′ then
27: t′′ ← tfinish(ei,j)

28: tstart(oj)← t′′
29: TOp(oj)← SCHEDULEOPERATION(oj, m′, tstart(oj))

30: ◃ Phase 3: Add ready successor to queue
31: ok ← SUCCESSOR(oj)
32: if ok is ready then
33: tready(ok)← max(tfinish(PREDECESSORS(ok)))
34: ENQUEUE(ok, Q)

35: until Q = ∅
36: T ←< TOp, TPath >
37: F ←< FOp, FPath >
38: ! ←< T , F >

its predecessors (line 33). In Fig. 4(e), filter o4 is ready
at time 0, but the filter is occupied until time 7.21 s,
at which point it is contaminated, thereby stalling the
execution of the assay.

Rinsing complicates scheduling and binding. Contaminated
qualified components are unavailable for binding during
phase 1. Contaminated channels and components that sup-
port route-through are likewise unavailable, which makes it
more difficult for phase 1 to accurately estimate routing over-
head (lines 12 and 15). Section IV-E describes the necessary
enhancements to LSAM to integrate rinsing support.

C. Operation Binding: Details
During phase 1, there are three cases to consider when

determining the time t at which qualified component m could
become available to execute operation oj.

1) Case 1 (Lines 9 and 10): op(m) produces one output
fluid that is input to oj: oj must wait for operation op(m)
to finish (line 10). The requisite fluid is present, so m is
ready.
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2) Case 2 (Lines 11 and 12): op(m) generates at least one
fluid that is not input to oj. This fluid must be transferred
to storage, freeing m to execute oj; the fluid transfer
latency is not known until a future iteration that will
bind the storage operation to a qualified storage compo-
nent. This binding decision will only be made if oj is
bound to m. Instead of making a future binding deci-
sion a-priori, function ROUTINGESTIMATE estimates
the routing latency (line 12). In this case, t depends
on tfinish(op(m)) plus the estimated routing overhead
(line 12).

3) Case 3 (Lines 13 and 14): m is not performing any oper-
ation and contains no fluid; t is estimated to be tready(oj),
as the component does not constrain the schedule.

After these three cases the estimate of routing fluids used by
oj to m is added to t (line 15). After selecting the qualified
component m′ that minimizes t, phase 1 wraps up by estab-
lishing the necessary bindings to enable phase 2 to precisely
determine tstart(oj), and then schedule oj.

If m′ was selected via case 2, then the decision to transfer
fluid from m′ to storage becomes permanent (lines 19 and 20);
however, LSAM delays storage binding until a future iteration.
To simplify notation, let ox = op(m′). Then for each succes-
sor oy of ox (excluding oj), the function BINDTOSTORAGE
(line 20):

1) removes dependency edge ex,y from G ;
2) inserts an explicit storage operation, ostore, into G ;
3) inserts new dependency edges ex,store and estore,y into G .

At the completion of phase 1, component m′ becomes the
target for each fluidic dependency edge ei,j. The function
BINDINPUTS computes a flow path Pi,j and binds ei,j to Pi,j
(line 21).

D. Flow Path Scheduling and Binding
Consider fluidic dependency ei,j ∈ E , and let FOp(oi) = mi

and FOp(oj) = mj; tfinish(oi) is known from a prior LSAM
iteration; tstart(oj) cannot be known until the latencies of the
fluid transport operations that deliver its inputs are determined.

The first step is to bind ei,j to a flow path. Simply finding
a path in the architecture from component mi to mj is insuf-
ficient: it is necessary to select an input port mIn to provide
buffer fluid along with an output port mOut, and concatenate
to three subpaths: Pi,j = pIn,i · pi,j · pj,Out.

We use Dijkstra’s [24] algorithm to compute the desired
flow path. First, we augment the architecture graph with a
super-source connected to each buffer input and a super-sink
connected to each output. We invoke Dijkstra’s [24] algorithm
three times to compute the three subpaths.

1) From the super source to mi, which implicitly selects
an input port mIn (dropping the super-source from this
subpath yields pIn,i).

2) Subpath pi,j from mi to mj.
3) From mi to the super-sink, which implicitly selects the

output port mOut (dropping the super-sink from this
subpath yields pj,Out).

The three flow paths are then concatenated to form Pi,j.
Dijkstra’s [24] algorithm is restricted to avoid components

or channels that are presently contaminated or are otherwise
in use. It is allowed to route through components, noting that
certain components should be avoided if they affect bioas-
say functionality. For example, routing through a heater could
affect the fluid’s temperature, or routing through a filter could

affect its composition; on the other hand, routing through a
clean and inactive mixer would not alter the fluid.

Once the flow path is computed, the next step is to deter-
mine the start and end times of the fluid transfer, tstart(ei,j) and
tfinish(ei,j). tstart(ei,j) is the first time that the following three
conditions are met.

1) mi is no longer executing an operation.
2) mj is not executing an operation and has been drained

of fluids.
3) All channel segments dk,l ∈ Pi,j are available and are

uncontaminated.
This point in time is calculated as

tstart(ei,j) = max
(
tfinish(oi), tready(oj),

{
tfinish(dk,l)|dk,l ∈ Pi,j

})

where tfinish(dk,l) is the finish time for any previously sched-
uled and bound fluid transport operation, other than ei,j, that
uses channel segment dk,l.

The finish time of the flow is then given by

tfinish(ei,j) = tstart(ei,j) + troute(Pi,j)

where troute(Pi,j) is the routing latency using flow path Pi,j.
A flow path is computed via three invocations of

Dijkstra’s [24] algorithm per dependency edge ei,j. Since flow
paths must be mutually exclusive, once a path Pi,j is found,
each channel dk,l ∈ Pi,j is marked as busy during the time
interval [tstart(ei,j), tfinish(ei,j)] when the fluid transfer is sched-
uled; after that, dk,l is marked as contaminated until it is
rinsed.

The subroutine SCHEDULEEDGE (line 25) binds the depen-
dency edge ei,j to flow path Pi,j, and schedules its start and
finish times tstart(ei,j) and tfinish(ei,j). At the finish time, no
fluids remain in the source component mi. We set op(mi) to
∅, which indicates that no operation is currently occupying it.
In principle, it is not yet safe to schedule another operation
onto mi until it has been rinsed.

E. Rinsing Heuristic
When properly modeling contamination, LSAM will even-

tually fail as contaminated components and channels accumu-
late: either all qualified components (i.e., the for-loop spanning
lines 7–17) will be contaminated or Dijkstra’s [24] algorithm
will be unable to find a valid flow path for some depen-
dency edge ei,j (line 25; discussed in the preceding section).
To rectify this situation, this section presents two techniques
for decontamination: naïve rinsing (NR), and a more sophis-
ticated rinsing integrated scheduling (RINS). Both NR and
RINS share a common rinse path computation subroutine,
which is discussed next; they differ in terms of the conditions
that trigger the introduction of rinse steps into the schedule
and whether or not bioassay execution pauses during rinsing.

Rinses are implicit operations in the sense that vertices that
represent them are never inserted into the sequencing graph
G , although a rinse path is explicitly scheduled (TRinse) and
bound to an mVLSI channel (FRinse). Formally, each rinse
operation is a tuple Ri = <PRinse

i , tstart(PRinse
i ), tfinish(PRinse

i )>,
where PRinse

i is the rinsing path with start and finish times
tstart(PRinse

i ) and tfinish(PRinse
i ); index i corresponds to the rinse

operation and not to a sequencing graph operation oi.
1) Rinse Path Computation: Let CM be the set of con-

taminated components and CD be the set of contaminated
routing channels. When rinsing is triggered, both NR and
RINSrinse as many contaminated components and routing



MINHASS et al.: SCHEDULING AND FLUID ROUTING FOR FLOW-BASED MICROFLUIDIC LoCs 623

(a)

(b)

Fig. 5. Simultaneous scheduling and rinsing for the application in Fig. 4(b) mapped on the architecture in Fig. 4(a). Rinsing using the (a) NR method and
(b) combined scheduling and routing (RINS) method.

channels as possible, regardless of whether they will be used
later; this maximizes the leeway provided to the scheduler.
Rinsing flushes any “dead fluid” that remains in the chip as
well as its residue.

The first step is to rinse components. For each component
mj ∈ CM , LSAM invokes Dijkstra’s [24] algorithm to compute
a flow path PRinse

i = pIn,j · pj,Out from a buffer input mIn to
an output port mOut, with the restriction that PRinse

i cannot go
through any component that actively holds fluid. Any other
contaminated components or fluid routing channels on PRinse

i
are, respectively, removed from CM and CD , and PRinse

i is
bound, i.e., FRinse(Ri) ← PRinse

i ; if no such rinsing path can
be found (e.g., because all paths that include mj also include
a component that actively holds fluid), then mj will remain
contaminated until a future rinsing step.

The process then repeats for each contaminated fluid routing
channel dk,l ∈ CD ; for similar reasons, it may not be possible
to rinse every contaminated edge in CD .

2) Naïve Rinsing: A bioassay operation oj may fail to bind
to an otherwise-qualified component m because: 1) m is con-
taminated or 2) path binding fails for at least one of its inputs
(if bound to m) due to contaminated routing channels. LSAM
triggers the rinse path computation procedure described in the
preceding section if all assay operations presently in Q fail
to bind. All presently executing operations run to completion;
bioassay execution pauses during rinsing.

Next, the computed rinse paths are scheduled to execute
concurrently. Incompatible rinse paths, such as those that route
fluid through the same channel, but in opposite direction, are
sequentialized. Once rinsing completes, bioassay execution
resumes. LSAM delays the start times of all not-yet-scheduled
operations at least the finishing time of the current rinse step.
The latency of rinsing is constrained by the latest finishing
time among all of the scheduled rinse paths. This provides the
rinse path schedule, TRinse.

NR is simple, but does not allow concurrent scheduling of
bioassay operations and rinsing steps. For example, Fig. 5(a)
shows the schedule obtained by LSAM+NR for the sequencing
graph in Fig. 4(b) and the mVLSI netlist in Fig. 4(a). The blue
rectangles labeled with Ri represent rinsing.

3) Rinsing Integrated Scheduling: RINS allows rinse paths
to be scheduled concurrently with ongoing assay operations,
and triggers rinsing operations on path binding failures, not
component binding failures. Under RINS, LSAM may bind
assay operations to qualified components that are contami-
nated, because all incoming paths are guaranteed to fail during
binding. A path binding failure does not cause component
binding to fail, and does not delay the schedule of bound paths
that transport fluid to the target component.

For example, suppose that assay operation oj is bound to
component m′. Suppose that oj has two predecessors, oi1 and
oi2 . Without loss of generality, suppose that flow path Pi1,j
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binds successfully, but flow path Pi2,j does not. Pi1,j is sched-
uled immediately, but Pi2,j and operation oj must wait until
the chip is rinsed. LSAM will schedule rinsing concurrently
with Pi1,j, or afterward.

Rinse paths are computed as described in Section IV-E1,
and are scheduled as early as possible (as per the criteria
outlined in Section IV-D). Opportunistically, this allows rinse
paths to be scheduled concurrently with bioassay operations
that were scheduled previously. Once the rinse paths are sched-
uled, LSAM continues as described above. Compared to NR,
RINS tends to have more frequent and shorter rinse steps, and,
although some bioassay operations may be delayed due to rins-
ing, progress of the entire bioassay is rarely stalled across the
entire chip.

Fig. 5(b) shows the schedule that is produced by LSAM
when using RINS for rinsing compared to NR in Fig. 5(a).
RINS reduces the total assay execution time from 146.31
to 81.81 s. As an example of the difference, in Fig. 5(a)
NR schedules o3 before a rinse step; in Fig. 5(a), o3 exe-
cutes concurrently with the rinsing. As the assay proceeds,
RINS saves more and more time by interleaving operations
with rinse steps; meanwhile, the delays imposed by rinsing
under NR add more and more latency to the schedule. The
result is that RINS reduces total rinse time by 44% compared
to the schedule produced by NR.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup and Benchmarks
We evaluate LSAM by synthesizing two real-life bioassays,

five larger synthetic benchmarks,4 and the example applica-
tion (EA) from Fig. 4(b) (also synthetic) onto different LoC
architectures. The first real-life bioassay is multiplexed in-vitro
diagnostics (IVDs), which performs 12 operations and can is
used to test different fluid samples from the human body. Each
mixing operation has an execution time of 4 s and the detec-
tion operation 7 s. The second real-life bioassay is a mixing
tree phase of the PCR, used for DNA amplification. The PCR
mixing tree has seven mixing operations, each of which has
an execution time of 4 s.

Each benchmark is synthesized onto one, two, or three
different LoC architectures with a varying number of com-
ponents; if the scheduler is effective, bioassay execution times
will be reduced when more components are allocated. The
algorithms were implemented in C++, and were executed on
a Lenovo T400s ThinkPad with an Intel Core 2 Duo Processor
running at 2.53 GHz and 4 GB of RAM.

B. LSAM Evaluation
The initial set of experiments evaluate the feasibility of

LSAM while ignoring the issues of cross-contamination and
rinsing. Tables IV and V report the bioassay execution time,
δG−LSAM (in seconds) that LSAM obtains for each benchmark.
LSAM’s runtime for all benchmarks was less than 1 s.

As a general trend, increasing the number of mixers, detec-
tors, and I/O ports directly influences the bioassay execution
time. For example, switching from the IVD-1 architecture to
IVD-2 reduces δG−LSAM from 69.41 to 45.61 s.

PCR is a more interesting case: the binary mixing tree
has a layer of four mixing operations, followed by a layer

4https://sites.google.com/site/biochipsimulator/Files

TABLE IV
ARCHITECTURES AND EXECUTION TIME FOR THE REAL-LIFE

BENCHMARKS SCHEDULED BY LSAM

TABLE V
ARCHITECTURES AND EXECUTION TIME FOR THE SYNTHETIC

BENCHMARKS SCHEDULED BY LSAM

of two, followed by one. For each mVLSI LoC architec-
ture, the number of input and output ports is equal to the
number of mixers, which ensures that bioassay execution is
not I/O-constrained. With two available mixers (PCR-1), the
mixing tree executes in four steps (two steps for the first
layer, and one step each for the second and third layers);
adding a third mixer (PCR-2) yielded marginal improve-
ments, since four mixing steps were still required (the small
reduction in bioassay execution time was due to reduced
routing latencies); with four mixers (PCR-3), the number
of steps was reduced from four to three, yielding a 5.2-s
improvement.

For synthetic-1 and -2 (10 and 20 operations, respectively),
we vary the number of input and output ports, keeping the
allocation of other components constant. For both synthetic-1
and -2, increasing the number of I/O ports yields a small, but
noticeable, improvement in δG−LSAM.

For synthetic-3, -4, and -5 (30, 40, and 50 operations),
we dramatically increase the number of input ports to a suf-
ficient number of provide all input fluids in parallel, while
keeping the number of output ports and other allocated com-
ponents constant. For these benchmarks, increasing the input
ports reduces δG−LSAM by approximately 10%, 12%, and 19%,
respectively. Clearly, δG−LSAM is dominated by bioassay oper-
ation latencies, but the contribution of I/O to δG−LSAM remains
non-negligible.

Varying the number of I/O ports and components directly
influences the chip area and also δG−LSAM. Chip area is an
important parameter for the chips that need to be placed
in small chambers, e.g., under microscopes for detection.
These results demonstrate how an mVLSI LoC design can
quickly evaluate the performance of different architectures and
make early stage design decisions involving tradeoffs between
performance and other relevant metrics such as cost.

https://sites.google.com/site/biochipsimulator/Files
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TABLE VI
EXPERIMENTAL RESULTS: LSAM VERSUS CPAM [26]

C. Comparison With Constraint Programming
The second set of experiments compared LSAM to a

constrained programming-based application mapping (CPAM)
approach [26]. Constraint programming yields optimal solu-
tions, but the solvers typically take a long time to converge,
especially for large problem instances. As described in [26],
the CPAM problem formulation assumes the existence of
implicit I/O ports allocated to each component and does not
incorporate routing latencies into the schedule; moreover, it
does not model cross-contamination and rinsing. To enable a
fair comparison, we execute LSAM using the same assump-
tions, and limit our evaluation to small problem instances
(PCR, IVD, and EA on three LoC architectures each).

Table VI reports the results of the experiment. In all nine
cases, LSAM obtained the same optimal result as CPAM,
while running significantly faster. In the most dramatic case
(IVD with five mixers and five detectors), LSAM produced a
solution in less than 1 s while CPAM took 38 min and 28 s.
These results suggest that CPAM will have even more trouble
scaling, both to larger problem instances and to more realistic
application mapping scenarios that eschew implicit I/O ports
and include cross-contamination and rinsing.

Table VI also demonstrates situations in which increasing
the number of components yields negligible improvements in
bioassay execution time. Taking EA as an example, increasing
the number of mixers from 3 to 4 and the number of heaters
from 1 to 2 does not improve δG ; this type of information can
assist an mVLSI LoC designer to avoid inefficient portions of
the design space to explore.

D. Comparison With Clique-Based Approach
We also compare LSAM to a Clique-based application

mapper (CAM) [27] which suffers from similar scalability
problems as CPAM. The CAM accounts for fluid routing laten-
cies in the schedule, but assumes the existence of implicit I/O
ports and does not model cross-contamination or rinsing. The
results for CAM are available for the benchmarks listed in
Table VII5 but only for one target mVLSI architecture. In
these experiments, CAM yields shorter assay execution times
than LSAM, but runs considerably longer (up to 39 min, 2 s,
compared to less than 1 s for LSAM).

E. Evaluation of Rinsing Heuristics
The last experiments compares LSAM using the NR and

RINS variants for rinsing. These experiments assume the

5Reference [27] does not include experimental results; however, results
were reported in the oral presentation at ASPDAC 2013. Slides are available
at: http://www.aspdac.com/aspdac2013/archive/pdf/3A-1.pdf.

TABLE VII
EXPERIMENTAL RESULTS: LSAM VERSUS CAM [27]

TABLE VIII
NR VERSUS RINS RESULTS: APPLICATION MAPPING

AND CONTAMINATION AVOIDANCE (RINSING)

existence of explicit, rather than implicit, I/O ports, account for
routing latencies, and model cross-contamination and rinsing.
To the best of our knowledge, no other previously published
mVLSI application mappers include all three of these features,
so a comparison to prior work is infeasible. We use the same
set of real-life and synthetic benchmarks and target mVLSI
architectures as our initial set of experiments.

Table VIII reports the results of these experiments. Bioassay
assay execution times for NR δG−NR are significantly greater
than for RINS δG−RINS in all cases. Reductions in bioassay
execution time range from 3.99% (PCR-1) to 44.1% (EA),
with an average of 23.4%. These results clearly indicate that
RINS is superior to NR, validating the decision to inter-
leave rinsing operations with bioassay execution, rather than
temporarily pausing bioassay execution.

Although the results reported in the preceding sec-
tions include direct comparisons to previous work, we
wish to stress the observation that only LSAM+NR and
LSAM+RINS model realistic scenarios; CPAM and CAM
cannot successfully target architectures that do not feature
implicit I/O ports and, even for those architecture, would
generate scheduling and binding results that feature cross-
contamination, therefore yielding incorrect biological out-
comes. The same is true of other application mappers cited in
Section I-B that do not adequately account for these features.

VI. LIMITATIONS

The algorithms presented in this paper have integrated
realistic fluid transport constraints and rinsing into mVLSI
application mapping. This section discusses the limitations
of this paper’s contributions and outlines several avenues for
further investigation that build upon these insights.

http://www.aspdac.com/aspdac2013/archive/pdf/3A-1.pdf
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A. Benchmarks
Although the benchmarks used in this experimental eval-

uation are publicly available, it is unclear if they represent
the state of the art in mVLSI applications, or whether or not
they represent technically challenging problem instances that
could provide a fertile proving ground for further algorithmic
development. Although beyond the scope of this paper, we
encourage the mVLSI CAD research community to engage in
further benchmark efforts along two synergistic axes.

1) Representative Benchmarks: Assay specifications and
mVLSI netlists corresponding to published mVLSI chips
reported in the scientific literature. This set of bench-
marks would maximize the relevant of mVLSI CAD
research to users in academia and industry.

2) Challenge Benchmarks: Sets of problem instances, pos-
sibly synthetic, designed to challenge state-of-the-art
algorithms; ideally, they could be generated in such a
way that optimal solutions are known. This would be
particularly useful to benchmark the performance of
efficient heuristics for large problem instances where
optimal algorithms (e.g., ILP, CSP, branch-and-bound
search, etc.) cannot be expected to converge in a rea-
sonable amount of time.

B. Open Challenges in Operation Binding
LSAM binds operations to components prior to scheduling.

This decision was made because it is not possible to know
the precise start time of an operation until the fluid transport
latencies of its fluid inputs are established. LSAM necessarily
makes binding decisions with incomplete scheduling informa-
tion, and, as a greedy heuristic, does not revisit them. This has
the advantage of simplifying the underlying algorithmics, but
increases the likelihood of suboptimal decision-making.

As an example, suppose that component m has completed its
operation and is presently holding fluid f. LSAM, meanwhile,
is searching for a component to bind to operation o, and m is
a compatible component. To make an informed binding deci-
sion, LSAM must consider the latency incurred by transferring
f from m to some other component m′. From the perspective
of o, the best option is to select the earliest-available compo-
nent, which favors minimizing the transport latency of f from
m to m′, and this is precisely what LSAM does; however, this
does not take into account whether or not m′ is the best choice
to temporarily store f from the perspective of further schedul-
ing decisions made at later time steps. Further complicating
matters, it is difficult to estimate which yet-to-be-scheduled
operations will be critical since fluidic transport latencies in
later time steps are not yet known.

From the perspective of future operations that will consume
fluid f, it is likewise difficult to greedily determine whether m′
was the best choice. Here, we put forth three greedy strategies,
each of which has its own advantages and limitations that will
not be known for certain until scheduling decisions are made
at later time steps.

1) Transport f to the closest qualified component m′.
a) Advantage: Minimize transport latency.
b) Disadvantage: If another operation o′ is bound to

m′ before f is used, then it will become necessary
to transport f again, incurring additional overhead.

2) Transport f to the qualified component m′ most likely to
use f.

a) Advantage: Reduce the likelihood of serial trans-
fers to free up components for other operations.

b) Disadvantage: Potentially longer transport path;
at the time o is bound to m, LSAM does not
know when the next operation that consumes f
will be scheduled, and other operations may still
be scheduled on m′ in the meantime, necessitating
additional fluid transfers.

3) Transport f to a storage component.
a) Advantage: Simplicity; eliminates competition for

operational resources, and could be a locally opti-
mal decision for f if LSAM schedules it much
later.

b) Disadvantage: If f is in fact used in the near-future,
a direct transfer to the component m* that uses f
would be more efficient; depending on the archi-
tecture, the storage module may be far away from
m, thus incurring a higher than necessary fluid
transport latency.

For all practical purposes, it seems unlikely that any greedy
strategy will be able to make locally optimal decisions in all
cases. For our purposes we are using the third strategy. On the
other hand, our evaluation provides no clear indication that
LSAM is making poor decisions. One potential avenue for
future work is to investigate algorithms that perform a lim-
ited form of backtracking (e.g., dynamic programming) could
improve results in situations where a greedy heuristic such
as LSAM makes a suboptimal decision. Future work should
investigate this issue in greater detail, possibly aided by syn-
thetic benchmarks constructed specifically to exacerbate poor
decisions made by greedy heuristics.

C. Open Challenges in Rinsing
When rinsing, the CSR heuristics introduced in this paper

essentially tries to rinse the minimum amount of the chip
that will allow contamination-free fluid transport from com-
ponent m to m′. On the other hand, Hu et al. [36] tried to
rinse as much of the chip as possible, noting that in the con-
text of LSAM, contaminated components and channels may
be blocked due to fluid held in other components. In princi-
ple, these two approaches represent two endpoints of a larger
spectrum of problem formulations that differ in precisely how
much of the (reachable) contaminated portions of an mVLSI
chip should be rinsed during each fluid transport operation.

In general, the preferred strategy would be to minimally
rinse the chip during fluid transport operations that are on the
critical path, in order to minimize the impact on total bioassay
completion time. In principle, noncritical rinse operations can
rinse more of the chip, up to the point where they become
critical; this can be beneficial if it moves the rinsing of some
contaminated components off the critical path, thereby reduc-
ing rinse time and improving performance. Although ideal, this
strategy is unrealistic because the critical path in the sequenc-
ing graph is not known until after the schedule is computed A
greedy heuristic like LSAM cannot effectively determine how
much of the chip needs to be rinsed during each fluid transfer.

In principle, it might seem appealing to apply the rinse
optimization as a post-processing pass; however, this is prob-
lematic because changing rinse latencies, in turn, would
change fluid transport latencies, which changes the start and
finish times of the assay operations that were scheduled and
bound by LSAM; moreover, the binding decisions made by
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LSAM were driven, in part, by fluid transport latency esti-
mates, which suggests that the entire sequencing graph should
be rebound and rescheduled at the same time.

Similar to the conclusion of the preceding section, our sug-
gestion is that future work on scheduling that avoids greedy
decision-making can be extended to consider the impact of
rinsing decisions on bioassay completion time; once again, it
would be beneficial if benchmarks could be constructed in a
manner to exacerbate the overhead incurred by poor greedy
decision-making, while having known optimal solutions.

D. Rinse-Aware Architecture Synthesis
Any mVLSI application mapper should be compatible with

any mVLSI chip capable of executing an assay, regardless of
whether the chip itself is designed for maximal efficiency. In
a typical mVLSI chip, only one or two input ports will be
assigned to rinse buffers. In principle, there is room to inves-
tigate new techniques for mVLSI architecture synthesis that
allocate additional rinse buffer I/O ports to the mVLSI netlist,
while adhering to foundry design rules, in order to reduce the
contribution of rinsing to total bioassay completion time after
scheduling. Going one step further, it may also be possible
to simultaneously co-optimize mVLSI architecture synthesis
with application mapping. Although a detailed investigation
of these ideas goes far beyond the scope of this paper, they
do provide an interesting and potentially fruitful avenue for
future research.

VII. CONCLUSION

In this paper, we have presented a system-level modeling
and application mapping framework for flow-based microflu-
idic LoCs. We have proposed a topology graph-based model
to capture the LoC architecture and use a sequencing graph to
model the biochemical applications. We have also proposed a
computationally efficient heuristic approach (LSAM) that per-
forms operation binding and scheduling while also taking the
fluidic routing into account. It uses the application comple-
tion time minimization as the target objective and satisfies the
dependency and resource constraints. We have also introduced
a rinsing method (RINS) which will ensure that the operations
within the assay are not contaminated, which would invali-
date the results of the assay. Real-life case studies and a set
of synthetic benchmarks have been mapped on various archi-
tectures to validate our approach. The proposed framework is
expected to reduce human effort, enabling designers to make
early design decisions by being able to evaluate their pro-
posed architecture, minimizing the design cycle time and also
facilitating programmability and automation.

REFERENCES

[1] T. Thorsen, S. J. Maerki, and S. R. Quake, “Microfluidic large-scale
integration,” Science, vol. 298, no. 5593, pp. 580–584, Oct. 2002.

[2] G. M. Whitesides, “The origins and the future of microfluidics,” Nature,
vol. 442, no. 7101, pp. 368–373, Jul. 2006.

[3] C. L. Hansen, M. O. A. Sommer, and S. R. Quake, “Systematic investi-
gation of protein phase behavior with a microfluidic formulator,” Proc.
Nat. Acad. Sci. USA, vol. 101, no. 40, pp. 14431–14436, 2004.

[4] J. W. Hong, Y. Chen, W. F. Anderson, and S. R. Quake, “Molecular
biology on a microfluidic chip,” J. Phys. Condensed Matter, vol. 18,
no. 18, pp. 691–701, 2006.

[5] J. W. Hong, V. Studer, G. Hang, W. F. Anderson, and S. R. Quake,
“A nanoliter-scale nucleic acid processor with parallel architecture,” Nat.
Biotechnol., vol. 22, no. 4, pp. 435–439, 2004.

[6] C. C. Lee et al., “Multistep synthesis of a radiolabeled imaging
probe using integrated microfluidics,” Science, vol. 310, no. 5755,
pp. 1793–1796, 2005.

[7] J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-
cell mRNA isolation and analysis,” Anal. Chem., vol. 78, no. 9,
pp. 3084–3089, 2006.

[8] S. Einav et al., “Discovery of a hepatitis c target and its pharmacological
inhibitors by microfluidic affinity analysis,” Nat. Biotechnol., vol. 26,
no. 9, pp. 1019–1027, 2008.

[9] C. D. Chin et al., “Microfluidics-based diagnostics of infectious diseases
in the developing world,” Nat. Med., vol. 17, no. 8, pp. 1015–1019,
2011.

[10] H. C. Fan, Y. J. Blumenfeld, U. Chitkara, L. Hudgins, and S. R. Quake,
“Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA
from maternal blood,” Proc. Nat. Acad. Sci. USA, vol. 105, no. 42,
pp. 16266–16271, 2008.

[11] Verinata Health. [Online]. Available: https://www.illumina.com/clinical/
reproductive-genetic-health.html

[12] C. Fang et al., “Integrated microfluidic and imaging platform for a kinase
activity radioassay to analyze minute patient cancer samples,” Cancer
Res., vol. 70, no. 21, pp. 8299–8308, Nov. 2010.

[13] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake,
“Monolithic microfabricated valves and pumps by multilayer soft lithog-
raphy,” Science, vol. 288, no. 5463, pp. 113–116, 2000.

[14] W. H. Grover, A. M. Skelley, C. N. Liu, E. T. Lagally, and R. A. Mathies,
“Monolithic membrane valves and diaphragm pumps for practical large-
scale integration into glass microfluidic devices,” Sensors Actuators B
Chem., vol. 89, no. 3, pp. 315–323, Apr. 2003.

[15] I. E. Araci and S. R. Quake, “Microfluidic very large scale
integration (mVLSI) with integrated micromechanical valves,” Lab Chip,
vol. 12, no. 16, pp. 2806–2830, 2012.

[16] W. H. Grover, R. H. C. Ivester, E. C. Jensen, and R. A. Mathies,
“Development and multiplexed control of latching pneu-
matic valves using microfluidic logical structures,” Lab
Chip, vol. 6, no. 5, pp. 623–631, 2006. [Online]. Available:
http://dx.doi.org/10.1039/B518362F

[17] J. Melin and S. R. Quake, “Microfluidic large-scale integration: The
evolution of design rules for biological automation,” Annu. Rev. Biophys.
Biomolecular Struct., vol. 36, pp. 213–231, 2007.

[18] J. W. Hong and S. R. Quake, “Integrated nanoliter systems,” Nat.
Biotechnol., vol. 21, no. 10, pp. 1179–1183, 2003.

[19] J. M. Perkel, “Microfluidics—Bringing new things to life science,”
Science, vol. 322, no. 5903, pp. 975–977, Nov. 2008.

[20] I. Klammer et al., “Numerical analysis and characterization of bionic
valves for microfluidic PDMS-based systems,” J. Micromech. Microeng.,
vol. 17, no. 7, pp. S122–S127, 2007.

[21] J. Siegrist, M. Amasia, N. Singh, D. Banerjee, and M. Madou,
“Numerical modeling and experimental validation of uniform
microchamber filling in centrifugal microfluidics,” Lab Chip, vol. 10,
no. 7, pp. 876–886, 2010.

[22] W. B. Thies, Programmable Microfluidics, Stanford Univ., Stanford, CA,
USA, Oct. 2007.

[23] G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st ed.
New Delhi, India: McGraw-Hill, 1994.

[24] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[25] W. H. Minhass, P. Pop, and J. Madsen, “System-level modeling and
synthesis of flow-based microfluidic biochips,” in Proc. Int. Conf.
Compilers Archit. Syn. Embedded Syst. (CASES), Taipei, Taiwan, 2011,
pp. 225–234.

[26] W. H. Minhass, P. Pop, and J. Madsen, “Synthesis of biochemi-
cal applications on flow-based microfluidic biochips using constraint
programming,” in Proc. IEEE Symp. Design Test Integr. Packag.
MEMS/MOEMS (DTIP), Cannes, France, 2012, pp. 37–41.

[27] T. A. Dinh, S. Yamashita, T.-Y. Ho, and Y. Hara-Azumi, “A clique-
based approach to find binding and scheduling result in flow-based
microfluidic biochips,” in Proc. 18th Asia South Pac. Design Autom.
Conf. (ASP DAC), Yokohama, Japan, Jan. 2013, pp. 199–204. [Online].
Available: http://dx.doi.org/10.1109/ASPDAC.2013.6509596

[28] T.-M. Tseng, B. Li, U. Schlichtmann, and T.-Y. Ho, “Storage and
caching: Synthesis of flow-based microfluidic biochips,” IEEE Design
Test, vol. 32, no. 6, pp. 69–75, Dec. 2015. [Online]. Available:
http://dx.doi.org/10.1109/MDAT.2015.2492473

[29] M. Li, T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, “Sieve-valve-
aware synthesis of flow-based microfluidic biochips considering specific
biological execution limitations,” in Proc. Design Autom. Test Europe
Conf. Exhibit. (DATE), Dresden, Germany, Mar. 2016, pp. 624–629.

https://www.illumina.com/clinical/reproductive-genetic-health.html
https://www.illumina.com/clinical/reproductive-genetic-health.html
http://dx.doi.org/10.1039/B518362F
http://dx.doi.org/10.1109/ASPDAC.2013.6509596
http://dx.doi.org/10.1109/MDAT.2015.2492473


628 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 3, MARCH 2018

[30] K.-H. Tseng, S.-C. You, W. H. Minhass, T.-Y. Ho, and P. Pop,
“A network-flow based valve-switching aware binding algorithm for
flow-based microfluidic biochips,” in Proc. 18th Asia South Pac. Design
Autom. Conf. (ASP DAC), Yokohama, Japan, Jan. 2013, pp. 213–218.
[Online]. Available: http://dx.doi.org/10.1109/ASPDAC.2013.6509598

[31] K.-H. Tseng, S.-C. You, J.-Y. Liou, and T.-Y. Ho, “A top-down synthesis
methodology for flow-based microfluidic biochips considering valve-
switching minimization,” in Proc. ACM Int. Symp. Int. Symp. Phys.
Design, Stateline, NV, USA, 2013, pp. 123–129.

[32] T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, “Reliability-
aware synthesis for flow-based microfluidic biochips by dynamic-
device mapping,” in Proc. 52nd Annu. Design Autom. Conf.,
San Francisco, CA, USA, Jun. 2015, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/2744769.2744899

[33] W. H. Minhass, P. Pop, J. Madsen, and F. S. Blaga, “Architectural synthe-
sis of flow-based microfluidic large-scale integration biochips,” in Proc.
Int. Conf. Compilers Archit. Syn. Embedded Syst. (CASES), Tampere,
Finland, 2012, pp. 181–190.

[34] M. C. Eskesen, P. Pop, and S. Potluri, “Architecture synthesis for cost-
constrained fault-tolerant flow-based biochips,” in Proc. Design Autom.
Test Europe Conf. Exhibit. (DATE), Dresden, Germany, Mar. 2016,
pp. 618–623.

[35] Y.-S. Su, T.-Y. Ho, and D.-T. Lee, “A routability-driven flow routing
algorithm for programmable microfluidic devices,” in Proc. 21st Asia
South Pac. Design Autom. Conf. (ASP DAC), Jan. 2016, pp. 605–610.
[Online]. Available: http://dx.doi.org/10.1109/ASPDAC.2016.7428078

[36] K. Hu, T.-Y. Ho, and K. Chakrabarty, “Wash optimization and anal-
ysis for cross-contamination removal under physical constraints in
flow-based microfluidic biochips,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 35, no. 4, pp. 559–572, Apr. 2016. [Online].
Available: http://dx.doi.org/10.1109/TCAD.2015.2488485

[37] D. Mark, S. Haeberle, G. Roth, F. Stetten, and R. Zengerle, “Microfluidic
lab-on-a-chip platforms: Requirements, characteristics and applications,”
Chem. Soc. Rev., vol. 39, pp. 1153–1182, 2010.

[38] H.-P. Chou, M. A. Unger, and S. R. Quake, “A microfabricated rotary
pump,” Biomed. Microdevices, vol. 3, no. 4, pp. 323–330, 2001.

[39] J. P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe, and T. Thorsen,
“Digital microfluidics using soft lithography,” Lab Chip, vol. 6, no. 1,
pp. 96–104, 2006.

[40] N. Amin, W. Thies, and S. Amarasinghe, “Computer-aided design for
microfluidic chips based on multilayer soft lithography,” in Proc. IEEE
Int. Conf. Comput. Design, 2009, pp. 2–9.

[41] Y. C. Lim, A. Z. Kouzani, and W. Duan, “Lab-on-a-chip: A component
view,” J. Microsyst. Technol., vol. 16, no. 12, pp. 1995–2015, Dec. 2010.

[42] K. Chakrabarty and J. Zeng, “Design automation for microfluidics-based
biochips,” J. Emerg. Technol. Comput. Syst., vol. 1, no. 3, pp. 186–223,
Oct. 2005.

Wajid Hassan Minhass received the M.Sc. degree
from the Royal Institute of Technology, Stockholm,
Sweden, in 2009, and the Ph.D. degree from the
Technical University of Denmark, Kongens Lyngby,
Denmark, 2012.

He is currently a Hardware Designer with Silicon
Laboratories, Oslo, Norway. His current research
interests include hardware design, and in his Ph.D.
thesis he has applied techniques from the VLSI
area to the design and programming of microflu-
idic biochips. He has 11 publications in this area,

and a book on fundamental mVLSI techniques for continuous flow-based
microfluidic biochips.

Jeffrey McDaniel (M’15) received the B.S. degree
in computer science and pure mathematics and
the M.S. and Ph.D. degrees in computer science
from the University of California at Riverside,
Riverside, CA, USA, in 2011, 2014, and 2016,
respectively.

He is currently a Lecturer with the Department
of Computer Science and Engineering, University
of California at Riverside. He has published seven
conference papers and four journals. His current
research interests include languages, synthesis, and

hardware interfacing for continuous-flow microfluidic biochips.

Michael Raagaard received the M.Sc. degree
in computer science and engineering from the
Technical University of Denmark (DTU), Kongens
Lyngby, Denmark, in 2017, where he is currently
pursuing the Ph.D. degree with the DTU Compute.

His current research interests include algorithms
for combinatorial optimization problems, which he
has applied to the areas of microfluidic biochip
synthesis and safety-critical networks configuration.

Philip Brisk (M’09) received the B.S., M.S., and
Ph.D. degrees from the University of California
at Los Angeles, Los Angeles, CA, USA, in 2002,
2003, and 2006, respectively, all in computer
science.

From 2006 to 2009, he was a Post-Doctoral
Scholar with the Processor Architecture Laboratory,
School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland. He is an Associate
Professor with the Department of Computer Science

and Engineering, University of California at Riverside, Riverside, CA,
USA. His current research interests include programmable microfluidics,
field-programmable gate arrays, compilers, and design automation and
architecture for application specific processors.

Dr. Brisk was a recipient of the Best Paper Award at CASES 2007 and
International Conference on Field Programmable Logic and Applications
(FPL) 2009. He has been a Program Committee Member for several
international conferences and workshops, including DAC, ASPDAC, DATE,
International Conference on Very Large Scale Integration, FPL, and
International Conference on Field Programmable Technology. He has been
the General (Co-)Chair of the IEEE International Symposium on Industrial
Embedded Systems 2009, the IEEE Symposium on Application Specific
Processors (SASP) 2010, and International Workshop on Logic Synthesis
(IWLS) 2011, and the Program (Co-)Chair of the IEEE SASP 2011, IWLS
2012, International Symposium on Reconfigurable Computing: Architectures,
Tools and Applications 2013, and FPL 2016.

Paul Pop (M’99) received the Ph.D. degree
in computer systems from Linköping University,
Linköping, Sweden, in 2003.

He is a Professor with the DTU Compute,
Technical University of Denmark (DTU), Kongens
Lyngby, Denmark. His current research interests
include system-level design of embedded systems
and computer-aided design (CAD) methods for
biochips. He has published extensively in system-
level design of embedded systems.

Dr. Pop was a recipient of the Best Paper Award
at the DATE 2005, Real-Time Interactive Simulation 2007, CASES 2009,
and Mediterranean Conference on Embedded Computing 2013 conferences,
and the EDAA Outstanding Dissertations Award (Co-Supervisor) in 2011.
He has co-organized and participated in tutorials and special sessions on
CAD for biochips at conferences, such as Symposium on Cloud Computing
2011, Embedded Systems Week 2011, International Conference of the IEEE
Engineering in Medicine and Biology Society 2015, and IEEE European Test
Symposium 2015.

Jan Madsen received the Ph.D. degree in com-
puter science from the Technical University of
Denmark (DTU), Kongens Lyngby, Denmark,
in 1992.

He is a Full Professor of computer-based sys-
tems with the DTU Compute, DTU, where he is
also the Deputy Director of the Department and
the Head of the Embedded Systems Engineering
Section. He holds two patents, from which he has co-
founded Biomicore, Frederiksberg, Denmark. He has
published over 140 peer-reviewed conference and

journal papers, 12 book chapters, one book, and four edited books. His cur-
rent research interests include methods and tools for systems engineering of
computing systems, embedded systems-on-a-chip, wireless sensor networks
(Internet of Things), microfluidic laboratories-on-a-chip, synthetic biology,
and design, modeling, analysis, and optimization of such systems.

Dr. Madsen was a recipient of several best paper nominations, two Best
Paper Award at Mediterranean Conference on Embedded Computing 2013
and CASES 2009, one paper among the 30 most influential papers from ten
years of design automation and test in Europe, and three papers among the
highly cited papers in system codesign and synthesis.

http://dx.doi.org/10.1109/ASPDAC.2013.6509598
http://doi.acm.org/10.1145/2744769.2744899
http://dx.doi.org/10.1109/ASPDAC.2016.7428078
http://dx.doi.org/10.1109/TCAD.2015.2488485



