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ARTICLE

Loss-of-function genomic variants highlight
potential therapeutic targets for cardiovascular
disease
Jonas B. Nielsen et al.#

Pharmaceutical drugs targeting dyslipidemia and cardiovascular disease (CVD) may increase

the risk of fatty liver disease and other metabolic disorders. To identify potential novel CVD

drug targets without these adverse effects, we perform genome-wide analyses of participants

in the HUNT Study in Norway (n= 69,479) to search for protein-altering variants with

beneficial impact on quantitative blood traits related to cardiovascular disease, but without

detrimental impact on liver function. We identify 76 (11 previously unreported) presumed

causal protein-altering variants associated with one or more CVD- or liver-related blood

traits. Nine of the variants are predicted to result in loss-of-function of the protein. This

includes ZNF529:p.K405X, which is associated with decreased low-density-lipoprotein (LDL)

cholesterol (P= 1.3 × 10−8) without being associated with liver enzymes or non-fasting blood

glucose. Silencing of ZNF529 in human hepatoma cells results in upregulation of LDL receptor

and increased LDL uptake in the cells. This suggests that inhibition of ZNF529 or its gene

product should be prioritized as a novel candidate drug target for treating dyslipidemia and

associated CVD.

https://doi.org/10.1038/s41467-020-20086-3 OPEN

#A list of authors and their affiliations appears at the end of the paper.
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Cardiovascular disease (CVD) – in particular cere-
brovascular and ischemic heart diseases – is the leading
cause of death globally1. Lowering circulating lipids is an

important treatment strategy to reduce risk2. However, some
pharmaceutical mechanisms of lipid lowering and CVD risk
reduction may unfortunately increase risk of fatty liver disease or
other metabolic disorders3–6.

The vast majority of novel candidate drugs that enter clinical
testing fail to demonstrate sufficient safety and efficacy to gain
regulatory approval. This is largely due to poor predictive value of
preclinical models of disease along with a lack of knowledge about
the long-term consequences of targeting specific biological pro-
cesses in humans7. It has been estimated, however, that drugs
with genetic support of efficacy are twice as likely to have success
in clinical testing8.

We aim to identify novel candidate pharmaceutical strategies
for CVD risk reduction that, importantly, are unlikely to increase
the risk of liver disease, diabetes, or other metabolic disorders. To
attain this, we conduct a large data-driven genomic discovery
effort to identify presumed causal protein-altering variants with
impact on lipids and other liver-related blood traits. In particular,
we are interested in identifying presumed causal protein-altering
variants associated with a more favorable lipid profile without
being associated with elevated liver enzymes or vice versa.

We analyze 9 liver-related blood traits in close to 70,000 par-
ticipants in the Trøndelag Health (HUNT) Study. The HUNT
Study is a large population-based health survey conducted in a
geographically confined region in Norway9. The examined traits
are related to: (i) blood lipid levels which impact cardiovascular,
neurological and eye-related diseases: total cholesterol (TC), low-
density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C) and triglyceride (TG) levels; (ii) C-reactive
protein (CRP; only values <15 mg/L were included) which is
predictive of cardiovascular disease10; and (iii) enzymes which
primarily reflect liver function: alanine aminotransferase (ALT),
aspartate aminotransferase (AST), alkaline phosphatase (ALP)
and gamma-glutamyltransferase (GGT).

To maximize chances of discovery of presumed causal protein-
altering variants associated with the 9 blood traits, we combine a
number of genomic approaches, including (i) low-coverage (5x)
whole-genome sequencing (WGS) of a subsample of HUNT
Study participants (N= 2202) to identify region-specific rare
variants, (ii) targeted genotyping, also including rare region-
specific variants identified by WGS, (iii) deep genotype imputa-
tion based on the TOPMed multi-ethnic reference panel con-
sisting of 60,039 deeply sequenced genomes11, (iv) genome-wide
association analyses (GWAS) in up to 69,479 HUNT Study
participants (ranging from 21,528 for AST to 69,479 for TG),
followed by (v) stepwise conditional analyses and, for the purpose
of further fine-mapping loci identified in HUNT, we perform (vi)
trans-ancestry meta-analyses in up to 203,476 people of Norwe-
gian, Japanese, and Sardinian ancestry (ranging from 128,794 for
CRP to 203,476 for TC) (see Supplementary Fig. 1 for a study
design overview).

We assume any protein-altering variant to be likely causally
related to the trait of interest if the variant (i) was the most
statistically significant variant (lowest P) in a genomic region (i.e.,
the locus index variant) in any of the GWAS or (ii) if the variant
was independently associated with the trait of interest in GWAS
stepwise conditional analyses.

Results
Genomic discovery of presumed causal protein-altering var-
iants. We imputed 26 million genomic variants with sufficient
quality and at least 10 minor allele copies into 69,479 participants

in the HUNT Study (Supplementary Data 1). Using a linear
mixed model12 to account for relatedness among study partici-
pants, we tested for genome-wide association (P < 5 × 10−8) with
9 liver-related blood traits. We identified 201 genomic regions
(i.e., loci) associated with one or more of the traits. At 24 of the
201 loci, the locus index variant alters (n= 22) or results in loss-
of-function (LoF) (n= 2) of the protein. We consider these 24
variants as presumed causally related to the trait of interest
(Supplementary Fig. 2 and Supplementary Data 2). Stepwise
conditional analyses resulted in identification of an additional 150
independently associated variants within the 201 loci. These
include 28 additional protein-altering variants, hereof 2 LoF
variants, which are significantly and independently associated
with one or more of the liver-related blood traits (Supplementary
Data 3).

For the purpose of further fine-mapping of loci and
identification of additional presumed causal protein-altering
variants, we performed trans-ancestry meta-analyses by combin-
ing summary statistics based on the primary discovery effort in
HUNT with additional GWAS statistics from Sardinia (SardiNIA
cohort)13 and Japan (Biobank Japan)14. The combined meta-
analyses comprised up to 203,476 participants (N range 128,794
for CRP to 203,476 for TC) and 31.5 million unique variants (n
range 24.7–31.5 million) (Supplementary Fig. 3). The analyses
resulted in identification of an additional 86 loci and 351
independent variants, including 13 presumed causal protein-
altering variants. One of the protein-altering variants comprise a
previously reported LoF variant in HBB (p.Q40X)15 associated
with decreased TC (Table 1 and Supplementary Data 4).

To identify rare HUNT-specific presumed causal protein-
altering variants, we performed genome-wide association testing
for the 9 liver-related blood traits in up to 57,060 HUNT Study
participants (N range 15,520 for AST to 57,060 for TG) based on
directly genotyped variants that were included as custom content
on the array and not part of the primary GWAS (see Materials
and Methods for details). In brief, variants were selected for
custom content genotyping if they were (i) identified by HUNT-
specific low-coverage (5x) WGS (N= 2202 HUNT Study
participants), (ii) observed in Norwegian clinics for familial
hypercholesterolemia, or (iii) not-previously-observed variants
predicted to introduce a premature stop codon in any of 56 genes
in which protein-altering variants are deemed clinically action-
able by The American College of Medical Genetics and Genomics
(ACMG56)16. This resulted in identification of an additional 11
protein-altering variants, including 4 LoF variants, which are
associated with one or more of the 9 traits. Five of the 11 variants
originated from region-specific WGS and all variants are rare
(ranging from 1 in 178 to 1 in 6313 individuals) (Table 1 and
Supplementary Data 5).

Combining all discovery strategies, we identified a total of 674
unique independent variants within 287 loci associated with at
least one of the 9 quantitative liver-related blood traits. Of the 287
loci, 92 have not previously been associated with the trait of
interest (Supplementary Fig. 4). We identified genome-wide
significant associations with at least one trait at 76 presumed
causal protein-altering variants, of which 9 result in loss-of-
function (LoF) of a specific protein – 3 frameshift indels and 6
premature stop codons (Table 1 and Fig. 1). Eleven of the 76
protein-altering variants, including 1 LoF variant, do not fall
within a previously reported locus with respect to the trait of
interest.

Loss-of-function variants with impact on liver-related blood
traits. After combining results across all samples and discovery
strategies, we were particularly interested in 9 variants annotated
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to result in LoF of a gene. This included the not previously
reported association between ZNF529:p.K405X and decreased
LDL-C, which we identified in Norwegian samples via sequencing
and custom content genotyping (Table 1). We observed 4 addi-
tional LoF variants also resulting in substantially decreased LDL-
C (3 nonsense variants in APOB, and a common frameshift indel
in SLC22A1; Table 1). The 4 remaining LoF variants are asso-
ciated with other blood lipid traits (LPL:p.S474X with TG, HBB:p.
Q40X with TC, and LIPC:p.G247Afs*11 with HDL-C) or ALP
(GPLD1:p.V815Sfs*46). The previously reported LPL:p.S474X
(also known as p.S447X)17,18 is, in contrast to other stop-gain
variants in the lipoprotein lipase (LPL) gene, known to result in
gain-of-function of LPL19. This explains the association with
decreased TG and points to LPL activation as a potential
mechanism of CVD risk reduction.

Of the 9 predicted LoF variants, the 4 within LPL, LIPC, and
ZNF529 were not even nominally significantly associated (P >
0.05) with ALT, AST, ALP or GGT (Fig. 2). Although we
observed two very rare non-coding variants in proximity to
ZNF529 that are associated with increased ALT (Supplementary
Data 2-3 and Supplementary Fig. 5), these variants are completely
independent (r2 < 0.01) of ZNF529:p.K405X. Altogether, associa-
tion results for liver enzymes and blood lipids indicate that
hemizygous loss-of-function alleles in LIPC and ZNF529 and
gain-of-function alleles in LPL do not cause liver damage,
prioritizing these genes as potential drug targets to reduce blood
lipids and CVD without liver-damaging side effects.

Functional characterization of ZNF529:p.K405X. We expect
that protein-altering variants that are the most strongly associated
variants in a region represent functional variants that pinpoint
biologically relevant genes and potential drug targets. We also
sought not previously described genes that decreased cardiovas-
cular risk factors (such as LDL-C) without increasing risk of liver
disease or impact liver enzymes. Thus, we focused on the not
previously reported association between ZNF529:p.K405X and
LDL-C (beta −0.6, P= 1.3 × 10−8) since this variant is neither
associated with liver enzymes (P= 0.4−0.9 for all 4 liver enzyme
traits, N range 21,530–48,569) nor non-fasting blood glucose
(P= 0.93, N= 54,093 individuals) in HUNT.

Zinc finger 529 (ZNF529) does not have a homolog in rodents.
To experimentally assess the consequence of ZNF529 LoF on
cholesterol metabolism, we transiently knocked-down ZNF529 in
human hepatoma HepG2 cells using siRNA (90.1% reduction,
P= 2.7 × 10−8, Fig. 3a, Supplementary Data 6) and conducted an
unbiased analysis of gene expression using RNA sequencing.
Principal component analysis revealed a distinct gene expression
pattern in HepG2 cells following ZNF529 knockdown with a total
of 476 differentially expressed genes identified (Supplementary
Fig. 6), including a significant upregulation of the LDL receptor
(LDLR, FDR= 7.8 × 10−7) (Supplementary Data 7). Pathway
analysis revealed enrichment of general metabolism pathways, drug
metabolism pathways, and lipid-related pathways (statin pathway,
plasma lipoprotein remodeling and plasma lipoprotein assembly,
remodeling, and clearance, P= 6.5 × 10−4, P= 2.2 × 10−2, and P=
3.9 × 10−2, respectively) (Supplementary Data 8). We confirmed the
upregulation of LDLR mRNA by qPCR (90.6% increase, P= 2.9 ×
10−8, Fig. 3b, Supplementary Data 9) and protein by western blot
(83.0% increase, P= 0.001, Fig. 3c, d, Supplementary Data 10).

We used 1,1’-dioctadecyl- 3,3,3’,3’-tetramethylindocarbocyanine
perchlorate (DiI)-labeled LDL to assess the effects of ZNF529 LoF
on LDL uptake in HepG2 cells. First, we confirmed that DiI-LDL is
taken-up by the cells in a dose-dependent manner, resulting in
saturated uptake at 25 μg/ml (Supplementary Fig. 7). Next, we
assessed the specificity of the binding in competition experimentsT
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between DiI-labeled and unlabeled LDL. Pretreatment of cells with
25-fold excess amounts of unlabeled LDL inhibited the uptake of
DiI-LDL (Fig. 3e, Supplementary Fig. 8). After confirming dose-
dependent saturation and specificity, we evaluated the effects of
ZNF529 silencing on LDL uptake. We found that ZNF529 silencing
resulted in a marked increase in DiI-LDL uptake by HepG2 cells
which was suppressed in the presence of excess amounts
of unlabeled LDL (Fig. 3e). Additionally, we noted a 2.2-fold
increase in intracellular cholesterol following ZNF529 knockdown
(P= 0.008, Fig. 3f, Supplementary Data 11).

Altogether, these findings suggest that ZNF529 is a regulator of
plasma LDL-C via upregulation of hepatic LDLR and enhanced
LDL uptake.

Clinical implications of ZNF529:p.K405X. Individuals hetero-
zygous for ZNF529:p.K405X (N= 109, minor allele frequency of
0.1%) had a mean LDL-C level of 2.58 mmol/L (99.8 mg/dL) vs.
3.44 mmol/L (133.0 mg/dL) in non-carriers. This reduction in
LDL-C of 25% in heterozygous carriers is in the range of what is
seen for treatment with 40 mg of statin20, and usually corre-
sponds to a relative risk reduction of major cardiovascular events
by 20–25%2. We only observed one homozygous female carrier.
Despite being obese and hypertensive, she was alive at age >90
years and had no diagnosis of cardiovascular disease, liver disease,
or diabetes, and had an LDL-C level slightly below average for her
age group (3.45 mmol/L [133.4 mg/dL] vs. mean 3.8 mmol/L
[147.0 mg/dL] for women >90 years old). This one individual
with a natural absence of both copies of ZNF529 suggests that
homozygous knockout of this gene is compatible with survival.
We sought to replicate ZNF529:p.K405X outside the HUNT

Study, but found that the allele count was too low for meaningful
association analyses (e.g., 1 copy in 26,638 alleles in the Michigan
Genomics Initiative [MGI] and 1 copy in 125,568 alleles in
TOPMed). The existence of ZNF529:p.K405X in HUNT was
confirmed by Sanger sequencing of the homozygous sample and 9
heterozygous samples (100% match between genotyping and
Sanger sequencing) (Supplementary Fig. 9).

Highlight of protein-altering variants with high effect size. We
highlight 17 protein-altering variants with an impact >1 standard
deviation on the trait (Fig. 1 and Supplementary Data 12). For
lipids, protein-altering variants in APOB, LDLR, and PCSK9 that
impact LDL-C, and in CETP that impact HDL-C, are well known17.
However, for liver enzyme traits, TNK1:p.G574V is a new finding to
complement genes previously known to impact or encode liver
enzymes including ALPL (with ALP)21, GPLD1 (with ALP), and
GPT (with ALT)22. This rare TNK1 variant, present in 46 indivi-
duals (1 in 814 individuals), was first identified in Norwegian
sequenced samples, then genotyped using the custom array,
and observed to have a large impact on ALP (beta= 1.2, P= 1.7 ×
10−14).

Gene-based burden tests. Gene-based burden results are, in
contrast to single variant tests, independent of nearby signals and
may point to the functional gene in a region. To identify genes
functionally involved in the 9 liver-related blood traits, we per-
formed gene-based burden tests using SKAT-O as implemented
in SAIGE-GENE23. We included all protein-altering variants with
frequency below 0.5% in the HUNT dataset. Although we found
33 unique genes to be significantly associated (P < 2 × 10−7) with
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at least one of 9 liver traits (Supplementary Data 13), in only two
cases was the gene-based evidence for association substantially
stronger than the strongest single variant. This comprised 10
variants in the gene GPT associated with ALT (P= 2.35 × 10−60

vs. P= 6.43 × 10−25 for rs147998249) and 6 variants in the gene
ALPL associated with ALP (P= 2.9 × 10−239 vs. P= 3.99 × 10−67

for rs138587317). These data suggest there are multiple, func-
tional coding rare variants in each of these two genes. The gene-
based burden test also identified well-known genes such as CETP
and ABCA1 associated with HDL-C; PCSK9, LDLR and APOB
associated with LDL-C; the CRP gene associated with CRP; and
GPLD1 associated with ALP (Supplementary Data 13). Addi-
tionally, burden tests for the 3 LoF APOB variants indicated no
association with liver enzymes for heterozygous LoF carriers
(Supplementary Data 14), highlighting APOB as another poten-
tially valuable pharmaceutical target for blood lipid lowering.

Cross-trait analyses for evaluating potential consequences of
gene targeting. To expand our understanding of the 76 presumed
causal protein-altering variants, to investigate their impact on
disease, and to evaluate potential consequences of targeting the
implicated gene or its gene product, we imputed the TOPMed
reference panel into the UK Biobank and performed a phenome-
wide association study (PheWAS) across 1342 ICD code-defined
disease groups24,25, in 408,961 people of white British ancestry.
Sixty-four of the 76 protein-altering variants could be imputed
sufficiently well (R2 > 0.3). Of 64 variants assessed, we found that
24 variants are associated with one or more diseases at a

phenome-wide significance level (P < 3.5 × 10−5) (Fig. 4, Sup-
plementary Fig. 10, and Supplementary Data 15).

To identify potentially useful pharmaceutical strategies that
may reduce blood lipid levels and risk of coronary artery disease
(CAD) and type 2 diabetes (T2D) without increasing the risk of
fatty liver disease, we attempted to identify variants that
decreased LDL-C or TG and decreased the risk of cardio-
metabolic disease, but were not associated with changes in liver
enzyme levels (P > 0.05, Figs. 2, 4, Supplementary Fig. 10 and
Supplementary Data 12–15), suggesting that liver function was
not altered. The 2 variants with this pattern of association
include (i) COBLL1:p.N497D which is associated with decreased
TG levels and decreased risk of T2D in both HUNT and UK
Biobank and of liver disease in HUNT and (ii) LPL:p.S474X
which is associated with decreased risk of CAD, T2D, and
hypertension. HDL-C-associated ANGPTL4 p.E40K appears to
decrease risk of T2D, CAD, and hypertension but is also
associated with an increased risk of ankylosing spondylitis
(Supplementary Fig. 10 and Supplementary Data 15), hence a
potential complication of targeting this gene.

From the PheWAS, we observed other interesting associations.
For example, we found that the variant SERPINA1:p.E366K,
which is known to cause alpha-1-antitrypsin deficiency, often
complicated by severe liver and pulmonary disease26, is also
associated with a decreased risk of myocardial infarction. This
finding supports clinical evidence that individuals with alpha-1-
antitrypsin deficiency may be protected against coronary artery
disease27. The association, however, also suggests caution in
ongoing efforts to treat acute myocardial infarction with
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exogenous administration of alpha-1-antitrypsin28,29, because the
genetic association suggest the opposite effect – an increased risk
of myocardial infarction. Another interesting finding is the low-
frequency S1PR2 variant p.Y257C (chr19:10224136T>C, MAF=
0.003) which we found to be associated with decreased LDL-C
(effect of -0.37 SD, P= 6 × 10−9) and a decreased risk of coronary
artery disease, including myocardial infarction (odds ratio 0.45,
P= 0.0005), without being associated with liver enzyme traits
(Supplementary Data 12).

Further studies are obviously warranted to uncover the
biological mechanisms underlying the associations described
here, however, each of them could help inform clinical
implications of targeting the underlying gene or gene product.

Discussion
By using complementary approaches for genomic association
discovery: sequencing, imputation, array-based genotyping,
stepwise conditional analyses and trans-ancestry meta-analyses,
we identified >650 independent genomic variants associated with
quantitative liver-related disease precursors. This included 76
protein-altering variants that we assume to be causally related to
one or more of the traits. By broadly considering associations

between these protein-altering variants, quantitative traits, and
disease endpoints, we prioritize several genes as potential phar-
maceutical targets for preventing or treating CVD.

The newly uncovered association and in vitro studies indicate
that ZNF529 LoF is associated with lower plasma LDL-C, which
could be explained by induction of LDLR in hepatic cells and
increased LDL uptake. While these findings indicate a therapeutic
potential for lowering plasma LDL-C by ZNF529 inhibition,
further studies are warranted to elucidate the mechanisms by
which ZNF529 regulates LDLR and LDL uptake in the liver.
Considering that ZNF529 does not have a homolog in rodents,
the use of animal models for such studies is limited.

Another interesting finding to highlight is the presumed causal
low-frequency protein-altering variant S1PR2:p.Y257C that we
found to be associated with decreased LDL-C and a >50%
reduction in the risk of myocardial infarction, without being
associated with altered liver function or non-fasting blood glu-
cose. The variant was identified via low-pass sequencing and
custom content genotyping in HUNT. S1PR2 encodes
sphingosine-1-phosphate receptor 2, which seems to play a cri-
tical role in the endothelial inflammatory response30. Several
animal models have already indicated that inhibition of S1PR2
could be a valuable pharmaceutical target for vascular recovery in

1.5
Z
N
F
52

9/
G
A
P
D
H

1.0

0.5

0.0

3.0

2.0

1.0

0.0

4.0

LD
LR

/G
A
P
D
H

DAPI

DiI-LDL

Merge

siC
TL

siZ
NF52

9

Unlabeled-LDL

siCTL

siZNF529

–

+

–

+

+

–

–

–

+

+

–

+

siC
TL

siZ
NF52

9

1.5

1.0

0.5

0.0

2.5

LD
LR

/β
-a

ct
in 2.0

siC
TL

siZ
NF52

9

6.0

C
el

lu
la

r 
ch

ol
es

te
ro

l
(f

ol
d 

ch
an

ge
)

4.0

2.0

0.0

siC
TL

siZ
NF52

9

a b

e f

dc

LDLR

β-actin

250

150

50

37

P = 0.008

P = 2.7 × 10–8

P = 2.9 × 10–8 P = 0.001

siCTL siZNF529

Fig. 3 ZNF529 silencing induces LDLR expression and LDL uptake. a Efficient silencing of ZNF529 in HepG2 cells via siRNA as shown by qPCR using
GAPDH as reference (N= 21 biologically independent samples). b ZNF529 silencing in HepG2 cells induces LDLR mRNA as shown by qPCR using GAPDH
as reference (N= 21 biologically independent samples), and (c and d) LDLR protein as shown by western blot using β-actin as loading control (N= 4
biologically independent samples). e ZNF529 silencing in HepG2 cells increases LDL uptake as evidenced by enhanced fluorescence of DiI-LDL (10 µg/ml,
N= 9 biologically independent samples) which is inhibited in cells preloaded with 25-fold excess amounts of unlabeled-LDL (250 µg/ml, N= 3 biologically
independent samples, scale bars= 200 µm), and (f) leads to increased intracellular cholesterol (N= 12 biologically independent samples). Values are
presented as mean ± SD (vertical whiskers) showing all points and P values (two-tailed). Mann–Whitney U test was used for a, b and f. Student t test was
used for d. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20086-3

6 NATURE COMMUNICATIONS |         (2020) 11:6417 | https://doi.org/10.1038/s41467-020-20086-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


coronary artery disease and stroke30–32. The associations that we
report here represent the first direct human data supporting that
S1PR2 might play an important role in ischemic heart disease.

Taken together, we demonstrate that identifying rare protein-
altering variants and careful consideration of multiple phenotypes
in well-powered studies may point to promising pharmaceutical
drug targets. We used a variety of approaches to identify rare
protein-altering variants, and we found that if exome sequencing
is prohibitively expensive, sequencing a subset of samples fol-
lowed up with a custom genotyping array can be a viable strategy
to identify impactful rare variants.

Methods
The HUNT Study. The Trøndelag Health Study (HUNT) is a population-based
health survey conducted in the county of Trøndelag, Norway, since 19849. Parti-
cipation in the HUNT Study is based on informed consent and the study has been
approved by the Data Inspectorate and the Regional Ethics Committee for Medical
Research in Norway (REK: 2014/144). We included a total of 69,479 individuals
with values for at least one of the traits examined (ALT, ALP, AST, CRP, GGT,
HDL-C, LDL-C, TC and TG). Genotyping was performed using the Illumina
Human CoreExome v1.1 array with 70,000 additional custom content beads33,34.
Variants were selected for genotyping if they were: protein-altering (n= 13,618);
modestly associated with lipids in HUNT but not tested in large consortia (n=
960); identified as causing familial hypercholesterolemia in Norwegian patients
(n= 110); or predicted to result in a loss-of-function of one of the 56 ACMG genes
(n= 27,144, Supplementary Data 16). Additionally, we selected missense variants
with 2 or more copies (n= 8720) and nonsense variants with 1 or more copy
(n= 756) identified from low-pass whole-genome sequencing of 2202 HUNT

samples. Please see Supplementary Data 17 for a summary of selected custom
content variants.

Imputation was performed from 60,039 TOPMed reference genomes using
Minimac3 and variants with imputation quality >0.3 were retained. To account for
relatedness within the sample, we performed association testing using the linear
mixed model with genetic relationship matrix as implemented in SAIGE [https://
github.com/weizhouUMICH/SAIGE]12. Birth year, sex and PC1-4 were included as
covariates. Conditional analysis was performed with the same analysis tools and
command line options as the association analysis by adding the lead-SNP(s) in a
step-wise manner as covariate(s) into the SAIGE step1 parameter estimation until
the variant with smallest P value in the locus was >5 × 10−8.

Biobank Japan. Biobank Japan (BBJ) is a multi-institutional hospital-based registry
of ~200,000 individuals from 66 Japanese hospitals collected from 2003 to 2007.
Written informed consent was obtained from all participants, as approved by the
ethics committees of RIKEN Center for Integrative Medical Sciences and the
Institute of Medical Sciences, the University of Tokyo. Genotype, imputation, and
QC were performed as described previously14. Briefly, samples were genotyped
with Illumina HumanOmniExpressExome or a combination of the Illumina
HumnOmniExpress and HumanExome BeadChips and imputed using 1000
Genomes Project Phase 1 version 3 East Asian reference haplotypes. Publicly
available summary statistics from linear regression assuming an additive model for
quantitative measures of ALP, ALT, AST, CRP, GGT, HDL-C, LDL-C, TC, and TG
were used. Quantitative traits were adjusted for age, sex, top 10 PCs of genetic
ancestry, and disease status for 47 target diseases. Sample sizes for traits ranged
from 70,567 to 134,18214.

SardiNIA. 6602 individuals from four villages in the Lanusei valley on Sardinia
(>60% of the adult population) were genotyped on four different Illumina Infinium
arrays: OmniExpress, Cardio-Metabochip35, Immunochip36, and Exome Chip.
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Fig. 4 Phenome-wide association study in UK Biobank (N= 408,961 participants) based on presumed causal protein-altering variants with impact on
liver-related blood traits in The HUNT Study (N= 69,479). The figure displays phenome-wide statistically significant (P < 3.5 × 10−5) associations
between selected protein-altering variants (n= 21) with impact on one or more of the 9 liver-related blood traits and selected cardiovascular, liver, and
metabolic phenotypes derived from ICD codes in UK Biobank. Arrows denote the direction of effect for the minor allele. Larger arrows signify more
significant associations. Statistically insignificant associations are not displayed. Please see Supplementary Fig. 10 and Supplementary Data 15 for the full
phenome-scan across all traits and variants available for testing in UKB (n= 24). The ZNF529 LoF variant could not be imputed into the UK Biobank.
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Low-depth (~4x coverage) whole-genome sequencing on 3839 individuals was
performed, of which 2340 were also genotyped. Imputation of 1.1 million indels
and 24.1 million biallelic single nucleotide variants was performed using Mini-
mac337 and markers with imputation quality >0.3 (or >0.6 if MAF<1%) were
retained. Samples, genotyping, sequencing and variant calling have been previously
described38.

Liver traits (ALT, AST, CRP, GGT, HDL-C, TC, and TG) from the first visit
were used and LDL-C was computed using the Friedewald Equation13. Association
analyses were performed for liver traits assessed in 5570–5942 individuals (median
N= 5917) using age, age2 and sex-adjusted inverse-normalized residuals of the
outcomes as input to the Efficient Mixed Model Association eXpedited (EMMAX)39

single variant test (i.e., a linear model with a kinship matrix) as implemented in
EPACTS [https://github.com/statgen/EPACTS]. Genomic control correction was
not applied as the lambda values were not inflated (range 0.97–1.02, Supplementary
Data 18). The study, including the protocols for subject recruitment and assessment,
the informed consent for participants (or consent from their legally authorized
representative for those 14–17y); and the overall analysis plan was reviewed and
approved by institutional review boards for the Istituto di Ricerca Genetica e
Biomedica (IRGB; Cagliari, Italy), for the MedStar Research Institute (responsible
for intramural research at the National Institutes of Aging, Baltimore, Maryland,
United States), and for the University of Michigan (Ann Arbor, Michigan, United
States).

Meta-analyses. As the summary statistics from SardiNIA and Biobank Japan were
in Human Genome Build hg19, the positions were mapped to Human Genome
Build hg38 using liftOver [https://genome.ucsc.edu/cgi-bin/hgLiftOver]. The
genomic control corrected summary statistics from the contributing cohorts were
combined with METAL40 using inverse variance weighted meta-analysis. Meta-
analysis included SardiNIA, Biobank Japan, and HUNT for all traits, with the
exception of ALP which was only available from HUNT and Biobank Japan.

Definition of independent loci. Independent loci were defined as genetic markers
>1 Mb apart in physical distance with at least one genetic variant associated with
the trait of interest at a genome-wide significance threshold of P < 5 × 10−8. Loci
borders were defined as the highest and lowest genomic positions within the locus
reaching genome-wide significance plus an additional 1 Mb on either side.

Novelty of identified genomic loci. A locus was classified as known if a variant
previously published to be associated with the trait of interest fell with 1Mb of the
locus lead variant that we identified. Otherwise, a locus was classified as novel.
Previously published variants were extracted from papers and the GWAS catalog
[https://www.ebi.ac.uk/gwas/] at the time of analyses.

PheWAS in UK Biobank. Association results for 1342 trait groups (PheCodes)24 in
UK Biobank were generated using SAIGE12. Phenotypes were grouped by com-
bining ICD-9 and ICD-10 codes of closely related traits following previously
published methods25. Analyses were performed on the white British subset of UK
Biobank after imputation with the TOPMed reference panel. Sex, birth year, and 4
principal components were included as covariates. Significance was determined
based on Bonferroni correction for the number of traits tested (P < 3.5 × 10−5).
Participation in the UK Biobank is based on informed consent41.

Gene-based SKAT-O tests. The exome-wide gene-based SKAT-O tests were
performed using SAIGE-GENE v3623 for all 9 liver traits based on the TOPMed-
imputed HUNT data. Missense and stop-gain variants annotated by ANNOVAR42

with MAF ≤ 0.005 were included. Conditional analyses were performed to condi-
tion on the most significant single variant association signal within 500 kB of the
gene. We selected a significance threshold of 2.5 × 10−6 accounting for
20,000 genes.

Replication attempt of ZNF529:p.K405X in MGI. The Michigan Genomics
Initiative (MGI) is a repository of electronic medical record and genetic data at
Michigan Medicine (N~58,000 participants). MGI participants were enrolled
during pre-surgical encounters at Michigan Medicine and provided consent to
study genetic and electronic health record data for research. The MGI study was
approved by the Institutional Review Board of the University of Michigan Medical
School. DNA was extracted from blood samples and participants were genotyped
using Illumina Infinium CoreExome-24 bead arrays, which includes the same
custom content as the HUNT Study. Genotype data were imputed to the Haplotype
Reference Consortium using the Michigan Imputation Server, providing 17 million
imputed variants after standard quality control and filtering. Only European
individuals were used for analysis. We attempted to replicate the association with
ZNF529:p.K405X in 13,319 MGI participants with LDL-C measurements, however,
only 1 participant was heterozygous for ZNF529:p.K405X so the power to detect
association was near zero. In contrast, we identified 110 heterozygous individuals
in the HUNT discovery study.

HepG2 cells. The HepG2 human hepatoma cell line was obtained from the
American Type Culture Collection (ATCC) and cultured at 37 °C and 5% CO2 in
Dulbecco’s Modified Eagle Medium (DMEM, Gibco) supplemented with 10% fetal
bovine serum (FBS, Sigma-Aldrich) and 1% Penicillin-Streptomycin (Pen-Strep,
Gibco).

ZNF529 gene silencing using small interfering RNA (siRNA). siRNA targeting
zinc finger protein 529 (siZNF529: GGCUUUUGGAGUAUGUAGAtt) and non-
targeting siRNA control (siCTL) were obtained from Ambion (siRNA IDs s33654
and AM4611, respectively). HepG2 cells were transfected with 20 nM of siZNF529
or siCTL using Lipofectamine RNAiMAX (Invitrogen) in Opti-MEM reduced-
serum medium (Gibco) in accordance with the manufacturer’s protocol43. Cellular
lipid or protein extraction, RNA isolation or LDL uptake assays were conducted 48
h post transfection.

RNA sequencing. Total RNA was purified from HepG2 cells using the QIAGEN’s
RNeasy kit (QIAGEN). Library preparation and sequencing were performed by the
University of Michigan DNA Sequencing Core. RNA was assessed for quality using
the TapeStation (Agilent, Santa Clara, CA). All samples had RNA integrity num-
bers (RINs) >8.5. Samples were prepared using the NEBNext Ultra II Directional
RNA Library Prep Kit for Illumina (NEB, E7760L) with Poly(A) mRNA Magnetic
Isolation Module (NEB, E7490L) and NEBNext Multiplex Oligos for Illumina
Unique dual (NEB, E6440L), where 10 ng–1 µg of total RNA were subjected to
mRNA polyA purification. The mRNA was then fragmented and copied into first
strand cDNA using reverse transcriptase and dUTP mix. Samples underwent end
repair and dA-Tailing step followed by ligation of NEBNext adapters. The products
were purified and enriched by PCR to create the final cDNA library. Final libraries
were checked for quality and quantity by TapeStation (Agilent) and qPCR using
Kapa’s library quantification kit for Illumina Sequencing platforms (Kapa Biosys-
tems, KK4835). Libraries were paired-end sequenced on a NovaSeq 6000
Sequencing System (Illumina).

Paired-end reads (101 bp) from RNA sequencing of 4 siCTL and
4 siZNF529 samples were aligned to hg38 reference genome using Tophat2 (v2.0.13
11/5/19 7:29:00 PM)44 with default parameters. In each sample, 94.3–95.4% reads
could be aligned. All valid alignments were used for downstream analysis.
GENCODE release 29 was used to obtain gene boundaries of 19,940 protein coding
genes. We used Samtools (v1.9)45 and bedtools (v2.22.0)46 coverage function to
count number of reads aligned in each genic bin. Genes with >3 counts per million
(CPM) in 8 samples were used for further analysis. EdgeR47 library in R was used
to identify differentially expressed genes (Supplementary Data 7). We used glmFit
followed by glmTreat to identify significant change in expression with FDR < 0.05.
We used ConsensusPathDB48 to identify enriched pathways from list of
differentially expressed genes (Supplementary Data 8).

RNA isolation, RT-PCR and qPCR. Total RNA was purified from HepG2 cells
using the QIAGEN’s RNeasy kit (QIAGEN). cDNA was synthesized using
SuperScript III (Invitrogen), and qPCR was performed using SYBR green reagents
(Bio-Rad). Gene expression is presented as fold-change compared with RNA iso-
lated from control cells by the comparative CT (2−ΔΔCT) method using GAPDH as
the reference gene49,50. Primer pairs used for qPCR were obtained from Integrated
DNA Technologies and are available in Supplementary Data 19.

Protein extraction and western blot. Cells were lysed in radio-
immunoprecipitation assay lysis buffer (RIPA buffer, Thermo Scientific) supple-
mented with a protease inhibitor cocktail (Roche Applied Science). Proteins were
resolved in 8% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to nitrocellulose membranes (Bio-Rad). The membranes
were blocked for 1 h at room temperature in tris-buffered saline-Tween 20 (TBST)
containing 5% fat-free milk and incubated with primary antibody at 4 °C overnight.
The following primary antibodies were used: rabbit monoclonal anti-LDLR anti-
body (Abcam, ab52818, working dilution 1:1000) and mouse monoclonal anti-β-
actin antibody (Cell signaling, 8H10D10, working dilution 1:2000). After TBST
washing, membranes were incubated with secondary antibodies (LI-COR Bio-
technology, donkey anti-rabbit IRDye 926-32213 and donkey anti-mouse IRDye
926-68072, working dilution 1:10000) for 1 h at room temperature. After TBST
washing, bands were visualized and quantified using an Odyssey Infrared Imaging
System (LI-COR Biosciences, version 2.1)49.

DiI-LDL uptake assay. 1,1’-dioctadecyl- 3,3,3’,3’-tetramethylindocarbocyanine
perchlorate-low-density lipoprotein (DiI-LDL Alfa Aesar, J65330 or Kalen Bio-
medical, 770230-9) was used to evaluate the cellular uptake of LDL51 in accordance
with the manufacturer’s instructions. Briefly, 48 h following siRNA transfection,
HepG2 cells were washed with PBS (x2) and changed to serum-free DMEM
supplemented with 0.1% bovine serum albumin (BSA, Sigma-Aldrich). The cells
were then incubated with DiI-LDL (1–25 μg/ml) for 5 h at 37 °C in the dark. In
some experiments, cells were pre-treated for 30 min with 25-fold excess amounts of
unlabeled LDL (Alfa Aesar, J65039) to assess the specificity of the binding. Nuclei
were stained with 4′,6-diamidino-2-phenylindole (DAPI, Cayman Chemical
Company, 14285). After incubation, the cells were washed with PBS (x2) and
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changed to serum- and probe-free DMEM. Finally, the cells were visualized using a
fluorescent microscope (Olympus, IX71). For each experiment two random fields
were chosen and photographed in a blinded fashion. DiI-LDL and DAPI images
were merged using ImageJ software (v.1.52k, NIH).

Lipid extraction and cholesterol quantification. The lipids of HepG2 cells were
extracted using hexane (≥99%, 32293, Sigma-Aldrich) and isopropanol (≥99.5%,
A426-4, Fisher Chemicals) at a 3:2 ratio (v:v), and the hexane phase was left to
evaporate for 48 h. The remaining cells in the plates were disrupted in 0.1 M NaOH
for 24 h and an aliquot was taken for measurement of cellular protein using the
Bradford protein assay (Bio-Rad). The content of cellular cholesterol was deter-
mined spectrophotometrically using a commercially available kit (Wako Chemi-
cals, 999-02601). Cholesterol data were normalized to cellular protein levels49,52.

Statistical analyses for in vitro studies. Statistical analyses were performed using
SPSS 24.0 software (SPSS Inc. IBM). Unless indicated otherwise, values are pre-
sented as mean ± SD showing all points. All data were tested for normality and
equal variance. If the data passed those tests, Student t test was used for com-
parisons between the two groups. If the data did not pass those tests, nonpara-
metric Mann–Whitney U test was used. P < 0.05 was considered statistically
significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available within the article
and its Supplementary Information or Source data files or from the corresponding author
upon reasonable request. The genome-wide summary association statistics are available
for download at http://csg.sph.umich.edu/willer/public/hunt-lipids-liver-2020/ or at
http://jenger.riken.jp/en/ for data related to Biobank Japan. The raw RNA sequence reads
(accession number PRJNA549711) are available for download at https://www.ncbi.nlm.
nih.gov/bioproject/PRJNA549711/. Source data are provided with this paper.
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