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I. Introduction 

In a beam conditioner, proposed by Sessler, Whittum and Yu,1•2•3 a nearly 
monoenergetic beam has the shape of the beam's phase volume so changed that its 
axial velocity spread is improved. As a result, the beam conditioner can greatly 
reduce the spread in axial velocity of an electron beam, and hence it can be used, 
with advantage, on almost all fast wave devices. It is therefore natural that it has 
aroused considerable attention. 4.5 

There are different means for conditioning electron beams. The longitudinal 
electric field in a microwave cavity, as proposed by Sessler, et al, can be used to 
condition electron beams, and this is an efficient method. However, for low energy 
beams, transported by a helical magnetic field, some other method of beam 
conditioning is required. The transverse electric field in an RF cavity can, 
conveniently, be used for this purpose. 

In this paper, we present a kinetic formulation of a conditioner consisting of a 
microwave cavity operating in the TEou mode while immersed in a uniform axial 
magnetic field. We treat analytically the linear problem of dependence of the axial 
velocity spread on the cavity length, and use simulation to examine non-linear 
aspects of the evolution of the spread with both the cavity length and the operating 
wavelength. 

In a cavity operating in the TEo11 mode, the electric field has only an azimuthal 
component with a radial distribution given by the first order Bessel function 
J 1 (kcR ) where kc is the cutoff wave number, and R is the radial coordinate. For a 

' single-energy electron beam with a sufficient small beam radius and only one 
guiding center at the origin, as shown in Fig. 1, the electrons with a larger gyration 
radius experience a stronger electric field decelerating force (for appropriate phase) 
than those with a smaller gyration radius. The larger the gyration radius is, the 
more energy the electron loses. By the coupling of energy with axial momentum (a 
relativistic effect), the axial velocity of the electron is increased if the effect of the 
time-dependent magnetic field is neglected. Therefore, as long as the beam pulse is 
sufficiently short the axial velocity spread will be improved. 

For an actual electron beam, the guiding-center radius R g ranges from zero to 
Rb, where Rb is the beam radius, and the gyration radius rL ranges from zero to 
(Rb-Rg). In such a situation, we can consider the azimuthal field as the sum of 
infinite cyclotron harmonics. Of all these harmonics only the zeroth one is 
important. So for those electrons with non-zero guiding center, the previous 
analysis holds. From this we can see that the axial velocity spread of an electron 
beam with multi-guiding centers also can be improved. 

Generally speaking, increasing the cavity length increases the interaction time. 
In this case, however, non-linear effects become important. As it is well known, 
when the cavity operating frequency is slightly greater than the electron relativistic 
cyclotron frequency, the electron beam effectively interacts with cyclotron 
harmonics and, as a result, resonant emission appears, which is the basis of the 
maser instability.6 At this time, most of the electrons lie in the deceleratinf. electric 
field of the fundamental harmonic because of the negative mass effect7• •9 which 
results in particle bunching in the azimuthal direction as explained by Sprangle and 
Drobot.10 So once the beam is decelerated, no matter whether it experiences a net 
transverse acceleration or deceleration during the first-period interaction (depending 
on the phase of the pulsed beam entrance of the cavity), the decreased transverse 
velocities cannot go back to their original magnitude in the next interaction period. 
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Consequently, the axial velocity spread will continue to be reduced until another 
non-linear process (resonant absorption) arises, so that the transverse velocities of 
the electrons begin to increase, resulting in an increase in the axial velocity spread. 

The beam conditioning presented here is different from the electron-beam 
cooling proposed by Hirshfield and Park. 11 In their proposal, the beam's 
distribution of energy is made narrower by use of both resonant emission and 
absorption. This process cannot be used to improve the axial velocity spread. For 
a single-energy electron beam with a spread in axial velocity, for example, it can do 
nothing because the width of the distribution in energy is null. The beam 
conditioner, in contrast, reduces the spread in axial velocity (instead of the energy 
spread) through the coupling of energy with axial momentum caused by resonant 
emission. 

In Sec. IT, a calculational model is set up to treat analytically a pulsed beam 
with the Vlasov theory. The perturbation distribution function of the pulsed beam 
conditioned by the RF cavity is derived and linear expressions for axial velocity 
spread are given. In Sec. lli, numerical simulations are used to check the analytical 
results, and investigate the dependence of axial velocity spread on the cavity length 
and operating wavelength caused by the nonlinear interaction of the beam with the 
cavity field. Finally, in Sec. IV some conclusions are made. 

IT. Linear Kinetic Theory of the Beam Conditioner 

In this section, based on linearized Vlasov equations, we will derive the 
perturbation distribution functions of a pulsed electron beam conditioned by the RF 
cavity and use them to obtain analytic expressions for the rms-normalized axial 
velocity spread. 

In the model, we take the pulsed beam as a segment, which has a length L, of 
an infinitely long electron beam. We will first calculate the perturbation distribution 
function for the infinitely long beam, and then we use it to calculate the axial 
velocity spread of the considered segment. We assume that the electron beam is 
mono-energetic. The electron's transverse velocity is small compared with its axial 
velocity and variation in the pulse length is negligible when the pulsed beam goes 
from one end of the cavity to another. The beam pulse front is located at z=O when 
t=O. At t=d /vo with d (~) the cavity length and v0 the total initial velocity, the 
beam pulse arrives at the front end of the cavity, and at t=(d+L )/vo, the pulse beam 
has passed through the cavity, as shown in Fig. 2. For simplicity, the time­
dependent magnetic field is neglected in the linear consideration. 

where 

The Vlasov equation describing the beam conditioner is given by 

()f ()f d/ 
-+ v.-+ e (E + v x B).-= 0, 
dt ax dp 

E = cp Eolt(kcR) sin ~z sin rot , 

B = zBo. 

3 

(1) 
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,... ,... 
In Eqs. (2) and (3), the cylindrical coordinates are used, and R, <p and z are all unit 
vectors; £ 0 is the TEo11-mode electric field amplitude, B o is the applied uniform 
axial magnetic field, and ru is the cavity operating frequency. According to the 
small signal assumption lEo/ Bocl << 1 , where c is the light speed in free space, 
Eq. (1) can be linearized as 

-+v.-+e(vxB).- =0, l a a a } f fo ) 

at ax ap \J/m 
(4) 

and 

{ 
a a a } ro aJo -+v.-+e (v x B).- / 1 =-eE.-• 
at ax ap ap 

(5) 

where fo is the equilibrium distribution function for both regions (I) and (II), and 

f/1
) and ft(fl) are, respectively, the perturbation distribution functions for the two 

regions. In region (1), there is a cavity field, whereas in region (II) there is no 

cavity field. So (1(1) satisfies Eq. (5) and (1(fl) satisfies Eq. (4). 
At t = 0 the electric field begins to condition the cavity-in part of the 

infinitely long electron beam so that it produces a perturbation of the distribution of 
the beam. Then the perturbation propagates with a velocity of Vz in the z-direction 

like a wave. So f/1
) and (1(fl) are required to satisfy the following initial and 

boundary conditions 

(6) 

(7) 

Eqs. (4)-(7) are the basis of finding perturbation functions. Only after obtaining 
them can we calculate the axial velocity spread 

A. Equilibrium Distribution Function 
To calculate perturbation distribution functions we first have to determine 

the equilibrium distribution function from Eq. (4). According to the first order 
partial differential equation theory, any combination of constants of motion from 
characteristic equations of Eq. (4) is a solution. So, if we find the constants of 
motion we can use them to construct equilibrium distribution functions in terms of a 
given electron beam. For convenience, we use cylindrical coordinates in the 
momentum space just as in the configuration space, that is, p:x;=p .L cos¢, 
Py=P .l sin¢ , and Pz=Pz· 

Calculations indicate that the characteristic equations of Eq. (4) have six 
independent constants of motion: 
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C1=P.L• (8) 

C2 = Pz • (9) 

lei.Bo 
(10) C3=¢- -z, 

Pz 

C4 = R COS(/) -,:vto sincp , (11) 

Cs..; R sinqJ + {~0 cos<P, (12) 

C6= ¢- !2t , (13) 

where e is the electron charge, and !29eiB<Y<rm) is the relativistic cyclotron 

angular frequency ,with y={ p ]+pz2+m 2c2) 
112 

!(me) the relativistic factor and m the 
electron rest mass. 

Because the electrons gyrate in the axial magnetic field, it is more 
convenient to use those constants of motion characterizing guiding centers to 
construct equilibrium distribution functions, for this gives us a clear physical 
picture. 

Setting rL=P .LfleBol and ¢ =8+(Bo/IBol)1t/2, from Eqs.(ll) and (12) we 
have 

Rg cos (/Jg = R cosqJ - rL cos8 , (14) 

Rg sin (/Jg = R sinqJ - rL sin8 , (15) 

where R g and (/Jg are radial and azimuthal coordinates of the guiding center and they 
are all constants of motion. 

As shown in Fig. 3, when Bo >0, the electrons are right-rotated along the z­
direction, and when Bo <0, the electrons are left-rotated. In the beam conditioner, 
unlike a gyrotron, 12·13 distinguishing the gyration direction is important because 
different gyration directions can result in different variations in velocity spread. 

Suppose that the distribution of the guiding centers of the electron beam is 
uniform, so the equilibrium distribution function can be chosen as 

where It> is the initial relativistic factor, and H(x) is a unit step function. Since r, 
p .L, Pz, and Rg are all constants of motion, fo given by Eq. (16) is a solution of 
Eq. (4). 
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B. Perturbation Distribution Function 
We will use the method of integration along characteristics to solve for f1(I) 

and then directly determine (1(Il) by using !I (I) and arguments involving constants 
of motion. 

The perturbation distribution function (1(!) can be expressed as 

f,m = -e (' E'. :~ dt'. 

Jo P 
(17) 

To perform the above integration, we have to make local expansion of the electric 
field E in the guiding center (Rg, (/Jg ). Applying the Bessel function addition 
theorem 

+oo 

it (kcR) ei (fl'-8 > = I lt-l(kcRg) ei(l-l )rp, Jl(kcrL) ei(l-l)8 , (18) 
I= -oo 

we have 

+oo 

ErL =Eosin ~z Sin(J)t I (-1) 1JI(kcRg)ll+l(kcrL) sin l(qJ8-8) , (19) 
I= -oo 

+oo 

E8 =Eo sin ~ z sin (J)t I 
I= -oo 

(-1) 1JI(kcRg)ll+l(kcrL) cos l(qJ8-8), (20) 

where ErLand E8 are, respectively, the components of the rL- and 8 -directions in 
the guiding-center frame. 

From Eqs. (19) and (20), we find that the electric field is expanded as a sum 
of infinite cyclotron harmonics. The amplitude of the 1 th harmonic is proportional 
to h (kcRg ). Because a small beam radius is used, kcRg is much less than unity. In 
addition, because the field of the first harmonic varies azimuthally, its effect on an 
electron tends to cancel when the electron makes a revolution in the linear limit. So, 
the effect of the zeroth one is dominant It should be noted that the zeroth harmonic 
has only an azimuthal component of the electric field and it is axisymmetric in the 
guiding-center frame, just like the whole TEou-mode electric field in the 
waveguide-axial frame. In fact, if we let Rg approach zero, Eqs. (19) and (20) go 
back to Eq. (2). 

The equations describing the characteristics are given by 
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(21) 

(22) 

where Vz=pzf( "ftn) is the axial velocity and it is also a constant of motion. 
Substituting Eqs. (19)-(22) into Eq. (17),.after a tedious calculation we can 

obtain the first-region perturbation distribution function 

(23) 

where 

Fl=(-1) 1{Jl(kr;Rg)ll+l(kcrL)[afo + P1. a/o]--
1 
1

1

fL+t(kcRg)lL(kcrL) aJo) 
apl. r(mcf ar e o aRg 

G/1) =-* {sin [1(/)g + (~z-18) +rut J- sin [1(/)g + (~z-18)- (~vz-1.Q }t]} 
+ * {sin [1(/)g - (~z+/8}- rut] - sin [l(/)g - (~z+/8) + (~vz+l.Q }t J } -* {sin [1(/)g + (~z-18)- rut J- sin [1(/)g+ (~z-18)- (~vz-l.Q )t J } 

(24) 

+ * {sin [ 1(/)g - (~z+/8) + rut] - sin [1(/)g - (~z+/8) + (~vz+l.D)t J } · (25) 

In Eq. (25), ruu, ID21. f»3l, and ru41 are given by 

IDl.l,ll = ru + ~ Vz ± /.Q • (26) 

Ct>Jl,4l = ru - ~ Vz ± /.Q · (27) 

On the basis of the perturbation distribution function in region (I), we can 
easily obtain the one in region (IT). From Eq. (24) we can see that F1 is only a 
function of constants of ?ffltion and, of course, it is also a constant of motion. In 
Eq. (25), however, G1 not only depends on the constants of motion 
(/)g. Vz, and .Q, but also depends on z, 8, and t, which are not constants of motion. 
So if we can use some constants of motion t<(Vake the place of them, then Eq. (4) is 
satisfied. To this end, setting z = d in G 1 and then replacing t and 8 by the 
following constants of motion: 
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t* = t - j_ (z - d ) , 
Vz 

we obtain the second-region perturbation distribution function 

where 

+oo 

f (ll) = "" - Bo ~e Eo F1 G (ll) 
1 ~ IBd 4 I ' 

I=- oo 

G1(ll) = H~~) {sin [z(q>g-8*) +rut*]- sin [z(q>g-8*)- (~vz-Zn }t*]} 

- H=) {sin [l(q>g-8*)- rut*]- sin [z(q>g-8*) + (~vz+ID }t*]} 

+ H!,) {sin [l(q>g-8*)- rut*]- sin [z(q>g-8*)- (~vz-ID }t*]} 

(28) 

(29) 

(30) 

- H~:~) {sin[l(q>g-O*)+rut*]-sin[l(q>g-O*)+(~vz+ID}t*] }· (31) 

Since t* and 8* are all constants of motion, f 1(ll) satisfies the equilibrium 

Vlasov equation. Indeed, it is easy to verify that f 1(1) and f 1(ll) satisfy the initial 
and boundary conditions. 

C. Axial Velocity Spread 
We have obtained perturbation functions and now we can use them to 

calculate the axial velocity spread 
The rms-normalized axial velocity spread is defined by 

(32) 

~h~ f3z i.s the axial velocity normalized to the light speed c , the averages (/3z} and 
\Pz-1 are given by 

(33) 

where f1 denotes f 1(1) or f 1(ll), and 
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A 1 

J (fo + f 1}d3pd3x 
(34) 

From Eqs. (32) and (33), we have 

(35) 

where ( )o and ( )t denote taking an average with fo and ft respectively. 
Below we will calculate each term of the right-hand side in Eq. (35) and 

derive expressions for axial velocity spread when the front of the considered 
segment of beam arrives at z=d and z=d+L, as shown in Fig. 2. The axial velocity 
spread of the segment at z=d+L when t=(d+L )/vo is taken as the spread after the 
pulsed beam is conditioned by the cavity. 

Using Eq. (16), we have 

(36) 

where p lh = leBoiRb. 
Similarly, we have 

(fiz 2)o = ~A 1t2 f3oLR lP }j,mc 11 , (37) 

where 

17 = f31/4f3~ (1- 13;:)- 3f3lh [f3.l.h (2/31: -1) f3zh +arcsin f3lh] + 4 [2-(2+3/31) f3;h]} 
f3lh \ f3o f3o f3o f3o /30 f3o f3o 5 pJ pJ 

(38) 

. ( 2 2 }1/2 
With f3o=vo/c, f3lh=P.u/(1fJmc ), and f3zh= f30-f3lh . 

From Eqs. (23) and (30), we have 

(39) 

G (I) (ll) 
where G I denotes I or G I . 
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From Eqs. (14) and (15), making the change in integrated variables 

R dR dqJ = Rg dRg df/Jg , 

and inserting it into Eq.(39), we obtain 

(P,)t = - 1!~1 sxA<~ r-dp{-P.Ldp.Lr- R8 dR8 ::.c IJ! . .t.vz) 

(40) 

X { Jo(kcRg) Jl(kcrL) [ofo + P1. f ofo] -
1 
1

1 
ii(kcRg) Jo(kcrL) ofo } ,(41) 

op 1. r(mc or e o oRg 

where IT(t, Vz) denotes II(I~t, Vz) or II<In{t, Vz}. n(l~t, Vz} and n<In{t, Vz) are given by 

n(l~t, Vz) = 8~ kceld Go(l) dz 
d-L 

= z ~::_ { 2[cos ~Vzt- cos ~(vzt +L)- cos rot J + c:; cos (rot+~ 1t} 

+~cos (rot-~ 1t) } ' (42) 

1
d+L 

n<In{t, Vz) = 8~ kcc d Go(ll) dz 

= 1. kcC ro [1 - COS (1t Vzt)- {K Vz \2(1 -COS rot )1 
2 (L4ro_ d d ro J ~ 

(t->t~o). (43) 

IT<In(t, Vz} =~[sin xL_ sin (K Vzt - xL..)- {'J!Vz)
2 
sin 4 sin (rot -4)~ 

(L4ro_ 2d d 2d \d ro 2Vz 2Vz ~ 
(t ~~)· (44) 

where ro± = ro ± 1tVz /d. 

Setting v;={p0
2 - p ])lf2!(rom) with Po the total initial electron's momentum, 

and expanding IT(t, v:) as a series in P 1, we have 

IT(t, v:) =Do+ DlP 1 + Dw1 + ... , (45) 

where Do.1.2 denote D~.2 or D~.2. Do, D1, and D2 are related by 
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D1 = - 'X> CJDo ' 
2(me)2 CJ/t) 

(46) 

(47) 

Making use ofEqs. (46) and (47) with small f3.lb taken into account, from Eq. (41) 
we obtain 

(48) 

where 

S = kcRb
2
P 1b { _1_(D _ 2 2D )p 2 __ 1_ ('}t>me )

2
kl f3 4 

P .l leB01 240 ° Po 1 .lb 3360 1 eBol2 .lb 

X [!Do- 2po2D I)- sle~~ 2 
(3D! - 4po2D2l] } . (49) 

In a similar way, we can obtain 

In 2) _ Bo 8 eEo T 
'Pz 1 - -IBol 1tAd kce me P .l , (50) 

where 

T = kcRb2P 1b { _1_/3o(Do- Po2Dt)f3.J- _L_/3.Lt [2Po2kc2 (Do- Po2D1) 
P .l leBo I 120 3360 /3o leBol2 

+ 5((Do -PlD 1) -4pl(Dl -p02D2JJ] } . (51) 

The normalized coefficient A in Eqs. (48) and (50) can be found from Eq. (34) and 
it is given by 

6 f3o 
A= (Ao + Ar} • 

1t
2LR 2p 2 me b .Lb 

(52) 

where 
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2 4 
A = 1 - L f31b - _£[_ f3.J..b 

0 10 2 2800 4 ' 
f3o f3o 

(53) 

At= -af3.J +(_a_- b \13~, 
5/3o

2 
J 

(54) 

with 

(55) 

(56) 

4 
Inserting Eq. (52) into Eq. (48), keeping them up to the order of /3.J..b, and 

only taking those terms of the first order of Eo !(Boc ), we obtain 

Similarly, we have 

...3.2.... 1 c Po 2 4 
( 

k 2 2) ] } - 350 + 351eBol2 (Do -Po Dt) f3lb . (58) 

Substituting Eq. (52) into Eqs. (36) and (37), and subtracting the square of 
Eq. (36) from Eq. (37), we obtain 
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.• 

Using Eqs. (36), (52), and (57), we have 

- 2{flz~l.flz)t = .lEo 1i { - 2 f3o~Do- 2pJDt)f3:J- [
7
1 Po2(3Dt- 4po2D2) 

1t Boc L 5 

-(fs-+ ls:~=~~~o-2po'v,l]Jl~} . (60) 

Substituting Eqs. (58), (59), and (60) into Eq. (35), and neglecting l.flz}t
2 

because it 

is proportional to (Eo!Boc )2, we obtain 

4 
/,., 2)_1a)2=_ll_/3J.b _ _ll__§_d/34 D 
\Pz ~z 1400 2 35011: B C L J.b 0 • /3o o 

(61) 

Do in the above can be found from Eqs. (42)-(45), and they are given by 

Do(IT) = 1. kcew [1- cos llvot - (1tVOr(1- cos rot)l 
2 w2 _ (lfjvo} d dw ~ 

(~ >t ~ o). (63) 

D0(IT) = kce w [ sin 1tL sin 1t (vot - IJL..)- {1tvofsin d.. sin {rot- wL} J 
w2 _ {~vo} 2d d 2d dw 2vo 2vo 

{t ~ ~). (64) 

From Eqs. (62)-(64) we can see that the velocity spread of the segments of beam at 
z=d and z=d+L are dependent on time; but only the spread of the segment, located 
atz=d+L, at t=(d+L)/vo is the one we need. If Lis infmitely short, however, the 
two segments should have the same spread. 

Setting t=d/vo in Eq. (62) and t=(d+L)/vo in Eq. (64), and then inserting 
them into Eq. (61), respectively, we obtain the expressions for rms-normalized 
axial velocity spread 
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u(f) = V 11 ...L(RbeBo)2 { 1 + ±_§__ p.2fl ~ 1~bJ' 
A 1400 f3o ')i)mC 1t Boc L 1~{3;:-r 

x [2sin2 (lkL..) cos2 (_rul.) + f3oA- sin 1JL. sin 21Yi] } i , 
2d f3oA- 4d d f3oA-

(65) 

u(II> = "'~ _L(R~B0 )2 { I +±_§_p,2!1_ ~ 1{1;/ 
A v l4oo 13• )bmC "noc L ~~~f 

X [sin~~)+ (132doA r sin _1tL_ sin 1t(
2

d+L)] } ! ' 
f3oA- f3oA-

(66) 

where A_ is the cavity operating wavelength. 
Eq. (65) describes the axial velocity spread when the pulsed beam arrives at 

the front of the cavity and Eq. (66) describes the spread when it leaves the cavity. 
When the beam length approaches zero, the two formulas give the same result, as 
expected. Because the linear modification of the axial velocity spread is caused by 
the zeroth harmonic, it only depends on the cavity length normalized to an operating 
wavelength; that is, there is no dependence on what wavelength is used. 

Taking Eo=7.5x104 Volt/em, Bo=2500 Gauss, (Eo/Boc=0.1), Rb=1 em 
and ')t>=2.47, from Eq. (66) we have drawn the dependence of the rms-normalized 
axial velocity spread on the normalized cavity length. As shown in Fig. 4, we can 
see that the maximum of the spread increases with the pulse length. For the pulsed 
beam with a length of 0.01 wavelength, the velocity spread is maximumly 
improved when the normalized cavity length is about 0.62. For the pulsed beam 
with a length of 0.5 wavelength, however, the spread is not improved and instead it 
is deteriorated. From this it can be inferred that the effect of the pulse length on 
velocity spread is important. From Fig. 4, we also can find that the spread varies 
quasi-periodically with the cavity length. The varying amplitude approaches zero as 
the cavity length increases infinitely. According to Eq. (66), the quasi-periodicity 
of the dependence of the spread on the cavity length is related to the electron's initial 
energy, the operating wavelength, and the pulse length. 

It should be noted that the spread for 0.5 normalized cavity length, about 
3.41 %, is the same as that of the equilibrium beam. It seems that the beam is not 
affected at all when it passes through the cavity. This can be explained as follows: 
when the cavity length is equal to half an operating wavelength, the waveguide 
radius appproaches infinity and so the electric field within the electron beam 
vanishes. Accordingly, the beam cannot be conditioned. 

The linear theory indicates that the improvement on the spread is very small. 
Therefore, investigation of non-linear processes for the beam conditioner is 
necessary. 
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III. Nonlinear Evaluation of the Beam Conditioner 

In this section we will use the basic equations governing the nonlinear 
behavior of the beam conditioner to examine relations between the axial velocity 
spread and the cavity length. 

In our procedure, the vacuum-cavity TEo11-mode fields are used and the 
contribution of the pulsed beam to the cavity fields is neglected. This is quite 
reasonable because the transverse velocities of the beam are rather small in the beam 
conditioner, unlike the cyclotron maser where an electromagnetic wave is efficiently 
amplified through the coupling between the wave and an electron beam with much 
larger averaged transverse velocity.10 The electron orbits are related to the fields 
through the relativistic Lorentz force equations in the single-particle simulation. 
First, in order to check the previous linear kinetic theory we use only the TEot 1-
mode electric field and neglect its magnetic field to compute a single pulsed beam. 
Then we use both the electric and magnetic fields of the TEo11 mode to compute the 
same pulsed beam and compare them with each other. This simulation reveals the 
nonlinear evolution of the rms-normalized axial velocity spread as a function of 
cavity length. 

When only the electric field is used in the simulation, the axial momentum is 
a constant and it is examined to check the validity of the calculation. In the general 
case, all three checks have been passed by the code. When both the electric and 
magnetic fields are included, we use Liouville's theorem to check the code by 
computing the Jacobi determinant (time is taken as an independent variable) and, 
also, by reversing the computation and using the final values of a particle as initial 
conditions. 

A. Lorentz Force Equations in the Guiding Center 
In the previous linear theory, for the convenience of calculation, the TE011 -

mode field is expanded as a sum of infinite harmonics. In the computation, 
however, it is more convenient to resove directly the TE011-mode field into 
components in the guiding-center frame without expansion into harmonics. 

In the waveguide-axial frame, the TEott-mode fields are given by 

E({J = Eolt (kcR) sin ~z sin wt , 

BR =-Eo~ ~lt(kcR) cos ~zcos wt , 

Bz = -Eo~ Jo(kcR) sin~ z cos wt · 

In the guiding-center frame, E({J and B R are resolved into the following: 

E,L = EoJ 1 (kcR) i sin { 8- tpg) sin ~ z sin wt , 

E8 = Eolt(kcR)[i cos (e- tpg)+~] sin ~z sin wt , 
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(67) 

(68) 

(69) 

(70) 

(71) 



BrL =-Eo~ ~ii (kcR >[~g cos ( 8-lp8)+~] cos jz cos mt , (72) 

B8 = Eo~ ~ii(kcRri sin(8-cp8)cos ~zcos mt, (73) 

where 

(74) 

Here we use the same symbols as those in the linear theory. But it should be noted 
that some of them have different mathematical contents. For example, in the kinetic 
theory Rg and (/)g are functions of both the momentum variables and the 
configuration variables, whereas in this single-particle simulation they are fixed for 
a given guiding-center frame. 

From Eqs. (70)-(73), the Lorentz force equations in the guiding-center 
frame can be written as 

(75) 

(76) 

(77) 

(78) 

d/32 y 2 1 { /31132 1 [ - ( 2)- - -J} 
d- = 1t 4d -1- --=-::- +- f31{hEr- 1-/32 Ee- /33Br + f31Bz •(79) 

z f3J Rbr r 

d/33 y 2 1 1 [ - - - - ] A-= = 1t 4d -1-- /31/33 Er + /h./33Ee + /h.Br- f31B 8 • 
~ fJJY (80) 

where 
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E8 = a 1[J0(Rb R ) +h(Rb R )][Rgcos 2x(8- cpg)+r] sin 1tz sin 2xt , (82) 

Br =- a-J..Jo(Rb R )+h(Rb R )][Rgcos 2x(8- cpg)+r] cos 1tZ cos 21tt ,(83) 

BB = a-J..Jo(Rb R )+h(Rb R )]Rgsin 2xf8- cpg) cos xz cos 21tt, (84) 

Bz = a3- ~o(Rb R) sin xz cos 27tt, (85) 

with al=leiR~o/(2mc2), a2=1eiRbEo/(4dmc2), a3=fejBo/(mk~c), and 
a4=lel£o/(max:). The normalized quantities appearing in Eqs. (75)-(85) are defined 

by z=z/d, T=ruRb, 8=8!(2x), i=mt /(2x), f3I=(drudt )/c, f32=(rLd8/dt )/c, 

/33=(dz/dt)/c, d=d/A., Rb=kcRb, Rg=Rg!Rb, (/Jg=cp8!(21t), R =R !Rb, and 

r=<1-/3/-132 2-f3-lt 112• 

B. Simulation Results 
We used Eqs. (75)-(80) and made computations for a pulsed beam, immersed 

in a 2500 Gauss axial magnetic field, with a length of 0.5 em, a radius of 1 em, and 
an initial relativistic factor of 2.47.14 The initial electron's relativistic cyclotron 
frequency is 2.83 GHz, corresponding to its relativistic cyclotron wavelength 10.6 
em in free space. Three layers of sample electrons are taken within the beam and 
each layer has six guiding centers with 209 electrons. Because the TE011-mode 
fields are axisymmetrical, the six guiding centers are all placed at (/Jg=O· The 
guiding centers are distributed uniformly along the radial direction with the 
coordinates Rg!Rb = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, and the distribution of the 
electrons on gyration orbits simulates the equilibrium distribution function, given 
by Eq. (16), of neglecting the gradient effect of the guiding center. The amplitude 
of the cavity electric field is taken as 7.5x104 Volt/em. 

First, let us examine the numerical simulation using only the electric field. 
Taking the operating wavelength as 10 em, and the entrance time of the pulsed 
beam front as zero and 0.5T (T is the period of the cavity field), we find that the 
linear results agree qualitatively with the ones from the simulation, as shown in Fig. 
5 and Fig. 6, respectively. Both in the linear and simulation results, the axial 
velocity spread oscillates with the cavity length and the oscillation damps gradually. 
When the cavity length is larger than one wavelength, however, the nonlinear effect 
becomes very considerable. In the nonlinear interaction, the mean value of 
oscillation of the velocity spread evidently reduces with the cavity length, whereas 
in the linear result it keeps constant. Since the reduction in the mean value of 
oscillation is caused by resonant emission, it should not depend on the phase at 
which the pulsed beam enters the cavity. Figure 7 shows the dependence of the 
axial velocity spread on the normalized cavity length for three different entrance 
phases. From Fig. 7 we can see, indeed, that these mean values are almost the 
same. 

As we mentioned previously, when an electron loses energy, its axial velocity 
increases, and the smaller the axial velocity is, the more it increases. Accordingly, 
the beam's axial velocity spread is improved. The simulation confirms the above 
statement. In the linear regime (the normalized cavity length is less than unity), the 
velocity spread is decreased when the averaged normalized energy (the averaged 
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relativistic factor) is less than its initial value, and it is increased when the averaged 
energy is larger than its initial value, as shown in Fig. 8. In the nonlinear regime, 
the mean value of oscillation of the averaged energy goes down continuously and 
the mean value of the velocity spread is decreased gradually. The dependence of 
the averaged normalized axial velocity on the normalized cavity length is shown in 
Fig. 9. 

Then we made simulations for the same pulsed beam with the whole TEoll­
mode field, including both electric and magnetic fields. The results are shown in 
Fig. lOa, Fig. 11, and Fig. 12. Comparing Fig. lOa with Fig. 7, however, we 
fmd that there are two main differences. In the linear regime, the effect of the time­
dependent magnetic field is so important that the velocity spread dependence on the 
cavity length is contrary to that without the time-dependent magnetic field taken into 
account. In the nonlinear regime, the mean value of the axial velocity spread is 
more rapidly decreased (also see Fig. 14). The dependence of the rms-nonnalized 
energy spread on the normalized cavity length is shown in Fig. 1 Ob. From Fig. 
lOa and Fig. lOb we find that for short cavities no matter whether the axial velocity 
spread is increased or decreased, the energy spread is always increased. 

To examine the dependence of the axial velocity spread on the operating 
wavelength and to find out at what wavelength the beam conditioner can best 
improve the beam's axial velocity spread, we made simulations for different 
wavelengths. The result indicates that the axial velocity spread strongly depends on 
the operating wavelength, as shown in Fig. 13. For a wavelength of 11 em (2.73 
GHz), the mean value of the axial velocity spread reduces most rapidly with the 
normalized cavity length. For too long, or short, a wavelength compared with 10.6 
em (corresponding to the initial electron's relativistic cyclotron frequency 2.83 
GHz), the axial velocity spread cannot be improved. From Fig. 13, we also can 
find that in the linear regime the dependences of axial velocity spread on the cavity 
length normalized to different wavelengths are almost the same, which means that 
there is little dependence on what wavelength is used to normalize the cavity length. 
From this we can deduce that the effect of the zeroth harmonic is dominant and the 
effect of the first harmonic is negligible in the linear regime, which agrees with the 
previous linear theory. 

We know that the resonant radiation appears only at the operating frequency 
slightly greater than the electron's relativistic cyclotron frequency. Now the 
relativistic cyclotron frequency is 2.83 GHz (10.6 em). Why can the pulsed beam 
generate resonant radiation at the frequencies less than 2.83 GHz? This is because 
the beam has an axial velocity spread and the axial velocity spread Doppler-widens 
the frequency range of resonant radiation. In addition, in a cavity the beam can also 
effectively interact with the backward wave. 

Although the axial velocity spread rapidly reduces with the cavity length when 
the cavity operates at a wavelength of 11 em, it very soon reaches its minimum 
value of 3.9%, only decreased by 2.1% compared with its initial value of 6%. If 
the cavity operates at 10 em, the axial velocity spread decreases down to 1.8%, less 
than one third of its initial value. However, the cavity length is greater than that for 
the 11 em case, as shown in Fig. 14. 

IV. Conclusions 

We have developed a linear kinetic theory to investigate a conditioner for a 
helically transported electron beam. The expressions for axial velocity spread of a 
pulsed beam conditioned by the RF cavity operating in TEo11-mode were derived. 
Numerical simulations were used to check the linear theory and it was found that 
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the linear results are qualitatively in agreement with those from the simulations. We 
also have examined the nonlinear evolution of the axial velocity spread with the 
cavity length and the cavity operating wavelength due to the negative mass effect. 
In summary; we can make the following conclusions. In the linear regime, in 
which the cavity length is less than one operating wavelength, the modification of 
axial velocity spread is caused mainly by the interaction of the electrons with the 
zeroth harmonic, and hence whether the axial velocity spread is improved and this 
improvement mainly depends on the phase at which the pulsed beam enters the 
cavity and only slightly depends on the operating wavelength. In the nonlinear 
regime, the variation in axial velocity spread results from the interaction of the 
electrons with the fundamental harmonic based on the negative mass effect, and so 
it strongly depends on the operating wavelength and only slightly depends on the 
entrance phase of the pulsed beam. The simulation for a pulsed beam with a length 
of 0.5 em, passing through a cavity operating at a wavelength of 10 em, indicates 
that the rms-normalized axial velocity spread can be reduced down to 1.8%, less 
than one third of its initial value. From this we see that a beam conditioner can be 
used to decrease the spread in axial velocities for a low-energy electron beam. 
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Fig. 1. 

Fig. 2. 

Fig. 3a. 

Fig. 3b. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Fig. lOa. 

Figure Captions 

Distribution of the amplitude of the TEo11-mode electric field along the 
radial direction and electrons rotating around the waveguide axis. 

Calculational model. The pulsed electron beam is taken as a segment of 
an infinitely long beam. When t =0, the front of the segment of beam is 
located at z=O. When t=d/vo and t=(d+L)/vo, the front is at z=d and 
z=(d+L ), respectively. 

The guiding-center frame when the applied uniform magnetic field is 
directed in the positive z-direction. 

The guiding-center frame when the applied uniform magnetic field is 
directed in the negative z-direction. 

Dependence of the rms-normalized axial velocity spread on the 
normalized cavity length. The entrance time of the pulsed beams is 
zero. 

Comparison of the linear result with that from the simulation using only 
the electric field. The operating wavelength is 10 em and the entrance 
time is zero. When the normalized cavity length is equal to unity, the 
axial velocity spread is increased. 

Comparison of the linear result with that from the simulation of using 
only the electric field. The operating wavelength is 10 em and the 
entrance time is 0.5 T. When the normalized cavity length is equal to 
unity, the axial velocity spread is decreasd. 

Dependence of the rms-normalized axial velocity spread on the 
normalized cavity length when the pulsed beam enters the cavity at 
different times. Only the electric field is included and the operating 
wavelength is 10 em. 

Dependence of the rms-normalized axial velocity spread and the 
averaged normalized energy on the normalized cavity length. Only the 
electric field is included and the operating wavelength is 10 em. The 
entrance time is zero. 

Dependence of the averaged normalized axial velocity and the rms­
normalized axial velocity spread on the normalized cavity length. Only 
the electric field is included and the operating wavelength is 10 em. The 
entrance time is zero. 

Dependence of the rms-normalized axial velocity spread on the 
normalized cavity length when the pulsed beam enters the cavity at 
different times. Both the electric and the magnetic fields are included 
and the operating wavelength is 10 em. 

Fig. lOb. Dependence of the rms-normalized energy spread on the normalized 
cavity length. The parameters are the same as those in Fig. lOa. 
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Fig. 11. Dependence of the rms-normalized axial velocity spread and the 
averaged normalized energy on the normalized cavity length. Both the 
electric and magnetic fields are included and the operating wavelength is 
10 em. The entrance time is zero. 

Fig. 12. Dependence of the averaged normalized axial velocity and the rms­
normalized axial velocity spread on the normalized cavity length. Both 
the electric and magnetic fields are included and the operating 
wavelength is 10 em. The entrance time is zero. 

Fig. 13. Dependence of the rms-normalized axial velocity spread on the cavity 
length normalized to different operating wavelengths. Both the electric 
and magnetic fields are included and the entrance time is zero. In the 
linear regime, the dependences are almost the same. 

Fig. 14. Optimization of the operating wavelength (the entrance time is zero). 
When the operating wavelength is 10 em, a little less than the initial 
electron's relativistic cyclotron wavelength, the beam conditioner best 
improves the axial velocity spread 
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