
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Evaluation of a Hybrid Approach for Efficient Provenance Storage

Permalink
https://escholarship.org/uc/item/4fz8x1kb

Journal
ACM Transactions on Storage, 9(4)

ISSN
1553-3077

Authors
Xie, Yulai
Muniswamy-Reddy, Kiran-Kumar
Feng, Dan
et al.

Publication Date
2013-11-01

DOI
10.1145/2501986

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4fz8x1kb
https://escholarship.org/uc/item/4fz8x1kb#author
https://escholarship.org
http://www.cdlib.org/

�

�

�

�

�

�

�

�

14

Evaluation of a Hybrid Approach for Efficient Provenance Storage

YULAI XIE, Huazhong University of Science and Technology
KIRAN-KUMAR MUNISWAMY-REDDY, Harvard University
DAN FENG, Huazhong University of Science and Technology
YAN LI and DARRELL D. E. LONG, University of California, Santa Cruz

Provenance is the metadata that describes the history of objects. Provenance provides new functionality
in a variety of areas, including experimental documentation, debugging, search, and security. As a result,
a number of groups have built systems to capture provenance. Most of these systems focus on provenance
collection, a few systems focus on building applications that use the provenance, but all of these systems
ignore an important aspect: efficient long-term storage of provenance.

In this article, we first analyze the provenance collected from multiple workloads and characterize the
properties of provenance with respect to long-term storage. We then propose a hybrid scheme that takes
advantage of the graph structure of provenance data and the inherent duplication in provenance data.
Our evaluation indicates that our hybrid scheme, a combination of Web graph compression (adapted for
provenance) and dictionary encoding, provides the best trade-off in terms of compression ratio, compression
time, and query performance when compared to other compression schemes.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: Data Compaction and Com-
pression; H.3.2 [Information Storage and Retrieval]: Information Storage—File organization

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Provenance graphs, Web compression, dictionary encoding, storage

ACM Reference Format:
Xie, Y., Muniswamy-Reddy, K.-K., Feng, D., Li, Y., and Long, D. D. E. 2013. Evaluation of a hybrid approach
for efficient provenance storage. ACM Trans. Storage 9, 4, Article 14 (November 2013), 29 pages.
DOI:http://dx.doi.org/10.1145/2501986

1. INTRODUCTION

Provenance is the metadata that represents the history or lineage of a data object.
Provenance provides answers to questions like: Where was this object from? How are
the ancestries of this object different from other objects? What kind of objects were
used to create this object? Provenance has applications in various areas in the real
world, such as experimental documentation, debugging, search [Shah et al. 2007], and
security [King and Chen 2003].

This work was supported in part by the National Basic Research 973 Program of China under grant no.
2011CB302301, NSFC No. 61025008, 61173043, 61232004. This work was also supported in part by the
National Science Foundation under awards IIP-0934401 and CCF-0937938, and by the Department of
Energy under award DE-FC02-10ER26017/DE-SC0005417.
Authors’ addresses: Y. Xie (corresponding author), Wuhan National Laboratory for Optoelectronics, School
of Computer Science, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, China,
430074; email: yulai.xiexie@gmail.com; K.-K. Muniswamy-Reddy, Harvard School of Engineering and Ap-
plied Science, 33 Oxford St., Cambridge, MA 02138; D. Feng, Wuhan National Laboratory for Optoelectron-
ics, School of Computer Science, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan,
China, 430074; Y. Li and D. D. E. Long, Baskin School of Engineering, University of California, Santa Cruz,
1156 High St., Santa Cruz, CA 95064.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1553-3077/2013/11-ART14 $15.00
DOI:http://dx.doi.org/10.1145/2501986

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:2 Y. Xie et al.

The provenance community has built a number of systems to collect provenance.
They include database provenance systems such as Trio [Widom 2005], which records
provenance of the tuples for a database system, Service-Oriented Architecture (SOA)
provenance systems [Groth et al. 2006], which are typically associated with workflow
engines that record provenance at the level of workflow stages, and system-call-based
systems such as ES3 [Bose and Frew 2004], TREC [Vahdat and Anderson 1997], and
PASS [Muniswamy-Reddy et al. 2006, 2009], which operate at the system call level and
record the provenance of processes and files. There are also application-level solutions
that record provenance at the level of business objects.

While these systems are a great step towards making provenance available to users,
they neglect a crucial aspect that is needed for them to be practical: efficient prove-
nance storage. Unoptimized provenance storage can take up a substantial amount of
space. For instance, the base data in the PReServ [Groth et al. 2005] provenance store
was 100KB, but the provenance exceeded 1MB. In MiMI [Jayapandian et al. 2007], an
online database used to store protein information, the size of provenance (6GB) also
far exceeded the size of original data (270MB). Similar results are also observed in
other systems [Muniswamy-Reddy et al. 2006, 2009; Simmhan et al. 2006].

While reducing provenance size is important, we cannot, however, directly apply
existing compression techniques to compress provenance, because the structure and
access patterns of provenance are vastly different from regular data.

— Provenance needs to be queriable. If provenance is not readily queriable, then the
value of provenance is reduced and users will not use the provenance. This precludes
us from using techniques, like gzip, that allow for efficient storage, but are inefficient
for query as uncompressing many bundles of provenance is needed before we can
look up the necessary data.

— Provenance is a graph of connected objects. Its structural characteristics are similar
to Web graphs. This implies that we can reuse some of the techniques developed for
compressing Web graphs.

— Lossy compression techniques are not applicable, because losing an edge means a
disconnect in the provenance graph. This can mean that users might miss a vital
connection between objects.

— The provenance of an object is constantly evolving as it is modified, implying that
provenance records of an object are randomly scattered around. Hence, we need
algorithms that can handle this randomization.

— Provenance can also have a great deal of duplication, implying that deduplication
can help us store provenance efficiently.

Accordingly, we developed a hybrid method for compressing provenance graphs by com-
bining Web-graph-based compression and dictionary-based compression algorithms.
The Web graph compression algorithm allows us to compress provenance while still
satisfying the characteristics we observed. Dictionary encoding, thanks to its flexible
processing granularity, allows us to eliminate repeated strings or substrings in the
provenance graphs. Then, we compared the performance of this hybrid approach with
a compression scheme designed explicitly for provenance compression: the Factoriza-
tion And Inheritance (FAI) method proposed by [Chapman et al. 2008]. Our results
indicate that our hybrid approach provides a better trade-off in terms of compression
ratio, compression time, and query performance when compared to FAI compression
schemes.

The contributions of this article are as follows.

(1) We identify the properties of provenance graphs that a practical and efficient com-
pression scheme should consider.

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:3

(2) We present a hybrid approach that combines Web graphs compression and a dic-
tionary encoding scheme to efficiently compress provenance graphs.

(3) We present a detailed evaluation of the different compression schemes along var-
ious axes including space, query performance, and compression time. We perform
this analysis on provenance traces from a set of different provenance systems, such
as PASS [Muniswamy-Reddy et al. 2006, 2009] and Karma [Cao et al. 2009].

The rest of the article is organized as follows. We present the background relevant to
this article in Section 2. We analyze the properties of provenance graphs in Section 3.
We explain the provenance compression techniques in detail in Section 4. In Section 5,
Section 6, and Section 7, we evaluate how various compression methods perform on
PASS traces and Karma traces, respectively. We discuss the related work in Section 8.
In Section 9, we conclude.

2. BACKGROUND

Provenance is abstractly represented as a Directed Acyclic Graph (DAG) in most sys-
tems. The nodes in the graph represent the objects whose provenance we are storing.
The edges represent relationships between the objects. A node records information
necessary to identify an object, for example, the name of a file or the identifier of a
process, while an edge indicates ancestor information or the dependency relationship
between nodes. The structure of the graphs varies across different provenance models.
In this section, we first explain three provenance models that the current provenance
systems have used. Then, we describe the Factorization And Inheritance (FAI) com-
pression scheme, which to the best of our knowledge, is the only compression scheme
designed explicitly for compressing provenance.

2.1. Provenance Data Models

2.1.1. PASS Model. The Provenance-Aware Storage System (PASS) model is designed
to represent provenance graphs generated by the PASS system. PASS is a storage
system that observes systems calls, such as read and write, and infers dependencies
between objects in the storage system. For example, when a process invokes a read
system call on a file, PASS constructs a provenance edge that indicates the process
depends on the file. A node in a PASS graph generally represents a file, a process, or
a pipe. PASS also allows applications to integrate application-specific provenance, in
which case, the nodes can be objects defined by an application. Each node can have
attributes that describe its identity information. For a file, PASS records the type (i.e.,
FILE), file name, inode number, and assigns a unique ID to it. For a process, PASS
records its type (i.e., PROC), PID, name, command-line arguments, environment vari-
ables, and execution time in addition to assigning a unique ID for the process. PASS
also versions the nodes, and each node in the provenance graph represents a version
of a file or process. Figure 1(a) shows how the scenario “Copying file A to file B using
Process P” is represented by the PASS provenance model. The process P first reads
information from file A, and this process creates a directed edge from A to P. P then
writes the information to file B, which process, again, creates a directed edge from P
to B. In this process, A is the ancestor of P, which is the ancestor of B.

2.1.2. Open Provenance Model. The Open Provenance Model (also referred to as OPM)
aims to address the issue of interoperability across various provenance systems. A
recent version, opm-v1.1 [Moreau et al. 2011], was released in July, 2010.

The OPM model defines three kinds of nodes, namely artifact, process, and agent. Ar-
tifact represents a stable state of a physical object or a digital object. Process indicates
the operation on an artifact, and agent enables or facilitates the execution of a pro-
cess. These three kinds of nodes are connected by five kinds of edges, namely, used(R),

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:4 Y. Xie et al.

wasGeneratedBy(R), wasControlledBy(R), wasTriggeredBy, and wasDerivedFrom. The
Roles that are denoted by letter “R” in used(R), wasGeneratedBy(R), and wasCon-
trolledBy(R) are mandatory, and they express application-specific relationships be-
tween different nodes (e.g., we use wasGeneratedBy(out) to represent the relationship
that an artifact is an output file of a process). Further, a node can optionally have a
set of property-value pairs to describe its identity information, and the edge can be
(though not mandatory) annotated with the time that indicates when a specific event
(or causality relationship indicated by this edge) happens. Additionally, each node or
edge belongs to an account which indicates a specific provenance layer. Figure 1(b)
shows how the OPM model represents the copy operation “Copying file A to file B us-
ing Process P”. Note that this model uses a different edge convention from the PASS
model. In addition, this model has its own definition on node and edge types, providing
very rich information to represent the provenance graphs.

2.1.3. Factorization And Inheritance (FAI) Model. In this model [Chapman et al. 2008], the
provenance of a data item is called a provenance record. It comprises a set of prove-
nance nodes, each of which consists of a manipulation (or workflow engine) and an
input or arguments to the manipulation. For each data item, some of its identity in-
formation (e.g., name and ID) are also represented as data items and can share the
same provenance with the data item they describe. For example, in Figure 1(c), the
data item “File” contains a subitem “name”, and the provenance of “name” is the same
as the provenance of “File”. This structure inherently has duplicates that unnecessar-
ily take up too much space. Additionally, the ancestor relationship between different
nodes is not as clear as in the previous two models.

2.2. Factorization And Inheritance (FAI) Compression Scheme

The FAI compression scheme is composed of a series of factorization and inheritance
methods that compress provenance based on the FAI model. These methods are as
follows.

Basic Factorization. If the provenance records of two data items are completely the
same, one of them can be deleted.

Node Factorization. Node factorization finds common provenance nodes between dif-
ferent provenance records and stores only one copy of those nodes in the provenance
store.

Argument Factorization. Argument factorization removes the common provenance
node components (e.g., a manipulation, an input, or argument) between different
provenance nodes.

Structural Inheritance. If two data items have a parent-child relationship and the
child data item has the same provenance as the parent data item, then the provenance
of this child data item needs not to be recorded. For example, the provenance of “name”
in Figure 1(c) can be omitted.

Predicate Inheritance. This algorithm first partitions a dataset according to a set of
user-defined boolean predicates, such as, is this data item a molecular? Then it finds
the common provenance components between the provenance of data items that belong
to the same predicate or category and stores only one copy in the provenance store.

Note that any of the factorization methods just describe can be combined with one or
more inheritance methods, and the two inheritance methods can also be combined to
achieve a better compression ratio on the provenance dataset. However, FAI does not
exploit the characteristics of provenance graphs and, as we will see, is not fine-grained
enough to exploit duplicates existing in the provenance graphs.

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:5

Fig. 1. Representation of the scenario “Copying file A to file B using Process P” by three different prove-
nance models.

3. CHARACTERISTICS OF PROVENANCE GRAPHS

In this section, we outline five characteristics of provenance graphs that differentiate
it from other metadata and motivate our research. These characteristics range from
the composition of provenance graphs to the way provenance is used.

3.1. Data Composition of Provenance Graphs

A provenance graph is composed of two distinct parts, that is, identity information on
provenance nodes and ancestor information on the provenance edge. We investigated
their distribution in a large variety of provenance traces. Table I shows the distribu-
tion of these two data types of traces generated using various workflows. The traces
represent a wide range of provenance systems/models and workloads. For example,
the NetBSD trace was collected by compiling all the components of a NetBSD system,
while the elaine-oct25 trace records the behavior of a person who developed a Python
application and wrote a conference paper.

The table shows that there is no particular pattern in the distribution. In some
traces, the provenance is dominated by the identity information and in others it is
dominated by ancestry information. The identity information typically dominates
in traces from the PASS and Karma systems. For PASS traces, this is because they
have recorded a large variety of attributes to describe the identity information for
every process node, for example, process ID, file name, time, environment variables,

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:6 Y. Xie et al.

Table I. Breakdown for the Percentage of Size of Identity and Ancestor Information in Various Provenance Traces

Provenance
Trace

Description Provenance
System

Provenance
Model

Size of
Identity
%

Size of
Ancestor
%

Source

NetBSD Build of several components
of NetBSD

PASS PASS 93.42% 6.58% [PassTrace 2008]

elaine-oct25 A researcher developed a
Python application and wrote
a conference paper

PASS PASS 71.6% 28.4% [PassTrace 2008]

linux-apr13 Build of the Linux kernel PASS PASS 72.14% 27.86% [PassTrace 2008]
patch-apr17 Patching the Linux kernel PASS PASS 73.70% 26.30% [PassTrace 2008]
am-utils Compilation of am-utils PASS PASS 82.74% 17.26% [PassTrace 2008]
blast-lite A simple instance of the Blast

biological workload
PASS PASS 79.61% 20.39% [PassTrace 2008]

PostMark The PostMark file system
benchmark

PASS PASS 73.54% 26.46% [PassTrace 2008]

NAM-WRF Weather and Ocean Modeling Karma OPM 68.12% 31.88% [Cheah et al. 2011]
NCFS Weather and Ocean Modeling Karma OPM 60.58% 39.42% [Cheah et al. 2011]
SCOOP Weather and Ocean Modeling Karma OPM 71.15% 28.85% [Cheah et al. 2011]
Gene2life Bioinformatics and biomedi-

cal
Karma OPM 70.43% 29.57% [Cheah et al. 2011]

Motif Bioinformatics and biomedi-
cal

Karma OPM 54.08% 45.92% [Cheah et al. 2011]

Animation Computer animation render-
ing

Karma OPM 59.21% 40.79% [Cheah et al. 2011]

J062941 Managing large-scale, com-
plex scientific data and meta-
data collections

Tupelo OPM 33.49% 66.51% [Challenge3 2009]

pc3opm A set of assertions made by
the services involved in a pro-
cess

PASOA OPM 33.21% 66.79% [Challenge3 2009]

OPMGraph-
complete

A sequence of steps with exit
conditions

Taverna OPM 33.92% 66.08% [Challenge3 2009]

The table also provides a basic description of the traces and where they can be found.

and arguments. For Karma traces, the reason that identity information dominates
is that they were collected based on the OPM model and recorded a sizeable amount
of property values (though this is optional in OPM model) to describe the attributes
(e.g., workflowID, serviceID, and timestep) in the identity information. Ancestry infor-
mation takes up a larger percentage in the traces from Tupelo [Futrelle et al. 2009],
PASOA [Groth et al. 2006], and Taverna [Missier et al. 2010]. These traces were
generated based on the OPM model with ancestor information, such as role, time,
and account, on edges, but without the optional property-value pairs in identity
information.

3.2. Duplication in Provenance Graphs

As we saw in the previous section, identity information takes up most of the space in a
PASS trace. Our further analysis shows that duplicates are common among these iden-
tity information. For instance, as many environment variables and arguments (e.g.,
USER=root, SHELL=/bin/bash) are shared and used by many processes, they appear
in the identity information of many process nodes. According to the experimental re-
sults on NetBSD trace in Section 5, these duplicates can take up 76.02% in size of the
original identity information.

In many OPM traces, it is also a very common case that a large amount of du-
plication exists in the provenance graphs. First, duplicates exist frequently in the
annotation information in the provenance node information (e.g., type and workflowID
in the property-value pairs) and edge information (e.g., time) in some OPM traces.

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:7

Fig. 2. Mapping from the provenance trace to adjacency list that represents the provenance graph. The
expression “2.1 INPUT[ANC] 4.0” indicates that node 4 is an ancestor of node 2, resulting in a directed
edge from node 2 pointing to node 4. This figure also shows that provenance graph exhibits the similar
characteristics (i.e., similarity and locality) as Web graph. Note that though the versions of the nodes are
not shown in the adjacency list, they are processed in the compression algorithm as shown in Section 4.1.

For instance, in the Karma trace, the type for every process node is “service” and the
workflowID is also the same in the identity information of every node for an individual
workflow graph. Second, the accounts, which are the same for every node and edge
in an individual workflow, are recorded for every node and edge in an OPM trace.
The experimental results on those Karma traces in Section 6 show that duplication
can take up 34.86% to 37.50% in the identity information (or node information), and
38.83% to 40.26% in the ancestor information (or edge information) of six workflow
graphs in the Karma traces.

3.3. Similarity to Web Graphs

A web graph has a node for each URL and an edge for each hyperlink from one Web
page pointing to another. Existing Web graph compression algorithms [Boldi and Vigna
2004a] typically exploit the following two key properties to significantly compress Web
graphs.

— Locality. Many links are within a URL domain, and therefore are not likely to point
to pages far away.

— Similarity. Adjacent Web pages have a high probability to have a common set of
neighbors.

Provenance graphs also have a similar organizational structure as Web graphs.
Figure 2 shows the conversion from a snapshot of a NetBSD provenance trace (gen-
erated by the PASS system) to an adjacency list that represents the provenance graph.
The notation “A INPUT[ANC] B” in the provenance trace means that B is an ancestor
of A, indicating that there exists a directed edge from A pointing to B. In this way, a
provenance graph is also a directed graph and each node (e.g., node 2 or 3) has a series
of out-neighbors.

Provenance nodes 2 and 3 are considered similar here as they have common an-
cestors nodes 4, 7, 9, and 14. The reason for this is that many header files or library

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:8 Y. Xie et al.

Table II. Statistics of Provenance Nodes on Locality, Similarity, and Consecutiveness

Provenance
Trace

Number of
nodes in total

Number of
local nodes

percentage of
local nodes

Number of
similar nodes

percentage of
similar nodes

PostMark 2678 2321 86.67% 2302 85.96%
Am-utils 46097 14788 32.08% 12673 27.49%
Blast-lite 238 42 17.65% 50 21.01%

Table III. Statistics of Interspersed Provenance Records

Provenance
Trace

Number of
records in total

Number of records
interspersed

Interspersed
Percentage

Patch-apr17 303972 57326 18.86%
Postmark 18011 4386 24.35%
Am-utils 379518 31418 8.28%
Blast-lite 1323 28 2.12%

files that are represented by nodes like 4, 7, 9, and 14 are repeatedly used as input by
many processes (e.g., nodes 2 and 3). Nodes 2 and 3 also exhibit locality. The ancestors
of provenance node 2 are only between 4 and 15, and the ancestors of node 3 are only
between 4 and 21. This is because many header files or library files (e.g., the ancestors
of nodes 2 and 3) that are used as input by a process are probably in the same directory,
so the ordering (and therefore assigned ID numbers) of these files are usually close to
each other.

We have further investigated the number of provenance nodes that have these two
properties in some provenance traces as shown in Table II. We specify a node has
the locality property (i.e., “Local node”) if the biggest ancestor of this node minus the
smallest ancestor is not beyond 10. A node has the similarity property (i.e., “Similar
node”) if it has at least one common ancestor with at least one node in the preceding 10
nodes. One can see that the PostMark trace has the biggest percentage of similar nodes
and local nodes in these traces. The reason is that the postmark process generates a
lot of small files, which all have the postmark process as their common ancestor, thus
the provenance nodes that represent these files are mostly similar nodes. Further, as
many of these nodes have the postmark process as their only ancestor, these nodes also
exhibit locality.

3.4. Provenance Changes with an Object’s Evolution

The provenance of an object changes every time the object is modified. Given that
there are many processes executing in a system and that they all generate or modify
data, provenance will be concurrently generated into one single provenance stream.
Hence, an object’s provenance is usually interspersed with provenance of other objects
in the provenance stream. Table III shows the statistical results about interspersed
provenance records in some of the PASS traces. One can see that in some of the prove-
nance traces (e.g., PostMark), provenance generation is more out-of-order (i.e., more
provenance records are interspersed). This is because a large number of processes con-
currently operate data. For instance, there can exist hundreds of transactions (e.g.,
read and write) per second in the PostMark benchmark, whereas other provenance
traces (e.g., blast-lite) generate provenance in a more sequential way as only a few
processes are concurrently executing. However, this “interspersed” phenomena exists
in all traces. This indicates that provenance is a dynamic stream, but not static data,
and we need algorithms that incrementally compress dynamic provenance data as op-
posed to algorithms that will only optimize global static data.

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:9

3.5. Provenance Needs to be Queriable

For provenance to be useful, it needs to be queriable even when it is compressed. So
a compression scheme that makes it not amenable to querying or has too much query
overhead is not preferred.

4. COMPRESSION ALGORITHMS

In this section, we describe the compression algorithms that we evaluate in this article.
These compression algorithms are based on Web compression and dictionary encoding.
These algorithms take advantage of the properties of provenance graphs.

4.1. Web Compression Algorithms

Two critical ideas lie behind Web compression algorithms [Boldi and Vigna 2004a]:
first, encoding the ancestor list of one node by using the similar ancestors of another
node as a reference, thus efficiently avoiding encoding the duplicate data; second, delta
encoding [Witten et al. 1999], that is, encoding the gaps between the ancestors of a
node rather than the ancestors themselves, which typically requires more bits to be
encoded. Note that for consecutive numbers in the ancestors list, Web compression
algorithms employ RLE (Run Length Encoding) technology to encode them by only
recording the start number and length, reducing the storage space needed.

As we can see in Figure 2, a provenance graph can be represented by a set of prove-
nance nodes which have a series of ancestors. The provenance nodes are numbered
from 1 to N, in order, during provenance generation. We use Out(x) to denote the an-
cestor list of node x. The Web compression algorithm to encode this list is detailed as
follows.

(1) Reference Compression. Find the node with the most similar ancestor list in the
preceding W ancestor lists. W is a window parameter. Let y be such a reference
node, x − y is the reference number and Out(y) (ancestor list of y) is the reference
list. The encoding of Out(x) can be divided into three parts: the reference number
x − y, a bit list to identify the common ancestors between Out(x) and Out(y), and
Extra nodes that identifies the rest of the ancestors in Out(x).

(2) Run Length Encoding. Separate the consecutive numbers from the Extra nodes,
and then represent each set of consecutive numbers by using its left extreme and
the length.

(3) Delta Encoding. Let x1, x2, x3, ..., xk be the residual nodes from the preceding steps.
If x1≤x2≤...≤xk, then encode them as x1−x, x2−x1, ..., xk−xk−1.

Algorithm 1 contains the pseudocode. The algorithm makes one pass over the whole
dataset, and encodes the dataset node by node. For each node, the algorithm encodes
its ancestor list as the three steps detailed before. For Reference Compression, the
algorithm finds the reference list in the preceding W ancestor lists. Note that if the
node identifier (such as x) does not exceed W, there are only x − 1 ancestor lists to
be chosen from. On the other hand, if we want to query the ancestor list (Out(x)) of
node x, we have to first decode its reference list Out(y), and then we have to decode
the reference list of Out(y), and so on. This would form a reference list chain, with
a long chain obviously resulting in bad query performance. We confine the length of
the chain to a maximum value of L, and only ancestor list of the node of which the
chain length does not exceed L can be chosen as reference list. Once we identify the
reference list, we use a bit list B to indicate the common nodes between Out(x) and
its reference list Out(y) (i.e., Out(x − r)). For Run Length Encoding, it is necessary to
sort ancestor list first, and then if there exists one or more sequences of consecutive
numbers, we should use left extreme and length to encode them. At the last step, the

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:10 Y. Xie et al.

ALGORITHM 1: Web compression scheme
Input: Provenance Dataset D. For each node x in D, we use Out(x) to represent its ancestor

list. x refers to the sequential ID of the provenance node.
Input: Window parameter W
Input: Chain Length L
Output: encoded dataset D using web compression algorithm
1: for each node x in dataset D do
2: if x≤W then
3: W = x − 1
4: else
5: reset W to its initial input value
6: end if
7: y=NULL
8: for k = x − W to x − 1 do
9: if (the number of common nodes between Out(x) and Out(k)) > (the number of common

nodes between Out(x) and Out(y)) && the chain length of k does not exceed L then
10: y = k
11: end if
12: end for
13: r = x − y /*Out(y) is the reference list of Out(x)*/
14: the chain length of x=(the chain length of y)+1
15: for i = 1 to j /*the number of ancestors in Out(x − r)*/ do
16: if the i-th item in Out(x − r) also appears in Out(x) then
17: B(i-1)=1
18: else
19: B(i-1)=0
20: end if
21: end for/*The end of the first step, Out(x) is encoded as r, B and the extra nodes (i.e., the

nodes in Out(x) that do not appear in Out(x − r)).*/
22: for each sequence of consecutive numbers (i, i + 1, ..., i + k) in extra nodes do
23: encode the sequence as left extreme i and length k + 1.
24: end for/*The end of the second step (Run Length Encoding).*/

/*Let the ancestors of x yet to be encoded after the above step be x1, x2, x3, ..., xk.*/
25: if x1≤x2≤...≤xk then
26: we encode gaps x1−x, x2−x1, ..., xk−xk−1.
27: end if/*The end of the third step (Delta Encoding)*/
28: end for

algorithm employs a technology similar to “delta encoding” to encode the difference
between adjacent numbers in a list instead of the numbers themselves.

Assume the number of nodes in the provenance set is N, the average number of an-
cestors of Out(x − r) is j, and the average number of sequences of consecutive numbers
in the ancestors is p, the algorithm runs in time O(N ∗ (W + j + p)). The main data
structure used are two arrays, one storing the ancestor list of the node to be encoded,
the other storing the ancestor lists of W previous nodes. Assume the average number
of the nodes in an ancestor list is n and the average size of a provenance node is s,
the space used is n ∗ s ∗ (W + 1). Note that the value W can significantly impact com-
pression performance since it decides the scope of the possible reference lists for each
provenance node. The value L can significantly impact query performance as it speci-
fies the maximum depth of the reference list chain to be decoded for a query. We make
a quantitative analysis of their impact on the compression and query performance in
Section 7.2. The final compression result for the ancestor list of a node is composed
of the reference number r, a bit list B, an array of left extremes and lengths, and the
gaps. We then use variable-length code such as ζ 3 [Boldi and Vigna 2004b] to encode

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:11

Fig. 3. An example on Web compression algorithm.

them (except the bit list) as 0/1 sequence. Note that for nodes that have versions in
provenance traces such as PASS, we do not use a Web algorithm to encode the version
numbers of all the ancestors of a node, instead we use a separate array to store them
and index them using the node number when they are loaded into database.

Figure 3 shows a sample run of the three steps of the Web algorithm. In this example,
node 15 is the reference for node 16 (reference number is 16 − 15 = 1) and has no
reference itself. The case in Figure 2 is simpler. The ancestor list of node 2 can be
encoded only using Run Length Encoding. The ancestor list of node 3 can be encoded
using the first two steps: Reference Compression and Run Length Encoding, with node
2 serving as the reference list.

4.2. Dictionary Encoding

Dictionary encoding (also called “enumerated storage” [Boncz 2002]) has been widely
used in a variety of areas [Chen et al. 2001; Graefe and Shapiro 1991; Poss and Potapov
2003; Zukowski et al. 2006]. It scans the entire database or text files to find frequently
occurring strings and then replaces them with integer codes. In this process, a mapping
table from strings to integer codes is created and updated.

For provenance, when we load the provenance dataset into a database, we also look
for frequently occurring strings in the provenance graph data, especially those that
take up too much space, for example, the arguments and environment variables in the
PASS system. Then we use integer codes to encode them and store this mapping rela-
tionship into a dictionary database. When we query these arguments or environment
variables, we have to look up the corresponding entries in the dictionary database. We
measure the overhead of this method on query performance in Sections 5 and 6.

Dictionary encoding is very efficient for eliminating the duplicates since the granu-
larity on which it operates is flexible. It can be a whole string, the prefix of it, or an
arbitrary substring in a big string. For example, an edge in an OPM graph is usually
annotated with time which indicates when this process (or dependency relationship)
happens and is usually in a format of standard coordinated Universal Time (i.e., UTC).
This “Time” is usually represented using a string that consists of year, month, day,
hour, minute, and seconds. In most cases, year, month, and day are the same for every
edge in an OPM graph. So the repeated substrings that consist of year, month, and day
can be selected and encoded.

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:12 Y. Xie et al.

Table IV. Database Schema for Web+Dictionary, FAI Techniques and Uncompressed Case

Compression
techniques

Provenance
composition

Databases Provenance records

web+dictionary
identity

IdentityDB (node ID, attribute, value)
DictionaryDB (id, duplicate)

ancestor
AncestorDB (node ID, ancestors coding)
VersionDB (node ID, versions of ancestors)

FAI
identity

IdentityDB (node ID, attribute, value)
DictionaryDB (id, duplicate)

ancestor AncestorDB (node ID, ancestor)
original identity IdentityDB (node ID, attribute, value)
(uncompressed) ancestor AncestorDB (node ID, ancestor)

Table V. FAI Techniques: Resulting Size (% of original)

FAI techniques NetBSD Linux-apr13
Basic Factorization 100% 100%
Node Factorization 100% 100%
Argument Factorization 37.43% 48.73%
Structural Inheritance 100% 100%
Predicate Inheritance 100% 100%

4.3. Combination of Web Compression Algorithms and Dictionary Encoding

As we have stated previously, Web compression algorithms can compress the ancestor
information well and dictionary encoding can eliminate the duplicates existing in the
provenance graph data. Their combination provides a practical and efficient method
to compress a provenance graph. Additionally, since Web compression and dictionary
encoding are both lightweight compression schemes, this method retains a good query
performance on provenance datasets.

5. EVALUATION ON PASS TRACE

5.1. Experimental Setup

All experiments in this part were run on a Linux 2.6.34.6-54.fc13.i686 machine, with
Pentium(R) dual-core E6500 2.93 GHz*2 CPU, 2GB memory, and one 500GB WDC
WD5000AAKS-00A7B2 hard drive. We used two provenance traces in our experiment:
NetBSD trace (6GB) and linux-apr13 trace (146MB). These two traces were acquired
by collecting the provenance when compiling all the system components of a NetBSD
system and the Linux kernel respectively. The details on these traces can be found in
Table I.

We loaded these provenance traces into BerkeleyDB databases and compressed
them using FAI and our hybrid method respectively. The DB cache used in our ex-
periments is 16MB. Table IV shows the schema that we used for these two techniques
and the uncompressed case.

In our hybrid approach, we stored the provenance in two primary databases: Ances-
torDB and IdentityDB. AncestorDB contains all the ancestor information of a prove-
nance trace, and IdentityDB stores all the identity information of a provenance trace.
We encoded the provenance using a series of compression technologies while storing
the provenance to the database. For example, we used dictionary encoding to compress
the identity information and Web compression algorithms to compress the ancestor
information. For dictionary encoding, we used a database called DictionaryDB to store
all the mapping relationships between the duplicate strings and their encoded integer
codes. For the Web compression algorithm, we encoded the ancestors of a provenance

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:13

Fig. 4. Compression size in NetBSD and Linux-apr13 trace.

node into 0/1 sequence. In addition, we used a database called VersionDB to store the
versions of all the ancestors of a provenance node.

FAI is composed of a series of factorization and inheritance methods (see Table V).
Argument factorization achieves the best compression ratio and is used for the rest of
this part; it finds duplicate strings in IdentityDB, such as ARGV and ENV, which can
be used as input parameters to a process, encodes them using integer codes, and then
stores them in DictionaryDB. For other techniques, since no provenance records and
no nodes (i.e., the combination of a process and its input as defined in the FAI model)
are identical for different data items, the methods that find common nodes or even
identical provenance graphs (such as basic factorization or node factorization) do not
work. For predicate inheritance, we partition a PASS trace into three categories: File,
Process, and Pipe. Since there exists no common provenance component for each cate-
gory, predicate inheritance also does not work. Note that, though the provenance items
such as “TYPE: FILE” and “TYPE: PROC” are common in the File set and Process set
respectively, they are not treated as provenance components in the FAI model. This
is because they cannot be used as the input parameters to a process like ARGV and
ENV when a PASS trace is converted to FAI (see Figure 1). In addition, PASS traces
do not display structural inheritance properties, so the structural inheritance method
also does not work. Hence, in order to fairly represent the performance of FAI, we use
FAI to represent argument factorization for compressing PASS traces.

5.2. Compression Performance

Figure 4 shows the sizes of the two provenance traces compressed using the FAI and
the Web+dictionary methods respectively. Web+dictionary reduces the data to 19.83%–
23.40% of the original size, and to 40.69%–62.51% of the data size that FAI produces.
The reason for this is that FAI can only eliminate the duplicate strings such as ARGV
and ENV, which are used as input parameters to a process node, while dictionary
encoding has a more flexible compression granularity. It can eliminate the common
substrings in strings such as Name and Freezetime. For example, all the Names of
the files in a directory have the same common prefix. In addition, Web compression
makes a more in-depth compression by seeking the locality and similarity between the
ancestors of different nodes, then uses the Web compression algorithm to encode all the
ancestors that belong to a node to a 0/1 sequence. Table VI shows the compression size
breakdown for the FAI and Web+dictionary techniques. Web+dictionary significantly
outperforms FAI for 7.53%–16.4% on compressing identity information, 86.2%–95.4%
on compressing ancestor information, and 37.49%–59.31% for the total information.

We then look at the compression time (see Figure 5). Note that since we compress
the provenance when we store it into the databases, the compression time includes the
time needed to perform the IO to store the provenance into the databases. Figure 5
shows that, though Web+dictionary significantly outperforms FAI on compression
ratio, it does not pay for this on compression time. In contrast, it takes less time

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:14 Y. Xie et al.

Table VI. Compression Size Breakdown (in MB) for FAI and Web+Dictionary Techniques

Traces
FAI web+dictionary

identity ancestor total identity
(improvement)

ancestor
(improvement)

total
(improvement)

NetBSD 1569 677 2246 1311(16.4%) 93.46(86.2%) 1404.46(37.5%)
Linux-apr13 29.20 41.94 71.14 27.00(7.53%) 1.95(95.4%) 28.95(59.3%)

Fig. 5. Compression time in NetBSD and Linux-apr13 trace.

Table VII. Compression Time Breakdown (in seconds) for FAI and Web+Dictionary Techniques

Traces
FAI web+dictionary

identity ancestor total identity
(improvement)

ancestor
(improvement)

total
(improvement)

NetBSD 1243.8 123.2 1367 462.49(62.8%) 330.6(−168.34%) 793.09(41.98%)
Linux-apr13 12.75 10.16 22.91 6.95(45.5%) 14.06(−38.39%) 21.01(8.29%)

for compressing all the provenance sets when compared to FAI. Table VII further
shows the compression time breakdown for these two techniques. Web+dictionary
significantly outperforms FAI on compressing identity information. The reason for
this is twofold. First, Web+dictionary eliminates more duplicate strings (not only
ARGV and ENV, but also Name and Freezetime) than FAI in the identity information,
making the size of the provenance records loaded to IdentityDB much smaller. In turn,
this reduces the time needed to store the provenance records. On the other hand, FAI
employs a hash table to store the duplicate strings and their frequencies. As the prove-
nance sets are very big (146M and 6G respectively), the hash table can become very
big, thus the time to query it during compression can be a big overhead. We also see
that the Web compression algorithm can incur time overhead over the uncompressed
case because of its three compression steps which consume lots of memory and CPU
time. However, the total compression time is still much smaller than the FAI case.

5.3. Query Performance

To compare the compression methods on query performance, we ran the following three
queries on the NetBSD trace.

(Q.1) Given a version of an object, retrieve all the objects on which it directly depends.
(Q.2) Find all the ancestry of a version of a specific object.
(Q.3) Retrieve the identity information of a specific object.

We chose these queries because they represent different query complexity. The
queries also cover both the ancestor and identity information. The first involves a
single-level ancestor query of a version of an object, which is similar to the adjacency
query in the Web graphs. The second has to do the first query recursively until all
the ancestors of a version of a specific object are found. The third query involves the

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:15

Fig. 6. Query performance of the PASS traces on both cold cache and warm cache cases. Q.1 looks up the
ancestors on which a version of a specific object directly depends. Q.2 looks up all the ancestry of a version of
a specific object. Q.3 looks up the elements in identity information of IdentityDB. Each number in the figure
is the average of at least 50 trials on a large number of different nodes.

retrieval of the identity information that describes a node, such as ARGV, ENV, Freeze-
time, Name, etc. We run experiments on both cold cache (i.e., reboot machine before
each query) and warm cache.

Figure 6(a) shows the query performance of the Web scheme on ancestor informa-
tion. In queries of both Q.1 and Q.2, we use the node identifier as keyword. For Q.1,
after the ancestors’s codes are retrieved from the AncestorDB, they have to be decoded
before we can get the related ancestor IDs under the Web compression case. The ver-
sions of these ancestors can be retrieved from the VersionDB if needed, while in both
original and FAI case, the ancestor IDs (including versions) can be directly retrieved
from the AncestorDB. The query time under the Web scheme has a comparable perfor-
mance with the original/FAI case on cold cache. On one hand, the Web scheme makes
the ancestor records that need to be examined smaller than the original/FAI case.
In turn, this reduces the query time. On the other hand, Web decompression during
query incurs time overhead. Their combination makes the query performance compa-
rable with the original/FAI case. For Q.2, as more decompression processes are needed,
the time overhead becomes a little bigger, that is, 18.91% over the original/FAI case.
For comparison, in the warm cache case, the query performance of both original/FAI
and Web+dictionary case significantly improves over the cold cache case.

Figure 6(b) shows the query performance on each distinct element (e.g., ARGV and
ENV) in the identity information of IdentityDB. For each query, we use the node num-
ber and the element that we want to retrieve in IdentityDB as keywords. For dictio-
nary encoding, we first query the IdentityDB database to acquire the integer code of
the element, then query the DictionaryDB to get the final strings of the element. From
Figure 6(b), one can see that dictionary encoding results in an overhead of 9.27%–
22.3% compared to the FAI case on cold cache. The reason for this is that, for elements
such as Freezetime and Name, the query under dictionary encoding has to look up the
dictionary entry in the DictionaryDB every time it gets a integer code from the Identi-
tyDB. This “join” operation complicates the query and results in the overhead. Though
for elements such as ARGV and ENV, in which cases FAI also has to look up the Dic-
tionaryDB, the DictionaryDB under dictionary encoding case incurs bigger overhead
because the DictionaryDB in this case contains the duplication information of not only
ARGV and ENV like in FAI case, but also Freezetime and Name. For the warm cache
case, we see that the time needed for querying ENV is much longer than those of the
others because the size of a large number of environment variables, such as PATH and
USER, collected by PASS for each process object, is considerably larger than the other
data and the cache size.

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:16 Y. Xie et al.

Table VIII. Overview of Various Workflow Characteristics in Karma Traces

Workflow Name Scientific domain Failure
rate

Number of
Manipulations
in a workflow

Number of
Provenance
Graphs

Total
Graphs
Size
(MB)

NAM-WRF Weather and ocean modeling 22% 6 5990 160
NCFS Weather and ocean modeling 27% 7 298 10.3
SCOOP Weather and ocean modeling 21% 6 7987 208
Gene2life Bioinformatics and biomedical 25% 8 7990 257
Motif Bioinformatics and biomedical 50% 138 498 294
Animation Computer animation rendering 47% 22 430 45.6

Table IX. Database Schema for Web+Dictionary, FAI Techniques and Uncompressed Case

Compression
techniques

Provenance
composition

Databases Provenance records

web+dictionary

identity
ArtifactDB (node string, account, size, fileURL)
ProcessDB (node string, account, workflowID, serviceID,

timestep, workflowNodeID)
DictionaryDB (id, duplicate)

ancestor

AncestorDB (node ID, ancestors coding)
NodeDB (graphID, node ID, node string)
TimeDB (node string, times)
RoleDB (node string, roles)
AccountDB (node string, accounts)

FAI
identity

ArtifactDB (node string, account, size, fileURL)
ProcessDB (node string, account, workflowID, serviceID,

timestep, workflowNodeID)

ancestor
AncestorDB (node string/ID, ancestor node string/ID, role,

account, time)
NodeDB (node ID, node string)

original identity
ArtifactDB (node string, account, size, fileURL)
ProcessDB (node string, account, workflowID, serviceID,

timestep, workflowNodeID)
(uncompressed) ancestor AncestorDB (node string, ancestor, role, account, time)

Table X. FAI Techniques: Resulting Size (% of original)

FAI techniques NAM-WRF NCFS Animation Gene2life Motif SCOOP Total
Basic Factorization 100% 100% 100% 100% 100% 100% 100%
Node Factorization 100% 100% 100% 100% 100% 100% 100%
Argument Factorization 37.9% 41.7% 35.9% 45.0% 36.5% 42.8% 39.5%
Structural Inheritance 100% 100% 100% 100% 100% 100% 100%
Predicate Inheritance 78.75% 83.69% 81.80% 78.60% 83.33% 78.85% 80.31%
Argument Factorization
and Predicate Inheritance

37.9% 41.7% 35.9% 45.0% 36.5% 42.8% 39.5%

6. EVALUATION ON OPM TRACE

6.1. Experimental Setup

We used the same machine as used with PASS traces. The provenance traces we used
were extracted from a 10GB noisy provenance database [Cheah et al. 2011] gener-
ated by using the Karma [Cao et al. 2009] system. These traces consist of provenance
generated from six kinds of workflows (see Table VIII). The workflows are from dif-
ferent scientific domains and accordingly have different characteristics. For example,

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:17

NAM-WRF, NCFS, and SCOOP workflows are used in the area of weather and ocean
modeling, Gene2life and Motif workflows are used in the area of bioinformatics and
biomedicine, and Animation workflow is used in the computer animation rendering
field. Table VIII also shows the expected failure rates of those workflows (for example,
due to intermediate data loss or system crash). Some workflows (such as Motif and
Animation) have a high failure ratio, while other workflows (such as NAM-WRF and
SCOOP) have a much lower failure ratio. The workflows also differ in the size. Some
workflows can be as many as 138 manipulations in a run, while the smallest one has
only 6 manipulations. The last two columns show the number and size of provenance
graphs generated by each workflow. Some provenance graphs sets (such as Gene2life)
are big and have more provenance graphs, while others (such as NCFS) are small and
have much fewer provenance graphs.

We compressed these traces using FAI and our hybrid method respectively. In both
cases, we stored the compressed provenance records in a Microsoft SQL Server 8.0
database. Table IX shows the schema that we used for these two techniques and un-
compressed case.

In our hybrid approach, ArtifactDB and ProcessDB store the identity information
of files and processes respectively. The DictionaryDB stores the mapping between fre-
quently occurred strings and their encoded integers for duplicate strings that occur in
identity information. For ancestor information, we assign each node string a unique
identifier (in the order of appearance in the trace) to make the Web compression eas-
ier. For example, we encode the node string Process 25367 as a node identifier (ID)
10. We store the mapping relationship from this identifier to the corresponding node
string in NodeDB. Since a node can have a series of ancestors, we encode them into
one ancestors coding using the Web compression algorithm and store each record in
a concise format (i.e., (Node identifier, ancestors coding)) in AncestorDB. Note that
we do not store all the ancestor information of a provenance trace into only one An-
cestorDB, but we instead split the AncestorDB into multiple small databases, each of
which is responsible for storing only one provenance graph. We assign each Ances-
torDB a graphID. Without this, the node identifiers will be globally numbered and
can become very large as some of our provenance traces have millions of provenance
nodes. We also use TimeDB, RoleDB, and AccountDB to store the time, role, and ac-
count information, respectively. The duplicate strings in these fields are also stored in
DictionaryDB.

The databases used by FAI are shown in Table IX. Note that FAI does not compress
any duplicate strings in the identity information (i.e., ArtifactDB and ProcessDB). The
AncestorDB stores the detailed information of every edge. FAI finds the duplicate node
strings in AncestorDB and encodes them using integer codes, and then stores them into
NodeDB.

For FAI, only argument factorization and predicate inheritance techniques can work
on these OPM traces (see Table X). They both eliminate duplicate components, specif-
ically the node strings of a file or a process repeatedly used on the edges in our traces.
The difference between argument factorization and predicate inheritance is that ar-
gument factorization finds duplicates as long as the number of components exceeds a
user-specified threshold. In our experiments, we set this threshold to 2 to achieve the
maximum compression ratio. Predicate inheritance considers a component as a du-
plicate string only when the component appears commonly in the provenance of data
items that belong to the same boolean predicate. So predicate inheritance only com-
presses a subset of data compressed by argument factorization. For instance, in the
NAM-WRF trace, data items A, B, and C have a provenance process node that belongs
to the same workflowNodeID 3D Model Data Interpolator. If A and B are generated
using exactly the same workflow schema, we put them into a set that has the same

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:18 Y. Xie et al.

Fig. 7. Compression performance for various Karma workflow traces.

boolean predicate. C is put into another set that has a different boolean predicate. So
we only have to keep one copy of the provenance node that belongs to the workflowN-
odeID 3D Model Data Interpolator using argument factorization. But we have to keep
one copy of it for A and B, and another copy for C using the predicate inheritance
technique. Other FAI techniques, such as basic factorization or node factorization, like
with the PASS traces, do not work well since no provenance record or node is identical
for different data items. Hence, we use FAI to represent argument factorization for
compressing OPM traces.

6.2. Compression Performance

Figure 7 shows the compression size and time for various workflow traces using
FAI and the Web+dictionary methods respectively. Web+dictionary outperforms FAI
in both cases. The reason for the improvement of compression size is that FAI
can only eliminate those duplicate node strings in the ancestor information, while
Web+dictionary seeks locality and similarity between the ancestors of different nodes
and encodes all the ancestors that belong to a node to a 0/1 sequence. In addition,
it reduces the duplicate strings in the annotation information for both ancestor and
identity information. This exploits the redundancy in the provenance graph to the
maximum extent possible.

The reason for the improvement on compression time is twofold. First, Web+
dictionary eliminates the duplicate strings in the identity information, making the
size of the provenance records loaded to ArtifactDB and ProcessDB much smaller. In
turn, this reduces the time needed to store the provenance records. Second, FAI em-
ploys a hash table to store the duplicate node strings and the frequency with which
they appear in the edge (or ancestor) information. For provenance graphs that have
a large number of nodes, such as motif, the time to query the hash table increases as
the number of nodes increases. This indicates that FAI is not suitable for compressing
large provenance sets.

6.3. Query Performance

To compare the query performance of compression methods, we ran a series of queries
on the NAM-WRF trace as follows.

(Q.1) Given an object, retrieve all the objects on which it directly depends.
(Q.2) Find all the ancestry of a specific object.
(Q.3) Retrieve the time information of an edge.
(Q.4) Retrieve the identity information of a specific object.

Like in PASS trace, these queries represent different query complexity, and cover
both the ancestor and identity information. The first and second queries involve a
single-level and a full ancestry query respectively. The third and the fourth queries

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:19

Fig. 8. Query performance for Karma traces on both cold cache and warm cache cases. Q.1 performs a
single-level query of the ancestors upon which an object directly depends. Q.2 looks up all the ancestry
of a specific object. Q.3 looks up the time information on the edges. Q.4 looks up the element in identity
information of ProcessDB. Each number in the figure is the average of at least 50 trials on a large number
of different nodes. Note that most of the OPM traces do not support version.

involve the retrieval of the annotation information of an edge and a node respectively.
The results were also obtained with both cold cache and warm cache.

Q.1 and Q.2 perform similar queries as with those PASS traces by querying the An-
cestorDB (recursively for Q.2). The difference is that we do not have to query versions
as Karma provenance nodes do not have versions. As shown in Figure 8, in both Q.1
and Q.2, Web compression performs better than FAI on cold cache. The reason for the
improvement is twofold. First, Web compression significantly reduces the number of
provenance records in AncestorDB. The query on the ancestor of a node will return
a series of records in FAI, but only one record under Web compression. Second, the
Web compression algorithm further reduces the size of each record by exploiting the
similarity and locality in the ancestors, making the size of the records to be read much
smaller than in the FAI case. Though Web decompression can incur time overhead dur-
ing the ancestor queries, we have reduced this impact by confining the length of the
provenance chain to 5 to avoid a decompression creep, while for warm cache case, the
query time of the original (uncompressed) case for Q.2 is still high. The reason for this
is that the number and size of provenance records in the uncompressed AncestorDB
are both very large. So it is impossible for all the related data records during the re-
cursive query to be kept in cache. We also see that Web+dictionary was outperformed
by FAI on warm cache. This is due to the multiple decompression processes during
recursive query that consume lots of CPU time.

In Q.3, the Web+dictionary encoding slightly outperforms FAI on cold cache. The
improvement is because, for the Web+dictionary encoding case, the TimeDB stores all
the time information of a node string (these time information are on the edges that
start from this node string) in only one database record, while FAI uses one record
for storing the time information on each edge in AncestorDB. So the number of the
entries that need to be queried in TimeDB in Web+dictionary encoding is much fewer
than in AncestorDB in FAI. On the other hand, the time information in TimeDB has
been encoded using dictionary encoding, so the size of the record is much smaller than
in the FAI case. Though querying the DictionaryDB incurs overhead, the total time
in the Web+dictionary case is still smaller than in the FAI case. Similarly, in Q.4, the
elements (such as workflowID) are encoded and stored using small integer numbers in
ProcessDB with the dictionary encoding. Hence the query time of ProcessDB is much
smaller than in the uncompressed case and FAI. Despite the cost of querying the Dic-
tionaryDB for the final strings, the total query performance with dictionary encoding
is still better than the uncompressed and FAI case on cold cache. By contrast in warm
cache case, the query times dramatically decrease and the dictionary encoding case
gives comparable performance as the original/FAI case.

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:20 Y. Xie et al.

7. EVALUATION ON OTHER ASPECTS

7.1. Provenance Maintenance

We have discussed earlier about how to reduce the size of a static provenance set, and
we now describe how to change/modify the compressed provenance in the database
when the data item associated with the provenance is modified or deleted. Generally,
updates to the provenance database can be classified into three cases: data creation,
data modification, and data deletion.

ALGORITHM 2: Decode the encoded ancestor list of N to get L0. Function:Ancestor(N, ancestor
list L0)
Input: N, the node ID of which the ancestor list to be decoded
Output: the decoded ancestor list L0 of N
1: decode the encoded ancestor list of N to get the reference number r
2: if r = 0 then
3: continue to decode the ancestor list of N to get the left extreme, length and residuals, then

we can get the ancestor list L0.
4: else
5: Function:Ancestor(N − r, ancestor list L1)
6: continue to decode the ancestor list of N to get the Bit list L, then we can get the common

ancestors between N − r and N.
7: continue to decode the ancestor list of N to get the left extreme, length and residuals, then

we can get the ancestor list L0.
8: end if

ALGORITHM 3: Update provenance when inserting a new provenance record into AncestorDB
Input: N → P, the new provenance record to be inserted
Output: a new AncestorDB: the ancestor list of N + i (0 ≤ i ≤ W) has been re-encoded
1: decode the encoded ancestor list of N to get L0
2: get the new ancestor list of N: L1 = L0 + P
3: re-encode the ancestor list of N using web compression scheme
4: store the re-encoded ancestor list of N into AncestorDB
5: for n = N + 1 to N + W do
6: decode the ancestor list of n to get the reference number r
7: if r = n − N then
8: re-encode the ancestor list of n using web compression scheme

/*N should still be chosen as the reference list of n*/
9: store the encoded ancestor list of n into AncestorDB
10: end if
11: end for

The first is the creation of a new data item. In this case, we have to insert the
provenance (including identity information and ancestor information) associated with
the data item into the databases. This involves four steps. First we encode the node
string (e.g., Process 25367) that represents this data item into an identifier (e.g., 10)
using dictionary encoding (this makes Web compression much easier), and store this
mapping into DictionaryDB. Second we compress the ancestor list of this new node
using the Web compression scheme and store it into AncestorDB. Then we encode
the duplicate strings in the identity information of this node and store the mapping
between strings and their IDs into DictionaryDB. At last, we store the encoded identity
information into IdentityDB. Note that compressing the ancestor list of a new node

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:21

requires decoding the previous W ancestor lists first. For each decoding of the ancestor
list, it involves a recursion search of the reference list until the reference number is 0
(see Algorithm 2). It runs in time O(h), of which the h is the length of the reference
list chain. So decoding W ancestor lists takes O(W ∗h), since encoding the ancestor list
of each node takes O(W + j + p) (see Algorithm 1), the total runtime is O(W + j + p) +
O(W ∗ h) = O(W ∗ h + j + p).

The second is the modification of a data item. For example, a process P modifies the
content of a file N by invoking a write system call on it. In this case, a new provenance
record N → P that indicates N depends on P (i.e., P is a new ancestor of N) is created.
Note that N may already have some ancestors before this write process. For example,
N may depend on many header files or library files when it was created. So we have to
combine this new provenance record (N → P) into the ancestor list of N. Algorithm 3
contains the pseudocode of this process. It mainly involves three steps. The first step is
to decode the ancestor list of N, the second is to reencode the ancestor list of N, and the
third step is to reencode the ancestor lists of N + i (i = 1, 2, ..., W) if any of them took
the ancestor list of N as reference list. Note that for the third step, N + i still takes N
as reference node because the latter still has the biggest number of common ancestors
as the former.

Consider the runtime of Algorithm 3. The decoding of ancestor list of N takes time
O(h), of which the h is the length of the reference list chain. Reencoding the ancestor
list of N needs to first decode the previous W ancestor lists, so it runs in time O(W ∗h).
The reencoding of the ancestor list of n (i.e., N + r) takes N as reference node and does
not need to decode the previous W ancestor lists first, so it only takes time O(1). Note
that there can exist multiple n that takes N as reference node. So this step takes O(m)
if the number of this kind of n is m. So in total, Algorithm 3 takes O(h) + O(W ∗ h) +
O(m) = O(W ∗ h + m) in time complexity.

ALGORITHM 4: Update provenance when deleting the ancestor list of a node from database
Input: N, the identifier of the node to be deleted
Output: a new AncestorDB: 1. without the ancestor list of node N; 2. the ancestor lists of some

nodes have been re-encoded
1: for n = 1 to N + W do
2: decode the ancestor list of n to get the reference number r
3: if r = n − N then
4: re-encode the ancestor list of n using web compression scheme

/*N should not be chosen as reference list again*/
5: store the encoded ancestor list of n into AncestorDB
6: end if
7: end for
8: delete the ancestor list of N from AncestorDB

The third is the deletion of a data item. If this data item has child A (i.e., this data
item is the ancestor of A), then the provenance of this data item should not be deleted
since its provenance is part of the provenance chain of its child. But if this data has no
child, then we have to do the following three things: (1) Delete its provenance record
in AncestorDB using the node identifier of the data item as keyword. (2) Delete the
record of node in IdentityDB using its node string as keyword. (3) Delete the record of
node in TimeDB using its node string as keyword. Deleting the ancestor list of a node
in AncestorDB involves a complicated process since its ancestor list may have already
been used as reference list by the next W ancestor list. Algorithm 4 contains the related
pseudocode to deal with this. The algorithm checks the following W ancestor lists of

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:22 Y. Xie et al.

Fig. 9. Provenance update on databases where provenance is compressed by Web compression and dictio-
nary encoding. There are three different types of provenance updates: data creation, data modification, and
data deletion. All updates are performed on cold cache.

the deleted node N, and judges whether any of them took the ancestor list of N as
reference list and reencodes them if needed.

For the runtime of this algorithm, if node n takes N as reference node, the re-
encoding of the ancestor list of n needs to first decode the ancestor list of itself and
the previous W nodes (except N). Assume h is the length of the reference list chain for
each ancestor list to be decoded, the reencoding of ancestor list of n takes time O(W∗h)
+ O(W + j + p) = O(W ∗ h + j + p) (see Algorithm 1 for the definition of j and p). Let m
be the number of this kind of node n, Algorithm 4 runs in time O(m ∗ (W ∗ h + j + p)).

We randomly generate a series of data creation, modification, and deletion opera-
tions and apply them to the compressed provenance database (Microsoft SQL server
8.0). Figure 9 shows the performance of provenance updates with respect to different
types of operations. One can see that the performance of data creation outperforms
both data modification and deletion, and the performance of data modification slightly
outperforms data deletion. The reason for this is that data creation only needs to en-
code the ancestor list of the newly created node, while data modification involves a
more complex process. It needs to not only encode the ancestor list of the modified
node, but also needs to encode the ancestor lists of all the nodes that take the modi-
fied node as reference node. For data deletion, it also involves encoding multiple nodes
that previously took the deleted node as reference node. Note that all these updates
involve querying the databases and decoding the Web compressed provenance records
which cost much time. However, as we see in Figure 9, the performance of data cre-
ation (an average of 300ms) even outperforms the query performance (around 450ms
on nam-wrf trace for most of the queries on cold cache (see Figure 8)). In addition,
most of the update time caused by data modification and deletion operations are still
within the 1000–1300ms range, which is within the same order of magnitude of the
query operations. This shows that updating a compressed database can generally be
done efficiently.

7.2. Sensitivity Analysis on Web Compression Algorithm

7.2.1. Window Parameter W. Note that for the Web algorithm, a larger W value would
produce a better compression ratio because it enlarges the scope of the possible refer-
ence lists, but this would be at the expense of compression and decompression speed.
We measure the compression performance with respect to W for both NetBSD and
Linux-apr13 traces as shown in Figures 10 and 11. For compression size (see Figure
10), the performance of the Web compression algorithm increases as W increases. This
is because a bigger window increases the likelihood of finding similar reference lists.
As for compression time (see Figure 11), the case when W = 100 has the worst perfor-
mance. This is because the Web scheme finds the reference list in the preceding W list,

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:23

Fig. 10. The performance of Web compression scheme on compression size with respect to different value
of W. L = 5.

Fig. 11. The performance of Web compression scheme on compression time with respect to different value
of W. L = 5.

Table XI. Statistic of Reference List Chain Length in NetBSD Trace

Chain Length > 5 > 6 > 7 > 8 > 9 > 10
Number of Nodes 1330653 1294641 1262618 1232514 1204246 1177654
% of Total Nodes 24.2% 23.6% 23.0% 22.4% 21.9% 21.4%

and a large W imposes a high overhead on memory and CPU time. We use W = 10 to
get a good trade-off for compressing provenance in our experiments.

7.2.2. Reference List Chain Length L. As we have discussed before, a long reference list
chain can result in bad query performance. But how often is the reference list chain
very long in practice? We analyze the distribution of chain length in the NetBSD trace
as shown in Table XI. The chain length of 24.2% of total nodes is over 5, but there still
exists 21.4% of total nodes where the chain length is over 10. We measure the query
time with respect to the chain length as shown in Figure 12. It can be seen that the
time increases nearly linearly as the length of chain increases. In our experiments, we
tailor the algorithm to compress data such that the length of the reference list chain
is automatically restricted to a maximum value of L. However, the value of L cannot
be too small, because a small value of L can significantly impact the compression ratio
(as shown in Figure 13). The reason for this is that it is probably with a small value of
L wherein choosing a node as reference node will result in the chain length of the com-
pressed node to exceed L even though this node has the most common nodes with the
node that is compressed. In this case, the algorithm (i.e., Algorithm 1) automatically
chooses another appropriate node as reference node. We choose L = 5 in our algorithm
to achieve a best trade-off.

7.2.3. Breakdown of Performance on Similarity and Locality. In the Web algorithm, the first
step (Reference Compression) encodes the ancestors of a node by exploiting the similar-
ity between itself and other node with similar ancestors, and the second and third steps
exploit the locality by encoding the gaps between ancestors rather than themselves.

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:24 Y. Xie et al.

Fig. 12. Query time with respect to the reference list chain length in NetBSD trace. The numbers show the
query results on single-level ancestry information. Each number in the figure is the average of at least 50
trials on a large number of different nodes. Further, the experiments were run on a cold cache.

Fig. 13. Compression size with respect to the maximum value of reference list chain length L in NetBSD
trace.

Figure 14 shows the breakdown of the Web algorithm performance on similarity and
locality for ancestry information. One can see that, only exploiting similarity or local-
ity can both significantly reduce the provenance size, resulting a provenance store of
6.1%–26.6%, and 5.7%–25.1% of the original size respectively. Then, the performance
of exploiting locality typically outperforms the performance of exploiting similarity.
This is because we can always encode the gaps as long as there exists ancestors, but
exploitation of similarity requires that the previous W nodes have similar ancestors,
which does not always exist. Third, the Web algorithm (exploiting both similarity and
locality) only outperforms similarity 11.03%–21.69%, and outperforms locality 2.13%–
15.95%. This indicates that a big number of nodes exploit both similarity and locality.
Note that we do not further divide the performance of locality into the second step
(Run Length Encoding, i.e., gap of 1) and third step (Delta Encoding) in the Web al-
gorithm. This is because in some of the traces, consecutive numbers among ancestors
do not always exist so frequently. So the numbers we show here are comprehensive
results combining the second step with the third step.

7.3. Comparison with Other Compressors

Currently, the format of the provenance sets can be typically categorized into two
types: XML and non-XML. The XML format is adopted in the most of the OPM traces.
The non-XML format is adopted in the traces such as PASS. We apply XML compres-
sors and some classical compressors to them respectively. As shown in Figures 15 and
16, some XML compressors, such as XMill [Liefke and Suciu 2000], or traditional com-
pressors, like bzip2 and gzip, may produce a better compression ratio than our hybrid
approach, render querying difficult or inefficient.

However, as they are well-known and popular tools, we still measure their query
performance as shown in Figure 17. Note that in order to get an exact query result,

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:25

Fig. 14. Breakdown of Web algorithm performance on locality and similarity for ancestry information. Sim-
ilarity indicates the Web algorithm that exploits only similarity (i.e., first step of Web algorithm), Locality
represents the Web algorithm that utilizes only locality (i.e., the second and third steps of Web algorithm).
The original size represents the total (i.e., uncompressed) size of the ancestry information.

Fig. 15. Compression size of a variety of compressors on NAM-WRF provenance trace.

we do not apply them directly to the original provenance trace, but we first store the
provenance trace into BerkeleyDB databases. Since BerkeleyDB stores the database as
a file, we then compressed each such database using bzip2 (or gzip). As the provenance
set (6GB NetBSD trace) we used is not small, we did not store the whole provenance
set into a single database, but instead we split the provenance stream into multiple
pieces and stored each of them into an individual database. We then built indices for
these databases and compressed them using bzip2 (or gzip). One can see that from
Figure 17, our compression method significantly outperforms the bzip2 and gzip on
query performance. This is because we need to decompress the corresponding bzipped
or gzipped database before retrieving the corresponding provenance information from
the database. This consumes big time overhead. A take-away point here is that our

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:26 Y. Xie et al.

Fig. 16. Compression size of a variety of compressors on NetBSD provenance trace.

Fig. 17. Query performance of a variety of compressors on NetBSD provenance trace. The numbers show
the query results on identity information (specifically, argument information). Each number in the figure is
the average of at least 50 trials on a large number of different nodes. Further, the experiments were run on
a cold cache.

compression method achieves the best trade-off between compression ratio and query
performance.

7.4. Summary

Our compression method (Web+dictionary encoding) performs significantly better than
the FAI algorithm on PASS and OPM traces on both compression ratio and compres-
sion time, and incurs only a small overhead over the FAI algorithm on PASS traces in
terms of query performance. In addition, our approach has the best trade-off in terms
of space and performance when compared to classical tools such as bzip2 and gzip.

8. RELATED WORK

Barga and Digiampietri [2007] presented four levels of provenance framework that
can minimize the repeated dependency provenance information during provenance
generation. In addition, they classified provenance into dependency provenance and
annotation provenance based on a provenance query requirement. This is similar to
our classification (identity information and ancestor information) based on the compo-
sition of a basic provenance graph. Thus the compression method we proposed can be
exactly applied to their provenance store.

In prior work [Xie et al. 2011, 2012], we have presented the case for efficient prove-
nance storage using the combination of Web compression and dictionary encoding. In
this work, we present an in-depth analysis on the provenance characteristics and

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:27

a comprehensive evaluation across various provenance workloads and provenance
models.

There has been considerable work [Adler and Mitzenmacher 2001; Boldi and Vigna
2004a; Randall et al. 2001; Suel and Yuan 2001] in the domain of Web graph compres-
sion. Adler and Mitzenmacher [2001] and Randall et al. [2001] both proposed to utilize
reference compression to compress Web graphs. Randall et al. [2001] also suggested
encoding the gaps between the numbers in the ancestor list instead of encoding the
numbers themselves. The critical Web graph compression framework was presented
by Boldi and Vigna [2004a]. They obtained good compression performance by fully ex-
ploiting the locality and similarity of Web pages. The Web algorithm we use is based
on this framework.

The “Frame of Reference” [Goldstein et al. 1998] encodes a series of integer numbers
by computing the offset from each of them to a reference number. This is similar to
the reference compression in the Web scheme that encodes an ancestor list by using
another ancestor list as reference list. The “Run Length Encoding” [Roth and Horn
1993] generally encodes a set of repeated characters by using a single character and
the number of repeated characters, while the similar technology we use in the Web al-
gorithm is another typical case, that is, encoding consecutive numbers by only recoding
the starting number and the length of the consecutive numbers. The “Delta Encoding”
technology [Witten et al. 1999] (sometimes called differential compression [Roth and
Horn 1993]) encodes the difference between adjacent numbers in a list. These tech-
nologies work together to achieve a best compression ratio in the Web compression
algorithm.

The “Pattern Substitution” scheme [Roth and Horn 1993] is similar to dictionary
encoding. The difference is that Pattern Substitution can use any notation to represent
a frequently occurring string, while dictionary encoding uses integer codes to replace
the strings. Dictionary encoding is used more often and is the prevalent compression
scheme in databases today.

There are also classical techniques like LZ-based compression algorithms [Ziv and
Lempel 1977] (e.g., gzip). These techniques present an upper bound on the compression
that is possible. However, since they do not preserve the structure of the data, the
resulting compressed graph will not be amenable to querying.

Some of the XML compressors [Liefke and Suciu 2000], though they achieve a good
compression ratio, also result in a provenance store that is not suitable for querying.
Even those that support keyword and path query [Tolani and Haritsa 2002] cannot
provide the rich query language that supports joins as in a traditional database. Com-
paratively, our compression methods can be applied to various trace formats, and pro-
vide both good compression ratio and good query performance.

9. CONCLUSIONS

Efficient provenance storage is an essential step towards the adoption of provenance.
As provenance accumulates over time, it can occupy significant portions of storage.
Today, users have two non-options: archive it in a nonqueriable format or discard the
provenance. In this article, we have addressed this crucial issue and have provided
users with a practical solution for storing provenance efficiently. First, we analyze
provenance graphs collected from different provenance models and workloads. Based
on the analysis, we identify general properties of provenance graphs that a practical
and efficient compression scheme should consider when compressing a provenance
graph. We then present a hybrid approach that combines Web graphs compression
and a dictionary encoding scheme to efficiently compress provenance graphs. We
contrast this approach with a set of commonly used compression algorithms on
provenance traces from different provenance systems such as PASS and different

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

14:28 Y. Xie et al.

provenance models such as Open Provenance Model. Our findings indicate that the
hybrid approach is the most efficient along all axes.

ACKNOWLEDGMENTS

The authors would like to thank the sponsors of the SSRC and CRIS, including the National Science Founda-
tion, Los Almos National Laboratory, LSI, IBM Research, NetApp, Samsung Information Systems America,
Seagate Technology, Northrop Grumman, Symantec, Hitachi, CITRIS, the Department of Energy Office of
Science, the NASA Ames Research Center and Xyratex.

REFERENCES

Adler, M. and Mitzenmacher, M. 2001. Towards compressing web graphs. In Proceedings of the IEEE Data
Compression Conference.

Barga, R. S. and Digiampietri, L. A. 2007. Automatic capture and efficient storage of escience experiment
provenance. Concur. Comput. Pract. Exper. 1–10.

Boldi, P. and Vigna, S. 2004a. The webgraph framework I: Compression techniques. In Proceedings of the
13th International World Wide Web Conference.

Boldi, P. and Vigna, S. 2004b. The webgraph framework II: Codes for the world-wide web. In Proceedings of
the International Data Compression Conference.

Boncz, P. A. 2002. Monet: A next generation dbms kernel for query-intensive application. Ph.D. thesis, Uni-
versiteit van Amsterdam, Amsterdam, The Netherlands. http://oai.cwi.nl/oai/asset/14832/14832A.pdf.

Bose, R. and Frew, J. 2004. Composing lineage metadata with xml for custom satellite-derived data products.
In Proceedings of the 16th International Conference on Scientific and Statistical Database Management.

Cao, B., Plale, B., Subramanian, G., Robertson, E., and Simmhan, Y. 2009. Provenance information model
of karma version 3. In Proceedings of the 3rd IEEE International Workshop on Scientific Workflows
(SWF’09).

Challenge3. 2009. The third provenance challenge.
http://twiki.ipaw.info/bin/view/Challenge/ParticipatingTeams3.

Chapman, A. P., Jagadish, H. V., and Ramanan, P. 2008. Efficient provenance storage. In Proceedings of the
ACM SIGMOD International Conference on Management of Data.

Cheah, Y.-W., Plale, B., Kendall-Morwick, J., Leake, D., and Ramakrishnan, L. 2011. A noisy 10GB prove-
nance database. In Proceedings of the 2nd International Workshop on Traceability and Compliance of
Semi-Structured Processes, in conjunction with the 9th International Conference on Business Process
Management.

Chen, Z., Gehrke, J., and Korn, F. 2001. Query optimization in compressed database system. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. 271–282.

Futrelle, J., Gaynor, J., Plutchak, J., Myers, J. D., McGrath, R. E., Bajcsy, P., Kastner, J., Kotwani, K., Lee,
J. S., Marini, L., Kooper, R., Mclaren, T., and Liu, Y. 2009. Semantic middleware for e-science knowledge
spaces. In Proceedings of the 7th International Workshop on Middleware for Grids, Clouds and e-Science.

Goldstein, J., Ramakrishnan, R., and Shaft, U. 1998. Compressing relations and indexes. In Proceedings of
the International Conference on Data Engineering.

Graefe, G. and Shapiro, L. 1991. Data compression and database performance. In Proceedings of the
ACM/IEEE-CS Symposium on Applied Computing. 22–27.

Groth, P., Miles, S., Fang, W., Wong, S. C., Zauner, K., and Moreau, L. 2005. Recording and using provenance
in a protein compressibility experiment. In Proceedings of the International ACM Symposium on High-
Performance Parallel and Distributed Computing.

Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., and Moreau, L. 2006. An architecture for
provenance system. Tech. rep. http://eprints.soton.ac.uk/263196/1/provenanceArchitecture7.pdf.

Jayapandian, M., Chapman, A. P., Tarcea, V. G., Yu, C., Elkiss, A., Ianni, A., Liu, B., Nandi, A., Santos, C.,
Andrews, P., Athey, B., States, D., and Jagadish, H. V. 2007. Michigan molecular interactions (MiMI):
Putting the jigsaw puzzle together. Nucleic Acids Res. 35, D566-571.

King, S. T. and Chen, P. M. 2003. Backtracking intrusions. In Proceedings of the ACM Symposium on Oper-
ating Systems Principles.

Liefke, H. and Suciu, D. 2000. XMill: An efficient compressor for xml data. In Proceedings of the ACM
SIGMOD International Conference on Management of Data.

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

�

�

�

�

�

�

�

�

Evaluation of a Hybrid Approach for Efficient Provenance Storage 14:29

Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams, A., Oinn, T., and Goble,
C. 2010. Taverna, reloaded. In Proceedings of the 22nd International Conference on Scientific and Sta-
tistical Database Nanagement (SSDBM’10).

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles, S., Missier, P.,
Myers, J., Plale, B., Simmhan, Y., Stephan, E., and van den Bussche, J. 2011. The open provenance
model core specification (v1.1). Future Gener. Comput. Syst. 27, 6, 743–756.

Muniswamy-Reddy, K.-K., Holland, D. A., Braun, U., and Seltzer, M. I. 2006. Provenance-aware storage
systems. In Proceedings of the USENIX Annual Technical Conference.

Muniswamy-Reddy, K.-K., Braun, U., Holland, D. A., Macko, P., Maclean, D., Margo, D., Seltzer, M. I., and
Smogor, R. 2009. Layering in provenance systems. In Proceedings of the USENIX Annual Technical
Conference.

Passtrace. 2008. http://www.eecs.harvard.edu/syrah/pass/traces/.
Poss, M. and Potapov, D. 2003. Data compression in oracle. In Proceedings of the International Conference

on Very Large Data Bases.
Randall, K., Wickremesinghe, R., and Wiener, J. 2001. The link database: Fast access to graphs of the web.

Res. rep. 175, Compaq Systems Research Center, Palo Alto, CA.
Roth, M. A. and Horn, S. J. V. 1993. Database compression. SIGMOD Rec. 22, 3, 31–39.
Shah, S., Soules, C. A. N., Ganger, G. R., and Noble, B. D. 2007. Using provenance to aid in personal file

search. In Proceedings of the USENIX Annual Technical Conference.
Simmhan, Y. L., Plale, B., and Gannon, D. 2006. A framework for collecting provenance in data-centric

scientific workflows. In Proceedings of the IEEE International Conference on Web Services.
Suel, T. and Yuan, J. 2001. Compressing the graph structure of the web. In Proceedings of the IEEE Data

Compression Conference.
Tolani, P. M. and Haritsa, J. R. 2002. XGRIND: A query-friendly xml compressor. In Proceedings of the

International Conference on Data Engineering. 225–234.
Vahdat, A. and Anderson, T. 1997. Transparent result caching. Tech. rep. CSD-97-974,8.
Widom, J. 2005. Trio: A system for integrated management of data, accuracy, and lineage. In Proceedings of

the International Conference on Innovation Data Systems Research (CIDR).
Witten, I., Moffat, A., and Bell, T. 1999. Managing Gigabytes: Compressing and Indexing Documents and

Images. Morgan Kaufmann Publishing, San Francisco.
Xie, Y., K. Muniswamy-Reddy, K., Long, D. D. E., Amer, A., Feng, D., and Tan, Z. 2011. Compressing prove-

nance graphs. In Proceedings of the 3rd USENIX Workshop on the Theory and Practice of Provenance.
Xie, Y., K. Muniswamy-Reddy, K., Feng, D., Yan, L., Long, D. D. E., Tan, Z., and Chen, L. 2012. A hybrid

approach for efficient provenance storage. In Proceedings of the 21st ACM International Conference on
Information and Knowledge Management.

Ziv, J. and Lempel, A. 1977. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory
23, 3, 337–343.

Zukowski, M., Heman, S., Nes, N., and Boncz, P. 2006. Super-scalar ram-cpu cache compression. In Proceed-
ings of the International Conference on Data Engineering.

Received October 2012; revised April 2013; accepted June 2013

ACM Transactions on Storage, Vol. 9, No. 4, Article 14, Publication date: November 2013.

