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Abstract

Star  block  copolymers  (s-BCPs)  have potential  applications as  novel  surfactants  or  am-
phiphiles  for  emulsification,  compatbilization,  chemical  transformations  and  separations. s-
BCPs are star-shaped macromolecules comprised of linear chains of different chemical blocks
(e.g., solvophilic and solvophobic blocks) that are covalently joined at one junction point. Var-
ious parameters  of these macromolecules  can be tuned to obtain desired surface properties,
including the number of arms, composition of the arms, and the degree-of-polymerization of
the blocks (or the length of the arm). This makes identification of the optimal s-BCP design
highly non-trivial as the total number of plausible s-BCPs architectures is experimentally or
computationally intractable. In this work, we use molecular dynamics (MD) simulations cou-
pled with reinforcement learning based Monte Carlo tree search (MCTS) to identify s-BCPs
designs that minimize the interfacial tension between polar and non-polar solvents.  We first
validate the MCTS approach for design of small- and medium-sized s-BCPs, and then use it
to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural ori-
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gins of interfacial tension in these systems are also identified using the configurations obtained



from MD simulations. Chemical insights on the arrangement of copolymer blocks that promote
lower interfacial tension were mined using machine learning (ML) techniques. Overall, this
work provides an efficient approach to solve design problems via fusion of simulations and ML
and provide important groundwork for future experimental investigation of s-BCPs sequences
for various applications.

Keywords: Star block copolymers, Reinforcement Learning, Monte Carlo Tree Search, Molecular 
Dynamics, Polymer informatics



1 Introduction
Star block copolymers (s-BCPs) are an upcoming class of materials that can act as novel surfactants
or amphiphiles for emulsification, compatbilization, chemical transformations and separations [1].
As the name suggests, s-BCPs have an interesting star-shaped molecular architecture consisting
of several polymer chains that are covalently linked at  a single junction point.  Depending on the
chemical identity of the constituting polymer chains, the s-BCPs could either be regular or homo-arm
type with several chemically identical chains of block copolymers, or hetero-arm or Mikto-arm type
containing a variety of species with different chemical compositions, molecular weight or
functionality [2]. The Mikto-arm type star polymers are particularly interesting as their properties
can be tuned by varying the design parameters. Furthermore, the s-BCPs have a limited tendency
to aggregate and form micelles as they display high critical micelle concentration values, especially in
comparison to their linear counterparts [3, 4, 5, 6]. Thus, they remain unimolecularly dispersed
in a medium that is miscible with the corona block [7, 8, 9, 10]. Attempts have been made to
exploit this property of s-BCPs to reduce interfacial tension (γp) between two immiscible liquids
under dilute
polymer/surfactant concentration limits [11, 12, 13, 14].

Figure 1(a) shows the general chemical structure of a s-BCP consisting of three copolymer chains
with each containing a non-polar hydrophobic polystyrene (PS) block and a polar hydrophilic poly(2-
vinylpyridine) (P2VP) block. We denote this s-BCP as (PS-b-P2VP)3. At a low pH of ∼1.86 pKa,
P2VP is mostly ionized with a positive charge and thus is hydrophilic [15]. PS, on the other hand,
is hydrophobic.  Hence for a system containing oil/water interface, the (PS-b-P2VP)3 can show
interesting behavior with PS preferring the oil while the P2VP preferring the water phase.

Previous experimental and computational investigations have shown that linear block copolymers
and s-BCPs can lower γp of the oil/water interface [16, 17]. In our previous work [17], we used
coarse- grained molecular dynamics (MD) simulations to study the assembly of star polymers at the
oil/water
interface (see Figures 1(b) and (c)), wherein we considered a particular s-BCPs design that had
the hydrophobic PS block concentrated at the junction point while the P2VP block forming the
corona. On equilibration, (PS-b-P2VP)3 adopted a specific conformation where the hydrophobic
PS core resided in the oil phase with the P2VP corona extending into the aqueous phase. This was
found to lower γp between polar and non-polar solvents computationally, and was experimentally
validated
using tensiometry and vibrational sum frequency generation spectroscopy. It was also found the
conformation adopted by the s-BCPs at the interface was highly dependent on the ionization degree
of P2VP, the arm numbers and the molecular weight.

In this work we go beyond the previous studies in understanding the equilibrium conformation
of (PS-b-P2VP)3 star polymer (with a PS core and a P2VP corona) at the oil/water interface, and
tackle the problem of star polymer design, as an s-BCP architecture with different arm sequence
could potentially be a better surfactant. However, s-BCPs pose an intractable design challenge
because of the large number of architectural possibilities. To realize a star polymer with desirable
properties various parameters of these macromolecules need to be tuned, including the number of
arms (narm), length of each arm (larm) (or degree-of-polymerization), and the relative composition
and arrangement of the blocks within an arm. Figure 1(d) captures the plausible design space of
star polymers assuming they consist of only two monomer types, a non-polar hydrophobic PS block
and a quaternized (positively charged) polar hydrophilic P2VP block. We additionally constrain
the number of arms, narm, to 2, 3 or 5; the length of each arm, larm, to 8, 10 or 16; and hold the
ratio of PS to P2VP blocks to 1. Furthermore, we consider only the case of regular s-BCPs with
concentration below the critical micelle concentration. Even with these constraints, there is a
large number of design possibilities. For instance, for the case of  narm = 3 and  larm = 8, the



relative arrangement of PS and P2VP beads can result in a total of 8C4 = 70 possible sequences—
see Figure



(a) General chemical structure of star 
polymer

(b) Coarse-grained model

PS (neutral, 
hydrophobic) P2VP 
(charged, hydrophilic)

(c) MD 
setup

(d) Space of star polymers

• Arm length (Larm = {8,10,16})
• No. of arms (Narm = {3, 5})
• Arrangement of PS, P2VP beads
• Equal no. of PS and P2VP beads

For example (Larm = 8, 

Narm = 3) Arrangement 1

Arrangement 2

Figure 1: (a) General chemical structure of a star polymer consisting of sequence of PS and P2VP. (b)
A coarse-grained representation of a star polymer with three arms. (c) Schematic of the simulation
cell consisting of a dielectric solvent, an oil phase and one star polymer. MD simulations were used
to see the effect of s-BCP design on the interfacial tension (γp) between dielectric solvent and the
oil  phase. (d)  The  search  space  of  the  star  polymer  (and  the  associated  computation  time)
considered in this work to identify sequence with low γp values.

1(d)  for  a  few example  sequence arrangements. To experimentally  find the optimal star  polymer
design from such a large design space is infeasible. Computations could be used to explore this space
in a brute force manner—an estimated total of ∼420 CPU hours (∼6 hours for each MD simulation)
would be needed to model all possible arrangements [17]. However, as we approach more practical
systems with larger values of larm, the brute force computational search becomes impractical as it
requires 1512 and 77220 CPU hours for larm = 10 and 16 systems, respectively.

To overcome these limitations of the brute search approach for star polymer design, we use
rein-

forcement learning based Monte Carlo tree search (MCTS) coupled with coarse grained MD simula-
tions. For the target property, we focus on identifying star polymers that can lower the  γp between
polar and non-polar solvents, as has been considered in the past work [17].  The MCTS algorithm
balances the exploitation-vs-exploration trade-off to suggest promising star polymer designs that
are expected to lower γp, while the MD simulations are used to evaluate the MCTS recommended
designs and provide an accurate feedback to enhance the search quality. Further improvements are
incorporated in the MCTS algorithm, such as the addition of design uniqueness criteria and an on-
the-fly random forest surrogate model, to boost its performance. We first demonstrate the s-BCP
design acceleration provided by our ML approach for a small (larm = 8) and a medium (larm =
10) sized space against the brute force and random search. Then we use our ML approach for a
much larger (larm = 16) design space, which cannot be explored using MD simulations alone,
to find
new star polymers that can further lower γp. Structural analysis of various MD trajectories was
performed to find correlations between arrangement of star polymer beads and γp. An additional
random forest (RF) surrogate model was used to directly predict γp of s-BCPs, and its features
were analyzed to find important copolymer sequence arrangements that can result in lower γp.
Overall,
insights of this work could guide future experiments on s-BCP design for various applications.

Larm Total 
Combinations

Computation 
hours

8 8C4 = 70 420

10 10C5 = 252 1512

16 16C8 = 12870 77220
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2 Results and Discussion

2.1 Small- and medium-sized star polymer space

Figure 2: (a) MD computed interfacial tension (γp) for the small (larm = 8) and medium (larm =
10) sized search space. The s-BCP sequences for larm = 8 are also included. While γp increased
with the increase in the number of arms from 3 to 5, it was not affected by the PS-P2VP sequence
in a clear pattern. The order of s-BCP sequences on the x-axis is obtained based on increasing γp

values when narm = 3. (b) Trend in the γp with increase in the number of same sequence blocks.
Numbers 2 and 6 represent PS and P2VP beads, respectively.

MD simulations were performed to study the effect of narm for small (larm = 8) and medium
(larm = 10) sized star polymer design space. The details of the MD simulations and the simulated
oil, water and star polymer system are provided in the Methods section. The difference between
the normal and tangential pressures in the simulated system were used to compute the γp between
the oil/water interface as given by the equation [18, 19, 20]:

γ  = 
Lz

P
p 2 zz − 

P  xx         +     P  yy  (1)2
where Lz is the simulation box dimension in the z direction normal to the interface, ⟨...⟩ refers to
the ensemble-time average and the outer factor 1 accounts for the two interfaces.

For larm = 8, three values of narm = {2, 3, 5} were considered resulting in a total of 210
simula- tions. The obtained γp values for narm = {3, 5} along with the associated PS-b-P2VP
arrangement  pattern are shown in Figure 2(a), while that for narm  = 2 is included in the
Supporting Information (Figure S3). It is important to note that previous experimental studies
have shown that linear block copolymers (or when narm = 2) do not assemble at the interface but
instead phase separate. For brevity, PS and P2VP beads are represented by numbers “2” and
“6”, respectively. Further, the
first number in the s-BCP sequence represents the node center. Cases with a larger number of
arms, in general,  were found to have a higher  γp. More importantly,  candidates that  contain
longer and  separate blocks of PS and P2VP beads (e.g., 66662222, 22226666 and 66622262) showed
consistently high  values  of  γp. However,  no  such  trend  was  evident  for  cases  with  lower  interfacial
energies. Some example of sequences with the low γp for the small-sized s-BCP design space with
narm = 3 are 26262662, 62262266 and 26622266. Some of these designs have the PS bead at the
junction point,
while some have the P2VP bead. Some have alternating PS and P2VP beads, some have
alternating blocks of multiple PS and P2VP beads. A general pattern in sequences with low γp is
absent.

Similar to the small-sized design space, MD simulations were performed for medium-sized space
with larm = 10. Since the results from small-sized design space suggested lower γp values for
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cases with a smaller number of arms, we exhaustively modeled all possible 252 sequences with
only narm = 3, and about 30 sequences for validation purposes with narm = 5. As seen in Figure
2(a)  similar trends were observed even for the medium-sized design space—cases with smaller
number of arms resulted in lower interfacial energies, and a clear pattern among PS-P2VP sequences
with lower γp values was lacking. We note that a comparison between γp values of medium and
small-sized
design spaces should not be made as each had a different number of total polymer beads, causing a
change in chemical potential of the star polymer. However, such a comparison could be made across
different values of narm as care was taken to keep the number of beads constant.

Figure 2(b) shows the correlation between the computed γp and the number of same sequence
blocks present in the star polymer. The results are shown for two cases with narm = 3, and larm =
8 or 10. Here the number of same sequence blocks means that moving across the sequence how
many
times does a flip from 2 to 6 or from 6 to 2 occur. For example, for sequence 22226666 and 66662222
the flip occurs only once and the number of sequence blocks is 2 in each case.  Similarly for sequence
26262626 and 22662266 the number of sequence blocks is 8 and 4, respectively.  Figure 2(b) suggests
that as the number of sequence blocks increases, γp decreases, but the trend is not very strong.
Towards the extreme right of the plot, where there is a large number of sequence blocks, the γp

values are moderately low, but not the lowest. Furthermore, there is huge variation in γp values
for the same number of sequence blocks. It is not very clear what causes the sequences 26262662
and 6622262626 respectively for larm = 8 and 10, to exhibit low γp values. This makes the design
of star polymer non-trivial and highlights the need for an intelligent s-BCP design approach,
especially for
the large-sized design space which cannot be studied exhaustively.

2.2 Structural origins of low energy sequences
An assessment of the structural origins of the γp values for different s-BCP designs was
conducted. The structures corresponding to the lowest and the highest γp values for the case with
larm = 8 and narm = 3 are included in Figure 3(a). The density of the star polymer beads along
the z-axis for these two cases is shown in Figure 3(b), along with the corresponding Gaussian fit
line. From both
these figures it is evident that the star polymer is more concentrated at the oil/water interface for
the low energy case as compared to that in the high energy case; this is visually notable in Figure
3(a). The narrower and taller peak for the low energy case in Figure 3(b) further corroborates
this. A similar observation of a narrower and taller star density peak for the case with larm =
10 and narm = 3 can also be made in Figure 3(c). This maybe due to availability of larger
number of  anchoring points at interface for the s-BCP designs with more alternating
sequences. To further quantify these observations, in Figure 3(d) we plot the computed γp values
against the full width at half maximum (FWHM) of the Gaussian fit of the star polymer density.
A good correlation (0.67
for larm = 8 and 0.77 for larm = 10) between γp and the FWHM values clearly suggests that the
more the star polymers are concentrated at the interface, the lower is γp. Thus, the star polymer
design should be such that a balance is maintained in its solubility in both the polar or non-polar
solvents. If solubility is higher for either, the concentration peak will be broader and the expected
γp value higher. This also partly explains the earlier observation that sequences of alternating PS
and P2VP blocks resulted in lower γp values.

We also analyzed the effect of the distribution of PS beads at the interface, i.e., in the lateral
(xy) plane, on γp. For this, the 2D scattering function, S ( ⃗q) was computed for the PS beads as
discussed in our previous work [17]. In brief, we take the Fourier transform of the surface
concentration of
PS beads in the xy plane, whose magnitude at a ⃗q  is obtained by taking product with its complex
conjugate. Then, S ( ⃗q) is reduced to S(q) using q =  q2 + q2. Figure 3(e) and (f) shows the



S(q)
values for the s-BCP sequences with lowest and highest γp in the small- and medium-sized spaces,



narm 3, larm 8, 
26262662

narm 3, larm 8, 
66662222

(b) (c) (d)

(e) (f) (g)

Figure 3: (a) Output structures of the MD simulations for the lowest (top) and highest (bottom)
interfacial tension (γp) values for design space with larm = 8 and narm = 3. Cyan and magenta
colors represent the star polymer and oil beads, respectively; for clarity water beads are omitted.
Systems with lower γp formed sharper interface with the star polymer concentrated mostly at the
interface,  as shown in (b) and (c). (c) Strong correlation between the distribution of the star
polymer in the direction normal to the interface and the computed γp value for small- and
medium- sized design space. Panels (e) and (f) show the distribution of PS beads in the lateral
direction at the interface for the sequences with lowest and highest  γp. (g) Weak correlations
between γp and the inter-molecular distance between PS beads in the lateral direction.

and narm = 3. Different peaks in reciprocal or q space, corresponds to PS-PS bond lengths in
real space with peaks at large q values corresponding to shorter bonds. Generally, three distinct
peaks were observed corresponding to PS-PS bonds that are inter-molecular, intra-molecular but
in different arms, and intra-molecular within the same arm, as shown in Figures 3(e) and (f).  The
inter-molecular PS-PS bond peak is expected to occur at lowest q value, labeled as q∗, and was
analyzed further to explain the observed γp behavior. A cumulative sum of three Gaussians was
used to fit S(q) data and the mean of the Gaussian around the lowest q value was used as
the
q∗ value. Figure 3(g) captures the weak correlation between the computed q∗ and the γp values,
suggesting that the lateral arrangement of PS beads across different star polymer molecules does not
significantly  affect  the  interfacial  tension  at  the  oil/water  interface. Overall,  the  above structural
analysis suggests that arrangement of the polymers in the direction perpendicular to the interface
is more important than that within the plane. This result could be useful in guiding experimental
conformational studies of these systems.

2.3 Efficient star polymer search using Monte Carlo tree search
The small- and medium-sized s-BCP design space are amenable to brute force computational ex-
ploration, but not the large-sized design space. Thus, in this work we developed an ML approach
for s-BCP design, which consists of MCTS algorithm and an MD simulator. Below we provide a



brief description of our approach (see Methods section for details on the MCTS algorithm and
MD



simulator). While the MCTS performs the search for a promising (low γp value) star polymer se-
quence in a tree-structured fashion, the MD simulator provides a feedback about the s-BCP
design to the MCTS to further refine its search. Each leaf or node of the MCTS tree contains
essential
parameters describing a unique s-BCP design (such as larm and narm) and its associated score.
The key idea behind MCTS is to efficiently sample the overall s-BCP design space by growing
those branches of the tree that have either high scores (exploitation) or contain s-BCP designs
that are
very diverse (exploration) from the existing nodes in the tree. To provide a meaningful structure
to the MCTS tree, each child node contains an s-BCP design which is only slightly different from
that of the parent node. This results in high scoring child nodes generally belonging to a tree
branch that contains other high scoring parent nodes with similar s-BCP designs.

(a) 
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Figure 4: Comparison of the different methods to efficiently find the low interface energy star polymer
sequences in the (a) small and (b) medium search space. MCTS and MCTS+RF schemes find one
of the three (or five) lowest interface energy sequences in the small (or medium) size design space,
on average, quicker than a random search. Results are shown for 20 random trails in each case.

MCTS uses two policies, namely a tree policy and a rollout policy, to advance the search. The
upper confidence bound (UCB) for parameters is a popular choice of tree policy which have been used
in the past [21]. Here, we use an improved version of the UCB policy where the exploration term
is modified to promote uniqueness in the sampled candidates. Incorporation of the uniqueness
criteria has been shown to improve the performance of the MCTS search for various materials
discovery problems, such as peptide design [22], fitting classical potentials [23], and structure
search [24]. For the rollout policy, two variations were adopted: one with just random rollouts,
and the other one with half random rollouts and half based on a surrogate random forest (RF)
model. The main idea behind the use of the RF model is to reduce the computation time spent
on MD simulations,
especially for the cases which are expected to have high γp. This could, however, introduce a bias
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in  the search as the RF model itself is not accurate. Thus, to avoid the inherent bias of the
approximate RF model only half of the rollouts were selected this way, while the remaining half
were selected
randomly. The RF model was trained in an online fashion, meaning that the RF model is regularly
updated as more training data from the MD simulations become available during the MCTS run.  It
should be noted that once the s-BCP design is selected for a rollout, whether using random or RF
model based rollout, its actual γp value is computed using the MD simulator.

We first consider the small- and medium-sized design spaces to validate our ML approach for



s-BCPs design. Both these spaces can be studied exhaustively using computations, and hence,
these could be used to accurately evaluate the performance of our ML approach. Furthermore, we
restrict our analysis to the candidates with narm = 3 since those resulted in low γp values. Figure
4 compares the number of trials needed for the various approaches to suggest any one of the top 3
and
5 star polymers designs for the small- and the medium-sized design spaces, respectively. The average
number of trials needed for either of the MCTS or the RF model boosted MCTS approach (labelled,
MCTS+RF) is smaller in comparison to the random search, highlighting the search acceleration
provided by our ML approach. For instance, for the case with larm = 10, MCTS and MCTS+RF
approaches respectively took on an average ∼34 and ∼19 trials as compared to ∼42 trials for the
random search. Surprisingly, not much difference was found between the MCTS and MCTS+RF
model for the small-sized design space. This is in contrast to our previous work where we clearly
saw the performance boost provided by the RF model [22]. We hypothesize that this could be due
to the  small  size  of  this  design  space. It  should  be  noted  that  the  performance gain  of  our  ML
approach is higher for the medium-sized design space than the small-sized one. This is expected
since both the MCTS and the RF model need a few training examples to learn about the design
space and propose high quality candidates. Thus, as the s-BCPs design space becomes larger the
performance gain of our ML approach is expected to be higher. Another aspect to be noted in
Figure 4 is that MCTS approach has an inherent uncertainty associated with its performance; some
trials were finished early, while some trials took many searches.  Nevertheless, from these results we
can conclude that our ML approach could be used to efficiently search for desirable s-BCP designs.

2.4 ML identified star polymers from large search space

(a)

Figure 5: (a) Top 10 sequences found in the large search space (Larm 16) using MCTS+RF search.
(b) Similarity in the distribution of the interface energy found in the complete small (Larm 8) and 
medium (Larm 10), and, the partially explored, large (Larm 16) search space.

With the performance of the ML approach validated for the small- and medium-sized design
spaces, we next use it to efficiently identify s-BCPs designs with low γp values in the large-sized
(larm = 16) design space. Figure 5(a) lists the top candidates and their computed γp values
identified by the ML approach from a total of 230 candidate evaluations. Again, no clear pattern
of PS-P2VP

Sequence Interface Energy

6262262666222626 0.9218

2226662266662226 0.9284

6662226262266622 0.9371

6262262622626662 0.9384

6226262662226626 0.9399

2626262662266226 0.9427

2626622662226626 0.9430

2262662622662662 0.9440

2266262266226626 0.9456

2626622662266226 0.9475



arrangements could be observed from this list, highlighting the difficulty of this task. It should be
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noted that many candidates were discovered with lower γp values than that of the candidate with
alternating PS-P2VP beads, which was at fifteenth position in the list. This finding is similar to
that  observed in Figure 2 where candidates with the highest number of sequence blocks (or
effectively
alternating PS-P2VP beads) had relatively lower γp, but not the lowest. This list could be used to
guide future s-BCP designs that could lower γp between polar and non-polar solvents.

The large-sized design space cannot be explored exhaustively, as it has a total of 12870 possible
candidates. Thus, to make an assessment of the quality of the top candidates identified by the ML
approach, we plot the distribution of γp values obtained from all the three design spaces in Figure
5(b). The similarity in the shape of the three design spaces provides some confidence that the
ML approach has effectively explored the large-sized design space. We also include the structural
analysis of the evaluated 230 candidates in the Supporting Information (Figure S2) which was found
to be similar to that of Figure 3(c).

2.5 Chemical insights from the ML models
We further wanted to understand which type of sequence blocks are responsible for lowering γp
and if any chemical insights could be mined from the generated MD data. For this, we begin by
training a separate RF model that directly predicts the γp of a candidate given its arrangement of
PS and P2VP beads. This model was restricted to the dataset with larm = 10 and narm = 3. The
input fingerprint for this model was the count of different types of possible single (2), double (4),
triple
(8), quadruple (16) and pentuple (16) block sequences where the number in the bracket indicate
the feature count of a particular category. A few example features from the different categories
are “6”,  “22”,  “662”,  “2266”  and  “22226”.  The  overall  fingerprint  dimension  was  62.  The  good
performance  accuracy (coefficient of determination, R2 = 0.65) achieved by the RF model on
the test set in
Figure 6(a) is indicative of the success of this fingerprinting scheme, and thus this model was next
analyzed to gain reliable chemical insights.
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Figure 6: (a) Accuracy of the RF machine learning model trained to predict the interface energy
associated with the star polymer using the medium-sized design space. (b) Top 10 most important
features  found from the  RF model. (c)  Projection  of  the  medium space  dataset  on  the  first  two
principal components using only the top 10 features identified by the RF model.

Figure 6(b) plots the feature importance of the top 10 sequence blocks according to the RF model.
Two features, namely the count of “26” and “266” blocks, have significantly higher importance when
compared  to  the  rest. To  further  understand  this,  we  studied  the  correlation  plots  between  the
computed γp values and the suggested top 5 RF model features (see Supporting Information, Figure
S4). A strong negative correlation between the count of “26” blocks and γp values was observed.



This can be understood from the previous observation that the candidates with alternating PS-
P2VP blocks,  which also  means higher count of  “26” block,  result  in  lower  γp values. A weak
negative correlation with feature “266” was also found suggesting that simply alternating between
PS-P2VP beads is not sufficient but a complex sequence arrangement is needed to reach the lowest
γp s-BCP design.  Figure 6(c) presents the medium-sized design space data along the first two
principal components obtained using only the aforementioned top 10 features. The colors indicate
the γp values. A clear trend in regards to the spatial arrangement of the points with similar γp
values  in  same places  suggest  that  these  top  10 features  are  indeed able  to  capture  the  complex
interdependence of these features to affect the γp values.

3 Conclusions
In this work we studied various star copolymer configurations of PS and P2VP that could minimize
the interfacial tension between polar and non-polar solvents.  We studied the effect of number
of star copolymer arms, the length of each arm and the sequence arrangement of PS and P2VP
blocks using coarse-grained molecular dynamics simulations. While an increase in number of star
copolymer arms were found to increase the interfacial tension, an inverse trend was found with
the arm length. More interestingly, no clear trend of interfacial tension with the sequence of PS
and P2VP in the star copolymer was observed, thus making the problem of identifying the lowest
interfacial tension copolymer sequences non-trivial, especially when the length of copolymer arm is
large and an exhaustive sequence search is not possible.

To efficiently search for low interfacial tension sequences, we employed a reinforcement learning
based  Monte  Carlo  tree  search,  which  was further  accelerated  using  a  uniqueness  criteria  in  the
scoring function and an on-the-fly random forest surrogate model. To validate the improvement gain
of our machine learning approach, we first employed it on a smaller and medium sized copolymer
search space, wherein the ground truth can be established using an exhaustive search, and compared
its performance against the random search. Next, we used our approach to find top scoring sequences
in the  large  sized  copolymer  search  space  wherein  the  ground truth  cannot  be  uncovered  due to
computational costs.

Structural origins of interfacial tension were also identified using the configurations obtained from
the molecular dynamics simulations. As expected, star polymer sequences that have high concentra-
tion at the interface, demonstrate lower interfacial tension. We also extracted chemical insights from
the random forest model to reveal the count of “PS-P2VP” blocks in the star copolymer inversely
co-related to the interfacial tension. Other important chemical block sequences that dominate this
interfacial tension problem also extracted. Overall, this work provides an efficient approach to solve
design problems using machine learning and enables important groundwork for future experimental
investigation of star copolymer sequences that could lower interfacial tension between polar and
non-polar solvents.

4 Methods

4.1 Molecular dynamics simulations
Coarse-grained MD simulations were performed to probe the effect of star diblock copolymers on the
interfacial tension of the dielectric solvent/oil interface. The simulated system consists of three main
components: the star diblcok copolymers, the dielectric solvent phase, and the oil phase.  The star
block copolymers were represented as connected coarse-grained beads denoting neutral PS segments,



positively charged P2VP segments and explicitly added negatively charged counterions. All short-
range pair-wise interactions are described by the shifted truncated Lennerd-Jones (LJ) potential as
discussed in more detail in the Supporting Information. The bond connectives were described by
the finite extensible non-linear elastic (FENE) model with spring constant  kbond (see Supporting
Information).

The next component in the model is the dielectric solvent which is represented as charged
dumb- bells having 2 opposite charges with a magnitude of  q and separated by some distance.
The pair- wise interactions of dielectric solvent beads include both short-range LJ interactions and
long-range
Coulomb interaction. Finally, the oil phase is represented as LJ beads where the oil and solvent
is incompatible, PS is miscible to oil and P2VP is slightly less miscible to oil beads relative to PS
beads. The pair-wise non-bonded potential parameters are summarized in Table S1. The simulation
consisted of 5000 solvent molecules (10000 solvent beads) and 5000 oil beads, while the number of
PS/P2VP beads were 480, 600 and 960 for small-, medium- and large-sized s-BCP design spaces,
respectively. Additional details  on the different model parameters  are  provided in  the Supporting
Information.

The simulation consists of an initial equilibration isothermal-isobaric ensemble (NPT) step fol-
lowed by a canonical (NVT) production run. The temperature was maintained by coupling the
system to the Langevin thermostat [25]. A Berendsen barostat [26] was used to control pressure in
the equilibration stage. During the NPT simulation, the dimension of the simulation box is adjusted
to achieve the target pressure via coupling the barostat to the x, y directions. During the production
NVT runs, the simulation box is fixed to the average dimensions determined in the NPT runs. The
NPT equilibration run proceeded for up to 1.5 × 104 τ and the NVT production run proceeded
for up to 1.0 × 104 τ . The velocity-Verlet algorithm with a time step of ∆t = 0.005 τ was used
for integrating the equations of motion in Eq. S5. All simulations were performed using the
LAMMPS
molecular dynamics simulations software package [27, 28].

4.2 Monte Carlo tree search
Monte Carlo tree search (MCTS) is a powerful global optimization algorithm owing to its exploration-
versus-exploitation trade-off and low computational demand [29, 30, 31]. It has been particularly
successful in solving problems involving large search spaces [32, 33, 34]. In this work, we use MCTS to
suggest promising s-BCP designs with low γp values. MCTS performs the search in a tree-
structure
manner wherein each leaf or node of a tree contains a unique s-BCP design. Moreover, leaf nodes
contain connections in a special configuration such that a parent node is connected to several child
nodes with slightly different s-BCP designs. Thus, each branch of the MCTS tree contains similar
s-BCP designs.

The MCTS search iterates through following four stages: (1)  selection: select the leaf node that
has the  highest current  score according to  the tree policy; (2)  expansion: add a child  node (with
slightly  different  s-BCP design  from the  parent  node)  to  the  selected  leaf  node;  (3)  simulation:
perform Monte Carlo trials of possible actions on the newly generated child node using a rollout
policy to estimate the  expected reward; (4)  back-propagation: pass  the rewards generated by the
simulated trials to update the scores of all the parent leaves of the newly generated child node. An
important distinction between score and reward should be made. The former is computed using the
tree policy given by [21]:

UCB(θ ) = −min(r , r ,
..., r

) + c.f (θ ).

) 
lnNi  



(2)
j 1  2 ni j

ni
where θj represents the node j in the MCTS tree, r denotes the reward (γp value) of a given rollout,



c(> 0) is the exploration constant, ni is the number of rollout samples taken by node θj and all of
its child nodes, and Ni is the same value as ni except for the parent node of θj. On the other hand,
reward represents the property that we are trying to maximize/minimize, i.e., γp value in this
work. The second term on the right in Eq. 2 represents the exploration part and promotes the
search in
those regions of the design space that have not been investigated yet.

In this work, the MCTS was initiated by setting a random s-BCP design to the root node at
depth 0. The number of Monte Carlo trials were set to 2 for small and medium-sized, and 8 for
large-sized design spaces. In the scenario when no RF model was used, all of the Monte Carlo
trials were performed on randomly generated sequences. In contrast, within the MCTS+RF scheme
half of the trials were performed on randomly generated sequences, while the remaining half were
screened from a pool of 10 random designs based on RF model predicted reward. The exploration
constant, c, was set to 10 for the large-sized design space, while it was optimized for the small- and
medium-sized design space using grid search (see Supporting Information, Figure S5). In order to
train the RF model and to compute the uniqueness function, a fingerprinting function was devised
to numerically represent a s-BCP design, as described in section 2.5. The uniqueness function f (θj)
was computed as the mean of the cosine distances of s-BCP design fingerprints to that of all other
designs in the tree.

4.3 Random forest model and principal component analysis
The random forest (RF) regression algorithm, as implemented in the scikit-learn [35], was used to
learn the  γp values of the s-BCP designs. The RF is based on the concept of ensemble learning,
wherein predictions from several “weak” models are averaged to overall result in a better prediction
accuracy. Thus, RF is expected to perform better than other ML methods based on just a single
model construction, such as Gaussian process regression. Besides accuracy, the training time of
RF model is also not prohibitively long, especially with large training datasets.  This makes RF algorithm
suitable for on-the-fly training during MCTS runs. The RF hyperparameters, i.e., the number of
weak estimators and the maximum depth of the tree, were determined using cross-validation.  It
should be noted that two types of RF models were trained: one, for the MCTS runs, and the other
to mine new chemical insights. For both the models, the count of different PS-P2VP sequence blocks
was used as the model input, as discussed in section 2.5. The RF model was trained to minimize
the mean squared error. Principal component analysis included in Figure 6(c) was performed
using the PCA python library, as implemented in the scikit-learn [35].

5 Data Availability
The MD computed γp data for all s-BCP designs is available as Supporting Information.

6 Code Availability
The machine learning code used in this work is available as Supporting Information.
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