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Abstract 
Despite advances in our understanding and management of spinal cord injuries (SCI), less than 1% of 

individuals completely recover by hospital discharge. Restoration of voluntary motor function remains one of 

the most desired therapeutic outcomes for individuals with these injuries. Brain-machine interfaces (BMI) have 

been shown to decode neural signals about movement intention and use these signals to control an external 

device (e.g., a cursor). Since neuronal circuitry remains largely preserved in the spinal cord distal to the injury, 

using decoded neural signals to control stimulation of the spinal cord itself could allow paralyzed individuals to 

produce self-directed movements. While the majority of lower limb BMI research has focused on restoring 

rhythmic locomotor movement patterns and has garnered success as it translates to human clinical trials and 

device development, all of these approaches have failed to generate completely independent movement in part 

due to an ability to restore postural stability. Compromised postural control notably increases risks of falls, 

carrying additional personal physical and financial burden. Therefore, it is necessary to develop a BMI to restore 

this critical aspect of lower limb function after SCI.  

The long-term goal of this work is to develop neuroprosthetic interventions to improve motor function 

and improve quality of life for individuals with debilitating neurological conditions. The aims of this project 

specifically were to understand (1)  how the cortex – the most ubiquitously used signals in neuroprosthetics – 

encodes for postural control, (2) the extent to which this information can be decoded to inform BMI design, 

and, most importantly, (3) whether or not this remains true after traumatic spinal cord injury. We demonstrate 

that neurons across the sensory and motor cortex convey significant information about postural perturbations, 

even after two different models of spinal cord injury (moderate contusion and complete transection). This 

information is encoded in parallel streams by speed-scaling and direction-dependent neural responses. Ground 

reaction forces, notably those most altered by mediolateral shifts in center of pressure, can be decoded based on 
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the latent dynamics of the motor cortex, with different perturbation directions requiring unique computations 

that can be scaled with perturbation speed. After injury, the responsiveness of individual neurons to 

perturbations and the information conveyed by the neurons that respond is attenuated but remains 

significantly above chance (and can be further enhanced with physical rehabilitation); however, as a population, 

cortical dynamics are largely preserved. Thus, the cortex, which is already a target in multiple brain-machine 

interface trials, should be considered as a control signal for a postural neuroprosthetic.      
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Chapter 1 – Introduction 

1.1 Brain-machine interfaces to restore motor function after 
neurological injury 

Compromised motor function is a hallmark of many neurological conditions that raises 

significant quality of life challenges for many individuals. Beyond the obvious physical, economic, and 

emotional implications1,2 associated with the inability to walk, grasp, or communicate, immobility 

poses major secondary health risks. In fact, in spinal cord injury, which often leads to severe motor 

impairment and immobility, a leading cause of rehospitalization is decubitus ulcers3 which can be life-

threatening, increasing risk for fatal infection or even worsening functional disability. Thus, 

continuing to restore mobility is critical.  

One promising approach to restore function in individuals with such neurological conditions 

involves functionally bypassing the lesion through brain-machine interfaces (BMI), a technology that 

continuously records and processes neural signals to ultimately control an effector (e.g., a robotic arm, 

cursor, exoskeleton, etc.) or even a stimulator to elicit movements from an individual’s own 

musculature. Initially merely science fiction, decades of advances in engineering, mathematics, and 

computer science have paralleled our growing understanding of the nervous system’s circuitry, 

allowing BMI to enter the realm of translational feasibility with some applications already in clinical 

use for stroke4 and epilepsy5. While such technology has been developed or conceived for myriad 

conditions – from improving deep brain stimulation electrodes for Parkinson’s disease6 to regulating 
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mood in psychiatric conditions7– this dissertation focuses specifically on BMIs aimed to restore 

voluntary movement.  

Developing BMI to restore function after paralysis requires an understanding of how the 

nervous system encodes such movement. Scientists have been trying to determine how the motor 

cortex encodes for movement and subsequently how to interpret or “decode” these signals for decades. 

Evarts related the pyramidal tract neural firing rates to spontaneous8 and conditioned9 forces from 

wrist flexion and extension10, suggesting that more activity in the motor cortex led to more muscle 

force. Extending this work, Georgopoulos and colleagues suggested that neurons in the motor cortex 

encode for movement direction, describing a cosine function that related the activity of single neurons 

in the primary motor cortex of monkeys to the direction in which the monkeys moved their arms11. 

The development of microelectrodes has allowed scientists to record from multiple neurons 

simultaneously, improving our understanding of how the brain encodes movement. Such findings led 

to the first demonstrations of animals controlling robotic arms using neural signals recorded directly 

from the motor cortex in the late nineties12,13 and ultimately to the first demonstration in humans in 

2004, when Matt Nagle, a C3 tetraplegic paralyzed from the neck down, learned to control a 

prosthetic arm using signal recorded from his motor cortex14.  

To date, the majority of motor BMI research has focused on restoring upper arm reaching and 

grasping movements15–24, primarily through the use of an external device. In 2012, the BrainGate 

research consortium published a study in which they showed that two stroke survivors could learn to 

control robotic arms for reaching and grasping, with one individual being able to use the arm to drink 

coffee from a bottle for the first time unaided in almost two decades17.  
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While upper limb BMI technologies have seen many successes, far fewer studies have been 

conducted to develop BMI control of the lower limb25–28. Following years of pivotal work investigating 

how to stimulate the spinal cord to elicit movement in animals and humans with motor impairment29–

32, it has been argued that exclusively delivering such tonic “open-loop” stimulation protocols does not  

provide maximal therapeutic benefit33–37. Meanwhile, phasic stimulation (similar to that provided by 

supraspinal centers38,39,48–50,40–47) leads to more robust recovery of function28. While some have shown 

that motor cortical activity can be used to predict hindlimb and trunk kinematics during locomotion51 

and can theoretically be adequate to control a spinal cord stimulator to induce stepping after injury52, 

few have used these signals to control implanted muscle or spinal cord stimulators27,28,53. Recently in 

primates, Capogrosso et al. used hindlimb motor cortical activity to control epidural electrical 

stimulation to the lumbar spinal cord, restoring weight-bearing locomotion  in the affected limb after 

a unilateral corticospinal tract lesion in the thoracic spinal cord53. In the same year, a study in human 

subjects with motor complete spinal cord injuries showed that half of participants displayed marked 

improvements in their motor abilities, moving from ASIA-A (no motor or sensory function) or B (no 

motor function) class spinal cord injuries to ASIA-C (functionally incomplete injury in which over 

half of key muscles below the injury can generate gravity-eliminated movement) after a year of training 

with an EEG-controlled lower limb exoskeleton device54. Thus, spinal cord neuromodulation 

protocols to restore locomotion are likely augmented through BMI control.  

Despite great strides in restoring the ability to walk, these approaches required walkers or 

harnesses to provide lateral stability, or simply used a lateral hemisection model that permitted 

contralateral weight bearing. However, real-world movement requires the ability to respond to 
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obstacles, uneven terrain, and unexpected postural disturbances through the complex, concerted 

action of trunk and leg musculature. Minimal work in the brain-machine interface space has focused 

on this important function. To date, there appears to be one instance of using closed-loop control to 

improve trunk postural stability. In this case, bilateral kinematics, leg electromyographic signals, and 

ground reaction forces during continuous stepping controlled a bodyweight support system that 

controlled trunk orientation online55. They observed that proper trunk orientation improved 

locomotor performance.  Thus, while significant progress has been made in recent years demonstrating 

that the same principles that led to successes in upper limb BMIs can be used for lower limb BMIs, 

independent lower limb function cannot fully be optimized until mechanisms to improve vertical 

stability in both stance and during movement are considered.  

1.2 The cortex as a target for resorting postural stability  

Maintaining upright posture during stance and especially during complex movements requires 

highly interconnected circuits within the nervous systems (see Appendix for details). Thus, in 

developing novel technologies to restore this critical function, one could choose from several targets 

along the neural axis. However, the cortex is an attractive target for several reasons.  

First, from an economical perspective, maximizing the signal that can be understood from safely 

accessible cortical structures has several obvious advantages – especially when years of BMI efforts 

have used motor cortical signals. While one study controlled spinal cord stimulation with kinematic 

variables and ground reaction forces37, the translatability and scalability of this method is limited. In 

contrast, the majority of motor neuroprosthetics use cortical signals, whether recorded intracranially 
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or at the surface (e.g., through EEG) as a control signal. Thus, before finding secondary targets that 

would require additional hardware and possible invasive implantation surgeries, extracting the most 

signal from a singular target has significant financial and safety incentives.  

Second, from a feasibility perspective, the size and location of the cortex compared to many 

other structures in the nervous system involved in postural control provides many benefits. Its 

superficial positioning allows for safe, easy surgical access and its size provides a comfortable margin of 

error for the positioning of microelectrode arrays. While deeper structures (e.g., brainstem nuclei) are 

heavily involved in postural control, likely even leading to superior information about posture relative 

to that provided by the cortex, accessing these targets while avoiding damage to closely neighboring 

structures (such as critical respiratory centers) requires significantly more technical skill and risk.    

Third, from a basic science perspective, while the cortex may have a debated role in postural 

control prior to injury, it is necessary to initiate voluntary, targeted movements. Additionally, studies 

have demonstrated that the cortex is critical for maintaining the proper recruitment of competing 

muscle synergies56 as well as that cortical reorganization or “plasticity” is necessary for functional 

recovery after various neurological injuries. In both human and animal models, it has been shown that 

the extent of plasticity in the sensorimotor cortex correlates with spontaneous recovery of motor 

function31,57–64. Lesioning the region of the cortex that undergoes significant reorganization in spinally 

injured rats that undergo physical rehabilitation reverses any recovery of weight supported 

stepping65.  Interfacing with this reorganization may thus allow for greater improvements in outcomes 

for individuals with impaired motor function. Brain-controlled “neuromodulation therapies” have 

used cortical signals to control deep brain stimulation and epidural electrical stimulation of the spinal 



 6 

cord. When paired with physical rehabilitation, these technologies have led to enhanced recovery of 

volitional locomotor function after SCI66,67.  

Combined, these reasons make M1 a compelling region to understand. Thus, by recording 

ensembles of neurons in the regions of the primary sensory and motor cortices associated with the 

trunk and the limbs, I examine in this thesis the extent to which the cortex encodes for postural 

control (Chapter 2) and how two types of injury – complete spinal cord transection and a more 

clinically-relevant contusion – alter this encoding (Chapters 3 and 4, respectively).  

1.3 Employing Population Models to Study Cortical 
Computations 

With respect to motor BMIs, decoding recorded signals from the motor cortex (M1) is 

complicated by the fact that there is little consensus as to what M1 actually encodes68. Over the last 

fifty years, a “representational” approach to M1 has persisted, with the assumption that M1 simply 

processes inputs to encode for external kinematic variables69. As such, many have attempted to 

correlate M1 activity with myriad movement parameters10,70,71. However, such tuning curves have been 

shown to change with time72, arm location73, posture, and movement speed72. In other cases, no such 

tuning curves have been successfully modeled72,74,75. Thus, this traditional representational framework 

insufficiently captures M1 processes, limiting both basic science questions as well as the translational 

potential of M1 decoding.  

 While the neuron is the most basic structural unit of the nervous system, combinations of 

neurons (or a neural ensemble) form the functional units of our complex brains. While systems 
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neuroscience had focused on the single neuron for the bulk of the 20th century (partly due to 

technological constraints), it was Donald Hebb and his contemporaries in the 1940s who introduced 

the then unpopular idea of neural populations as a functional unit76. However, the work of 

Georgopoulos instigated the renaissance of this idea particularly in motor neuroscience, demonstrating 

that M1 encodes for arm movement direction at the level of populations of single units (rather than at 

the level of individual units). Such population analyses with respect to motor control have allowed for 

us to understand the complex, variable internal computations involved in movement preparation and 

execution77–79 and have ultimately led to better models of neural dynamics80–82 and even movement 

itself83,84.  Thus, in understanding and ultimately decoding movement generation, understanding the 

coordinated responses of neural population networks is of critical importance85.  

Various methods of understanding the structure of population activity exist, mostly employing 

dimensionality reduction techniques that capture a particular aspect of this activity to a certain 

empirical standard. For example, factor analysis and principal components analysis (PCA) are 

common methods that capture the greatest shared variance in the data with and without discarding 

spiking variability in individual neurons. The simplicity of these models is both an advantage and a 

limitation. Whereas PCA must often be used with trial-averaged data, ignoring trial-to-trial variability, 

it is incredibly interpretable and ubiquitously used both within and outside the field.  

Alternatively, the temporal evolution of neural covariance can also be extracted through 

dynamical systems80,82, gaussian process factor analysis78, or other more complex methods that even 

allow for comparisons of neural activity between experimental trials. As many have shown that M1 

population activity evolves through time86–91, dynamical systems models have gained popularity in 
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motor neuroscience. A dynamical system is a physical system in which the state s at time t+1 is a 

function of its current state at time t, additional inputs, and noise. In understanding M1 activity, 

dynamical systems modeling hypothesizes that the recorded neural activity arises from this latent 

“neural state”. Such modeling has allowed for better predictions of neural activity than models that do 

not account for such dynamics80,92–94 and for a deeper understanding of inter-trial variability. While a 

linear dynamical system cannot capture nonlinearities of the neural system in question like more 

complex models can (e.g., latent factor analysis via dynamical systems82, switching linear dynamical 

systems95, recurrent switching linear dynamical systems96, etc.), this simpler approach affords the 

ability to interpret the underlying system. Finally, while dynamical systems approaches model cortical 

activity exceptionally well, not all of this activity recorded during behavior directly relates to this 

behavior. A recently developed approach called preferential subspace identification (PSID)84 attempts 

to disentangle the underlying dynamics that are behaviorally relevant from those that are not (e.g., 

those associated with inputs from other neurons, unrelated internal processes,  etc.) and ultimately 

better predicts behavior. Such unravelling therefore allows for a better understanding of the 

computations the cortex undergoes during different behaviors. Thus, a dynamical systems model – 

whether accounting for behavioral dynamics or cortical dynamics in general – better represents the 

neural processes in the motor cortex, allows for interpretation of differences between individual trials, 

and outperforms many common decoders.  

Therefore, this combined work applies various types of dimensionality and modeling techniques 

ranging from simple population functions to preferential subspace identification in order to provide 

insight into how the cortical neurons as ensembles respond to and encode for postural perturbations.  
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1.4 Dissertation overview 

The central hypothesis of this work is that the cortex conveys significant information about 

unexpected postural perturbations even after spinal cord injury, and that this signal can be used to 

develop a postural BMI – a key step in ultimately developing a next-generation BMI to improve motor 

functioning.  

Chapter 2 addresses how the cortex is implicated during postural perturbations in the naive 

(uninjured) animal at both the individual neuron and population levels.  This work has recently been 

accepted for publication in Cell Reports, with the authors listed as Gregory D. Disse, Bharadwaj 

Nandakumar, Francois Pauzin, Gary H. Blumenthal, Jochen Ditterich, Zhaodan Kong, and Karen A. 

Moxon. I previously presented this work at the 2022 Society for Neuroscience annual meeting (Disse, 

Nandakumar, and Moxon, 2022). As lead author, my contributions included co-conceiving the study, 

developing the methodology, performing the experiments with BN and GHB, analyzing the data with 

BN, FP, and GHB, and writing the manuscript. Professor Moxon provided mentorship throughout 

the process.  

While the ability to understand how the cortex encodes postural control and even decode 

movement in the uninjured animal is important, the translatability of this concept to a 

neuroprosthetic is only relevant if these signals can also be interpreted after neurological injury. 

Chapter 3 addresses how a complete spinal cord transection, severing all ascending and descending 

connections between the lumbar spinal cord and supraspinal centers, alters the encoding of postural 

information. This work is published in the Journal of Neurophysiology, with the authors listed as Jaimie 
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B.  Dougherty*, Gregory D. Disse*, Nathaniel R. Bridges, and Karen A. Moxon, where the asterisk 

represents equal contribution. As co-first author, my contributions included analyzing the data 

collected by JBD and writing the manuscript.  

Chapter 4 addresses the effects of incomplete spinal cord injury on cortical posture dynamics, 

which is of critical importance when developing a translational application. While the previous 

chapter addresses the effect of complete spinal transection on cortical encoding, incomplete injuries 

(e.g., contusions) are significantly more common in the SCI population97,98. Additionally, we have 

demonstrated that animals who undergo longitudinal physical rehabilitation after spinal cord injury 

show unique cortical reorganization that is associated with improved functional outcomes65. Thus, 

this chapter also assesses the effect of physical rehabilitation on the cortical encoding of posture. This 

work is currently being prepared for submission with the authors listed as Gregory D. Disse, 

Bharadwaj Nandakumar, Gary H. Blumenthal, Logan M. Peters, and Karen A. Moxon. As lead 

author, my contributions included co-conceiving the study, developing the methodology, performing 

the experiments with BN and GHB; analyzing the data with BN, GHB, and LMP; and writing the 

manuscript. Professor Moxon provided mentorship throughout the process.  

All of this work was supported by the National Institutes of Health Grant R01 NS096971 

(Karen Moxon); the National Science Foundation Grant DARE – 1933751 (Karen Moxon); and the 

National Center for Advancing Translational Sciences, National Institutes of Health—UL1 

TR001860 and linked award TL1 TR001861 (Gregory Disse). 

1.5 Animal model  



 11 

A rodent model, specifically adult female Sprague-Dawley (Chapters 2 and 4) and Long Evans 

(Chapter 3) rats were used for all experiments. As this project focused on understanding postural 

control, many may question how well the findings from this model translate to bipedal humans. Given 

that bipedal activity in primates has been estimated to have begun at least 4-6 million years ago99, one 

could conclude that these two forms of movement must be vastly different. However, beyond the fact 

that most individuals with lower limb deficits after neurological injury require assistive devices (e.g., 

walkers, lateral support beams) to maintain horizontal stability (thus requiring both arms and legs), 

significant similarities actually exist in the neuroanatomical control of gait and posture between 

quadrupeds and bipeds. The three supraspinal locomotor regions – the mesencephalic, subthalamic, 

and cerebellar locomotor center – have been preserved during the transition to bipedal locomotion in 

the human100. A study comparing feline and human postural responses to anteroposterior disturbances 

when maintaining a quadrupedal stance101 showed that both species corrected stance primarily with 

the hindlimbs and used the forelimbs as “supportive struts.” From this result, they concluded that the 

hindlimb-dominated posture control is “probably common and relatively ancient pattern” and, 

importantly, that “reorganization of the hominid CNS circuitry was probably unnecessary because 

hindlimb control was already a feature of the system”.  

Second, regardless of whether the mammal consistently walks on all four limbs or just two, 

significant work has shown that innate neuronal networks providing the functional units for motor 

output are conserved across species. During human locomotion, interlimb reflexes in both the arms 

and legs after cutaneous nerve stimulation are phase modulated during the walking cycle102. This has 

been shown to even have important clinical implications for restoring voluntary movement after 
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neurotrauma. In case studies of locomotor retraining after SCI, Berhman and Harkema suggested that 

using the arms for postural and weight-bearing activity may actually inhibit rhythmic stepping with 

the leg; however, allowing normal reciprocal arm swinging facilitated stepping103. Similarly, 

Kawashima et al showed that in individuals with incomplete cervical injuries, arm activity facilitated 

leg muscle activity, “shaping” motor output for the legs104. Therefore, despite the certain differences 

between quadrupedal and bipedal locomotion and postural control, significant value can still be given 

to a quadrupedal animal model.  

Finally, the rat was chosen for this study as there is an abundance of work already on the 

anatomy, physiology, and behavioral science of the effect of spinal cord injury in this model. Rats have 

similar functional, electrophysiological, and morphological outcomes compared to humans following 

SCI. Thus, rodents offer well-described reproducible controlled SCI-models, established histological, 

biochemical, and molecular techniques, readily available behavioral outcome measure assays, and are 

relatively inexpensive and available to most researchers.  
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Chapter 2 – Neural ensemble dynamics in 
trunk and hindlimb sensorimotor cortex 
encode for the control of postural stability 

2.1 Summary 

The cortex has a disputed role in monitoring postural equilibrium and intervening in cases of 

major postural disturbances. Here, we investigate the patterns of neural activity in the cortex that 

underlie neural dynamics during unexpected perturbations. In both the sensory (S1) and motor (M1) 

cortices of the rat, unique neuronal classes differentially covaried their response to distinguish different 

characteristics of applied postural perturbations; however, there was substantial information gain in 

M1, demonstrating a role for higher-order computations in motor control. A dynamical systems 

model of M1 activity and forces generated by the limbs revealed that these neuronal classes contribute 

to a low dimensional manifold comprised of separate subspaces that define different computations 

depending on the postural responses and are enabled by congruent and incongruent neural firing 

patterns. These results inform how the cortex engages in postural control, directing work aiming to 

understand postural instability after neurological disease.  

2.2 Introduction 

Navigating our surroundings, standing in place, or even quiet sitting require the central 

nervous system to constantly monitor and coordinate continuous muscle activations. Spinal circuits 

interface with descending supraspinal signals to inform appropriate motor responses based on 
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somatosensory, visual, and vestibular inputs 105,106. While various spinal cord and brainstem circuits 

have been heavily studied 107–109, the role of the cortex remains debated if not dismissed. Noninvasive 

recording methods in humans have shown signals linked to the frontocentral cortex that scale with 

perturbation difficulty as well as aging 110–113. Despite advances in our ability to directly record neural 

activity within the cortex especially in animal models, such work with relation to postural control has 

remained limited. In few such examples, neurons in the rat hindlimb motor cortex responded to 

postural perturbations, regardless of their predictability 114,115 and ultimately convey information about 

these disturbances within the first few hundred milliseconds of their onset 114,116. Given the critical 

function of cortical circuits for functional recovery after neurological injuries 63–65,117–119, 

understanding the computations M1 performs during postural control is crucial to optimize recovery 

of function after injury.  

Unfortunately, this limited intracortical work has largely focused on the hindlimb motor 

cortex and has almost exclusively studied the independent activity of individual neurons. This 

constrains our understanding of how the cortex encodes for postural information for two 

reasons. First, postural control requires not only the limbs, but also the active engagement of trunk 

musculature 120–122. In humans, trunk contractions modulate corticospinal excitability of the limb 

muscles and vice versa 123, supporting the close functional and anatomical relationship of the trunk and 

limb systems. Thus, investigating areas beyond the hindlimb cortex will more adequately explain the 

cortical postural system. Second, neurons do not function independently. Current recording 

technologies and analytical techniques have allowed for a deeper comprehension into the 

computations that populations of cortical neurons employ together as an ensemble (see review in 
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Gallego et al., 2017) during motor planning and execution 77,86,92,124, as well as during locomotion 125–127. 

A significant result of this work has suggested that characterizing the dynamical response of a neural 

population, rather than simply assessing covariance between neurons, can allow for better predictions 

of neural activity and, importantly, provide insight into the computations the brain performs during 

motor tasks. Therefore, to understand the computations undertaken by the cortex during postural 

control, it is necessary to characterize population dynamics.  

Here, we describe the extent to which populations of cortical neurons recorded from the 

hindlimb and trunk regions within both the primary motor (M1) and sensory (S1) cortices of the rat 

encode for unexpected postural perturbations. In summary, M1 and S1 conveyed highly redundant 

information about the different perturbations, accomplished by different neural populations 

modulating their responses based on the speed and direction of the perturbation. Neurons could be 

grouped into separate classes characterized by their similar (congruent) or different (incongruent) 

firing rate statistics 128 in response to different directions of tilt. Presumed higher level computations 

further increased the information conveyed by M1 relative to S1 while also inhibiting neuronal activity 

within S1. Preferential subspace identification (PSID), a linear dynamical systems approach that 

prioritizes the extraction of behaviorally relevant dynamics 84 demonstrated that M1 activity was 

sufficient to decode the corrective forces generated by the animal to maintain balance. Further 

investigation into these rotational cortical ensemble dynamics suggested that, depending on the 

direction of tilt, the neural population activity occupies different regions or “subspaces” within the 

dynamical state space and that both congruent and incongruent neurons contribute to this divergence. 

The incorporation of incongruent neurons could explain efforts by the cortex to separate these two 
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subspaces and contribute to the coordination of unique perturbation-direction specific forces 

generated by muscular responses (i.e., synergistic flexion and extension of the limbs). These results 

clarify that cortical computations support higher-order processing related to mechanisms that ensure 

stability in the state of imbalance.   

2.3 Results 

2.3.1 Trunk and hindlimb M1 convey more information than trunk and hindlimb 
S1 

To study encoding strategies used by the cortex for postural control, we employed a simple 

and naturalistic task (Figure 2.1A) in which rats (N=13) had to maintain balance while standing 

unrestrained on a platform that tilted randomly at two different speeds in each direction in the lateral 

plane (Figure 2.1B). To maximize the unexpected nature of the task, tilts were delivered 

at a random “inter-tilt” interval with no additional visual or auditory cues. At the same time, the firing 

activity of 887 manually-sorted single neurons (68 ± 28 per animal) was recorded using microwire 

arrays implanted in the trunk and limb representations of the primary sensory cortex (S1) in one 

hemisphere (n = 388 neurons) and in the trunk and hindlimb representations of the primary motor 

cortex (M1) in the contralateral hemisphere (n = 499 neurons) based on coordinates from our previous 

work 129 (Figure 2.1C).  

First, to explore differences between the cortical areas in the encoding of postural 

perturbations, we compared the amount of mutual information in M1 and S1 about the tilts. Overall, 

the firing patterns of individual M1 neurons at 1.5 seconds after tilt onset (the time by which all  
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Figure 2.1. Experimental Design. 

 
a Tilt task. Animals were placed on a platform with three separate Plexiglas surfaces such that each hindlimb 
rests on its own surface and both forelimbs rest on the third surface. For a subset of animal, transducers 
embedded in each platform surface recorded ground reaction forces (GRFs) over time. b Four tilt profiles. After 
a random 2-3 second inter-tilt interval (“Baseline”), the animal was tilted in either the clockwise (CW) or 
counterclockwise (CCW) direction at either a fast or slow velocity (“Tilt Out”). Once reaching a peak angle, the 
platform returned to the neutral position at the same velocity for all tilts (“Return Tilt”). Arrows denote 
“Baseline”, “Tilt Out” and “Return Tilt” intervals for Slow CW tilts. c Electrode locations in each cortical 
hemisphere relative to putative sensory (S1) and motor (M1) cortical targets (based on [Nandakumar et al., 
2021]). The 32-channel microwire arrays primarily targeted the trunk representation of M1 and S1, with the 
M1 array implanted slightly more laterally to avoid the superior sagittal sinus. d Exemplar neural and behavior 
(GRF) responses. Neural: peri-event raster plots and histograms (displaying firing probabilities) shown for a 
single recorded neuron. Behavior: Forces recorded from right hindlimb (RHL), left hindlimb (LHL), and 
combined forelimb (FL) sensors in the anteroposterior (AP), mediolateral (ML), and dorsoventral (DV) are 
shown over a sequence of six tilts. 
perturbations would be completed) conveyed more information about the perturbation type than 

those in S1 (Figure 2.2A) [U = 53868, p < 0.0001]. This remained true at multiple timepoints ranging 

from 0.1 to 1.5 seconds after tilt onset) (Figure 2.3A). As neurons also employ population coding 

strategies, we calculated the amount of information conveyed by ensembles of neurons. Since the size 
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of a population would affect mutual information, we sampled an equally sized random subset of 

neurons from M1 and S1 and then calculated the population-level information of these regions  

Figure 2.2. Significant information gain occurs in M1 compared to S1. 

 
a Single neuron information compared between M1 and S1. b Population information for equally sized S1 and 
M1 when separated and combined. Plotted are means within animal after 1000 permutations of sampling 
without replacement. Lines connect results for a given animal. c Single neuron information when comparing 
subregions within M1 and S1 separately. (A and C) plot individual neuron values, medians and interquartile. 
(A-C) ns = Not Significant, ****p<0.0001, ***p<0.001.  
separately and together. This was repeated 1000 times with different subsets, and the means of those 

permutations were analyzed for each animal. Just as at the individual neuron level, M1 conveyed 

significantly more information than S1 at the population level (Figure 2.2B) [t(9) = 7.752, p < 0.0001]. 

Additionally, we observed significant redundancy  between the mutual information conveyed by M1 

and S1 about the tilts, as the information conveyed by M1 and S1 combined was notably less than the 

summed information of each region [t(9) = 4.580, p = 0.0012]. Together, this data demonstrates that 

M1 has a clear gain in information compared to S1, which could be due to higher-order computations 

that the brain engages in (e.g., motor planning, sensory gating, efference copy, etc.) during postural 

control. 

To delineate the decoding ability of these two cortical regions more thoroughly, we separated 

them out into subregions based on previous acute mapping and sensory-evoked potential results 129. 
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Within M1 (Figure 2.2C), we recorded from hindlimb (HLM1) as well as the trunk musculature 

(TrM1) regions (n = 136 and n = 363 neurons, respectively). Interestingly, individual neurons in 

TrM1 conveyed just as much information about the stimulus as neurons in HLM1 [U = 23959, p = 

0.6132]. This result highlights the strong functional relationship between these two regions during 

postural control.  

In contrast, within S1 (Figure 2.2C) [H(3) = 28.5, p < 0.0001], the information conveyed by 

the forelimb (FLS1, n = 66 neurons) and hindlimb (HLS1, n = 46 neurons) regions was comparable [p 

> 0.9999] and significantly greater than that conveyed by the trunk region (TrS1, n = 276 neurons) 

[FLS1 v. TrS1, p < 0.0001; HLS1 v. TrS1, p = 0.0006]. This is likely explained by the fact that HLS1 

and FLS1 have the benefit of receiving both proprioceptive and tactile sensory information (as the 

limbs are in direct contact with the platform) whereas TrS1 receives predominately proprioceptive 

information during this task. 

Importantly, the fact that M1 conveyed more information than S1 was not simply due to the 

relatively low information observed in TrS1. When comparing HLM1 and HLS1 neurons only, M1 

still conveyed significantly more information than S1 [U = 2255, p = 0.0044] (Figure 2.3B).    

Thus, we observed significant differences between the information conveyed by motor and 

sensory cortex as well as within these respective cortices themselves. Since postural corrections have 

both a strong sensory and motor component, and since the information in S1 is redundant with the 

information in M1, the added information in M1 beyond that provided by sensory inputs is likely due 

to additional internal computations relayed to M1 or even within M1 itself.  
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Figure 2.3. Further information analyses. 

 
a Information was compared between M1 and S1 using different windows: 100, 200, 300, 400, 500, 1000, and 
1500ms after tilt onset. There was a significant effect of hemisphere [F(1, 879) = 116.6, p < 0.0001, Two-way 
repeated-measures ANOVA], with M1 conveying more information than S1 at every time point [100ms: p = 
0.0034; All others: p < 0.0001, Sidak post hoc comparisons]. b Information was also calculated using only 
HLM1 and HLS1 neurons [Mann Whitney U = 2255, p = 0.0044]. **p < 0.01. A 50ms bin size was used both 
all analyses.  

2.3.2 Similar covariance patterns in the population response across animals 
support consistent cortical strategies 

Both individual neurons and neural ensembles in M1 and S1 conveyed significant information 

about the postural perturbations of the task. However, that does not explain how these regions encode 

for these perturbations. We thus sought to uncover the computations that support cortical encoding 

of postural control at the population level.   

Using principal components analysis (PCA), we extracted the three largest sources of 

covariance in the neural firing activity for each animal. These three principal components captured a 

significant amount (50-70%) of the variance (Figure 2.4A) and, when examining how each tilt type 

altered the responses of these components, we observed three common covariance patterns in almost 
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all animals (Figure 2.4B): (1) a relative increase in activity after tilt onset (“Excitation Component”), 

(2) a tilt-dependent increase or suppression of activity (“Mixed Component”), and (3) a relative 

decrease in activity after tilt onset (“Inhibited Component”). Thus, instead of organizing the 

components by variance explained (e.g., PC1, PC2, and PC3), we categorized the components into 

one of these three patterns (i.e., Excitation Component, Mixed Component, Inhibited Component). 

In PC space, the neural population activity diverged in response to the four tilts in a manner highly 

consistent across animals (Figure 2.4C), suggesting a common strategy across animals for encoding 

postural signals.   

Differences in the responses of Excitation and Mixed Components (Figure 2.4B) to each tilt 

type suggests that these particular components may encode unique features of the tilt (e.g., speed and 

direction). The magnitude of excitation in the Excitation Component scaled with the speed of the tilt 

and the Mixed Component showed either increased or decreased activity based on the tilt’s direction. 

In contrast, modulation of the Inhibited Component appeared independent of tilt type. If excitation 

and mixed-response covariance patterns supported a mechanism that led to better encoding of tilt-

type, we hypothesized that motor cortex neurons would be more heavily weighted in these 

components than sensory cortex neurons. Thus, we examined how the individual neurons contributed 

to each of these three components (Figure 2.4D). Indeed, M1 was more heavily weighted in both the 

Excitation [U = 74084, p < 0.0001] and Mixed [U = 50750, p = 0.0097] Components whereas S1 was 

more heavily weighted in the Inhibited Component [U = 77245, p < 0.0001]. Of note, within M1, 

subregions were equally weighted across all three components [Excited: U = 23089, p = 0.1320; 

Mixed: U = 13886, p = 0.8528; Inhibited: U = 21781, p = 0.5540]. In contrast, in S1, subregions were 
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Figure 2.4. PCA reveals three common response patterns among animals. 

 
a For each animal, the first three principal components together captured 50.9-69.8% of the variance (median 
line at 56.6). b Responses of exemplar Excited, Mixed, and Inhibited Components to the four tilts. c Exemplar 
projections of neural response into PC space for two animals. b,c Solid, darker-colored line represents tilt out; 
dotted, lighter-colored line represents return tilt. d Relative loadings of individual neurons for each Component 
separated by region and then by M1 and S1 subregion. ns = Not Significant, ****p<0.0001, **p<0.01, *p<0.05. 
unequally weighted in the Excitation [H(3) = 51.37, p < 0.0001] and Inhibition Components [H(3) = 

7.603, p = 0.0223]. This was driven by statically significant differences between the trunk (TrS1) and 

limb (HLS1 and FLS1) representations in the Excited Component [TrS1 v. FLS1, p < 0.0001; TrS1 v. 

HLS1, p < 0.0001; FLS1 v. HLS1, p = 0.1062] and a similar trend in the Inhibited Component [TrS1 

v. FLS1, p = 0.1764; TrS1 v. HLS1, p = 0.0654; FLS1 v. HLS1, p > 0.9999]. 
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2.3.3 Single neuron activity supports population patterns and differential 
encoding abilities between cortical regions 

The three unique population covariance patterns identified by PCA hinted at a possible mechanism 

for encoding important perturbation-related information in both M1 and S1. We therefore wanted to 

determine if similar firing patterns were observed at the individual neuron level. If so, this would 

suggest cellular-level encoding strategies driving these covariance patterns at the population level. 

Indeed, we observed neurons that were congruent, showing exclusive increases (excited) or exclusive 

decreases (inhibited) in activity regardless of tilt direction as well as cells that were incongruent, 

increasing their response to tilts in one direction and reducing their response to tilts in the opposite 

direction (mixed) (Examples of individual neurons in Figure 2.5A). Neurons that did not show 

threshold-crossing responses were considered nonresponsive. Therefore, instead of comparing how 

different regions contributed to the PCs as in Figure 2.4D, we evaluated the normalized weightings of 

these particular neuron response types in each of the observed components, where each neuron 

provided a 0-1 weight to each principal component (Figure 2.5B). As expected, excited neurons were 

the primary drivers of the excited PC [H(4) = 365.7, p < 0.0001, Excited v. Inhibited, p < 0.0001; 

Excited v. Mixed, p < 0.0001; Excited v. Non-Responsive, p < 0.0001], mixed neurons drove the 

mixed PC [H(4) = 49.34, p < 0.0001, Mixed v. Excited, p < 0.0001; Mixed v. Inhibited, p < 0.0001; 

Mixed v. Non-Responsive, p < 0.0001], and inhibited neurons drove the inhibited PC [H(4) = 184.2, 

p < 0.0001, Inhibited v. Excited, p < 0.0001; Inhibited v. Mixed, p < 0.0001; Inhibited v. Non-

Responsive, p < 0.0001]. We thus observed that these single neuron response types each drive the three 

largest sources of covariance captured in the neural population observed across animals.   
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Figure 2.5. Neural response types explain PCA patterns. 

 

a Exemplar peristimulus time histograms (PSTHs) of one Excited neuron, one Inhibited Neuron, and one 
Mixed neuron in response to the four tilt types. b Relative loadings of individual neurons for each Component 
separated by neuron response type. Black bars denote medians and whiskers denote interquartile ranges. c 
Performance of neuron response types in encoding tilt speed and tilt direction, separately for M1 and S1. Bars 
represent medians. d Proportion of each cell type in M1 and S1 (left) and then within M1 and S1 subregions. b-
d ns = Not Significant, ****p<0.0001, **p<0.01. 

Since these unique response types were the source of this population covariance, and since we 

hypothesized these different population covariance patterns carried parallel streams of information 

about the tilts, we explicitly assessed how well these different classes of neurons defined by these 

response types can separately encode the speed and direction of different tilts (Figure 2.5C). Within 

both M1 and S1, when comparing performance based on the parameter being compared (e.g., tilt 

direction) and the neuron response type, there was a clear effect of neuron type [M1: F(2,441) = 17.51, 
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p < 0.0001; S1: F(2,274) = 26.54, p < 0.0001] and a significant interaction [M1: F(2,441) = 49.21, p < 

0.0001; S1: F(2,274) = 20.49, p < 0.0001]. 

In both M1 and S1, excited neurons predicted tilt speed better than tilt direction [M1: t(441) 

= 5.075, p < 0.0001; S1: t(274) = 6.883, p < 0.0001]. In contrast, mixed neurons decoded tilt direction 

better than tilt speed [M1: t(441) = 8.475, p < 0.0001; S1: t(274) = 3.371, p = 0.0030]. In contrast, 

inhibited neurons performed equally across these two parameters [M1: t(441) = 1.177, p = 0.5610; S1: 

t(274) = 0.024, p > 0.9999], and performed worse than the other neuron types in both measures [M1 

Excited v. M1 Inhibited: t(441) = 3.108, p = 0.0060; M1 Mixed v. M1 Inhibited: t(441) = 5.864, p < 

0.0001; S1 Excited v. S1 Inhibited: t(274) = 5.570, p < 0.0001; S1 Mixed v. S1 Inhibited: t(274) = 

6.335 < 0.0001]. Therefore, within this postural task, we uncovered two distinct neural populations 

responsible for the largest covariance patterns observed at the population level as revealed by PCA that 

encode for the two salient features of the task (tilt speed and direction). Through speed-scaled 

excitation and a separate population of neurons with direction-specific excitation or inhibition, the 

cortex can encode unexpected postural perturbations.  

Since we uncovered a clear mechanism that allows the cortex to convey speed and direction 

information about the tilts, we hypothesized that it was the relative proportions of these neuron types 

in M1, S1, and their respective subregions that at least partially drove their unequal encoding abilities. 

While each neuron type existed in both M1 and S1, the distributions of these neurons significantly 

differed between the two regions [χ2(3) = 87.324, p < 0.0001] (Figure 2.5D). First, a larger proportion 

of recorded neurons in M1 (89.2%) responded to the task than in S1, with less than 75% of S1 neurons 

responding to at least one tilt. Second, excitation was the predominant response type in M1, making 
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up over half of the recorded neurons in M1. Third, M1 had a larger proportion of mixed neurons, 

whereas S1 had a larger proportion of inhibited neurons. When comparing the subregions within M1 

and S1, the distribution of these neuron types was largely homogenous between TrM1 and HLM1 

(Figure 2.5D) [χ2(3) = 4.7763, p = 0.1889]. However, S1 regions corresponding to the limbs were 

much more responsive to the task. Interestingly, TrS1 displayed a uniquely high proportion of 

inhibited neurons (31.9%) compared to all other recorded regions (0%-16.2%). Since TrS1 is receiving 

predominately proprioceptive information during this task, this further supports the idea that these 

inhibited responses reflect sensory gating or the effects of efference copy mechanisms 130–134 during the 

coordination of complex movements, primarily driven by the proprioceptive system. 

2.3.4 Corrective postural movements can be adequately decoded on single-trial 
basis with a low number of behaviorally relevant dimensions 

While we found basic cellular and network-level mechanisms supporting cortical encoding of 

postural perturbations, the information gain that we observed in M1 motivated us to explore the 

specific task-related computations M1 conducted throughout the perturbation. State-space modeling 

using a linear dynamical systems approach allows us to uncover these dynamics of the trunk and 

hindlimb M1, as well as decode corrective limb responses. We specifically employed preferential 

subspace identification (PSID) 84 to extract behaviorally-relevant neural dynamics. In a subset of four 

animals, we recorded the activity in M1 (n = 34-72 neurons) while also capturing changes in ground 

reaction forces and torques as the animals completed the tilt task. Sensors embedded in the platforms 

under each hindlimb and the combined forelimbs continuously recorded three-dimensional forces and 

torques (thus three force and three torque measures per sensor, or 18 behavioral measures per animal). 
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Figure 2.6. PSID captures behaviorally-relevant dimensions that involve all neuron types. 

 

a Results from 5-fold cross-validation showing overall accuracy of decoding 18 force and torque measures based 
on M1 activity across trials using PSID model with an increasing number of dimensions. Means and standard 
deviations of 5 cross-validation values plotted. A dimensionality of 1-20 as well as that of the total number of 
neurons recorded for each animal (n = 34-72) was assessed. Inset shows the decoding accuracy for the first ten 
dimensions to highlight the elbow curves for each animal. CC = correlation coefficient. b-c Relative weights of 
neurons for each of the three latent dimensions (X1, X2, and X3) derived from a 3D PSID model based on M1 
subregion (B) and neural response type (C). Only significance values p<0.05 plotted in (C). ns = Not 
Significant, ****p<0.0001, *p<0.05.  

Through five-fold cross validation, we found that we were able to use M1 activity to decode 

instantaneous ground reaction forces across trials just as well as using a latent state dimensionality 

significantly smaller (e.g., 2-4 dimensions) than the dimensionality of the neural activity (Figure 2.6A). 

When we repeated this modeling using both M1 and S1 activity, S1 neurons minimally contributed to 

the resultant dynamics (Figure 2.7B) and decoding accuracies were unchanged (Figure 2.7A), 

supporting our mutual information results. Thus, modeling M1 activity as a low-dimensional, time-

invariant linear dynamical system separately for each animal sufficiently captures behaviorally-relevant 

dynamics that encode for the body’s corrective movements (i.e., forces and torques) during a postural 

task.  

Whereas we observed that each of the three distinct response patterns gleaned from PCA were 
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Figure 2.7. Comparing PSID models with and without S1 

 
a Decoding accuracy from a three-dimensional model with either M1 alone as the input neural activity or both 
M1 and S1 neurons as the input activity plotted for each of the four animals [t(3) = 1.652, p = 0.1971, paired t 
test]. b Relative weights of neurons in M1 and S1 for each of the three latent dimensions (X1, X2, and X3) 
derived from a 3D PSID model based on M1 and S1 activity. Median and interquartile ranges shown. [Effect of 
Region: F(1,310) = 54.18, p < 0.0001, Repeated measures two-way ANOVA; X1: t(930) = 4.71, p < 0.0001; 
X2: t(930) = 4.588, p < 0.0001; X3: t(930) = 7.925, p < 0.0001, Sidak post-hoc comparisons]. CC = Correlation 
Coefficient, ns = Not Significant, ****p < 0.0001. 

driven by the different neuron types, the contribution of neurons to each PSID-derived latent 

dimension was more evenly distributed, implying PSID captured patterns beyond covariance . We 

normalized the Cy matrix (the transformation matrix relating observed neural data y to the latent 

dimensions x) such that each neuron had a 0-1 weight for each latent dimension. We first examined 

how neurons from the two M1 subregions were weighted within each latent dimension (Figure 2.6B). 

While neurons were clearly weighted differently between latent dimensions [Effect of Dimension: 

F(1.969, 346.6) = 11.80, p < 0.0001], we saw that the M1 subregions were evenly distributed within 

each latent dimension [Effect of Region: F(1,176) = 2.976, p = 0.0863]. Similarly, while the relative 

weightings of different neuron response types (Figure 2.6C) differed for each of the three latent 
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dimensions [Effect of Dimension x Response Type: F(6,348) = 2.960, p = 0.0079], no neuron type or 

combination of response types dominated a particular dimension. Thus, somewhat intuitively, this 

linear dynamical systems approach captured a different aspect of how M1 encodes for postural 

control, in which different neuron types from different M1 subregions work together to encode for 

behavior.  

2.3.5 Neural population dynamics exhibit a low-dimensional structure that 
suggests higher-order cortical processing 

Since a low-dimensional linear dynamical systems model of M1 population activity adequately 

predicted single-trial postural corrections, we wanted to characterize this underlying latent activity and 

how it evolved during the different tilts. To do this, we extracted a 2D representation of the neural 

dynamics for visualization on a single plane representing the top two behaviorally-relevant latent 

dimensions during both the tilt out and return tilt for all four tilt types (Figure 2.8A). As has been 

observed in many motor tasks in humans and primates 82,90,92,135, we observed clear rotational dynamics 

on a single-trial basis. 

We additionally observed three notable characteristics of the dynamics. First, when dividing a 

perturbation into its initial “tilt out” (i.e., from the neutral position to the maximum tilt angle) and the 

subsequent “return tilt” (i.e., from the maximum tilt angle to the neutral position), one could expect 

neural dynamics to evolve in at least one of two ways. On the one hand, the cortex could traverse the 

same region or subspace of the low two-dimensional manifold, during both components, essentially 

“reversing” its dynamics of the tilt out phase during the return tilt phase. This was observed using 

PSID during a center-out reaching task with non-human primates 84. Alternatively, the cortex could 
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Figure 2.8. Rotational M1 dynamics encode for mediolateral corrective forces. 

 

a Exemplar 2D neural trajectories from PSID models for two animals. Dots and thin lines represent individual 
trials, with the dots indicating the starting point of the trajectory (when the tilt began). Bold lines indicate trial-
averaged trajectories for each tilt type, with the solid line indicating “tilt out” and dashed line indicating “return 
tilt”. b Neural firing rates during five bins along the neural trajectories were compared to trial-averaged activity 
for each tilt type. Higher percentages indicate higher similarity. (Left) shows results for one animal. (Right) 
shows results across animals. c The ability to decode ground reaction forces and torques based on M1 activity 
was assessed using test data. Chance accuracy ranges across all four animals for each measure are shown in light 
grey. Blue significance bars indicate the effect of sensor; black significance bars indicate effect of directionality. 
CC = correlation coefficient; ML = mediolateral; DV = dorsoventral; AP = anteroposterior. ns = Not 
Significant, ***p<0.001, **p<0.01, *p<0.05.  

follow a non-overlapping different trajectory back to its original state, utilizing a different subspace, 

forming a circular trajectory. We observed the latter case, in which the cortex traversed different 

regions of the latent state space. Thus, even though movement of the platform during the return tilt is 

simply a reversal of that during the tilt out, the cortex did not simply “reverse” its dynamics. Rather, it 
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employed unique computations during these two phases of the perturbation to allow the dynamics to 

follow a continuous path during the entire tilt. 

Second, tilts in opposite directions caused M1 dynamics to traverse a separate trajectory for the 

duration of the tilt. Moreover, the dynamics of tilts in opposite directions are mirror images of each 

other, orthogonal to the reflection for tilts out versus return tilts. Finally, and most interesting, despite 

a population of neurons that covary their firing rate in proportion to the speed of the tilt, similar 

dynamics were seen between fast and slow tilts in a given direction, suggesting possible speed-invariant 

processing patterns for similar behavioral responses that occur at different timescales. 

To clarify that these latent dynamics are a function of the recorded neural firing patterns, we 

tested whether the observed dynamics, in the two-dimensional subspace, were supported by 

differences in neural spiking at different time points along the trajectories. For example, if the cortex 

truly traverses different subspaces during the two phases of the perturbation, the neural firing activity 

at the time points when the latent activity occupied different areas within the subspace should also be 

different. We divided the entire duration (binned at 24ms) of the tilt (tilt out and return tilt) into nine 

epochs, and examined the neural spike counts of the first 24ms bin of each epoch. For each trial of a 

given tilt type, this generated nine “candidate bins” that were each compared using a leave-one-out 

method to the trial-averaged spike counts of each of those nine bins (“templates”). The candidate bin 

was classified into the bin that had the smallest Euclidian distance relative to each template. The 

percentage of candidate bins that were classified into the correct template bin was then recorded. 

When comparing the individual trials of a tilt type to the templates of that same tilt type, this 
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percentage represented how characteristically distinct the spike counts of a given epoch were from the 

other eight epochs.  

This was then repeated comparing the candidate bin of one tilt type’s trial to the templates of a 

different tilt type, and a percentage was calculated in the same way. In this case, a higher classification 

performance would suggest a strong similarity in the neuronal response patterns – and thus in the 

ensemble dynamics – across similar phases of the tilt. This process generated a 4x4 grid of percentages 

for each animal comparing the trials of four tilt types to the templates of each of the four tilt types 

(Figure 2.8B).  

Neural patterns were sufficiently different throughout the phases of the tilt out and back 

within a specific tilt type (i.e., when the candidate bins and template bins came from the same tilt type) 

to lead to high classification performance (40-80%). This directly supports our first claim that tilting 

out causes the cortex to enter different regions of the state space than during the return tilt. We then 

generated three separate linear mixed effect models to see if changing the speed (Model 1), direction 

(Model 2), or both speed and direction (Model 3) of the template’s tilt type relative to the candidate 

trial would affect classifier performance – all with the animal as a random effect. The direction of the 

template’s tilt affected performance [Model 1 v. Model 3, χ2 (1) = 21.68, p < 0.001], such that when 

the candidate tilt and template tilt were in different directions, performance dropped by 23.87 ± 

5.59% (standard error). This supports our second observation that tilts in the opposite direction led to 

unique neural activity at comparable phases of the perturbation and thus diverging neural trajectories. 

In contrast, the speed of the template’s tilt did not significantly affect performance [Model 2 v. Model 

3, χ2 (1) = 5.55, p = 0.06]. Thus, neural activity (and thus latent dynamics) during the different phases 
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of the tilt were highly similar despite different tilt speeds. Therefore, the different regions of the state 

space visited by our PSID-derived neural trajectories were supported by distinct neural firing activity. 

2.3.6 The cortex encodes for changes in center of pressure 

Given the fact that the PSID model captured behaviorally relevant dynamics, we sought to 

evaluate how well each of the different ground reaction forces and torques could be decoded from 

cortical activity (Figure 2.8C). Whereas the model equally predicted the forces from each limb (i.e., 

forelimbs v. hindlimbs) [Effect of Sensor: F(2,6) = 1.100, p = 0.3917], there was a clear effect of 

directionality on decoding ability [Effect of Direction: F(2,6) = 8.723, p = 0.0168], forces applied in 

the mediolateral direction were decoded better than those in the anteroposterior direction [t(6) = 

4.117, p = 0.0186] across animals. In contrast, torques produced by each hindlimb were better 

decoded than those produced by the combined forelimbs [Effect of Sensor: F(2,6) = 9.167, p = 

0.0150; Forelimbs v. Right Hindlimb: t(6) = 3.961, p = 0.0222; Forelimbs v. Left Hindlimb: t(6) = 

3.389, p = 0.0434], which was likely driven by the particularly poor performance decoding forelimb 

torques along the anteroposterior axis relative to the other two axes [Effect of Sensor x Direction: 

F(4,12) = 3.359, p = 0.0460; Forelimb anteroposterior v. mediolateral torques: t(12) = 4.987, p = 

0.0009; Forelimb anteroposterior v. dorsoventral torques: t(12) = 4.193, p = 0.0037]. This bias for 

decoding the body’s reactive forces and torques made along the mediolateral axis is supported by the 

nature of our task. During the tilt task, the mediolateral aspect of the animal’s center of pressure is 

primarily perturbed, providing data that sufficiently explores the relevant state space to generate a 

model that can predict forces and torques about the mediolateral direction. We would expect if we had 
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sufficient data to explore tilts in other directions, the model would have been able to predict the center 

of pressure in any direction.      

2.4 Discussion 

Using a naturalistic task that requires complex coordinated movement of the entire body, the 

present study more thoroughly characterized how the cortex engages in postural control. Beyond 

demonstrating that the cortex conveys information about postural perturbations, our results show 

that the motor cortex conveys significantly more information about the tilts than sensory cortex. As 

would be expected within S1, forelimb and hindlimb S1 convey more information about the tilts than 

trunk S1 owing to the fact that they carry additional tactile information not conveyed by trunk S1; 

however, within M1, trunk conveys similar information as the hindlimb region. Considering the 

similar encoding abilities of the trunk and hindlimb motor cortex as well as their similar response 

profiles to the task, it is evident that these two regions have homologous encoding strategies, 

supporting a strong functional coupling between the trunk and hindlimb region that allows for the 

coordination of muscle synergies during postural control 120,129,136. Moreover, neurons within both M1 

and S1 could be categorized by their firing patterns (i.e., excited, mixed, and inhibited) in response to 

the perturbations. PCA analysis demonstrated that neurons with similar firing patterns covary 

together and convey specific information about the features of the tilt (e.g., speed or direction). 

However, the cortical dynamics relevant to postural control in M1 rely on all three of these neuron 

types. Additionally, the neural trajectories traversed a different portion of the latent state space during 

tilt out compared to tilt back, and tilts to the right occupied a separate subspace compared to tilts to 
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the left – all supported by differences in recorded neural firing activity at these different epochs. 

However, the cortex employs similar latent dynamics regardless of the tilt’s speed, suggesting that the 

neural computations for slow tilts are similar to those of fast tilts, albeit moving through the state 

space at different speeds. 

2.4.1 The role of neural dynamics in coordinating postural control 

The neuroanatomical and functional circuitry involved in postural control is complex. It is 

generally believed that a distributed network of neural areas in the central nervous systems are involved 

in postural control, with the particular role of the cortex up for debate. Dietz et al. argued that the 

cortex is involved in coordinating reactive postural adjustments 137. The present study supports this 

claim. Using a three-dimensional dynamical systems model of the motor cortex (preferential subspace 

identification), instantaneous ground reaction forces and torques – particularly those associated with 

mediolateral shifts in center of pressure – could be decoded from extracted behaviorally-relevant latent 

activity as the animal was tilted in the lateral direction.  

This latent M1 activity followed rotational dynamics, which have primarily been observed in 

purely voluntary tasks with a motor preparatory phase 82,86,90,92. Our observation of rotational dynamics 

in a more reactionary task suggests that, whether through intrinsic connectivity or through substantial 

sensory feedback 138, the motor cortex is actively engaging in the control of posture. Additionally, 

different dynamics and distinct neural activity were observed during the task’s “out” and “back” 

phases. Thus, the sensorimotor experience during the return tilt is not simply a “reversal” of dynamics 

during the initial tilt out, but actually requires novel computations associated with the different 
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muscle activations in response to the different sensory inputs. This is despite the fact that, for the slow 

tilts at least, the return of the platform is the exact reversal of the outgoing movement of the platform. 

The need for novel computations is likely driven by differences in the control issues related to 

maintaining center of mass during tilts out versus during tilts back. 

However, differences in the speed of the tilts were handled differently. In this case, whether 

the tilt is fast or slow, a comparison of trajectory shapes and neural firing activity suggest that the 

computations are the same with only the timescale adjusted 139–142. Other work in monkeys has shown 

that primary and premotor cortices contain significantly more direction-related information than 

speed-related information at both the individual neuron and population level 143. This may be because 

difference in computations related to temporal factors are not handled by a unique set of neural 

computations 139.  

2.4.2 Separate subspaces control activation of extension versus flexion 

When examining the dynamics in the low, two-dimensional space, all trajectories in response 

to these tilts in the lateral plane were within the same manifold supporting the idea of robust neural 

population dynamics during movement and suggesting that responses to different tilts are part of a 

family of computations that are similar. Moreover, the firing patterns of both congruent (i.e., excited) 

and noncongruent (i.e., mixed) cell populations contribute to the path of the trajectories. These results 

demonstrate a separation of neural activity into different subspaces for tilts in opposite directions, 

while neural trajectories for tilts in the same direction but at different speeds overlap. Yet, interestingly, 
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not only are the trajectories for tilts to the right nonoverlapping with trajectories to the left, but even 

trajectories associated with tilts out differ from those associated with tilts back.   

With respect to postural control, the need for separate subspaces can be understood by 

considering the differences in the muscle synergies elicited 144–146 by distinct shifts in the animal’s center 

of mass 147 when the platform tilts in opposite directions. Our postural task requires coordinated 

flexion and extension of limbs to maintain balance. Notably, the set of muscles that extend a hindlimb 

for tilts to the right, for example, would flex for tilts to the left. While there are spinal reflex circuits 

that respond to brainstem inputs to ensure extensors and flexors work in harmony, the role of the 

cortex in activating these synergies is much less known and no mechanism has been identified. Cheung 

et al. demonstrated that formerly distinct muscle synergies appear to “merge” in the affected arm after 

a cortical stroke 56, suggesting a possible role of the cortex in orchestrating the appropriate, harmonious 

synergy activations. Maintaining the neural computations in different regions of the state-space could 

be a cortical mechanism to ensure commands for flexion and for extension are not sent to the same 

muscle groups at the same time. 

2.4.3 Mechanisms to control inside versus outside subspace activity 

Previous work suggested that confining computations related to separate limbs in separate 

subspaces was a way to enable muscle activity decoders to ignore signals related to the opposing limb 

148, here we show that this phenomenon can occur within limb. Moreover, our data suggest how these 

computations are maintained in different subspaces specifically by the noncongruent activity of the 

mixed cells. For tilts in one direction, the activity of a set of mixed cells will be suppressed yet excited 
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by tilts in the opposite direction, preventing the population response from traversing the 

inappropriate subspace or undergoing computations that could interfere with the response to the 

perturbation. This is analogous to previous work related to preparatory versus movement related 

computations, in which “out of manifold” neural activity is suppressed 79. The coordinated excitation 

or inhibition of mixed cells could create divergent dynamics (e.g., driving neural activity into separate 

subspaces) that ensure the correct series of coordinated limb movements. Further work more directly 

measuring muscle activity would be needed to support this hypothesis. Thus, our decoding results and 

array of neural trajectories suggest that the cortex can flexibly coordinate similar postural adjustments 

at different timescales yet requires unique computations for movements in different directions.  

2.4.4 Higher-order processing and differential roles of M1 and S1 in postural 
control 

Given this largely reactionary task, one may find the fact that S1 conveys so much less 

information than M1 about the perturbation surprising. How does M1 receive more information than 

is provided to it through sensory input? Our results support the idea that M1 and S1 are also involved 

in (or at least receive information about) higher-order tasks underlying sensorimotor processing 

including motor preparation and error detection 149–151. For example, surface EEG signals attributed to 

the supplementary motor area in humans during postural perturbations behave similarly to the “error-

related negativity” (ERN) observed during erroneous motor movements 152, implying an upstream 

cortical substrate for error detection during balance 151,153,154.  

The information gain in M1 confirms that ongoing control of posture includes substantial 

additional sensorimotor processing beyond what is supplied by the ascending sensory pathways 155–157. 
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In order for the body to generate the correct motor output to stabilize balance, sensory information 

needs to be integrated into these higher-order, task-level computations. In fact, it has been suggested 

that the muscle synergies activated during postural perturbations are more than simple reflex 

pathways, as differing sensory input signals that cause similar changes in center of mass will still elicit 

the same postural responses 147. Since, the correct motor output is required to stabilize balance, it thus 

is not so surprising that M1 responses would differ between (and thus convey more information 

about) the four different perturbation types. 

In addition, we observed a significant amount of inhibition in the cortex in response to the 

perturbation, particularly within Trunk S1. Inhibition defined one of the three largest sources of 

covariance in cortical activity yet appeared to encode little information about the perturbation. This 

observed suppression of activity is likely a downstream effect of higher-order cortical computations 

that gate unnecessary sensory processing in S1. Efference copy, for example, may be used to depress 

sensory responsiveness during movement through cancelation or gating 130–133. For example, the 

auditory cortex shows suppression of excitatory neurons during movement through signals arising 

from motor cortical regions 134 that facilitate hearing and auditory-guided behaviors. In the present 

study, the particularly high amount of inhibition that we observed within trunk S1 while the animal 

maintains balance would suggest that the central nervous system’s postural control network is actively 

gating proprioceptive afferents from the trunk in a similar manner.  

2.4.5 Clinical relevance 
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Taken together, beyond understanding the role of the cortex in postural stability, this work 

elucidates the role of cortical dynamics during postural perturbations and can be used to understand 

how to recover postural stability (and thus more robust independent movement) in individuals with 

various neurological conditions. For example, after complete mid-thoracic spinal cord transection, the 

rat hindlimb sensorimotor cortex continues to encode for perturbation type 114,116 supporting the 

potential use of cortical signals after injury to access critical postural control signals.  

While injury alters cortical dynamics, it is possible they can be restored, or even new dynamics 

could be learned to control such technologies. For example, diminished reach function of the 

contralesional arm following a stroke was correlated with a loss of motor cortical neural trajectories; 

however, these trajectories then re-emerged after motor recovery 158, supporting the need for additional 

interventions such as physical rehabilitation. This is likely to be successful since learning to operate a 

brain-machine interface is also associated with substantial neuroplasticity 13,159–161 that would support 

the ability of the cortex to control postural corrections through novel mechanisms regardless of initial 

performance.  

2.4.6 Limitations of the study 

While this work expands upon the limited literature on cortical engagement of postural control, we 

must stress its limitations. Our task identified naturalistic responses to postural instability; however, 

the task only tilted along a single plane such that animals only experienced lateral perturbations. Both 

behavior and cortical firing patterns have been shown to be altered with modification of the stabilized 

body positioning 115. Thus, we cannot fully characterize the receptive fields of individual neurons or 
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the entire state space explored by cortical populations during postural control. However, given the fact 

that tilts to the left and right move the cortical state in opposite directions in a speed-invariant manner, 

we would expect anterior-posterior tilts to move the cortex into two new states orthogonal to the ones 

described, in line with other work that has shown that neural trajectories follow different paths for 

different reach conditions in the non-human primate 82. Additionally, while ground reaction force 

sensors embedded in the tilting platform allowed us to measure changes in the animal’s center of 

pressure, follow-on work employing more directly measuring the activations of different muscle 

synergies through electromyography would allow a more thorough understanding of the role of the 

cortex in postural control.     

2.5 Materials and Methods  
Animals and Animal Care: All procedures and surgeries were approved by the UC Davis 

IACUC and followed ARRIVE Guidelines. Experiments were conducted on 13 adult female Sprague 

Dawley rats (225-250g body weight; Taconic Biosciences). Electrophysiology recordings and the tilt 

task was conducted in all rats; ground reaction forces were obtained in a subset of four rats. Rats were 

housed individually on a 12-hour light/dark cycle, with access to food and water ad libitum.  

Task: Rats performed the tilt task as described previously 114,116,129. A platform consisted of 

three plexiglass plates (one for each hindlimb and one for the combined forelimbs) coupled to a three-

phase AC servo motor (Applied Motion Products, USA). Peak velocity, acceleration, and final tilt 

angle were programmed using SI ProgrammerTM (Applied Motion Products, USA) on a digital motor 

drive (SV7-SI-AE, Applied Motion Products, USA), which sent commands to the motor for tilting. 
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Four tilt profiles were programmed to subject the animal to lateral perturbations of varied speed (slow: 

12.5*/s v. fast: 67.9*/s) and direction (left v. right), but to the same final amplitude (16.5°). A custom 

Python script randomly determined the tilt type (100 trials each), tilt initiation time, the time between 

tilt trials (varied randomly between 2-3 seconds) and sent those commands to the motor drive.  

Animals were given 3-4 sessions to become acclimated to proper positioning on the platform and the 

different tilt types. During recording sessions, the animal was placed on the tilt platform, and the 

Python program was initiated once the animal adopted the correct body position.  

In a subset of animals (n = 4), individual sensors (Mini40-E Transducer; ATI Industrial Automation, 

USA) were positioned under the three platform plexiglass plates to record three-dimensional forces 

and torques (18 measures total). GRF data was acquired at 1250 Hz using LabView software, which 

was filtered offline using a 4th order Butterworth zero-phase low-pass (5 Hz) filter. For each trial, 

sensor recordings beginning 1.2s before tilt onset and ending 3.6s after tilt onset were extracted and 

then downsampled by a factor of 30. 

Neural recordings during the tilt task: After initial platform acclimation, we performed a 

sterile surgery during which rats were implanted with 32-channel microwire arrays (arranged in an 8 x 

4 configuration with 250 µm resolution; Microprobes, Inc, Gaithersburg, MD, USA) in the cortical 

infragranular layer (1.3-1.5 mm) of both the right and left hemisphere. We have previously showed 

that, when averaging the response patterns (e.g., response magnitudes and latencies) of neurons in each 

hemisphere, tilts in both the ipsilateral and contralateral directions lead to similar responses 114,116.  The 

procedure was performed under anesthesia via intraperitoneal injection of ketamine (63 mg/kg), 
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xylazine (6 mg/kg), and acepromazine (0.05 mg/kg). Post operative pain was managed using 

buprenorphine (0.05 mg/kg), and the animal was allowed at least a week to recover. 

The electrode array implanted in the right hemisphere spanned 0-2 mm caudal to bregma and 

1.25-2.0 mm lateral to midline, centered around the trunk and hindlimb representations within the rat 

primary motor cortex (M1). Based on previously published work mapping the trunk representation in 

the rat M1 129, the recording electrodes in M1 were grouped based on the region of the body they most 

likely activated. Ten electrodes between 1-2 mm caudal to bregma and 1.75-2 mm lateral to midline 

were considered hindlimb M1 (HLM1), as intracortical microstimulation to this region is known to 

elicit movements in the contralateral hindlimb. The remaining 22 contacts medial and rostral to the 

HLM1 electrodes were considered trunk M1 (TrM1), as these regions elicit movements in the lower, 

middle, and upper thoracic musculature upon electrical microstimulation.  

The electrode array implanted in the left hemisphere was placed more laterally to capture the 

primary sensory cortex (S1), spanning 2-3.8mm caudal to bregma and 2.5-3.5mm lateral to midline, 

with the array inserted at a 9.5° angle to account for the curvature of the brain. The 32 S1 electrode 

contacts were assigned to hindlimb, forelimb, or trunk S1 subregions (HLS1, FLS1, TrS1, 

respectively) based on sensory evoked potentials (SEPs) generated in response to 0.5 mA peripheral 

electrical stimulation (100 1-ms pulses, 0.5 Hz) of the contralateral hindlimb, forelimb, and trunk 

under 2% isoflurane anesthesia one week after implantation. Briefly, 500 ms of bandpass filtered signal 

before and after stimulation onset were extracted and averaged to form an SEP. Each electrode in the 

sensory array was assigned a receptive field center, defined as the body region (i.e., forelimb, hindlimb 
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or trunk) which, when stimulated, produced the largest SEP negative peak amplitude for that 

electrode.  

Neural signals were amplified and filtered (Multichannel Neuron Acquisition Processor; 

Plexon Inc, USA) and then manually sorted into single units online (Sort Client; Plexon Inc, USA) 

prior to beginning the tilt task. Spike times, in addition to the times corresponding to the initiation of 

a tilt, were then collected as the animal completed the tilt task.   

Information Analysis and PSTH-Based Classifier: We assessed the amount of information 

in the cortex about the tilt type using a PSTH-based classifier 162. Briefly, in a leave-one-out manner, 

templates are made by average neural spiking activity (or generating peristimulus time histograms, 

PSTHs) for each tilt type. The Euclidian distance is then calculated between the left-out trial’s neural 

activity and each tilt type, and the trial is classified as belonging to the tilt type that had the smallest 

Euclidian distance. This was completed at the individual neuron level and at the population level 

(where the PSTHs from multiple neurons form the templates). Neural spiking activity was binned at 

50ms, as we have seen optimal classifier performance at that resolution in previous work 114,116,129, and 

1.5s of neural activity after tilt onset was classified. Classifier performance, as well as mutual 

information calculated from classifier’s confusion matrix, were used to quantify cortical information. 

For four tilt types, mutual information values could range from 0 bits (implying no relation between 

neural firing patterns and the different tilt types) to 2 bits (based on the Shannon information formula 

with four equally likely perturbation types). 

To calculate the ability of a neuron to distinguish tilt speed, classifier performance in 

distinguishing tilts of different speeds in one direction was multiplied by performance distinguishing 
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tilts of different speeds in the other direction (thus, chance performance was considered 25%). 

Comparably, to calculate the ability of a neuron to distinguish tilt direction, performance 

distinguishing tilts of different directions but at the slow speed were multiplied by the performance of 

that same neuron to distinguish tilts of different directions but at the fast speed.  

Finally, to compare population mutual information between M1 and S1, we sampled an 

equally sized random subset of neurons from M1 and S1. For a given animal, the sample size was the 

size of the population of the hemisphere with fewer neurons. Using the PSTH-based classifier, we 

calculated the population-level information of these neuronal subsets separately for each hemisphere 

and then together (thus, the same neurons used to calculate the individual region mutual information 

values were used to calculate the combined M1 and S1 mutual information). This was repeated 1000 

times with different subsets. The mean values of those permutations were reported and used for 

additional analyses.  

Principal Components Analysis: Neural activity beginning 500 ms before tilt onset and 

ending 1500 ms after tilt onset was Gaussian smoothed and then averaged within tilt type to form four 

trial-averaged responses which were then concatenated to form a Neuron x (Event Type x Bin) matrix. 

The concatenated, trial-averaged response of each neuron was then standardized (z-scored) to avoid 

PCA results being dominated by high-firing neurons. We used PCA to reduce the dimensionality of 

the above matrix to three. Since we suspect that various other cognitive processes are occurring beyond 

those pertinent to the task 84, we chose a dimensionality of three principal components (PCs) to extract 

the largest sources of variation from the neural activity that would most likely pertain to the task. To 
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standardize across animals, the same dimensionality was chosen for all animals. PCs 1, 2, and 3 each 

carried at least 5% of the variance for all animals.  

PCA was applied to the neural responses of each animal separately. For each animal, the three 

components (PCs) were manually sorted into an “Excited”, “Inhibited”, or “Mixed” Component 

based on visual assessment. An animal could only have one of each component type. A component 

was considered “Excited” if its activity after tilt onset increased relative to the baseline period. A 

component was considered “Inhibited” if activity was reduced relative to the baseline period. A 

component was considered “Mixed” if it showed increased activity relative to baseline for some tilt 

types but decreased activity relative to baseline for other tilt types.  

The loading (coefficient) matrix was used to determine how different neurons contributed to a 

given component. Each column of the matrix contains coefficients for one principal component 

whereas each row corresponds to a given neuron. To allow for comparisons across animals, the values 

in each column were normalized such that each neuron was given a weight between 0 and 1 for a 

particular component.  

Single Neuron Response Types and Responsiveness: To characterize neural 

responsiveness, peristimulus time histograms (PSTHs) were built around the start of tilt with a 20ms 

bin size. Upper and lower response thresholds were defined as 2 standard deviations above and below 

the average activity in the 500ms prior to tilt onset, respectively. If 5 consecutive bins crossed the 

upper threshold within 480ms for fast tilts or 960ms for the slow tilts (i.e., the time to the maximum 

perturbation angle), then the neuron was considered to have an excited response to that tilt type. 

Conversely, if it crossed the lower threshold, it was considered to have an inhibited response to that tilt 
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type. If a neuron satisfied both criteria for a given PSTH, its response type was determined manually 

by visualizing the PSTH. 

Based on these responses to individual tilts, a neuron was considered “excited” overall if it had 

an excited response to at least one tilt type without any inhibited responses to the other three tilt types. 

If a neuron had an inhibited response to at least one tilt type without any excited responses to other tilt 

types, it was considered “inhibited.” A “mixed” neuron had an excited response to at least one tilt type 

and an inhibited response to at least one other tilt type. Finally, a neuron was considered unresponsive 

if it did not respond to any of the four tilts.   

Preferential Subspace Identification: A MATLAB package 

(https://github.com/ShanechiLab/PSID) was used to generate our PSID models and evaluate the 

decoding of behavior (ground reaction forces). Input features (i.e., neural signal and behavior) were 

parsed into individual trials with a window –0.5 ms to 1.8 ms relative to tilt onset. Due to the sampling 

rate of the ground reaction force sensors, neural data (putative single unit recordings from the M1 

microwire array) was binned at 24 ms. Any unit that fired less than 0.5 Hz during the recording session 

was not included in the model. The binned spike rates of the remaining units were smoothed using a 

100ms Gaussian kernel. Changes in all 3 force and 3 torque values from all 3 sensors (i.e., forelimbs, 

right hindlimb, and left hindlimb) over these time windows were used as inputs, resulting in 18 

behavioral measures. Each behavioral measure was z-scored on a per-trial basis. For each animal, a 

random 80% of the trials were used for creating the model, determining hyperparameters, and 

characterizing neural dynamics. The remaining 20% was used to assess the performance of decoding 

ground reaction forces using M1 activity.    
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To determine dimensionality and assess decoding accuracy, we set the state dimension 

empirically by measuring the ability of the model to decode behavior (i.e., how similar model-

predicted ground reaction forces were compared to the true observed measures for those same trials) 

using a five-fold cross validation on the random 80% of trials. After separately concatenating all 

observed and predicted values for given measure across trials, a correlation coefficient was calculated. 

This was repeated for all 18 measures, providing a decoding accuracy of each behavioral measure. 

Overall model prediction accuracy for a given state dimension was assessed by calculating the mean of 

these 18 correlation coefficients, and this process was repeated while sweeping state dimensions by one 

from 1 to 20 as well as the total number of included M1 neurons for a given animal. Since the optimal 

dimensionality was similar across animals (2-4), we chose the same dimensionality for all animals to 

allow for comparisons. We calculated chance decoding accuracy by shuffling the relationship between 

neural and behavioral responses, such that a given trial’s neural response was matched to a different 

trial’s behavioral response (without shuffling the actual values within a given trial). A model was built, 

and decoding accuracy was assessed based on this shuffled data. The mean correlation coefficients 

(both overall and for each of the 18 measures) across 100 iterations of reshuffling was defined as 

chance accuracy.   

Statistics: Statistical analyses were conducted using GraphPad Prism Version 9.4.1 and R.  

Experimental data were processed offline using MATLAB R2021b (MathWorks). Non-parametric 

tests were used for all comparisons at the individual neuron level (e.g., information, principal 

component loadings). Comparisons between two independent variables were done using the Mann-

Whitney U Test while comparisons with more than two groups were done with Kruskall-Wallis test, 
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followed by Dunn’s Post Hoc when appropriate. A paired t-test was used to compare population-level 

information between M1 and S1. Neuron type distributions were compared using a chi-square test. A 

repeated-measured two-way analysis of variance was used to compare weightings of neurons and 

decoding accuracy for the PSID dynamical systems modeling, with the Sidak post-hoc test when 

appropriate. To compare firing rates and trajectories of the four tilts based on the PSID-derived neural 

trajectory, a linear mixed-effects model was developed, where the two fixed effects were whether the 

tilts were in the same direction (Yes/No) or the same speed (Yes/No), with the animal ID as the 

random effect. A chi-square test was used to assess the significance of removing each fixed effect on the 

model. All figures display individual datapoints, medians, and interquartile ranges unless otherwise 

specified. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05, ns = Not Significant.  
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Chapter 3 – Effect of spinal cord injury on 
neural encoding of spontaneous postural 
perturbations in the hindlimb sensorimotor 
cortex 

3.1 Summary 

Supraspinal signals play a significant role in compensatory responses to postural perturbations. 

Although the cortex is not necessary for basic postural tasks in intact animals, its role in responding to 

unexpected postural perturbations after spinal cord injury (SCI) has not been studied. To better 

understand how SCI impacts cortical encoding of postural perturbations, the activity of single 

neurons in the hindlimb sensorimotor cortex (HLSMC) was recorded in the rat during unexpected 

tilts before and after a complete mid-thoracic spinal transection. In a subset of animals, limb ground 

reaction forces were also collected. HLSMC activity was strongly modulated in response to different 

tilt profiles. As the velocity of the tilt increased, more information was conveyed by the HLSMC 

neurons about the perturbation due to increases in both the number of recruited neurons and the 

magnitude of their responses. SCI led to attenuated and delayed hindlimb ground reaction forces. 

However, HLSMC neurons remained responsive to tilts after injury but with increased latencies and 

decreased tuning to slower tilts. Information conveyed by cortical neurons about the tilts was 

therefore reduced after SCI, requiring more cells to convey the same amount of information as before 

the transection. Given that reorganization of the hindlimb sensorimotor cortex in response to therapy 

after complete mid-thoracic SCI is necessary for behavioral recovery, this sustained encoding of 
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information after SCI could be a substrate for the reorganization that uses sensory information from 

above the lesion to control trunk muscles that permit weight-supported stepping and postural control. 

3.2 Introduction 

Maintaining postural stability is critical for recovery of independent locomotion after spinal 

cord injury (SCI). Efficient control of posture is equally important for standing and walking163,164 as it 

is for providing support of voluntary limb movements165. Depending on the location and extent of 

SCI, damage to descending and ascending spinal pathways can result in an impairment of postural 

control163. The behavioral effect of a complete midthoracic lesion of the spinal cord has been well 

studied166–170. Notably, although postural control is reduced after SCI, brief standing episodes have 

been reported even after injury in some animal models171,172. In addition, interventions, including 

treadmill training173–176 and epidural electrical stimulation32, have led to modest improvements in this 

control. Thus, a more thorough understanding of how the entire neural axis encodes for posture 

before and after SCI can inform therapies that target the restoration of postural control after SCI. 

The effects of SCI on limb responses during various postural disturbances have been 

studied45,168,177,178. Specifically, electromyographic (EMG) recordings in the hindlimbs show increases 

in response latencies, decreases in response amplitudes, and changes in muscle recruitment strategies 

after a complete midthoracic transection, suggesting that descending neural circuits from above the 

lesion are necessary for postural control168,177. Partial lesion studies in rabbits have suggested that the 

ventral spinal pathways (reticulospinal and vestibulospinal tracts) arising from the brainstem are 

critical for postural control whereas dorsal pathways arising from the cortex and midbrain 
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(corticospinal and rubrospinal) are less important43,45,179,180. Although these brainstem circuits clearly 

provide important descending control of posture, cortical responses to periodic (predictable) rotations 

in the frontal plane (tilts) have also been documented in rabbits and cats, both before115,181–183 and after 

SCI45,47,179. Though cortical activity is not critical for basic postural tasks109,184 in intact animals, its role 

increases substantially after spinal cord injury. It has been shown that cortical reorganization65,185 and 

sprouting of corticospinal axons65,186 is associated with recovery of locomotion after injury. More 

importantly, lesioning the reorganized cortex results in a loss of behavioral improvement achieved after 

therapy, demonstrating that, in addition to other supraspinal circuits, descending information from 

the cortex is critical for functional recovery. Therefore, the role of cortical circuits in the encoding of 

posture and balance is of interest and the impact of spinal cord injury is unknown. 

To better understand the impact of SCI on HLSMC encoding of information about postural 

perturbations, we assessed the hindlimb ground reaction forces, the responses of ensembles of single 

neurons in the rat HLSMC, and the interaction of the two during an unpredictable tilting task both 

before and after a complete midthoracic spinal cord transection. In intact animals, when sensory input 

from the hindlimbs is removed, the response of neurons in the hindlimb sensorimotor cortex 

(HLSMC) to predictable tilts is greatly attenuated49. This would suggest that cortical responses would 

also be attenuated after complete spinal transection, resulting in a decrease in the encoding of 

information about the tilt. Alternatively, it is possible that HLSMC reorganization after SCI allows for 

continued encoding of unpredictable tilts due to inputs from sensory afferents above the level of the 

lesion. As reported previously, we observed cortical response modulation to different tilt types in 

intact rats. Cortical neurons encoded information about the initial velocity of the perturbation within 
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50 ms of the start of tilt, and that the timing and magnitude of the hindlimb ground reaction forces 

scale with initial tilt velocity. After a complete spinal transection (PostTx), cortical activity was 

sufficient to determine if a tilt occurred and to provide information about the initial velocity of the 

tilt. Despite a reduction, this sustained cortical encoding about postural perturbations even after a 

complete spinal cord transection could inform therapies that target cortical reorganization. In 

addition, as open-loop spinal stimulation has been shown to improve functional outcome after 

SCI47,187–189, how this cortical information could be used to control a spinal prosthetic is discussed. 

3.3 Materials and Methods 

Ethical Approval: All experiments were performed under approval of the Drexel University 

Institutional Animal Care and Use Committee, followed established National Institutes of Health 

guidelines (Protocol 19786), and was conducted in accordance with the Animal Research: Reporting 

of In Vivo Experiments (ARRIVE) guidelines190. 

Cortical Implantation Surgery: Eight Long Evans rats were trained to tolerate a harness and 

were acclimated to the task for 1–2 wk. Once adapted to the harness and standing, animals were 

chronically implanted bilaterally with 16 channel (4 × 4) Teflon-insulated stainless steel microwire 

arrays (MicroProbes for Life Sciences) in layer V of the hindlimb/trunk sensorimotor cortex (Figure 

3.1A) using methods standard in our lab26,191. Of note, there is an almost complete overlap of hindlimb 

sensory and motor cortices in the rat192. As the electrode was lowered, neural activity was preamplified, 

bandpass filtered between 100 Hz and 8 kHz, and digitized with data acquisition hardware (National 

Instruments, Austin, TX). Digitized raw signal and waveforms were displayed on a computer with  
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Figure 3.1. Experimental design  

 
a Location of the bilaterally implanted cortical arrays129 centered over the exclusive hindlimb motor cortex (M1) 
with some overlap with trunk motor (M1) cortex medially and hindlimb sensory (S1) cortex laterally. b At 
baseline, the animal stands on a platform with left hindlimb, right hindlimb, and forelimb force sensors. The 
platform makes unpredictable tilts of varying speed and direction in the horizontal plane described in C. 
Neuron spiking activity is recorded throughout task, and an exemplar neuron’s raster plot and PSTH for a 
specific tilt is shown. c Platform angle (top) and velocity (bottom) profiles for the 8 different tilt types in one 
direction: 4 “constant duration tilts” with varying final angle and peak velocity (i), 2 “constant final angle tilts” 
with varying duration and peak velocity (ii), and 2 “constant peak velocity tilts” of varying duration and final 
angle (iii). d PSTH templates are generated for every neuron from over at least 100 of each tilt or baseline epoch. 
The PSTH from an individual trial is then compared with each template bin by bin, and the single trial is 
classified as belonging to the template with the most similarity (in this case, Tilt Type #2). 
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recorder software (Plexon Inc, Dallas, TX) and also monitored on an oscilloscope and made audible 

through speakers. The array was lowered in 20-µm increments, no faster than 60 µm/min. At each 20-

µm step, sensory responsiveness was assessed by tapping a blunt tip probe over cutaneous surfaces. 

Neurons predominately responding to hindlimb stimulation ensured proper electrode position in the 

hindlimb sensorimotor cortex129,193. Once characteristically large amplitude layer V neurons were 

visualized on a majority of the channels (at a depth of 1.3–1.6 mm), the array was cemented in place. 

All surgical procedures were performed under general anesthesia (2%–3% isoflurane in O2) via 

orotracheal intubation. Pain was managed using buprenorphine SR LAB (0.5 mg/kg; Wildlife 

Pharmaceuticals Inc.), and animals were given at least a week to recover from the surgery. 

Spinal Transection Surgery: After intact (PreTx) recordings were complete, animals 

underwent a complete spinal transection procedure at T8, identical to the methods in previous 

studies26,191. In brief, animals were given prophylactic antibiotics (enrofloxacin 5 mg/kg) and were 

anesthetized with an induction dose of 4% isoflurane followed by maintenance at 1.5%–2% isoflurane. 

A laminectomy was performed at T8/T9. Microdissecting scissors were used to remove the dura, and 

the cord was transected with iridectomy scissors immediately followed by aspiration. Two surgeons 

confirmed the lesion visually under ×20 magnification. The muscle and skin were sutured in layers 

with 4-0 non-dissolving suture. Animals were treated with an analgesic (buprenorphine 0.05 mg/kg), 

given 10 mL saline, and placed on a heating pad until recovery. After transection, animals were kept on 

a heating pad and received ongoing care including bladder expression 2–3 times daily, antibiotics, and 

fluids as needed. Transected animals were given 1 week of recovery before PostTx recordings were 

performed. All PostTx recordings were collected within 3 weeks of the injury. 
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Tilt Task: The tilt task is shown in Figure 3.1B. Rats stood in a neutral position on a platform 

consisting of three Plasti Dip (Plasti Dip International) coated plexiglass plates (one for each hindlimb 

and for the forelimbs collectively) coupled to a high-performance brushless AC servo motor (J0400-

301-4-000, Applied Motion Products). The animal wore a pelvic harness attached to a body weight 

support system at the pelvis. No vertical weight support was provided PreTx, allowing the animal to 

freely adjust posture, make small steps, and shift body weight. PostTx, approximately 50% of the 

weight was supported vertically at the pelvis. 

The platform rotated in the frontal plane, remained at the peak angle for approximately 1 s, then 

returned to the neutral position while the neural response to the perturbation was recorded. The 

platform remained in a neutral position for a random intertrial interval of 2–3 s. Tilt type was 

randomized within a recording session using LabVIEW (2015, National Instruments), and direction 

was reversed during a subsequent recording session. Several tilt types were programmed using Si 

Programmer (v. 2.7.22, Applied Motion Products) on a digital motor drive (SV7-SI-AE, Applied 

Motion Products). Start of tilt was defined as the time at which the platform started to move. 

Tilt Types: Eight tilt types were classified based on their duration, final tilt angle, and peak 

velocity. A set of four “constant duration tilts'' varied in peak velocity and final tilt angle while 

maintaining the same duration from tilt onset to maximum angle (Figure 3.1Ci). In addition, two 

“constant angle tilts'' modified the peak velocity and duration of the tilt, but they reached the same 

maximum angle (Figure 3.1Cii). Finally, two “constant velocity tilts'' modified the final angle and 

duration of the tilt with the same peak velocity (Figure 3.1Ciii). For five of the animals, all tilt types 
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were recorded in the same session with the same population of neurons. For a subset of three animals, 

only the two “constant final angle tilts” were recorded. 

Ground Reaction Forces: Ground reaction forces were measured for the subset of three 

animals. Original Equipment Manufacturer (OEM)-style single point load cells (LCAE-600 G; 

Omega) positioned underneath the platform plexiglass plates quantified hindlimb and forelimb 

ground reaction forces (GRFs). Data were acquired using LabVIEW software (1,000 samples/s), 

which was filtered offline using a 2nd order Butterworth zero-phase low-pass filter. Sensor data were 

normalized to a period found in the 200-ms time window before the start of each tilt. Positive values 

indicate additional loading onto the sensor. 

Single Neuron Recordings: Populations of single units were recorded simultaneously during 

the tilting task using methods standard in our lab26,191. In brief, before every session, neurons were 

sorted online (Sort Client, Plexon Inc.). First, the neural activity was played over speakers to identify 

whether neurons were present. An oscilloscope was used to confirm neural activity. The oscilloscope, 

waveforms, and the first two principal components were used to sort the cells (typically 1 or 2 per 

channel, occasionally 3). A Multichannel Acquisition Processor (MAP, Plexon Inc, Dallas, TX) was 

used to record from multiple single neurons during each recording session and to record event 

timestamps. Offline, neurons were categorized as single units if less than 0.5% of spiking occurred in 

the first 1 ms of the interspike interval histogram (Offline Sorter, Plexon Inc.). All other units were 

discarded. Waveforms were checked for consistency over the course of the experiment. 

To determine cell responsiveness, peristimulus time histograms (PSTHs) were built around the 

start of tilt (±300 ms) with a 2 ms bin in a manner similar to our previous work26,194. Background 
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activity was defined in the 300 ms before the start of tilt, when the platform had been in the neutral 

position for a minimum of 1 s. Threshold was defined as the average background activity plus 1.65 

times the standard deviation. If five bins (10 ms), with no more than 10 ms separating them, crossed 

the threshold, then response was compared to an equivalent background window. If they were 

significantly different (paired t test, P < 0.05), the cell was classified as responsive, and the 

characteristics of the response were found. 

Analysis of Ground Reaction Forces: For three animals, differences in GRFs were 

compared between fast and slow tilts and between injury states using a two-way analysis of variance. 

Peak forces generated during the tilt were averaged for different tilt types before and after SCI. 

Neural Response Profiles: The number of responsive neurons and the response 

characteristics of those neurons were evaluated between each tilt type and before and after spinal cord 

injury using two-way analysis of variance or t tests as appropriate. Using the PSTHs, response 

characteristics were defined by both the timing and magnitude of the response. The first and last bins 

to cross threshold were defined as the “first and last bin latencies,” respectively. “Response duration” 

was the difference between the last and first bin latencies. “Response magnitude” was defined as the 

sum of the spikes in all the bins between the first and last bin latencies, divided by the total number of 

trials after subtracting the average background activity. “Response firing rate” (in Hz) was therefore 

the response magnitude divided by the duration of the response in seconds. If a neuron responded to 

multiple tilt types, only the case with the largest response magnitude was used such that each neuron 

only contributed one observation to analyses. 
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Neuron Classification: For the four constant-duration tilts (Figure 3.1Ci), neurons were 

classified based on the number of tilts which elicited a significant response. A “selective” neuron 

responded to a single tilt type only, a “nonselective” neuron responded to more than one but less than 

four tilts, and a “scaled” neuron responded to all four tilt types. 

Relating Ground Reaction Forces to Neural Responses: To summarize the effect of SCI, 

changes in the average firing rate of neurons during a tilt were correlated to the change in GRF during 

the tilt. The data were normalized to the start of tilt and the change in firing rate was plotted against 

the change in GRF for different tilt types and injury conditions in the clockwise and counterclockwise 

direction (Figure 3.5). 

Information Analysis: Information was quantified using a PSTH-based method162. In short, 

PSTHs were generated to find the average response profile (100 trials) of each neuron to each event. In 

a leave-on-out manner, individual trials were compared with the average response (generated without 

the single trial) and the difference between the single trial and the average profiles was calculated in a 

bin-bin comparison (see Figure 3.1D). The single trial was classified as either a particular tilt response 

or a background response by identifying the profile with the smallest difference from the single trial. 

Performance was expressed as the percentage of correctly classified trials. The information was 

calculated using Shannon’s information formula, formally defined as: 

I(s;r) = s,rP(r,s)log2P(r,s)P(r)P(s) 

where P(r), P(s), and P(r,s) correspond to the probability of the tilt-perturbation response r, the tilt 

perturbation stimulus s, and their joint probability, respectively. I(s;r), which is measured in bits, was 

calculated for each neuron using the actual and predicted tilt type confusion matrix generated when 
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applying the classifier. Residual bias for I(s;r) was then estimated using a bootstrapping procedure by 

pairing the trial response and tilt types in a randomized order—effectively eliminating their 

associations. This bootstrapping procedure was performed 20 times and the calculated bias was 

subtracted from I(s;r) such that 0 bits is chance. 

To establish the bin size that resulted in the maximal PSTH classifier performance, a range of 

bin sizes between 2 and 280 ms were considered. The optimal bin size was determined to be 20 ms 

across animals, consistent with our previous work116, so this bin size was used for all information 

analyses. 

Tilt Detection: Trials from tilt profiles in which the severity of the perturbation (changing 

velocity and peak angle but keeping duration constant, Figure 3.1Ci) were used for detection and 

discrimination analyses. To determine if neurons could detect any tilt severity from standing in a 

neutral position, responses of neurons to each of the four constant duration tilts (Figure 3.1Ci) were 

compared with their firing rates at stance (baseline) and thus single trials were classified as either a tilt 

or baseline. To account for differing neuron numbers between animals and conditions, information 

was calculated 20 times with a random sampling of 34 neurons. This number was chosen as it 

represented the total number of neurons for the animal with the least number of discernable neurons. 

The effects of tilt severity and injury on information were compared using a two-way analysis of 

variance. 

Tilt Discrimination: An important feature of proper postural control is the ability to 

discriminate between different perturbation types. For tilt discrimination analyses, single trials were 

classified as being from one of the four tilt profiles. As with tilt detection analyses, information and 
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performance were calculated from the averages obtained from twenty iterations using 34 randomly 

selected neurons. 

To further explore the encoding for discrimination, the following analyses were performed. 

First, a set number of randomly selected neurons (from 4 to 34 neurons) was used to determine how 

population size affected information (neuron dropping). To determine how quickly information was 

conveyed to the hindlimb sensorimotor cortex, information was calculated with an incremental 

increase in the event window, from the first 20 ms after tilt onset to 280 ms after tilt onset. For both 

analysis types, information and performance were calculated 20 times using a different sampling of 

neurons. 

For information and neuron analysis, five animals were tested PreTx condition with two 

sessions each for a total of 10 recordings. Four of those animals were then evaluated similarly PostTx 

for a total of eight recordings. For ground reaction force analysis, three animals were tested PreTx and 

PostTx. All reported values are means ± standard error. 

3.4 Results 

3.4.1 Ground reaction force magnitude and timing scale with tilt severity and 
injury 

To assess the impact of SCI on the response of the hindlimbs to unexpected tilts in the lateral 

plane, ground reaction forces (GRF) in response to each hindlimb and to both forelimbs together were 

collected during the two tilts of constant final angle (varying duration and peak velocity; refer to 

Figure 3.1Cii, constant angle tilts) before and after the SCI (Figure 3.2A). As described in previous  



 62 

Figure 3.2. Ground reaction forces during tilts 

 
Negative forces imply unloading whereas positive forces imply loading. a Average force measured in the left 
hindlimb (left) and both forelimbs (right) by the sensor for fast (270 ms) and slow (620 ms) constant-angle tilts 
from tilt onset to the maximum tilt angle in the counterclockwise direction over 100 trials for a single animal. 
Forces are normalized such that each trial begins with 0 N of force. Shaded areas represent the standard error of 
the mean. Dotted vertical lines represent the time at which the platform reaches the maximum tilt angle for fast 
(270 ms) and slow (620 ms) tilts. Inset shows the same animal’s forces for tilts in the clockwise direction. b The 
average maximum force applied to the left hindlimb force detector between approximately 100–200 ms during 
counterclockwise tilts. c The timing of maximum force applied to the hindlimb force detector in B. d the 
magnitude of the force applied to the hindlimb force detector during tilt at the end of the tilt (when the tilt 
platform achieves its maximum angle). E: forelimb forces were also evaluated. The maximum loading force 
applied to the forelimb force detector was calculated and compared across tilt types and Tx status. Note: only 
one sensor was used for forelimb force measurements, and animals’ weight was partially supported by a trunk 
harness PostTx. Means and standard deviations are plotted over 99 individual trial data points both Pre- and 
PostTx. ****P < 0.001, ***P < 0.001, **P < 0.01 (Bonferroni corrected). Tx, spinal transection. 

work116, before SCI, counterclockwise tilts in healthy animals begin with the platform pushing into 

the right hindlimb and away from the left hindlimb in the first 100 ms, leading to an unloading of 
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force from the left hindlimb sensor. The next 100 ms is characterized by an active correction of the 

animal’s center of mass, during which the animal extends the left hindlimb and flexes the right 

hindlimb to shift the center of mass over the base of support. This causes a subsequent increase in the 

ground reaction forces measured in the left hindlimb sensor. The converse is true for clockwise tilts 

(data not shown). As expected, the measured GRF of the combined forelimbs is much less than that 

observed in a single hindlimb since the shifting of the weight is conserved. Nonetheless, the weight on 

the forelimbs, as measured by the GRF, is unloaded as the tilt is initiated, resulting in an overall 

reduction in total GRF at the peak of the tilt, suggesting a shift of the center of mass to the hindlimbs. 

After SCI, the initial response to the tilt, as the platform moves away from the paw, is similar 

to the response PreTx. As the platform moves away from the paw, the GRF is reduced. Presumably, 

spinal circuits below the level of the lesion contribute to a reflex response where the limb is extended 

resulting in a restoration of GRF. However, unlike in the PreTx response, the GRF in the PostTx 

condition simply returns to the same force seen at stance, such that the extended position of the paw 

does not exert any force greater than what was exerted in the neutral position as a harness provided 

additional support and some of this weight shifted to the forepaw. 

To quantify these differences, the forces generated by the hindlimb at the start and end of the 

faster tilts were compared with those for slower tilts before and after injury. As expected, the initial 

force was significantly greater for faster tilts [effect of tilt type: F(1,390) = 113.6, P < 0.0001] and this 

force was reduced after injury [effect of injury: F(1,390) = 160.6, P < 0.0001) regardless of the tilt type 

(Figure 3.2B). However, the difference in force between tilt types was attenuated after SCI 

[interaction: F(1,390) = 23.87, P < 0.0001]. Furthermore, regardless of injury status, rats initiated a 
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correction of their center of mass more quickly during faster tilts [effect of tilt type: F(1,392) = 142.2, 

P < 0.0001; interaction F(1,392) = 0.41, P = 0.53] but these corrections were significantly delayed after 

injury [effect of injury: F(1,392) = 272.2, P < 0.0001; Figure 3.2C]. 

Thus, to stabilize the center of mass within the first 200 ms of the onset of the tilt, the response 

of the hindlimbs to faster tilts was quicker and more robust than those to slower tilts whereas the 

response after SCI was delayed and attenuated regardless of tilt type. To assess the impact of tilt type 

and injury on the final postural adjustment, the forces applied at the maximum angle of the tilt were 

compared (Figure 3.2D). 

As expected, as the final angle was the same, there was no effect of tilt type on the final force 

generated by the hindlimbs [F(1,392) = 0.71, P = 0.40], but there was a significant attenuation of this 

force with injury [F(1,392) = 115.7, P < 0.0001]. Thus, despite differences in the magnitude and 

timing of the initial force applied during the tilts PreTx, the animal ultimately applies the same force at 

the maximum angle of the tilt. After injury, these relationships remain, but the force is attenuated. In 

an effort to stabilize their center of mass, some of this force is transferred to the forelimbs [Figure 3.2E; 

effect of tilt type: F(1,338) = 10.81, P = 0.001; effect of injury: F(1,338) = 14.83, P = 0.0001; 

interaction: F(1,338) = 0.12, P = 0.12], whereas the remainder is taken up by the harness. Thus, after 

spinal cord injury, the center of mass of the animal shifts forward as more weight is on the forelimbs at 

the peak of the tilt. 

3.4.2 An increasing number of neurons respond to tilts of increasing severity 
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Neuronal responses to a larger set of tilt types were evaluated to assess the impact of SCI on the 

encoding of the postural shifts described in Figure 3.2. Populations of single neurons were recorded 

while animals were subjected to eight different rotations in the frontal plane at random intervals. 

These tilts maintained either constant duration, constant final angle, or constant peak velocity (Figure 

3.1C). For neurons with a significant response to at least one tilt type, their response profiles (response 

magnitude, duration of response, and latency of response) were compared across tilt types and 

between Pre and PostTx. The number of cells that responded, or responsive neurons, were different 

depending on the tilt type [F(7,63) = 22.00, P < 0.0001]. This change in responsive neurons was 

observed if the peak velocity was changed but not if the peak velocity was held constant (Figure 3.3A). 

Thus, more neurons were recruited into the response primarily when the severity of the tilt was 

increased. 

After complete spinal transection (PostTx), there was a trend toward an overall reduction in 

responsive neurons [F(1,9) = 4.986, P = 0.0524]. This was observed despite an unchanged number of 

discriminable neurons PostTx [paired t test, t(3) = 1.140, P = 0.34]. However, just as in the PreTx 

condition, neuron recruitment remained tuned to tilt severity (changes in peak velocity). 

3.4.3 Duration of neuronal responses are increased with increasing severity of tilt 

The magnitude of the response was similarly modulated by tilt type [F(7,1524) = 0.014, P = 

0.0142] with increasing spikes per tilt with increasing severity but no change in number of spikes when 

severity was held constant. Interestingly, there was no effect of injury on the magnitude of the 

response, suggesting that information about the tilt is reaching the brain despite the injury [F(1,1524)  
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Figure 3.3 Neuron response profiles for all tilt types Pre- and PostTx. 

 

For tilts of different duration, final angle, and peak velocity profiles (see Inset table), the number of neurons and 
their average response metrics were calculated and compared. If a neuron responded to more than one tilt type, 
it was only included in the tilt type that led to its largest response. a Average number of neurons per animal 
responsive to each tilt type Pre- (n = 10) and PostTx (n = 8). b Average neuron firing rate (in Hz) throughout 
response. c Average duration of neuronal response. d Average latency of response onset, defined as the time at 
which the first bin surpasses threshold. Inset: table defining the tilt types for A–D. Means and standard 
deviations are plotted over individual data points representing animals in A or individual neurons in B–D. Total 
neuron numbers for each tilt type (in B–D): A1 (PreTx: 120; PostTx: 36), A2 (PreTx: 116; PostTx: 63), A3 
(PreTx:132; PostTx: 71), A4 (PreTx: 152; PostTx: 90), B1 (PreTx: 147; PostTx: 69), B2 (PreTx: 155; PostTx: 
90), C1 (PreTx: 115; PostTx: 37), C2 (PreTx: 117; PostTx: 30). ***P < 0.001, *P < 0.05 (Bonferroni corrected). 
Tx, spinal transection. 
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= 0.394, P = 0.536]. However, for both Pre- and PostTx conditions, the change in response magnitude 

for more severe tilts was not due to changes in firing rates [F(7,1524) = 0.81, P = 0.815; Figure 3.3B] 

but rather to increases in response durations [F(7,1524) = 0.749, P = 0.0009; Figure 3.3C]. Therefore, 

increases in the severity of the tilt resulted in an increase in the duration of the response both pre- and 

post-SCI, regardless of the duration of the tilt. 

3.4.4 Responses to tilts are delayed, but not attenuated, after transection 

Interestingly, response latencies were dependent on the severity of the tilt, similar to the 

duration of the response (Figure 3.3D). Furthermore, despite SCI having no impact on the firing rate 

or magnitude and duration of response, injury delayed the timing of the response (Figure 3.3D). In 

fact, after injury, the response onset, was significantly delayed by about 10 ms [first bin latency: PreTx: 

54.1 ± 62.3 ms and PostTx: 63.7 ± 67.1 ms, F(1,1524) = 11.22, P = 0.0008]. 

In summary, as the severity of the tilt increased, the number of responding neurons and 

duration of the response increased while the latency of the response shifted earlier without a change in 

firing rate. These findings emphasize the importance of the severity of the tilt on the neural response. 

Post-SCI, the severity of tilt had a similar impact on the neural response, but the response was shifted 

later without impact on the magnitude of the response. Therefore, in an unexpected postural 

perturbation, neurons in the hindlimb sensorimotor cortex respond to the severity of the tilt even in 

the absence of sensory feedback from the hindlimbs. The shift in latency after SCI suggests this 

response in the hindlimbs is due to sensory information about the tilt coming from the upper trunk 

and forelimbs. 
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Figure 3.4. Neuron response classification. 

 
For the four tilts of constant duration but increasing peak velocity and tilt angle, neurons were categorized as 
being selective, nonselective, or scaled. a-c Exemplar peristimulus time histograms of neurons for each 
classification type, where a represents a neuron responsive to only one tilt type, b represents a neuron responsive 
to 2–3 tilt types, and c represents a scaled neuron, or a neuron responsive to all four tilt types. d Distribution of 
each neuron type before and after Tx. e Distribution of preferred event for all selective neurons before and after 
Tx. ***P < 0.001, **P < 0.01. Tx, spinal transection. 
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3.4.5 Some neurons scale their responses to tilts of increasing severity 

To further explore the responsiveness of neurons to tilts of increasing severity (peak velocity), 

neurons were classified into three classes depending on the range of tilts they responded to (out of four 

possible tilts): 1) selective, neurons responsive to only one tilt type; 2) nonselective, neurons responsive 

to two to three tilt types; or 3) scaled, responsive to all four tilts (examples seen in Figure 3.4A–C, 

respectively). 

In addition to delayed response to tilt after transection, there was a shift in the classification of 

neurons (Figure 3.4D), with a decrease in the proportion of scaled neurons (39.6%–17.0%), an increase 

in the proportion of selective neurons (21.4%–39.7%), and a modest increase in nonselective neurons 

(39.1%–43.3%) [χ2(2) = 16.06, P = 0.0003]. This shift occurred due to a reduced response to the least 

severe tilts PostTx. In fact, when classifying the selective neurons by the tilt to which they responded 

(Figure 3.4E), there was a significant change in these proportions [χ2(3) = 12.69, P = 0.0054], with the 

biggest change being a reduction in the number of cells uniquely responsive to the lowest severity tilt 

(33% v. 13%). Thus, this reduction in scaled neurons is likely due to the fact that neurons previously 

responsive to all tilts may no longer respond to the mildest tilts after injury, leading to a classification as 

either a selective (responding to one tilt type) or non-selective (responding to 2–3 tilt types) neuron. 

3.4.6 Impact of SCI on neuronal dynamics during tilt 

To visualize the impact of SCI on the change in firing rate of the population of neurons 

during tilt, the average response of neurons during each tilt was plotted against the change in GRF. 

Examining the left hindlimb during clockwise and counterclockwise tilts, the GRF changes first,  
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Figure 3.5. Relating average neural firing rate to hindlimb ground reaction forces throughout tilts 

 

Trial-averaged left hindlimb ground reaction forces and neural firing rates (calculated as average spikes across all 
responsive neurons per 10 ms bin) are plotted for tilts in the counterclockwise (left plots) and clockwise 
(right plots) directions from the time of tilt onset (black dot) to the time of maximum tilt angle (red dot) for a 
single animal. A second animal’s results are inset for comparison. Force and neural firing rate were zeroed at the 
start of tilt. a Comparison between fast and slow velocity tilts in the PreTx condition in the counterclockwise 
(left) and clockwise (right) directions. b Comparison between fast tilts in the Pre- and PostTx condition for the 
same animals in the clockwise (left) and counterclockwise (right) directions. Tx, spinal transection. 
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before the increase in average firing rate (Figure 3.5A). Then, the firing rate peaks at about the same 

time as the peak unloading of the limb due to the movement of the platform. As the limb begins to 

exert a restorative force to stabilize the animal’s center of mass, the firing rate of the population starts 

to decline but does not quite return to baseline before the GRF reaches its maximum restorative force. 

For less severe tilts, this trajectory pattern is simply scaled down. As the population of cells are the same 

for the clockwise and counterclockwise tilts, these data suggest that in each hemisphere, a subset of 

cells are responding to the contralateral limb’s extension while others are responding to the 

contralateral limb’s flexion. After injury, the loading, unloading, and final restorative forces are 

attenuated, likely due to the harness support and the shift of weight to the forelimbs, and the neuronal 

firing rate is also reduced (Figure 3.5B), resulting in a similar shaped trajectory, albeit reduced in size. 

3.4.7 Neurons encode for the detection of tilt 

As neurons respond to the tilt even after a complete spinal transection and changes in the 

severity of the tilt (peak velocity) are the greatest drivers of that response, we wanted to gain insight 

into how these neurons encode information about the tilt. Specifically, we investigated how neurons 

encode for the occurrence of a tilt (i.e., is the platform stationary or has it tilted?) and the magnitude of 

the severity of the tilt (i.e., what was the peak velocity?) as well as the effect, if any, of SCI on that 

encoding. The first step to evaluate the encoding of tilt was to quantify the information that a tilt 

occurred (tilt detection) using a fixed number of neurons (Figure 3.6A). 

As expected from the increase in the number of responsive neurons and the increase in the 

magnitude of their response with increasing severity, the information that a tilt occurred within the 
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Figure 3.6. Information in the hindlimb cortex about tilts 

 
Information about tilt detection and tilt discrimination were each calculated using the PSTH classifier 
(see material and methods) for the four constant duration tilts of increasing peak velocity and final angle. a Tilt 
detection, or the ability to distinguish stance from the tilt, increased as a function of tilt severity (P < 0.0001) in 
both the Pre- and PostTx condition, even with a significant decrease in information PostTx (P < 0.0001). This 
was despite standardizing the number of neurons in all tilt and Tx states. Means and standard deviations plotted 
over individual data points. b-c Tilt discrimination, or the ability to differentiate one tilt type from the other 
three, increased with adding more neurons (P < 0.0001; b) as well as with using a set number of neurons but 
increasing the length of recording supplied to the classifier (P < 0.0001; c). Both instances demonstrated a 
reduction in information PostTx (P < 0.0001 and P < 0.0001), respectively. For both b and c, solid line 
represents the change in mean for each condition, plotted over data points for individual animals (PreTx n = 10; 
PostTx n = 8). PSTH, peristimulus time histogram; Tx, spinal transection. 
 
 HLSMC increased with the severity of the tilt both PreTx (0.27 for least severe to 0.60 bits for most 

severe), and PostTx [0.14 bits for least severe to 0.39 bits for most severe tilts; F(3,64)=18.93, P < 

0.0001]. After transection, the information about tilt detection was significantly reduced [F(1,64) = 

31.03, P < 0.0001, interaction: F(3,64) = 0.42, P = 0.7406]. As the number of neurons used to 

compare PostTx to PreTx was the same, this reduction in information is unlikely to be due exclusively 

to the trend toward fewer responsive neurons PostTx. 
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3.4.8 Neurons convey considerable information about tilt type both pre- and post-
SCI 

Though the detection that a tilt occurred is the first step in understanding how neurons 

encode for postural responses, of greater interest is discriminating between different types of tilts as the 

severity of the tilt increased, which would suggest the information necessary to determine the postural 

adjustments that need to be made to maintain balance. As expected, the ability of populations of 

neurons to discriminate between tilt types was dependent on both the number of neurons used 

[Figure 3.6B; F(12,208) = 8.22, P < 0.0001] and the amount of time that passed from tilt onset [Figure 

3.6C; F(13,224) = 7.56, P < 0.0001]. For the same sized population, a significant reduction in 

information was observed after transection compared to before [neuron dropping: F(1,208) = 19.56, P 

< 0.0001; window size: F(1, 224) = 27.60, P < 0.0001]. When comparing the number of neurons used 

(Figure 3.6B), as few as twelve neurons were able to convey at least 0.2 bits of information about tilt 

detection in the PreTx condition. PostTx, 20 neurons were needed to convey comparable levels of 

information, likely arising from the decreases in cells with responses to less severe tilts after spinal cord 

transection. Thus, the nervous system can compensate for the loss in information about postural 

perturbations by recruiting more neurons into the task after SCI. As expected, as the window of time 

after the tilt onset used to calculate the information increased (Figure 3.6B), information about tilt 

discrimination increased. PreTx, the population of neurons conveyed a considerable amount of 

information (more than 0.2 bits) about the tilt type within the first 60 ms of the tilt. After injury, an 

additional 60 ms were needed (120 ms) after tilt onset to reach similar information levels, consistent 

with the delayed neuronal responses seen PostTx. Information continued to increase over time for 
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both PreTx and PostTx conditions, with information reaching 0.40 bits PreTx and 0.29 bits PostTx 

within 300 ms. 

Therefore, as with tilt detection, both the reduction in the number of responding neurons 

PostTx and differences in the firing patterns of neurons contribute to the loss of information about 

the discrimination between different types of tilts after SCI. 

3.5 Discussion 

Although weight-bearing and stereotypic locomotor movements can be restored following a 

complete spinal injury through activation of spinal circuits below the lesion29,187,195–199, there is a need 

to ensure adequate postural stability57,116,194,200. An understanding of how the brain encodes for this 

stabilization before and after spinal cord injury could be used for the design of therapeutic 

interventions that aim to enhance postural responses and decrease the morbidity and mortality 

associated with fall incidence. The data presented here suggest that the hindlimb sensorimotor cortex 

(HLSMC) encodes information about the severity of an unexpected perturbation by changing the 

number of responsive neurons and altering the duration, but not firing rate, of their responses. 

Moreover, after a mid-thoracic spinal cord transection, which prevents sensory information from the 

hindlimbs reaching supraspinal levels, information about the tilt continues to be encoded in the 

HLSMC with similar, albeit delayed, neural response dynamics. 

3.5.1 Role of afferent feedback and effects of spinal cord injury on the encoding of 
postural responses in unexpected perturbations 
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The work presented here, in which animals were subjected to perturbations that were 

unexpected in timing and severity both before and after spinal cord injury, can be compared with 

previous studies on behavioral and neuronal responses to predictable tilts in the frontal plane115,181. In 

the previous studies using intact rabbits or cats, the animals compensate for the tilt by extending the 

limb when the platform moves down and flexing the limb when it moves up. Although we recorded 

ground reaction forces (GRFs) and not limb kinematics or trunk movements from a subset of animals, 

our animals behaved similarly to shift their center of mass over their base of support, maintaining an 

upright position and preventing falling. The use of kinematics in future studies will allow for a better 

assessment of post-transection behavior, as weight-supporting harnesses undoubtedly affected the 

ground reaction forces after SCI. With respect to neural responses, we observed unique responses in 

the HLSMC to unexpected tilts, just as cortical modulation was previously observed in response to 

tilts in both rabbits182 and cats115. 

Despite these similarities, there are key differences that distinguish our work. First, in cats115, 

the activity of pyramidal tract neurons in the hindlimb motor cortex was almost exclusively correlated 

with extension of the contralateral limb. In the present study, when the tilt was unexpected, cells 

responded to both extension and flexion, suggesting a more robust response to unexpected tilts. 

Second, the peak firing rate in response to unexpected tilts for intact rats was over 30 Hz, about double 

the rate of those previously reported115. This would suggest that unexpected perturbations create 

greater cortical responses. This is consistent with EEG and TMS studies in humans showing that the 

magnitudes of evoked cortical responses and postural muscle activations are greater during expected 

compared to expected postural perturbations201–205. 
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Third, we observed a sustained cortical response to tilts even after removal of hindlimb 

afferents. This is in contrast with previous work that showed that suspending a hindlimb during 

platform tilts (and thus removing its sensory inputs) led to a strong attenuation of the response in the 

contralateral hindlimb motor cortex49. In the current study, however, a complete mid-thoracic spinal 

transection that removed all sensory input from below the lesion simply caused a delayed neural 

response to unpredictable tilts in the HLSMC but had no effect on the magnitude of the response. 

The unexpected tilts in this work better reflect instantaneous loss of balance and provide insight into 

the role of the cortex during a more complex balance task. Furthermore, this work clarifies that even 

after a complete spinal transection, neurons in the cortex still organize to convey information about 

the perturbation. It is important to note that, while our microelectrode arrays were chronically 

implanted in the HLSMC, we do not assume that the same neurons are being recorded pre-and post-

SCI. Therefore, our conclusions are limited to the average responses of neurons in the HLSMC at 

these two time points. 

This responsiveness in the absence of ascending sensory feedback from the hindlimbs likely 

originates from sensory signals from forelimb and trunk afferents caudal to the injury as well as inputs 

from the visual and vestibular system. It has been shown that limb somatosensory afferents are 

processed and even converge subcortically in the spinal cord and brainstem before reaching the 

cortex206–209. Activity from the forelimbs is likely transmitted to the deafferented hindlimb cortex 

producing sufficient activation to discriminate the severity of the tilt, with the delay reflecting the 

additional time needed to reach firing thresholds due to the loss of hindlimb afferent inputs. Although 

the majority of hindlimb sensorimotor cortex cells respond to stimulation of the contralateral 
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hindlimb, forelimb afferents also send inputs to the hindlimb sensorimotor cortex. Therefore, neurons 

in the “hindlimb” representation have been shown to respond to forelimb stimulation and vice 

versa193. In addition, a network of HLSMC neurons that are normally active in response to forelimb 

movements could be contributing to the responses we observed in the deafferented cortex. This would 

be in line with the work by Karayannidou et al. , in which a subset of cortical neurons followed the 

forelimbs more closely when the forelimbs and hindlimbs were tilted out of phase49. 

3.5.2 Neuronal encoding of tilt 

Neurons have been shown to encode for multiple sensory and motor events by scaling their 

firing rate to a parameter of the movement. For example, using multiple linear regressions, cells in the 

motor cortex have been shown to modulate their firing rate depending on the speed, direction, 

position, and acceleration of arm trajectory210. Moreover, neurons in the motor cortex have been 

shown to increase their firing rate with finger velocity in a center-out task211. In sensory systems, 

cortical firing rate has been shown to increase with speed of whisker deflection212. Our findings extend 

this scaling of neuronal activity to the hindlimb cortex during postural events and show that the 

magnitude of the response is scaled to the severity of the tilt, encoding not only that a tilt occurred, but 

the severity of the tilt. 

Therefore, not surprisingly, the information that a tilt occurred increased as the severity of the 

tilt increased. We show that this is certainly due to the increase in neuronal response magnitude as 

intensity of tilt increases (e.g., scaling), as holding the number of responsive neurons constant resulted 

in more information for greater intensity tilts. Of course, the central nervous system (CNS) has access 
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to the information from additional neurons that respond, and it is likely that this information is used 

by the CNS to make appropriate postural adjustments in response to the tilt. A likely explanation for 

the greater number of neurons responding as the intensity of the tilt increases is the need to activate 

more motor neurons, in turn activating more muscle groups, to maintain balance in response to larger 

perturbations. 

Spinal cord injury reduces the amount of information about tilt detection and tilt 

discrimination, even when neuron numbers were held constant. This reduction in information 

suggests that recruiting more neurons into the task is one strategy to ameliorate any loss of information 

after SCI. After complete mid-thoracic spinal cord transection, neurons in the HLSMC are more 

likely to both respond to forelimb stimulation and also activate trunk musculature after regular 

physical rehabilitation65. This cortical plasticity has been shown to improve behavioral outcome, as 

lesioning this reorganized cortex reduced gains in weight-supported stepping achieved by animals that 

received therapy65. Therefore, therapeutic interventions that support reorganization would be 

expected to further improve outcome, and therapy along the entire neural axis, including the cortex – 

is likely necessary to optimize outcome after SCI213–217. 

Finally, the sustained encoding of postural information after SCI observed in this study (with 

respect to both stimulus detection as well as discrimination) has important translational implications 

for the field of neuroengineering. Despite playing a less significant role in postural control than other 

supraspinal centers in the brainstem, this study has demonstrated that the cortex can serve as a source 

of information about postural perturbations after SCI. Brain-machine interfaces can be developed 
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using cortical signals to augment postural control, such as through spinal or peripheral nerve 

stimulation to support functional recovery after spinal cord injury. 
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Chapter 4 – Cortical population dynamics 
during postural control are preserved after 
spinal cord injury  

4.1 Summary 
Human and animal subjects with various neurological conditions are capable of controlling 

neuroprosthetics using their own cortical signals with surprising ease, even years after loss of 

sensorimotor function. However, the underlying neural computations that explain this phenomenon 

have not been elucidated. Employing a clinically relevant rodent model of spinal cord injury, we 

assessed the extent to which both single-neuron and population-level dynamics in the trunk and 

hindlimb representations in the motor cortex were affected by injury as well as subsequent physical 

rehabilitation therapy. Surprisingly, while spinal cord injury led to significant postural deficits and a 

reduction in cortical encoding about postural disturbances on a single neuron level that were both 

modestly attenuated with regular physical therapy, the dynamics of neural populations continued to 

sufficiently predict the animal’s desired position in space. Additionally, despite significant changes in 

behavior and single-neuron dynamics, these population dynamics remained stable for months after 

injury – providing not only evidence of the cortex’s maintained role in postural control after injury, 

but a possible explanation for neuroprosthetic learning after neurological injury.  

4.2 Introduction 
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Various neurological conditions (e.g., spinal cord injury, amyotrophic lateral sclerosis) sever 

the communication between the brain and motor outputs, leading to severe, debilitating motor 

deficits. Brain-machine interfaces aim to restore this disconnect by creating a functional bypass to 

improve motor function. Substantial work has sought to decode cortical signals to restore arm 

movement15,24, speech135, and lower limb function27,28,53.  

Despite large scale reorganization across the neural axis  and impaired sensorimotor function 

associated with neurological conditions such as spinal cord injury57,63,65, individuals have the 

remarkable capacity to quickly learn to map their neural signals to idealized movement16,19,27,53,116,218 – 

even when such movements have been impaired for years. In order for individuals to achieve such 

proficiency after injury, we hypothesized that the cortical computations related to movement 

generation must be sufficiently stable even after significant neurological injury. If true, this would help 

explain the success of decoding movement from an injured nervous system.  

Dynamics of neural populations in the uninjured cortex are governed by rich underlying 

structure77,85,86,92,124 that exhibit long-term stability219 and even commonality between individuals125. 

However, it is unknown the extent to which significant changes to sensory inputs and impaired motor 

output would affect such stability. Thus, we sought to not only evaluate the stability of cortical motor 

control signals after injury, but also if such cortical computations can be found specifically for 

postural control, as the ability to fully restore independent lower limb function remains limited by the 

fact that such neuroprosthetic work often fails to account for postural instability. We previously 

showed that in uninjured animals, the cortex undergoes unique computations on the population level 

to coordinate the body’s response to different perturbations. While limited work has evaluated the 
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effect of such injuries on the response patterns of individual cortical neurons114, the effect of injury on 

population level dynamics remains unknown.  

After characterizing the effect of a clinically relevant moderate contusion injury on postural 

stability, we recorded the single-neuron activity in the primary motor cortex (M1) while rats 

maintained balance on a randomly tilting platform. As physical rehabilitation has been shown to be 

critical for the motor improvement after spinal cord injury65 and is thus standard in the longitudinal 

care of SCI, a subset of animals underwent additionally treadmill training so we could assess the 

influence of exercise therapy on these cortical processes.  

After injury animals exhibit both behavioral postural impairments as well as a reduction in the 

responsiveness and perturbation-specific modulation of individual neurons in the motor cortex. 

Physical rehabilitation therapy attenuates both of these effects and is therefore associated with 

moderately improved functional outcome. However, despite these changes in behavior and cortical 

responsiveness, cortical population dynamics remain consistent with those observed prior to injury for 

at least two months after injury. These results may explain how individuals can successfully learn to 

control neuroprosthetics after neurological injury while also providing evidence that the cortex can 

also be used as a control signal to restore postural stability after spinal cord injury.  

4.3 Results 
4.3.1 Treadmill therapy prevents the reduction of postural stability observed after 
moderate contusion 
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After completing a series of pre-injury behavioral assessments, rats received a moderate spinal 

contusion injury at vertebral level T10 and were randomly assigned to either an exercise therapy or 

control group. One week after injury, animals assigned to the exercise therapy group underwent thirty 

minutes of treadmill walking therapy five days a week for eight weeks. Control animals were 

administered a “sham” therapy in which they were placed on a stationary treadmill for the same 

amount of time.  

Moderate contusion led to significant motor impairment that moderately resolved over 

subsequent weeks independent of experimental group [F(1, 34) = 0.06, p 0.804] as measured by the 

BBB scale220. One week after injury, 46% of animals displayed little to no hindlimb movements with 

the remaining 54% showing occasional intervals of uncoordinated stepping (Scores = 7.3±1.9). In 

contrast, nine weeks after injury, all animals had regained some degree of stepping, with 53% 

displaying intervals of uncoordinated stepping and 47% recovering forelimb and hindlimb 

coordination (Scores = 14.9±3.3).  

However, since the BBB score does not exhaustively assess all aspects of gait (e.g., temporal 

dynamics), we performed an automated gait analysis (Fig. 4.1a) and compared the quality of stepping 

between animals who received regular therapy (n = 5-7) and those who did not (n = 8-14) prior to 

injury and then three, five, seven, nine weeks after injury. Linear discriminant analysis (LDA) was used 

to identify gait parameters that maximize the separability between classes (e.g., therapy v. non-

therapy). Separately for each session (pre-injury and then weeks 3, 5, 7, and 9 post-injury), an LDA 

model was built using a leave-one-out approach and the remaining trial was then classified as either 

belonging to a therapy or control animal. Whereas therapy and non-therapy trials could not be 
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distinguished pre-injury and in the early weeks post-injury, classification accuracy rose above chance 

levels in later weeks, suggesting exercise altered the manner by which animals walked after injury (Fig. 

4.1b).  

 

Figure 4.1. Stepping characteristics over time.  

 
a Multiple gait parameters based on foot placements during walking trials served as inputs to a linear 
discriminant analysis (LDA) classifier, which defines a linear boundary that best separates trials therapy and no 
therapy animals. A left-out trial (red) is classified based on this boundary. b Classifier performance was 
evaluated across weeks and compared to a chance distribution based on 1000 iterations of classifications after 
shuffling group-parameter relationships. IQR = interquartile range. c Relative importance of each of the nine 
gait parameters used was calculated using the ReliefF algorithm, where larger positive values imply greater 
importance. d Mean hind paw base of support over time. Points represent a trial for a single animal. ***p<0.001, 
**p<0.01, ns = not significant.          

Since an LDA approach was able to successfully discriminate the gait of exercised and non-

exercised animals at later time points, we determined which parameters best informed this 
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classification (Fig. 4.1c). The ReliefF algorithm221 rewards predictors that give different values to 

neighbors of different classes in multidimensional variable space while also penalizing parameters that 

give different values to neighbors of the same class. The most important parameter discriminating the 

gait patterns of the two groups when above-chance classification occurred (i.e., Week 5, 7, and 9) was 

the mean distance between the hind paws, or the average width between the hind paws when walking. 

Thus, we evaluated the effect of injury and therapy on hind paw base of support (Fig. 4.1d). As 

expected, there was a significant interaction between therapy and time [F(4,78) = 3.803, p = 0.0071, 

two-way ANOVA]. Animals who did not receive therapy began to widen their best of support relative 

to Pre-SCI at later weeks [Week 3 (p = 0.722), Week 5 (p = 0.255), Week 7 (p = 0.030), Week 9 (p = 

0.007)], consistent with other work222. In contrast, there was no change observed among animals that 

received therapy at any time point [Week 3 (p = 0.926), Week 5 (p = 0.6926), Week 7 (p =0.988), 

Week 9 (p = 0.792)].  

Adopting a wider base of support represents one strategy to maintain postural stability, 

reducing the need for more refined joint movements in the face of a perturbation. As non-exercised 

animals widened their hindlimb base of support over the weeks following spinal cord injury, this result 

suggests that injured animals must acquire novel compensatory postural strategies when not provided 

physical rehabilitation therapy after injury. 

4.3.2 The hindlimb adopts novel, exercise-dependent locomotor strategies after 
moderate contusion 

To more thoroughly characterize changes in gait after contusion, we collected two-

dimensional hindlimb kinematics during treadmill walking for individual step cycles from a subset of 
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animals (therapy = 4, control = 4) at weeks 2 (therapy: 302 step cycles v. control: 158 step cycles), 5 

(374 v. 171 step cycles), and 9 (389 v. 214 step cycles) after injury (Fig. 4.2a). Changes in kinematic 

parameters were compared between exercised and non-exercised animals using a linear mixed effects 

model with the individual animal as the random effect.  

While pre-injury recordings were not collected due to difficulty for animals to tolerate the 

harness (see Methods), the gait between the two groups did not differ at Week 2 (toe height, p = 

0.6172; stride length, p = 0.1991); stance phase duration223, p = 0.3546; swing phase duration223, p = 

0.6671).   

However, all four of these parameters were affected differently for the two groups at later time 

points (Fig. 4.2b-e) [Interactions of group x week post-injury: Toe Height, F(2,1660.60) = 20.2106, p 

< 0.0001; Stride Length, F(2, 1660.10) = 22.3289, p < 0.0001; Swing Phase Duration, F(2, 1660.78, p 

= 0.0433); Stance Phase Duration, F(2,1660.75), p = 0.0014]. For non-exercised animals, toe height 

(Fig. 4.2b) significantly decreased at week 9 [Week 2 v. Week 9: p = 0.0001; Week 5 v. Week 9: p < 

0.0001] whereas exercised animals displayed a significant and stable increase in toe height by week 5 

[Week 2 v. 5: p < 0.0001; Week 5 v. Week 9: p = 0.386]. This was associated with a relative decrease in 

the stride length (Fig. 4.2c) in the non-exercised animals [Week 2 v. Week 5, p = 0.3870; Week 2 v. 

Week 9, p = 0.0009; Week 5 v. Week 9, p < 0.0001] and increase in the exercised animals [Week 2 v. 

Week 5, p = 1.000; Week 2 v. Week 9, p = 0.0071; Week 5 v. Week 9; p = 0.0056].  

These positional changes were associated with temporal changes as well. Whereas the stance 

phase duration (Fig. 4d) of non-exercised animals significantly dropped at later time points [Week 2 v. 

Week 5, p = 1.000; Week 2 v. Week 9, p = 0.0003; Week 5 v. Week 9, p = 0.0010], it remained largely 
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Figure 4.2. Effect of therapy on hindlimb kinematics after injury 

 
a Behavioral setup in which a camera tracked the 2D position of a marker on the right hindlimb as the rat 
walked unsupported on a treadmill (left). Exemplar hindlimb trajectories for one animal, divided into the stance 
(green) and swing (blue) phases of the step cycle (right). b Toe height, stride length, stance phase duration, and 
swing phase duration shown as a function of time for each experimental group. Each point represents a step 
cycle from a single animal. Statistical significance determined with a linear mixed effects model to control for 
within-animal effects. ****p < 0.0001; ***p<0.001, **p<0.01, *p<0.05, ns = Not significant.  
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constant in the exercised animals [Week 2 v. Week 5, p = 0.0854; Week 2 v. Week 9, p = 0.7814; Week 

5 v. Week 9, p = 0.7272]. Conversely, the swing phase duration (Fig. 4e) was constant across time for 

the non-exercised animals [Week 2 v. Week 5, p = 0.2810; Week 2 v. Week 9, p = 0.3554; Week 5 v. 

Week 9; p = 1.000] but became significantly faster with each subsequent week for the exercised 

animals [Week 2 v. Week 5, p = 0.0006; Week 2 v. Week 9, p < 0.0001; Week 5 v. Week 9, p = 0.0482].  

Therefore, injury reduced the size of the path taken by the hindlimb while also reducing the 

time the animal maintained contact with the platform. This inability of the non-exercised animals to 

maintain contact with the treadmill before taking additional steps suggests instability in maintaining 

weight supported steps (and thus poor postural control strategies). However, therapy led to fewer, 

larger hindlimb movements with a more confident, faster swing phase as well as a more stabilized 

stance phase – all continuing to improve with time. These combined data support that exercise is 

associated with better hindlimb control and robust steps.  

4.3.3 Information in M1 about postural perturbations is reduced after moderate 
injury, but maintained with exercise therapy 

So far, we demonstrated that our moderate contusion model has a detrimental effect on 

postural stability that is attenuated with regular physical rehabilitation. To assess the effect of spinal 

cord injury and subsequent therapy on cortical encoding of posture and ultimately the associated 

cortical computations, twelve animals (therapy = 7,  control = 5) were implanted with microwire 

arrays that spanned the primary motor cortex (M1) of one hemisphere (Fig. 4.3a). Prior to injury and 

then 1-, 5-, and 9-weeks post-injury, we recorded single-unit neural activity in the trunk and hindlimb 

regions within M1 [Pre-Injury: 362 neurons (91 ± 24) across exercised animals v. 154 neurons (59 ± 
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25) across non-exercised animals; Week 1: 351 (95 ± 29) v. 241 (90 ± 17) ; Week 5: 343 (99 ± 29) v. 

200 (81 ± 16) ; Week 9: 319 (91 ± 26) v. 174 (67 ± 16)] as animals maintained balance while standing  

 

Figure 4.3. Single neuron tilt discrimination 

 
a Rats stood on a platform that tilted clockwise or counterclockwise at two different speeds (top) while single-
unit neurons were recorded from the trunk and hindlimb motor cortex (M1, coordinates shown on bottom). b 
Neurons that conveyed greater mutual information about the tilt type than chance were considered 
“information-conveying” neurons. Ratios of information-conveying neurons were compared across time and 
therapy groups. Statistical significance determined by chi-square tests. c Mutual information based on the 
ability to discriminate the different perturbation types was quantified for information-conveying neurons 
described in b and compared across time and experimental group. Statistical significance was determined by a 
linear mixed effects model, controlling for between-animal effects. b,c Pre = Pre-Injury, ****p<0.0001, 
***p<0.001, **p<0.01, *p<0.05, ns = not significant.    

unrestrained on a platform that tilted randomly at two different speeds in each direction in the lateral 

plane.  

In line with previous work, we observed that M1 neurons conveyed information about the 

perturbation at all time points post-injury. Information (measured in bits) was determined by 

calculating the mutual information between a neuron’s firing pattern and the type of perturbation 

during a given trial, and this value was compared to the average information conveyed after shuffling 
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firing pattern and trial relationships 100 times (i.e., “chance information”). A neuron was considered 

informative if it conveyed more information than chance (Fig. 4.3b). Prior to injury, 90.6% of neurons 

in the therapy group and 85.7% of neurons in the control group conveyed information, with no 

difference observed between groups [χ2(1) = 2.19, p = 0.555]. Injury significantly reduced the 

proportion of informative neurons in both therapy [χ2(3) = 28.14, p < 0.0001] and control animals 

[χ2(3) = 31.28, p < 0.0001], with no difference between groups one week after injury [therapy: 79.2%, 

control: 78.8%, χ2(1) < 0.0001, p = 1.000]. However, whereas information continued to decline in 

subsequent weeks in the control group [χ2(2) = 18.31, p = 0.0002], no further loss was observed in the 

exercised animals [χ2(2) = 1.10, p = 1.000]. As a result, significantly more neurons conveyed 

information than control animals by week 9 (79.3% in therapy animals, 60.3% in control animals, χ2(1) 

= 19.42, p < 0.0001]. Therefore, while injury significantly reduced the proportion of neurons that 

modulated their responses for the different perturbations, physical therapy prevented further the 

additional reduction in the size of the responsive neural pool observed in non-exercised animals.  

In addition to quantifying the size of the population of neurons that convey information, the 

amount of information actually conveyed by those neurons is equally important. Therefore, we 

evaluated the effect of injury and subsequent therapy on the amount of information conveyed by 

individual M1 neurons (Fig. 4.3c). Regardless of therapy [F(1, 10.38) = 0.0439, p = 0.8380], single 

neuron information was significantly reduced after injury [F(3,1686.6) = 12.4944, p < 0.0001].  

Therefore, on a single neuron level, spinal cord injury leads to a reduction in both the 

proportion of information-conveying neurons in M1 as well as the amount of information conveyed 

by those neurons. Exercise prevents further decline in the number of information-carrying neurons 
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but does not impact the amount of information carried per neuron. This rescue of information 

carrying neurons was associated with improved postural behavior.  

4.3.4 Preserved cortical dynamics after injury support maintained decoding 

Given these behavioral changes as well as single neuron mutual information changes we 

wanted to assess the extent to which we could decode the intended posture of the animal based on the 

activity of neural populations. Therefore, we decoded the instantaneous angle of the tilting based on 

M1 population activity using a linear Kalman filter224 (Fig. 4.4a). Prior to injury, M1 was able to 

decode the angle of the platform with relatively high accuracy (correlation coefficient: 0.51 ± 0.23). 

Interestingly, decoding accuracies remained comparable to pre-injury accuracies at one (0.54 ± 0.19; 

t(11) 0.6212, p > 0.999, Bonferroni adjusted), five (0.46 ± 0.16; t(11) = 0.8390, p > 0.999, Bonferroni 

adjusted), and even nine (0.38 ± 0.19; t(11) = 2.360, p = 0.1134, Bonferroni adjusted) weeks after 

contusion (Fig. 4.4a). Additionally, exercise therapy had no effect on decoding accuracies after injury 

[F(1,10) = 2.014, p = 0.1866].  

Our behavioral and single neuron analyses demonstrated significant effects after mid-thoracic 

contusion; therefore, the unaltered ability of neural populations recorded in the hindlimb and trunk 

regions of the cortex to decode the position of the platform is surprising. The attenuation in mutual 

information observed in individual M1 neurons after injury that likely arose from damage to both 

ascending and descending fibers in the mid thoracic spinal cord clearly did not impact the ability of the 

population to decode. Gallego et al demonstrated long-term stability of dynamics within the 

somatosensory cortices in monkeys during a reaching task for up to two years despite the steady  



 92 

Fig 4.4 Preserved cortical encoding supported by maintained neural dynamics   

 
a Firing activity from the hindlimb and trunk M1 were used to predict the angle of the platform on which the 
rat stood. Exemplar predictions (colored lines) compared to true platform angles (black lines) are shown for one 
animal (center). Decoding accuracy (CC, correlation coefficient) is shown over time, with each point 
representing one animal (right). b Canonical correlation analysis (CCA) aimed to align pre-injury and post-
injury neural trajectories for the four tilt types (red = counterclockwise, green = clockwise, dark = fast, light = 
slow). Top plots show latent dynamics before and after alignment. (Top) Solid lines show pre-injury trajectories 
whereas dotted lines show post-injury trajectories. (Bottom) Plots show individual components plotted against 
time, with arrow denoting start of tilt. PC = principal component, CC = canonical. Experimental canonical 
correlations were compared to a distribution of 1000 correlations calculated from simulated neural data, and a 
standard score (i.e., a z-score) was calculated for the true experimental value (right, top). These standard scores 
were compared across time (right, bottom), with each point representing one animal. a, b Statistical significance 
was determined by repeated measures ANOVA. ns = not significant. 
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turnover in recorded neurons using canonical correlation analysis (CCA)219. They concluded that 

these stable dynamics support the consistent behavior seen across days. Thus, we hypothesized that 

maintained cortical decoding of platform position was similarly supported by cortical computations 

that are maintained even after significant spinal injury.  

We used canonical correlation analysis (CCA) to assess the stability of neuronal dynamics post 

injury by comparing how well post-injury M1 dynamics aligned with those observed pre-injury (Fig. 

4.4b). Importantly, alignment on average remained over three standard deviations greater than that 

achieved by comparisons of the same pre-injury dynamics to 1000 different simulations of post-injury 

dynamics we constructed using tensor maximum entropy (TME)225. The TME method generates a set 

of surrogate neural activity that preserves the mean and covariance of the original neural data across 

time, neurons, and conditions but is otherwise random. Interestingly, we observed no changes across 

weeks post-injury [F(2,20) = 0.2420, p = 0.7874) or between treatment groups [F(1,10) = 0.6640, p = 

0.4341]. Thus, despite the changes we observed on the individual neuron level, cortical dynamics (and 

therefore posture-related computations) remain preserved even after spinal cord injury.  

4.4 Discussion 
Using a rodent model of spinal cord injury with and without physical rehabilitation therapy, 

we investigated the extent to which significant sensorimotor deficits and well-established plasticity 

along the entire neural axis could alter the underlying dynamics of the cortex, particularly with respect 

to those implicated during postural control. Indeed, mid-thoracic contusion injury caused marked 

motor dysfunction that was associated with a decrease in both the number of cortical neurons 
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conveying posture-related information as well as the information conveyed by those neurons. This 

supports previous work in which we observed that the forces animals applied to the tilting platform 

during the perturbations were both delayed and attenuated after complete transection of the same 

spinal level114,116. These deficits were similarly associated with decreased modulation and responsiveness 

in the hindlimb sensory and motor cortices. Interestingly, moderate physical rehabilitation through 

daily exercise therapy appeared to have lessened the severity of both of these behavioral and cortical 

effects. In contrast, population level encoding remained preserved, with neural ensembles continuing 

to predict the speed and magnitude of the perturbation on a single-trial basis at every timepoint 

studied after spinal cord injury. While this could have been explained by successfully developed novel 

or adaptive computations in response to sustained sensorimotor function, our results here 

demonstrate that this was most likely explained by the fact that the underlying computations of this 

cortical area in fact remained highly stable even after injury. Interestingly, these population-level 

computations in the motor cortex were perturbed neither by injury nor by physical therapy, even 

when these both led to different levels of motor function and even unique changes to the very neurons 

making up those populations.  

Stability of neural signals in light of changes to the neural system, either as a result of injury or 

through therapy-mediated neuroplasticity, likely explains why injured individuals are able to so readily 

learn neuroprosthetic control226. Instead of adapting arbitrary, novel computations that differ from 

existing neural structure and impede learning227, individuals can utilize pre-existing repertoires to 

control a brain-machine interface228. While stability has been observed in cortical computations during 

motor tasks in healthy subjects219, the effect of neurological injury on these able-bodied dynamics has 
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not directly been studied, especially at the single-neuron level. In two different brain-machine interface 

tasks where population activity in the hindlimb M1 directly controlled an external device, we observed 

that animals performed just as well after complete spinal cord transection as they did prior to 

injury27,116.  

This could have occurred in one of two ways: (1) the cortex could have employed preserved 

population-level computations, or (2) novel strategies could have been adopted that ultimately 

perform the same. Multiple pieces of evidence support the former. First, cortical representations of 

limbs remain remarkably stable following amputation229,230. Activation of the hand region in the 

human primary sensory cortex (S1) evokes sensation in the amputated “phantom” arm – not in the 

neighboring representations231, providing an anatomical substrate for maintained dynamics that are 

robust to altered sensory inputs and motor outputs. Second, the pairwise differences in single-unit 

neural activity recorded from the postural parietal cortex during different individual finger movements 

in a tetraplegic subject had similar structure to those gleaned from the fMRI activity of able-bodied 

individuals232, suggesting motor representations are maintained even a decade after injury. Third, 

significant similarities have been observed between the neural dynamics of humans with absent or 

severely impaired motor function to those characterized in healthy non-human primates14,91, 

demonstrating not only conserved cortical function across species but implying preserved dynamics 

after severe motor neuron disease. Thus, even in the absence of sensory feedback and limb movement, 

M1 computations remain heavily preserved. This likely relates to the fact that cortical computations 

during actual and imagined movement are governed by highly similar dynamical features233. 
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How can population activity can be stable despite significant changes in single neuron 

dynamics, such as those that we observed in both therapy and control animals after injury?  Such a 

disconnect has been observed by others in the motor cortex as well as sensory234,235 and even 

hippocampal236 networks. Despite unstable single neuron tuning properties over short periods of time, 

skilled movement237 as well as decoding accuracy from frontal and parietal neural populations238 

remain consistent. One possibility is that significant redundancy simply exists within the neural 

ensemble, such that single-neuron volatility does not perturb population-level dynamics234,235,238. 

Alternatively, significant active compensation can occur to maintain a stable population in a sort of 

dynamic equilibrium239. For example, pharmaceutically suppressing synaptic activity of hippocampal 

neurons grown in vitro temporarily decreased the population’s average firing rate but led to sustained 

changes in most individual neuron firing rates long after the population stabilized236. Analogously, we 

observed the performance of rats in a brain-machine interface task transiently decrease immediately 

following a complete spinal cord transection; however, the return to pre-injury performance of our 

population decoder less than a week later was associated with changes to single neuron firing 

patterns27.   

Finally, an unaddressed question in brain-machine interface research is the ultimate interplay 

between BMI use and different forms of neuroplasticity, such as those mediated through interventions 

like physical rehabilitation therapy57. As BMI use itself induces sustained changes in the firing 

properties of neurons in the cortex as individuals learn to control these devices159,240, do the changes 

associated with these two interventions act synergistically (i.e., creating better outcomes than either 

can alone) or perhaps antagonistically (i.e., working against each other and preventing optimal 
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outcomes)? Whereas exercise was associated with marked behavioral improvement and maintenance of 

cortical responsiveness to perturbations, it did not impede cortical decoding performance or even alter 

the population-level dynamics in the cortex that a brain-machine interface would utilize – suggesting 

that an antagonistic relationship is less likely. Further work will be needed to investigate the 

relationship between prolonged therapy and “online” neural control of postural devices (or 

stimulation to the spinal cord itself to restore muscle movements) to fully tease apart this question.  

4.5 Methods 
All surgical and experimental procedures were approved by the Institutional Animal Care and 

Use Committee of the University of California, Davis. Adult female Sprague Dawley rats were used 

for all experiments. 

Spinal Contusion Surgery: Rats received robotically controlled injury delivered at the T10 

vertebral level using the Infinite Horizon impactor (Precision Systems and Instrumentation, USA). 

The impact force was set at 150 kdyn.  

Physical Rehabilitation Therapy: Beginning one week post injury, animals underwent 30 

minutes of moderate intensity, quadrupedal treadmill training five days a week for eight weeks. If 

weight supported plantar stepping could not be achieved, the ventral surfaces of the hind paws were 

gently stroked in a rhythmic manner and plantar placement of the paws onto the treadmill surface was 

facilitated manually. Minimal body weight support was required by either lateral pelvic support or 

holding the distal end of the tail for vertical support. Treadmill speed was adjusted throughout a 

session to allow (8 – 14 m/min).  
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Automated Gait Analysis: Gait analysis was performed using the CatWalk Automated Gait 

Analysis System (Noldus Technology). A glass plate enclosed on the top and two sides suspended 1.5 

m above the floor serves as a walkway that rats traverse. A green LED light illuminates the plate, which 

becomes more intense when contact is made with the glass plate. A red LED light illuminates the 

corridor from the ceiling, generating a silhouette when the animal enters the corridor. A high-speed 

camera positioned underneath the glass walkway captures each paw and silhouette, and each footprint 

is manually labelled by the experimenter. The CatWalk XT software generates numerous parameters 

for qualitative and quantitative gait analyses. The following parameters were assessed for each trial run: 

duration of the run, average run speed, number of foot placements (steps), number of patterns (i.e., 

the number of normal stepping patterns, defined below), regularity index (i.e., the number of normal 

patterns relative to the total number of steps), cadence (i.e., steps per second), maximum variation in 

the average speed, and the mean base of support separately for the hind paws and forepaws. A normal 

stepping pattern fell into one of the three categories: cruciate (right forepaw, RF – left forepaw, right 

hind paw, RH – left hind paw, LH or LF – RF – LH – RH), alternate (RF – RH – LF – LH or LF – 

RH – RF – LH), or rotate (RF – LF – LH – RH or LF – RF – RH – LH).  

Classification of Automated Gait Assessment Runs: For each assessment timepoint (Pre-

Injury, Week 3, Week 5, Week 7, and Week 9), a linear discriminant analysis classifier was used to 

classify runs by therapy group, with each run representing a unique animal’s trial. Classifier accuracy 

was assessed using a leave-one-out approach. Chance accuracy was calculated by shuffling the 

associations between animal group and gait parameters and re-running the classifier. A chance 

distribution was calculated based on 1000 iterations of this reshuffling. To determine which gait 
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parameters best contributed to this classification, the ReliefF algorithm221 was used. This randomized 

and iterative algorithm evaluated the parameters based on how well their values discriminated the runs 

from the other experimental group.  

Treadmill Kinematic Recordings: Animals were acclimated to a treadmill after spinal cord 

injury. Colored markers were applied to the toes of the left hindlimb. A video camera (Cineplex 

Studios, Plexon Inc.) placed to the side of the treadmill tracked the cartesian coordinates of the 

markers, acquiring at 80 frames per second. Animals were placed in a harness that ensured a stationary 

position on the treadmill but provided no weight support or lateral stabilization. A MATLAB script 

was used to extract toe position data, the following kinematic variables were calculated: maximum toe 

height, stride length, the duration of the swing phase (the time from toe-off to following foot-strike) 

and the duration of the stance phase (from foot-strike to following toe-off). Assessments were only 

collected post-injury as uninjured animals would not tolerate the harness and not engaged in the task. 

Tilt Task: Similar to our previous work114,116,129, animals were positioned on a platform. At 

random inter-tilt intervals, the platform would tilt in either the left or right direction at one of two 

speeds to a maximum angle of 16˚ before returning to the neutral position at a constant speed. Tilt 

order was randomized, and no visual or auditory cue was given prior to tilt onset. 100 trials of each tilt 

type were collected.  

Neural Implants: To record chronically from populations of cortical neurons, we implanted 

rats with 32-channel (8 x 4 configuration, 250 mm resolution; Microprobes, Gaithersburg, MD, USA) 

in the infragranular layer (1.3-1.5 mm) of the right hemisphere using standard surgical procedures. 

The electrode array spanned 0-2mm caudal to bregma and 1.25-2.0 mm lateral to midline, centered 
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around the trunk and hindlimb representations in the primary motor cortex (M1)129. Neural signals 

were amplified and filtered (Multichannel Neuron Acquisition Processer; Plexon Inc, USA) and then 

manually sorted into putative single units online (Sort Client; Plexon Inc, USA), with sort quality 

reassessed prior to each neural recording session. Spike times were collected as the animal completed 

the tilt task.  

Information Analysis: In line with our previous work114,116, we assessed the amount of 

information in individual neurons using a peristimulus time histogram (PSTH)-based classifier241 

using the first second of neural firing after tilt onset in 50ms bins. Briefly, Briefly, in a leave-one-out 

manner, PSTHs are generated from remaining trials for each tilt type. A single trial is then classified as 

belonging to the tilt type for which PSTH had the smallest Euclidian distance relative to that trial’s 

spiking activity. Mutual information was calculated from classifier’s confusion matrix. For four tilt 

types, mutual information values could range from 0 bits (implying no relation between neural firing 

patterns and the different tilt types) to 2 bits (based on the Shannon information formula with four 

equally likely perturbation types). Chance-level information was determined by calculating 

information conveyed by the same neural activity after shuffling the trials to which it belonged. This 

was repeated 100 times, and chance-level information was defined as the mean information of these 

100 iterations. All information values were corrected relative to chance, and any neurons with 

information £ 0 bits were considered to not convey information.  

Decoding Tilt Platform Angle from M1 Activity: To determine how well the neural 

ensemble activity could predict the angle of the tilting platform, a linear Kalman filter was trained 

using 80% of the trials. Prediction (and therefore decoding) accuracy was assessed by calculating the 
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correlation coefficient between the predicted and true platform angles during the remaining 20% of 

trials.  

Determining Stability of Neural Latent Dynamics: Separately for each animal and 

timepoint, neural activity 500ms before and 1500ms after tilt onset was Gaussian smoothed and then 

averaged within tilt type to form four PSTHs. Principal components analysis (PCA) was then applied 

to the concatenated, z-scored PSTHs. To then align the pre-injury dynamics to the dynamics at each 

timepoint after injury, we used canonical correlation analysis. The first 10 principal components (PCs) 

from were used from each time point. Alignment was defined as the average of the correlation 

coefficients from the first three resultant “canonical components” (CCs). Chance alignment was 

determined by calculating the alignment between pre-injury dynamics and the dynamics from 1000 

different instances of surrogate post-injury data (generated using the tensor maximum entropy 

method). True alignment was compared to this distribution of chance alignments by calculating its 

standard score (the number of standard deviations of the true value from the mean of the chance 

alignments).  

Statistics: For limb kinematics recording during treadmill walking and for single-neuron 

information analyses, individual step cycles and neurons were treated as independent samples, 

respectively. A linear mixed effects model was used to assess the effect of the fixed effects time (weeks 

post injury) and group (therapy v. non-therapy) on each dependent variable, with the individual 

animal treated as the random effect. This approximates a repeated-measures ANOVA while 

accounting for across-animal variability in determining statistical significance. Proportions of 

information conveying neurons were compared using Chi-Squared tests with Bonferroni corrections 
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to account for multiple comparisons. We compared decoder accuracy and population stability 

methods with analyses of variance.   
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Discussion and Conclusion 

5.1 Summary  

Despite the simplicity of the tilting task, this work has demonstrated that neural populations in 

the sensorimotor cortex not only modulate their responses in response to unexpected postural 

perturbations, but they also undergo complex computations to help the body maintain a stable center 

of pressure. Individual neurons convey significant information about postural perturbations, even 

after the complete transection of the mid-thoracic spinal cord. This information is encoded in parallel 

streams by speed-scaling and direction-dependent neural responses. As expected, the trunk is highly 

implicated in postural control, with the trunk representation in the motor cortex conveying just as 

much information about the perturbation as the hindlimb representation. Ground reaction forces, 

notably those most altered by mediolateral shifts in center of pressure, can be decoded based on the 

latent dynamics of the motor cortex, with different perturbation directions requiring unique 

computations that can be scaled with perturbation speed. After injury, the responsiveness of 

individual neurons to perturbations and the information conveyed by the neurons that respond is 

attenuated but remains significantly above chance (and can be further enhanced with physical 

rehabilitation); however, as a population, cortical dynamics are largely preserved. This can be explained 

by significant redundancy in the cortex and the maintained visual, vestibular inputs, and even 

somatosensory inputs from forelimb and trunk regions above the injury. Regardless, such preserved 

dynamics allow for continued decoding of postural metrics even months after spinal cord injury.  
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Thus, while additional work is critical, we argue that the cortex conveys sufficient, interpretable 

information to be used for the control of a brain-machine interface to restore postural control (and 

thus lateral stability) in individuals with spinal cord injury.  

5.2 Future directions: closing the loop  

While the cortex may convey significant information about postural control, it is unknown if 

these cortical signals are sufficient to stabilize an individual’s center of pressure in response to postural 

perturbations through cortically-controlled neuroprosthetics. Thus, the most natural follow up study 

would test the conclusion of this work head-on.  

Additionally, instead of controlling some external device (e.g., an exoskeleton), the control of 

spinal cord stimulators would ultimately allow individuals to control the movement of their own 

muscles. Fortunately, spinal cord stimulation for the treatment of lower limb paralysis (resulting from 

neurological conditions such as stroke, amyotrophic lateral sclerosis, or spinal cord injury) has come a 

long way. It has been long known that circuits in the lumbosacral spinal cord can be activated through 

electrical stimulation even after SCI, either intraparenchymally through intraspinal microstimulation, 

in which penetrating electrodes deliver current directly to their targets epidurally, or epidurally, where 

electrodes sit on the dorsal surface of the spinal cord. Such epidural stimulation recruits proprioceptive 

afferent fibers242, activating both central pattern generator networks243,244 as well as reflex 

circuits242,245,246. Various groups have demonstrated how and when to stimulate the spinal cord to 

create instantaneous and sustained rhythmic locomotor movements in the legs.   



 105 

Bridging our work with this spinal stimulation work would allow for an assessment of the 

feasibility of such a brain-spine interface in the augmentation of at least one aspect postural control 

after SCI. To do so, one could imagine expanding the dynamical systems approach highlighted in 

Chapter 2 that related latent cortical dynamics, observed neural firing activity, and recorded ground 

reaction forces to an additional stimulation term. Systems identification experiments, in which a range 

of stimulation parameters are applied to the spinal cord as the animal performs the task, would be 

necessary to build this model. If our hypothesis that the latent state of the cortex conveys the center of 

pressure of the animal is correct, we could then build a closed-loop control framework that stimulates 

the spinal cord to correct aberrant cortical dynamics while also righting the animal’s motor response.  

Of course, a “closed-loop” system trained on restoring appropriate muscle responses to 

unexpected lateral perturbations is only a step toward full recovery of postural control. Assuming 

adequate performance on the tilting platform, the next natural question would be to assess this model 

in the “open field.” Given that this transition introduces additional sensory, motor, and cognitive 

processes, it is important to assess the generalizability of this model – especially as such a paradigm 

could potentially even restore one aspect of postural control while interfering with other critical motor 

functions. This and other considerations are discussed further in the Appendix.  
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Appendix I – Targets beyond the cortex 
Developing a translatable postural BMI (or any neuroprosthetic) requires a signal that is not 

only stable informative, but also readily accessible. The combined work I have presented specifically 

investigates the extent to which the cortex could serve as this signal. The cortex is an attractive source 

of signal as it is a large, superficial surgical target, already ubiquitously used in BMI research, and – 

based on this work – highly informative about postural control before and after spinal cord injury. 

However, that is not to say that it is the optimal neural substrate for extracting the maximal amount of 

postural information. The neuroanatomical basis of postural control is complex and highly 

interconnected, with multiple major structures heavily implicated in this critical motor function. 

While reviewing the neuroanatomy of postural control, I consider the feasibility of using each of these 

areas to control a neural interface. 

 

Brainstem 
 

While humans and animals with spinal cord injuries can recover postural reflexes mediated by 

intrinsic spinal cord circuits below the level of injury, the poor timing and inadequate strength of these 

responses is insufficient to maintain lateral stability43,45,101,175,247. This implies that descending 

information from supraspinal centers is necessary to generate robust, appropriate corrective responses. 

Reversible lesions to the spinal cord (i.e., through cooling) at T12 in rabbits – removing the influence 

of supraspinal centers on spinal circuits in rabbits – led to inappropriate postural responses and an 

inactivation of previously responsive interneurons in the intermediate and ventral laminae of the 
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spinal cord that were both reversed with rewarming248. This, along with similar findings in other 

spinalization experiments249,250, suggests that the intrinsic spinal cord circuits are not sufficient for 

proper postural control without descending signals from supraspinal centers including the vestibular 

system46, reticular formation39–45, red nucleus251, and even the cortex48–50. These supraspinal commands 

likely provide both tonic signals to increase the excitability of the spinal cord circuits as well as phasic 

signals to elicit specific situational responses.  

The vestibulospinal and reticulospinal tracts of rabbits and rats seem critical for postural 

control. Lyalka et al. demonstrated this in a series of lesion experiments45. Whereas postural control on 

a tilting platform was recovered after dorsal and lateral hemisections of the spinal cord, it never 

returned after a ventral hemisection (where the vestibulospinal and reticulospinal tracts can be found 

in rabbits and rats). Thus, these experiments suggested that the primary supraspinal center for postural 

control could be found in the brainstem and not the cortex. Indeed, premammillary decerebrated 

rabbits and cats can generate postural corrections during various postural tasks whereas animals 

transected more caudally through the midbrain or pons cannot. Even in humans, it appears that the 

cortex does not contribute to the initial short-latency component of postural responses that 

immediately follows a postural perturbation110.  

The vestibulospinal tract is of particular interest, as the vestibular system supplies the nervous 

system with a gravitational frame of reference252 by providing sensory signals about three-dimensional 

head rotations and translations. The vestibulospinal tract is more excitable when an individual is 

sitting rather than lying down253. The lateral vestibulospinal tract extends the entire length of the 

spinal cord, providing inputs to the motoneurons for both forelimb and hindlimb muscles254.  A 
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recent study in mice showed that lateral vestibular circuits were critical for fast responses to postural 

perturbations255. Thus, interfacing with the brainstem, notably the vestibulospinal tract, may provide a 

better signal for postural control, as it is at the confluence of multiple somatosensory, visual, 

vestibular, cerebellar, and cortical sensory signals before sending descending signals to the spinal cord. 

Despite the attractiveness of these brainstem structures from a neuroanatomical and scientific 

standpoint, the feasibility of implanting recording electrodes to access them is questionable due to the 

sensitive nature of these areas (e.g., their proximity to respiratory centers). The brainstem has 

extremely complex anatomy, making any surgery – let alone recording device implantation – at this 

level incredibly difficult through a limited number of “safe entry zones”256,257. Currently, the only 

FDA-approved brainstem implants are auditory brainstem implants in neurofibromatosis type 2, 

which are placed relatively superficially within the lateral recess of the fourth ventricle258. Despite the 

difficult anatomy and associated risks in accessing more internal structures, there has been some rodent 

and monkey work involving recordings from the red nucleus259 and reticular formation260 and other 

brainstem targets261 in the behaving animal.  Should these technologies continue to advance and 

should the risks of brainstem implantation become comparable to those of cortical implantation, 

significant information could be gleaned from a brainstem-guided BMI.   

 

Cerebellum 
 

Many motor and sensory signals converge within the cerebellum, allowing for error detection, 

adaptation, and coordination with respect to perceived body motion in space110,262. In tasks where the 
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standing surface translates to predictable amplitudes, individuals with cerebellar lesions fail to scale the 

magnitude of their postural response263,264. Additionally, damage to the medial cerebellum is associated 

with a loss of muscle tone in antigravity muscles. Interestingly, lesions to the cerebellum do not seem 

to affect the postural muscle synergies recruited during surface displacements265, suggesting that the 

primary role of the cerebellum in posture is gain control. During a perturbation, in addition to 

receiving visual266 and vestibular267 input, the fastigial nuclei receive spinal and peripheral sensory 

information via the dorsal spinocerebellar tracts268, and vestibular signals are relayed to the flocculus 

and vermis. This convergence of signals allows for the cerebellum to engage in error detection and the 

development of motor programs, especially for anticipatory postural adjustments.   

As an integrator of sensory and motor information, the cerebellum could be a suitable 

alternative target for a motor BMI. In contrast with the brainstem, interfacing with the cerebellum is 

significantly more feasible. Cerebellar stimulation has been studied in animal models269–271 and in 

humans272–274 to treat dystonia and other motor outcomes, and various studies delineate how to 

chronically record cerebellar activity from both the cerebellar cortex and deep nuclei in both 

humans275 and animals276–278.  However, given that the cerebellum projects its postural signals to the 

cortex and brainstem with no direct descending connections to the spinal cord, understanding the 

value of information uniquely conveyed by the cerebellum that is not already accessible from other 

areas is important and should be further studied. Additionally, the effect of spinal cord injury or other 

neurologic conditions on this information needs further evaluation.  

 



 110 

Spinal cord 
 

The spinal cord integrates both descending supraspinal signals and at-level sensory afferents to 

generate a motor output, while relaying somatosensory information to higher order structures. At a 

given spinal cord level, the deeper grey matter is organized dorsoventrally, with sensory input fibers 

entering the spinal cord dorsally and motor output fibers exiting each spinal level ventrally.  

It has been known for over a century that the spinal cord itself contains intrinsic circuitry 

needed to respond to external postural perturbations. Even after complete transection rostral to the 

lumbosacral spinal cord, adult cats have been shown to demonstrate some level of postural control of 

the hindlimbs. Coined “postural limb reflexes”, these responses can be elicited by epidural electrical 

stimulation and appear to be driven primarily by somatosensory inputs – especially stretch and load 

receptors from the ipsilateral limb47,279. In a task where rabbits were subjected to unexpected tilts in the 

lateral plane as the activity of putative spinal cord interneurons were recorded, it was shown that two 

pools of fairly dispersed interneurons had significant modulation in response to either limb flexion or 

extension248,279. Lifting a hindlimb from the tilting platform (presumably removing its somatosensory 

input to the spinal cord) reduced the firing rate of these spinal interneurons on the ipsilateral side. 

Similarly, pyridoxine-induced destruction of large-diameter peripheral sensory nerve fibers in cats led 

to significantly delayed muscle activity and less robust corrections in response to horizontal translation 

of their support surface44. In contrast, bilateral labyrinthectomy280 and blindfolding, removing 

vestibular and visual sensory inputs, did not affect trunk and limb stabilization in this task.  
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It is less technically challenging to access the dorsal spinal cord than it is the ventral spinal cord, 

explaining why chronic recordings of the dorsal root ganglia of freely moving animals have been 

collected since the 1970s, while recording efferent motor information has been more limited. In one 

study in cats, action potentials could be recorded from the lumbar ventral roots; however, the authors 

of this study highlighted important limitations. Accurate placement of electrodes in the ventral roots 

was challenging to achieve, and the percentage of functional electrodes dropped off after 

implantation281. Meanwhile, dorsal root ganglion recordings may be a promising alternative. The 

dorsal root ganglia are structures that contain the cell bodies of thousands of sensory axons entering 

the dorsal spinal cord. The signal from the dorsal root ganglia can be decoded to predict limb location, 

and this signal has even been used to control intramuscular282 and intraspinal283 stimulation in 

anesthetized cats to generate rudimentary walking behaviors (while the head, forelimbs, and trunk 

were supported).  

In addition to the grey matter, the spinal cord also contains multiple descending and ascending 

pathways. As discussed above, many such pathways originating in the brainstem convey critical 

information about postural control and represent the final output of supraspinal computations. One 

group demonstrated the feasibility of recording rubrospinal tract fibers in rats using chronically 

implanted arrays284. Over a four-week period, the signal appeared stable and minimal tissue responses 

were seen histologically. Additionally, they demonstrated that this signal conveyed significant 

information about the timing of behavior285.  This suggest that targeting these tracts as they descend 

within the spinal cord may serve as an attractive alternative to recording such signals from their less 

accessible brainstem origins. 
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Conclusion 
 

In summary, postural perturbations elicit multiple sensory signals – visual, vestibular, 

proprioceptive, and cutaneous – that are relayed across the neural axis. Reciprocal direct and indirect 

connections between the cortex, cerebellum, brainstem, and basal ganglia ultimately converge in the 

spinal cord, modulating basic postural reflexes that ultimately activate particular muscle synergies to 

provide a correction. Thus, myriad options exist as the signal for a theoretical postural 

neuroprosthetic, but differences in feasibility and safety require careful consideration. While the 

brainstem may provide the best signal, accessing these nuclei poses concerns that are much less of a 

concern in other areas. Additionally, while this work focused on restoring postural control after spinal 

cord injury, the pathophysiology of the neurological disorder being treated will be an important 

consideration as well. As recording technologies advance, perhaps large-scale recordings across 

multiple targets may ultimately balance information gain and implant safety.  
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Appendix II – Toward a clinical tool  
Designing any BMI technology involves many complex components. The combined work of 

this dissertation primarily addressed the signal that can be acquired and subsequently interpreted from 

the cortex about postural control. Importantly, given the complexity of fully independent motor 

control and the novelty of directly addressing postural control therewithin, I chose to focus on one 

aspect of posture: responding to unexpected perturbations during stance.  

Within that niche, this I demonstrated that information about unexpected postural 

disturbances and subsequent motor responses could be extracted from subsets of neurons recorded in 

the sensorimotor cortex of rats– an area commonly used in brain-machine interface research but 

whose role in postural control is often overlooked – both before (Chapter 2) and after spinal cord 

injury (Chapters 3 and 4). More specifically, I showed that perturbation characteristics and even 

behavioral responses could be decoded better using motor cortical neurons (whether from the trunk or 

hindlimb representations) than when using with sensory cortical neurons (Chapter 2). Additionally, I 

uncovered a possible explanation regarding how individuals can learn to control a brain-machine 

interface (1) years after injury and (2) without the need for models to be developed prior to injury 

(Chapter 4). That being said, multiple critical steps remain between the conclusions of this work and 

eventual clinical application. This section will provide an overview of some of these primary 

considerations that should be addressed in animal models before translating this technology to human 

studies. 
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Assessing Online Performance & Neurostimulation 
 

Before evaluating the generalizability of these results to other tasks, further work should 

critically evaluate if these findings are robust to “online” experiments286. All of the findings described in 

this dissertation were based on post hoc analyses of recorded data. As a result, while I could make 

conclusions about how samplings of neurons in the cortex represent different aspects of the task, I could 

not assess either the necessity of these dynamics or even the sufficiency of these signals to ultimately 

improve postural control through a BMI.   

Therefore, the most natural step would be to assess these models online, where the firing 

patterns and dynamics of cortical neurons influences the experimental task/outcome itself. One 

method of assessing this would involve having the decoded platform position (predicted from the 

cortical dynamics) actually control the instantaneous position of the platform. In this case, would the 

animal be able to maintain a righted platform position despite occasionally introduced perturbations? 

Would that animal outperform another animal whose decoded position was based on a “remapped” or 

“outside manifold” dynamical model (where we intentionally shuffle the relationships between 

recorded neurons and latent dimensions)? Alternatively, the more translational next step in assessing 

the robustness of our models for improving postural control would be evaluating if these cortical 

dynamics are necessary and sufficient to inform spinal cord stimulation to elicit corrective behaviors in 

the spinally injured animal. Multiple methods of spinal cord stimulation exist287. Fortunately, epidural 

stimulation of the dorsal spinal cord is well studied29–32 and clinically approved. While some have 
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evaluated how it can be used to restore motor function after neurological injury, expanding this work 

to also control the muscles of postural control is complex.  

First, we would need to decide where to stimulate the spinal cord26,288. In a task that primarily 

requires lateral stability and therefore the control of both trunk muscles as well as flexors and extensors 

of the leg, we would likely need to place stimulating electrodes on both the left and right spinal cord, 

and likely in at least three different sites therewithin. While thorough research has demonstrated how to 

stimulate the spinal cord to enhance locomotor movements, less work has identified the parameters to 

elicit unilateral leg movements.  

After gaining a general idea of where to position our electrodes in the cord, the next step is 

building a model that relates cortical firing activity, stimulation parameters, perturbation angle (i.e., 

bodily state), and muscle activity. Unfortunately, such relationships are complex, and we are not 

privileged with fundamental physics laws or other “first principles” to build a bottom-up model of these 

interactions. In this situation, a system identification approach is necessary. Systems identification is 

data-driven, in which we provide a series of inputs (stimulations and perturbations) and model those 

against the various outputs (cortical firing, cortical dynamics, and recorded behaviors). By varying the 

type of input provided (e.g., duration, frequency, amplitude) and the electrodes stimulated (both in 

isolation and in combinations), we can determine the optimal stimulation methods in a state-dependent 

manner289. Through this method, we can also assess how many stimulating electrodes are realistically 

needed. For example, when tilting to the right, do we simply need to elicit extension of the right leg, or 

do we need to elicit extension of the right leg and flexion of the left leg? If the former is sufficient to 

stabilize center of pressure this would remove the need for pair of “flexion-eliciting” electrodes, reducing 
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the footprint of this technology. As this modeling would need to be conducted on a subject-by-subject 

basis, it would also allow us to control for different injury severities (and therefore different residual 

muscle function and activation thresholds) and anatomy.  

Additionally, as we would be modeling stimulation to the spinal cord based on the dynamics 

of the cortex to elicit muscular outputs, an important concern is raised. Electrical stimulation of the 

nervous system lacks target specificity. When targeting the reflex circuits at a particular level, 

stimulation can also activate multiple neighboring ascending and descending pathways within the 

spinal cord, even sending signals to the cortex itself26. Thus, stimulation of the spinal cord will likely 

affect behavior both directly (through direct stimulation of the spinal cord and activation of motor 

neurons) and indirectly (through altering cortical responses that then provide descending inputs to the 

cord). This is particularly true when aiming to model clinically-relevant anatomically incomplete 

injuries. Different candidate models should be assessed, especially in unanesthetized animals.  

 If the spinally-injured animal is able to maintain its center of pressure better under cortically-

controlled spinal stimulation than under random stimulation, tonic stimulation, or some other 

structured paradigm, it would suggest that the dynamics of the cortex are truly necessary and sufficient 

to organize coordinated motor responses. This would truly assess the feasibility of using the cortex as a 

control signal for postural control and allow for next steps to be taken with more confidence. 

 

Beyond the tilt platform 
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Assuming we demonstrate that cortically-controlled spinal cord stimulation improves 

behavior on the tilting platform after spinal cord injury, the next important question would be the 

extent to which this framework generalizes to other motor and locomotor behaviors. Such a question 

is important for two reasons. First, postural control is not limited to responses to lateral perturbations 

from stance. Can cortical signals restore postural control during locomotion, climbing stairs, 

navigating uneven or sloped terrain, or when simply when perturbed in a direction beyond the 

mediolateral dimension? Second, how does this approach interact with BMIs methods that restore 

other lost motor function? Does the stimulation needed to elicit unilateral leg flexion and extension 

for postural control interfere with stimulation paradigms that induce locomotion? Do the cortical 

dynamics we observed become muddied and less usable with the additional sensory inputs and cortical 

processes associated with non-stationary bodily states in more natural environments?   

The simplest first step to address these questions would be to compare the behaviors of 

animals in these more complex tasks under “standard” locomotor BMI alone, “postural BMI” alone, 

and under both. The postural BMI can be recreated using a second systems identification approach 

where different stimuli are provided to the animal as it freely navigates in the open field or on a 

treadmill. In addition to addressing the deficiencies of each of these paradigms, this would allow us to 

discern how these two paradigms interact.  

This latter question is important. Animals and humans with neurological conditions tend to 

not have isolated postural instability; they also have significantly impaired motor function. Individuals 

with lost lower limb function will realistically need a BMI that restores both locomotion and postural 

control. Thus, how can these two concepts – restoring locomotion and restoring posture – be 



 118 

combined in an optimal way? Perhaps during locomotion, a combined BMI actively stimulates the 

cord to elicit locomotion. Meanwhile, while the postural signals are actively decoded throughout, only 

corrective postural control signals are delivered to the cord when a significant error signal is detected.     

 

Stimulation Targets 
 

I have discussed stimulation exclusively with respect to the spinal cord; however, one could 

also consider additional targets. While some may think targeting the muscles or even peripheral nerves 

themselves would be a reasonable alternative, this method comes with significant drawbacks. First, 

even simple movements involve multiple muscles. Recreating those movement though peripheral 

stimulation would involve multiple electrodes (and therefore an extremely large technological 

footprint and likely multiple invasive implantations) as well as investigations into optimal stimulation 

protocols to elicit natural movements. In contrast, stimulating the central nervous system (i.e., 

through spinal cord stimulation) activates muscle synergies290, or groups of muscles that are activated in 

a concerted fashion to generate particular movements. Identifying relevant postural synergies that can 

be elicited through spinal cord stimulation would therefore limit the number of electrodes needed and 

take advantage of inherent functional structure. Of course, further work would need to truly compare 

the merits of these two forms of stimulation to determine which could offer a more optimal clinical 

outcome.  

However, in a closed-loop system based on cortical dynamics, stimulating the spinal cord to 

“correct” aberrant cortical dynamics could be considered a rather indirect approach. Alternatively, one 
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could imagine stimulating the cortex, modulating the very dynamics that we are recording289. 

Bonizzato and Martinez demonstrated that intracortical stimulation in phase coherence with 

locomotion promoted locomotor control in a hemisection SCI model in the rat64. In individuals with 

incomplete injuries, perhaps such cortical stimulation can improve certain levels of lower limb 

function by mimicking descending phasic drive to central pattern generators and encouraging activity-

dependent plasticity. However, the more targeted control of specific muscle synergies in response to 

particular postural perturbations will likely pose a more significant challenge that will be further 

complicated by variability in cortical reorganization and spared white matter tracts across individuals 

and within individuals over time.  

 

Control Algorithms 
 

 Satisfactory BMI control must not only be reliable, but it must also be fast and safe. Even 

“long latency” postural control mechanisms naturally occur within hundreds of milliseconds. 

Restoring such processes requires multiple computational steps. During a perturbation, cortical 

signals must be filtered and processed, the current latent state must be calculated, a decision regarding 

if and how to stimulate must be made, and stimulation must be delivered quickly enough to elicit a 

corrective movement to prevent a fall. A BMI device must be developed in a way that its hardware and 

software components minimize each of these introduced processing lags while also remaining both 

affordable and compact (see “Reducing the Footprint” below).  
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 Even if such a system can sufficiently minimize lags, it is also critical that a BMI’s control 

algorithm incorporate important technological and physiologic constraints. A computational model 

cannot require solutions that requires unsafe, unattainable, or other excessively “costly”  levels of 

current to be delivered to the cord. Simple control methods such as linear quadratic regulators cannot 

accommodate such “hard constraints”. While model predictive control (MPC) is an alternative 

algorithm that can handle these bounds (and has additional benefits discussed in the “Learning and 

Plasticity” section below), this method carries its own limitations that would likely increase 

computational lags. MPC requires constant updating at multiple time horizons to find the optimal 

control action at different timepoints. When testing different BMI configurations, it is therefore 

important to quantitatively compare the performance of these different algorithms.   

 
Additional Considerations 
  

Invasive v. Noninvasive Signal Acquisition. In our rat model, we recorded high-frequency 

activity from intracranial electrodes and manually sorted that activity from each recording channel to 

individual putative neurons. It is a fact that the signal that can be obtained from sorted single units is 

unparalleled. However, it is important to consider the disadvantages of this approach and fair 

alternatives. Any intracranial recording device requires surgery; however, once implanted, current 

electrode technologies are vulnerable to natural immune responses. As traumatic spinal cord injury is 

often an injury of the young, improving electrode performance is critical in order to avoid multiple 

surgeries to replace these devices. Additionally, obtaining single unit recordings requires significant 
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surgical and technological expertise, leading to ethical questions of accessibility and scalability. 

Fortunately, it has been shown that brain machine interfaces can operate well using “unsorted” 

multiunit activity291,292. However, given the risks of surgery, further work should determine if 

noninvasive approaches (i.e., electroencephalography) can sufficiently extract similar levels of postural 

information from the cortex (and therefore control a BMI just as well as one based on invasive 

recordings). If not, one could argue that the benefits of restoring reliable, independent movement 

significantly outweigh the risks of implantation surgery.  

 Improved Decoder Performance. In this dissertation, we employed rather simple decoding 

methods to predict behavior and neural dynamics. Such linear models are simplistic but relatively 

interpretable. This is a significant advantage from a basic science perspective, as it allows us to gain 

insight into how the brain represents different states and can generate behaviors. Additionally, given 

how young BMI technology is, developing an understanding or intuition of how these anatomical 

circuits and stimulation paradigms work is necessary to advance the field in a well-informed manner. 

However, such models also limit true decoding potential as they come with certain constraints. For 

example, our linear dynamical systems approach can only model the linear dynamics of population 

activity – even though population dynamics are highly nonlinear. For a clinical tool, the importance of 

consistently reliable performance significantly outweighs the importance of scientific interpretability. 

In line with this mindset, multiple groups are developing highly complex decoders based on nonlinear 

approaches, machine learning, and artificial neural networks96. If the end goal is developing an optimal 

decoder, these approaches will likely lead to more successful performance than linear models. If BMI 

technologies based on these advanced models outperform those based on linear approaches or even less 
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complicated “open loop” spinal cord stimulators, the clinical merit of these algorithms should be 

seriously considered  – even if their algorithms live within a “black box.”  

 Replacing Lost Somatosensory Feedback. All motor actions are companied by sensory 

feedback. While motor signals can control various devices, robust motor control requires the 

individual to understand the sensory repercussions of those motor commands. While individuals can 

partially compensate for the loss of somatosensory feedback by relying on visual feedback, it has been 

shown that BMI control is heavily augmented when sensory feedback is replicated293–295. 

With respect to improving postural stability, this may be less of concern, as visual and 

vestibular feedback and unaffected somatosensory fibers all provide information to the cortex about 

the body’s position in space. Regardless, it has been shown that somatosensory afferents are critical for 

robust corrections109,182,296, so further work investigating how to reintroduce lost sensory information 

from below the injury to the cortex will ultimately develop better BMI control.  

Learning and Plasticity. If a closed-loop BMI system models the relationship between neural 

activity and behavior, such a system must be capable of adapting to changes observed on various 

timescales. For example, some degree of functional recovery – either spontaneously or through other 

therapeutic means such as physical rehabilitation – will alter both motor abilities and the sensory 

inputs delivered to the cortex. Additionally, as a closed-loop BMI artificially defines a functional 

relationship between neural activity and stimulated movement297,298, significant neuroplasticity is 

expected over the course of BMI learning and long-term BMI use. For example, BMI use is associated 

with changes in modulation of M1 neurons160,240, with such changes directly relating to improved BMI 

performance 160,299. Certain control methods such as model predictive control can actually account for 
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such changes. As model predictive control calculates an optimal outputs iteratively with time, it can 

handle “migration” of a nonlinear system away from initial relationships. Finally, given the various 

forms of plasticity related to injury, rehabilitation, and BMI control, it is important that we evaluate 

how to optimize how these mechanisms lead to better outcomes. 

Reducing the footprint. As discussed earlier, the motor deficits seen after spinal cord injury 

and other neurological diseases extend beyond isolated postural instability. Depending on the level of 

the lesion, lower limb function can be impaired with or without upper limb dysfunction. A largely 

BMI-driven approach to these conditions would therefore require recordings from multiple cortical 

locations and stimulators across large areas of cord. Additionally, the computations involved in signal 

acquisition, processing, and stimulation must be housed in a device that must be battery-operated and 

portable enough to free the individual from a laboratory setting or even small enough to be implanted 

subcutaneously, such as in current deep brain stimulator protocols. From a clinical perspective, 

improving the biocompatibility of these devices and reducing the instances of percutaneous 

connections is critical to maximize device longevity and patient independence and minimize risks of 

infection and other complications.  

 

Summary 
 

In conclusion, my dissertation demonstrated the various signals that can be decoded from the 

sensorimotor cortex about postural control both before and after different extents of spinal cord 

injury.  The ultimate goal of this line of this work, however, is to develop a translational tool to 
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improve postural stability. Advancing brain machine interface technology to restore this motor 

function (in addition to the multiple other complex functions impaired by neurological injury) 

requires many clear steps to get from where we are today in decoding signals, developing devices, 

identifying stimulation targets, and optimizing stimulation paradigms. Given the advances of 

neuroengineering approaches over the last few decades, I hope that such a technology can become a 

reality in the near future through the concerted efforts of clinicians, scientists, and various 

stakeholders.  
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