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Abstract of the Dissertation

Practical Implementation and Application of Geodesic

Regression in Diffeomorphisms to Brain Image Time Series

by

Greg Michael Fleishman

Doctor of Philosophy in Bioengineering

University of California, Los Angeles, 2016

Professor Paul M. Thompson, Co-Chair

Professor Daniel B. Ennis, Co-Chair

Diffeomorphisms have received significant research focus in the medical image registration

community over the past 15 years due in part to their desirable mathematical properties:

the preservation of image topology and the guaranteed existence of a number of spatial

derivatives. The research area began with fundamental mathematical developments de-

tailing how a diffeomorphism can be defined and constructed in the image registration

context, and subsequently, algorithms were proposed to implement the continuous do-

main diffeomorphic theory in the discrete domain. After several iterations in form, the

geodesic regression formulation emerged, which can be understood as a natural general-

ization of Euclidean linear regression to a nonlinear manifold of diffeomorphisms.

Geodesic Regression in Diffeomorphisms (GRiD) is the optimization of an initial

momentum field which parameterizes a geodesic flow of diffeomorphisms through a time

series of images. The method involves several computational challenges: the optimization

of a very high dimensional nonlinear objective function, the integration of several coupled

systems of partial differential equations, and the implementation of several fundamental

operations including composition of images with deformations, regularization of vector

fields, and evaluation of possibly complex image similarity functionals. Additionally,
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several of these components have free parameters that must be selected carefully to

ensure convergence and the biological validity of results.

GRiD theory offers many advantages over standard image registration for the study

of image deformations over time; it provides a succinct but comprehensive summary of

the primary mode of image deformation over time evident in a time series, all the while

guaranteeing desirable mathematical properties of the transformation flow. This powerful

theory will be immensely useful in the study of growth, development, and aging in both

health and disease. However, the complicated nature of the algorithm has prevented its

widespread adoption in the applied medical imaging community.

The goal of this dissertation is to exposit practical and down to earth derivation,

implementation, and application of GRiD. Chapters 1-3 cover those topics exactly. Ad-

ditionally chapters 4 and 5 cover methods for selecting image matching functional and

determining some of the model’s free parameters. Chapter 6 is a complete large scale

study of atrophy in Alzheimer’s disease using GRiD. Chapters 7 and 8 discuss a novel

extension of the GRiD model wherein multiple GRiD optimizations inform each other

simultaneously.
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CHAPTER 1

Theoretical Background

1.1 Medical Images as Continuous Functions

We will begin by relating the practical features of a medical image to a mathematical

object that is dealt with more naturally from the standpoint of theory: L2 integrable

functions. Although this dissertation will deal primarily with Magnetic Resonance Imag-

ing (MRI) images of the human brain, during theoretical development we will try to

remain agnostic about both the imaging modality and anatomy.

Most medical images are d-dimensional arrays of scalar values, where d is frequently

2 or 3. If a modality collects images over time, then each frame can be thought of in this

way; and if a modality collects a vector valued output, each vector component can be

thought of this way. We would like to utilize existing mathematical formalisms to study

medical images, and historically mathematics has developed more language for dealing

with continuous domain objects. Hence, for the purposes of theoretical development, we

define a medical image in the following way: I(x) : Ω→ ω, for coordinates x ∈ Ω, which

is a closed and bounded subset of Rd, and ω a bounded subset of R. Note, the bounded

restrictions on the domain and range imply that
∫

Ω
I(x)2dx is finite.

It is often useful to think of Ω as the unit square or cube. It is also common to consider

the left and right boundaries identified and similarly the top and bottom (and front and

back if applicable), and hence think of Ω as a torus. This simplifies the visualization and

implementation of algorithms with periodic boundary conditions.

The image data only provides the values of I(x) on some discrete grid sampling of

1



Ω. To define the values of I(x) for points not on the grid, an interpolation method is

required. If subsequent theory does not require a continuous image, nearest neighbor

interpolation is the simplest method. For a continuous image, trilinear interpolation is

the simplest method. For greater accuracy, more sophisticated methods such as sinc

interpolation or cubic splines might be used.

1.2 Comparison of Medical Images

Given two medical images of similar anatomy, represented as continuous functions I(x)

and J(x), you might ask: how is the anatomy represented in I(x) different from that in

J(x)? For example, the images may be of the same region in the same individual taken

at different times, in which case you might ask if the tissue has changed over time. Or,

the images may be of the same region in two different individuals, in which case you

might ask how those individuals’ anatomy differs. These are very fundamental questions

in medical science and radiology that manifest in a very large range of more specific

circumstances.

The pioneering work ”On Growth and Form” by turn of the century mathematical

biologist D’arcy Thompson [TB92] suggested a definition for what it might mean to know

the difference between two biological forms. Thompson and subsequent authors suggest

that to know how to transform the form of one object into the form of another is equivalent

to knowing the difference between their forms. Modern medical image analysis takes this

viewpoint: to understand the difference between I(x) and J(x) we seek a transformation

on the spatial domain φ(x) : Ω→ Ω that, when it acts on I(x), results in an image that is

as similar as possible in some quantifiable sense to J(x) [Mod04]. We let φ · I(x) denote

the action of the transformation on the image. For all categories of transformations

discussed in this dissertation, φ · I(x) = I ◦ φ−1(x). That is, a transformation acts on an

image through composition with its inverse, and in that way I ◦ φ−1(x) is a warping of

I(x) to appear in form like J(x).
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Figure 1.1: Transformation action: Differences in image form are represented by

transformations φ that act on images through composition with their inverse.

1.2.1 Image Similarity

Before discussing image transformations, we need to make the notion of image similarity

precise and quantitative. We consider functionals D(·, ·) that take two images as input

and return a scalar value indicating how well matched those images are. We review

the four most common functionals [SM99, HCF02] though others have been proposed

[CDH07, LYC07, YTO07]. They differ primarily in the extent to which they attempt to

disregard features of the image intensity values that are artifacts of the image acquisition

process, such as random noise and intensity gradients.

Sum of squared differences:

This is the simplest functional:

SSD
(
I, J
)

= ‖I − J‖2
L2

=

∫
Ω

(
I(x)− J(x)

)2
dx (1.1)

The SSD(·, ·) functional considers the input images elements of a Euclidean vector space;

it deals directly with the input image intensities, and has no free parameters.

Global Correlation Coefficient:

Let Î(x) = I(x)− 1
|Ω∗
I |

∫
Ω∗
I
I(x)dx (where Ω∗I is the support of I(x) and |·| denotes volume);

i.e. Î(x) is I(x) adjusted such that the mean intensity value over its support is 0. Let

Ĵ(x) be defined similarly. The global correlation coefficient is then:
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GCC
(
I, J
)

=
COV (I, J)2

V AR(I)× V AR(J)

=

( ∫
Ω∗
I∩Ω∗

J
Î(x)Ĵ(x)dx

)2∫
Ω∗
I
Î(x)2dx

∫
Ω∗
J
Ĵ(x)2dx

(1.2)

Here, COV (I, J is the covariance of images I and J and V AR(I) is the variance of

image I. The GCC ranges from 0 for for images that are completely independent to

1 for images that differ only by a linear mapping of the image intensities. Due to this

invariance, GCC is more robust to global confounds of the image intensities that might

occur due to scanner drift (for images taken at different times) or scanner differences (for

images taken at different sites). GCC also has no free parameters.

Local Correlation Coefficient:

This functional is the application of the GCC formula to all patches of a fixed window

size in the image support. That is, if wx is a window centered at x and x′ is a coordinate

local to wx then the LCC is:

LCC(I, J) =

∫
Ω∗
I∩Ω∗

J

GCC[I(wx), J(wx)] dx = (1.3)

∫ (∫
wx

(
I(x′)− Îwx(x)

)(
J(x′)− Ĵwx(x)

)
dx′
)2

∫
wx

(
I(x′)− Îwx(x)

)2
dx′
∫
wx

(
J(x′)− Ĵwx(x)

)2
dx′

dx

where Îwx and Ĵwx are mean filtered images with window size w. As opposed to GCC,

LCC accounts for local rather than global image intensity statistics. This makes LCC

more robust to nonlinear transformations of the image intensity histogram, which might

occur under various circumstances including if one or more intensity gradients or con-

founds due to a large nonlinear field inhomogeneity are present.

Computing the LCC requires mean filtering both images, which can be efficiently

implemented using summed area tables (faster than FFT methods) [Lew95]. The LCC
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has one free parameter, the window size w, which should be selected based on the size

scale of features the registration is attempting to match.

Mutual Information:

Mutual information has several equivalent definitions; we will present only one. First, let

pI(i) and pJ(j) be the normalized intensity histograms for images I and J and let pIJ(i, j)

be the normalized joint intensity histogram for both images. Here, i and j are image

intensity values. Then, mutual information is defined as the Kullback-Leibler divergence

of the joint intensity distribution from the joint distribution under the assumption of

independence:

MI(I, J) =

∫
R2

pIJ(i, j) ln

(
pIJ(i, j)

pI(i)pJ(j)

)
didj (1.4)

MI(I, J) is minimal when I(x) contains no information about J(x); that is, when know-

ing the intensity at a particular location in I tells you nothing about what intensity

might be at the same location in image J . In that case, I and J are independent and

pIJ(i, j) = pI(i)pJ(j) and MI(I, J) = 0. MI(I, J) is maximal when I(x) fully determines

J(x) (and vice versa); in that case, pIJ(i, j) = pI(i|j)pJ(j) = pJ(j) = pI(i) and MI(I, J)

reduces to
∫
R pI(i) ln

(
1

pI(i)

)
di which is the Shannon entropy of the image.

MI requires estimation of the joint intensity distribution (the individual image distri-

butions are then obtained by marginalizing the joint distribution). First, a number of bins

must be selected in which to count the image intensities. Second, the joint distribution is

constructed by Parzen-window density estimation. This can be efficiently implemented

by first constructing the joint intensity histogram and then Gaussian smoothing. Hence,

with this implementation, MI requires two user parameters: the number of bins and the

width of the smoothing kernel.

5



1.2.2 Rigid and Affine Alignment

Given I(x), J(x) (let them be 3 dimensional images), and an image similarity functional

D(·, ·), recall we wish to find a transformation φ(x) such that D(I ◦ φ−1, J) is more

optimal than D(I, J). How do we define or represent φ(x)? Put another way, what class

of transformations do we allow?

The simplest transformation we discuss is a rigid transformation [Mod04]. That is,

the image may translate and rotate, but may not stretch or deform in any way. In that

case, the image may displace along any of its three axes, and it may rotate along any of

its three axes. Such a transformation has six degrees of freedom and can be written as:

φr(x) = R1(θ1)R2(θ2)R3(θ3)x+ [dx1, dx2, dx3]T (1.5)

where Rd is a rotation matrix about the dth axis through an angle of θd and dxd is a

displacement along the dth axis.

We may also want to allow the simplest non-rigid deformations of the image: scaling

and shearing. Similar to translation and rotation, the image may scale differently along

each of its axes, and it may shear differently along each of its axes. In this affine case,

the transformation now has twelve degrees of freedom and can be written as:

φa(x) = Sh(sh1, sh2, sh3)S(s1, s2, s3)R1(θ1)R2(θ2)R3(θ3)x+ [dx1, dx2, dx3]T (1.6)

where Sh is an upper triangular matrix (with ones along the diagonal) implementing a

shear of shd along the dth axis and S is a diagonal matrix implementing a scaling of sd

along the dth axis.

Formula 1.6 can be collapsed into a single matrix multiplication:
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φa(x) =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1




x1

x2

x3

1

 (1.7)

where it is more clear that there are twelve degrees of freedom in total. Although,

each parameter in this case is less clearly related to the fundamental transformations of

translation, rotation, scaling, and shearing (except for the final column ai4, these are

clearly translations).

1.2.3 Nonrigid alignment

Affine alignment is often the first step in determining a transformation between I(x) and

J(x). Let φa(x) be an affine transformation that optimizes D(I ◦ φ−1
a , J) with respect

to the limited set of parameters permitted by affine alignment. How do we account for

the residual difference in form between I ◦ φ−1
a (x) and J(x)? A nonrigid alignment, or

registration, defines a transformation as φnr(x) = x+u(x) for a displacement vector field

u(x) [Mod04]. In the most extreme case, nonrigid registration permits each spatial loca-

tion to displace independently, and the number of parameters that must be determined

is the number of grid points upon which u(x) is represented times the dimension of the

spatial domain.

For most practical applications however, we do not want to allow u(x) to be completely

arbitrary. For example, we may require that u(x) be composed of a linear combination of

basis functions; in which case only the combination weights must be determined [RAH06].

A more fundamental restriction, and one that is particularly useful for medical image

registration, is to require that the action of φnr on I not change the topological invariants

of I [BMT05, Tro98]. That is, φnr should not cause the introduction of a new sharp

discontinuity of any kind such as a hole, fold, rip, or tear in I(x). Further, because it

is convenient for subsequent analysis, we may require that φnr be differentiable, or in
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fact require that it be differentiable up to k times for some chosen k. These restrictions

are not as simple to implement as affine or basis function restrictions, however, the next

section is devoted to developing the theoretical background necessary to impose those

restrictions.

1.3 Diffeomorphic Registration

1.3.1 The Diffeomorphism Group

A diffeomorphism is a smooth bijective mapping with a smooth inverse [You10]. For prac-

tical purposes we take smooth to mean sufficiently differentiable for subsequent analysis

rather than the more common definition of infinitely differentiable. Intuitively, it can

help to think of a diffeomorphism in the following way. Imagine the image domain with

a dense grid of coordinate lines; it is arbitrary how dense you choose to visualize the grid

lines. Those lines intersect to form grid cells. In it’s image, a diffeomorphism can map

the grid lines to arbitrary smooth curves, however, no two cuves can intersect anywhere.

Consequently, each grid cell undergoes its own transformation but it cannot rupture,

overlap, or intersect any of its neighbors. These intuitions are true no matter how dense

you draw the grid lines.

We’ll take Φ to represent the set of all diffeomorphisms of the image domain Ω to

itself; Φ forms a group under functional composition, with the identity transformation

Id as the group identity element. That is, for all φ, ψ, ζ ∈ Φ:

φ ◦ ψ ∈ Φ (Closure)

φ ◦ (ψ ◦ ζ) = (φ ◦ ψ) ◦ ζ (Associativity)

Id ◦ φ = φ ◦ Id = φ (Identity)

∃φ−1 ∈ Φ such that φ ◦ φ−1 = φ−1 ◦ φ = Id (Inverse)
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Figure 1.2: Intuition for diffeomorphisms

The invertibility and differentiability of a diffeomorphism theoretically guarantees that it

will preserve the topology of an image that it acts upon [You10]. Further, the invertibility

theoretically guarantees symmetry in that D(I ◦ φ−1, J) = D(I, J ◦ φ), although we will

see much later that this property can be hard to maintain in practical implementations.

Finally, the differentiability guarantees the determinant of the Jacobian matrix det(Dφ)

(where D is the jacobian matrix operator of all partial derivatives) of a diffeomorhpism

is everywhere positive, a useful fact for subsequent analysis. Due to these desirable

properties, we wish to select Φ or an appropriate subset of Φ as our transformation space

for for nonrigid registration.

1.3.2 Constructing Diffeomorphisms from Velocity Flows, Riemannian Met-

rics, and the LDDMM algorithm

The theoretical work in this section was first published in a series of papers culminating

with [BMT05], which can serve as a reference for this entire section. It may help to refer
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Figure 1.3: The LDDMM model: A path of diffeomorphisms is constructed through

integration of tangent vector fields (velocities). The image is pulled along the geodesic

by the action of the diffeomorphisms over time.

to figure 1.2 throughout the derivation of the model to help visualize its components.

Given some diffeomorphism φ(x), what perturbation can we make to it and still preserve

it as a diffeomorphism? Of course, composition with any diffeomorphism is permitted

(as mentioned in the previous section), but it is also true that composition with any

displacement that is everywhere infinitesimal also preserves the diffeomorphism. This is

to say that the tangent space to the space of diffeomorphisms Φ is the space of all vector

fields with domain Ω; denote this space as V [You10, BMT05].

Now, consider v ∈ V × [0, 1], that is, v(x, t) : Ω× [0, 1]→ Ω is a flow of vector fields

from the image domain to itself which we will call the velocity. Further, consider the

ordinary differential equation:
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∂φ

∂t
(x, t) = v(φ(x, t), t) (1.8)

φ(x, 0) = Id

where Id denotes the identity transformation φ(x, 0) = x. If the velocity field is suffi-

ciently smooth in space and time, then φ(x, t) is guaranteed to be diffeomorphic for all x

and t. Indeed, the composition of many smooth bijective displacements must be smooth

and bijective itself if its component displacements were also smooth in time.

Considering this fact, we shift our attention from finding a single diffeomorphism φ to

finding a smooth velocity flow v(x, t) which we can integrate via the above ODE to obtain

φ(x, t), a flow of diffeomorphisms. From here, we begin indicating time with a subscript.

Of course, we are constructing diffeomorphisms because we wish to match images I(x)

and J(x). The action φt · I produces an image flow It, a smooth warping of I(x) in time.

We would like to select v(x, t) not only so that φt(x) is everywhere diffeomorphic, but so

that D(I ◦ φ−1
1.0, J) is optimal.

To construct φt(x) properly, we must endow V with additional structure such that if

we initially select vt(x) = 0 for all t and stay within a reasonably bounded neighborhood,

we encounter only smooth velocity fields. Hence, we select for V a Riemannian metric

L, an invertible self-adjoint differential operator. The self-adjoint restriction ensures

symmetry of the inner-product, which is now defined for two elements w, z ∈ V to be

〈w, z〉V = 〈w,Lz〉L2 =
∫

Ω
w(x) · Lz(x)dx. L is chosen such that the norm of fields in

V increases as fields becomes increasingly rough. L can also be viewed as a mapping

L : V → V ∗ between the vector space V and its covector space V ∗; the elements of V ∗

are referred to as momenta and will be commonly denoted with m. Finally, because L is

invertible we have the inverse mapping K : V ∗ → V from momenta to velocities where

K = L−1.

With this in mind, we can write down a definition for an optimal velocity flow pa-

rameterizing a nonrigid diffeomorphic image registration:
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v̂ = argminv D(I ◦ φ−1
1.0, J) + α

∫ 1

0

〈vt, Lvt〉L2dt (1.9)

where φt is constructed via integration of ODE 1.8

The first term is of course the image matching functional, which we arbitrarily assume

here must be minimized (as opposed to maximized). The second term is the time integral

of the norm of the velocity flow. By requiring that it be minimal with respect to the

metric L, we have required that the velocity flow be smooth in space and time.

If we optimize equation 1.9 by gradient descent, the first variation of the matching

term D forces the velocity flow such that the final diffeomorphism φ1 gives better match-

ing between I ◦φ−1
1.0 and J . The first variation of the regularizing term will act to smooth

that force in order to ensure the flow of transformations remains diffeomorphic.

Additionally, notice that the regularizing term in equation 1.9 is the geodesic energy

of the path φt: the integral of the norm of the tangent vector along the path. Hence

for a fixed value of α, at convergence when this term is minimal, we may assume φt is a

geodesic path in the space Φ of diffeomorphisms. Because the initialization was φt = Id

for all t we may assume that this geodesic is a shortest path between φ0 = Id and φ1. In

that case, the length of the path φt may serve as a metric distance (in the formal sense)

between the images I and J themselves.1 For that reason this mathematical framework

has been termed Large Deformation Diffeomorphic Metric Mapping (LDDMM).

LDDMM provides a flow of diffeomorphisms φt(x) rather than a single transforma-

tion. For the purpose of modeling morphology over time this is an enormous advantage

as images can now be interpolated by selecting the diffeomorphism along the path corre-

sponding to the desired point t∗ and taking I ◦ φ−1
t∗ to be an estimate of the anatomy at

that time. Similarly, this can be useful when modeling morphology between individuals,

in which case the interpolant represents a partial warping of one anatomy toward the

1Importantly, this metric depends on the choice of Riemannian metric L in the tangent space V,
which is a user selected parameter.
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other.

1.3.3 Geodesic Shooting in Diffeomorphisms

The theoretical work in this section is thoroughly covered in [VRR12a] and [MTY06]

and those works serve as a reference for this entire section. At optimality, the LDDMM

framework results in the geodesic φt; however before convergence φt may not be a geodesic

and therefore the metric property does not hold for sub-convergent results. Nonlinear

image registration problems are generally high dimensional non-convex optimizations

which are computationally intensive and subject to local minima. To cope with this

problem, we would like to modify the framework to enforce the geodesicity of φt explicitly

at all times during the optimization.

In pursuit of this, an important observation is that the space V equipped with the

metric L can be viewed as the tangent space at identity to a manifold of diffeomorphisms

with an associated Riemannian metric. Additionally, the diffeomorphism group operation

of functional composition is smooth. Recall also that the space of diffeomorphisms is a

group. Hence, we will view the space of diffeomorphisms as a Lie group with Lie algebra

V . Necessary and sufficient conditions for geodesicity are known for Lie groups with

metrics invariant to the group operation, which is the case with the diffeomorphisms

group [Tro98, You10]. These conditions are on the momentum vector along the curve

(recall, the momentum is dual to the velocity by m = Lv) and are known as the Euler-

Poincare differential equations (EPdiff) for the group. Their general form is (we will drop

time subscripts in differential equations for readability):

∂

∂t
m = −ad∗vm (1.10)

where ad∗ is the conjugate of the Lie bracket in V . In our case V is the space of vector

fields, and its Lie bracket is advw = [v, w] = Dvw−Dwv where D denotes the Jacobian

differential operator [MTY06].
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We would like to find the ad∗v operator in terms explicit operators which we can

compute, we turn to the definition of a conjugate operator to find ad∗v:

〈ad∗vm,w〉 = 〈m, advw〉

= 〈m,Dvw −Dwv〉

= 〈(Dv)Tm,w〉 − 〈m,Dwv〉 (1.11)

= 〈(Dv)Tm,w〉+ 〈∇ · (mvT ), w〉

= 〈(Dv)Tm+Dmv + (∇ · v)m,w〉

where in going from line 3 to 4 we have applied Stoke’s theorem assuming v and w are

zero on the boundary of the image domain ∂Ω, and in going from line 4 to 5 we apply

an identity for the divergence of a vector outer product [MTY06]. We arrive at a Partial

Differential Equation (PDE) constraint that the momentum must satisfy to describe a

geodesic on the manifold:

∂

∂t
m = −(Dv)Tm−Dmv − (∇ · v)m (1.12)

Equation 1.12 shows that if we know the initial momentum m0, or equivalently the

initial velocity v0, we can integrate the PDE to obtain the momentum/velocity at any

point along the geodesic. In other words, the geodesic path φt is fully specified by its

initial conditions φ0 = Id and ∂
∂t
φ(x, t)|t=0 = v(x, 0) = Km0. Further, Miller et al.

[MTY06] show that at optimality, the momentum mt is proportionate to the moving

image gradient ∇It. That is, at optimality mt = Pt∇It for some scalar field Pt. If we

make this substitution into equation 1.12, we arrive at the scalar EPdiff equations for

the momentum:
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∂tI +∇I · v = 0

∂tP +∇ · (Pv) = 0

v +K(P∇I) = 0

(1.13)

We now shift the focus of our optimization again from the entire velocity flow field

v(x, t) to the initial scalar momentum field P0 only and add equation(s) 1.13 as a con-

straint. We obtain the following objective function:

P̂0 = argminP0
D(I ◦ φ−1

1.0, J) + α〈P0∇I0, K(P0∇I0)〉L2

subject to the ODE constraint equation 1.8 (1.14)

and subject to the PDE constraint equation 1.13

This problem offers immediate advantages relative to the optimization problem in

equation 1.9 in that we have substantially fewer variables to optimize (a single scalar

field rather than a discretized flow of vector fields) and the path φt we obtain is theoreti-

cally guaranteed to be a geodesic at all times throughout optimization. Furthermore, the

geodesic is fully specified by its initial point (which is always the identity transformation)

and its initial velocity/momentum. Given these parameters, the geodesic can be inte-

grated to any time point we wish. The model can now accommodate interpolation and

extrapolation in either direction and is a fully generative model for the dominant mode

of deformation required to match I(x) and J(x) [VRR12a]. Figure 1.4 shows cartoons

contrasting traditional LDDMM, where a discrete sampling of the velocity flow in time

is optimized and the path of diffeomorphisms only settles into a geodesic at convergence,

and geodesic shooting, where only the initial velocity/momentum field is optimized and

the path is explicitly constructed as a geodesic.

The optimization of the constrained equation 1.14 will be done by gradient descent.

The objective must be augmented by the constraints to enforce the framework. Hence,

we define the time dependent Lagrange multipliers P̃ , Ĩ, and ṽ and augment equation
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Figure 1.4: Traditional LDDMM compared with geodesic shooting: In tradi-

tional LDDMM a discretization of the velocity flow in time is optimized and the path of

diffeomorphisms only settles down to a geodesic at convergence. In geodesic shooting,

only the initial velocity/momentum is optimized and the path is explicitly constructed

as a geodesic.

1.14 to obtain the unconstrained Lagrangian:

E(P0, P̃ , Ĩ , ṽ) = D(I ◦ φ−1
1.0, J) + α〈P0∇I0, K(P0∇I0)〉L2

+

∫ 1

0

〈P̃ , ∂tP +∇ · (Pv)〉L2 dt

+

∫ 1

0

〈Ĩ , ∂tI +∇I · v〉L2 dt (1.15)

+

∫ 1

0

〈ṽ, v +K(P∇I)〉L2 dt

Objective functions similar to 1.15, where the optimization is over the initial condi-

tions of a process and the residual is determined by the results of that process, are the

subject of optimal control theory [VRR12a]. We now proceed with the typical calculus

of variations, however we must take variations with respect to the entire paths Pt, It,

and vt. The result is a set of optimality conditions on the Lagrange multipliers in the

form of a system of PDEs termed the adjoint system:
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∂tĨ +∇ · (vĨ) +∇ · (P ṽ) = 0

∂tP̃ + v · ∇P̃ −∇I · ṽ = 0

ṽ +K(Ĩ∇I − P∇P̃ ) = 0

(1.16)

For equation 1.15 to be optimal, these equations must be satisfied for the adjoint variables

(the Lagrange multipliers). The adjoint system is integrated backward in time, subject

to the initial conditions:


P̃1 = 0

Ĩ1 = ∇φ−1
1.0
D(I ◦ φ−1

1.0, J) · ∇I‖∇I‖2

(1.17)

that is, Ĩ1 equals the gradient of the image matching functional with respect to the

transformation modulo the image gradient. Because the image matching residual Ĩ is

computed in the coordinate system of the fixed image at t = 1, it must be brought back

to the coordinate system of the moving image (which is where P0 is defined) but respect

the geodesicity of the entire path φt. This is a justification for the use of the adjoint

system. The solution to the adjoint system provides P̃0, which completes the gradient of

equation 1.15 with respect to P0:

δE = ∇I0 ·K(P0∇I0)− P̃0 (1.18)

With the objective function (equation 1.14), forward model(s) (equations 1.13 and

1.8), and the gradient via the adjoint system (equation 1.16 and 1.17) all the essential

ingredients for some form of first order optimization are available.

1.3.4 Geodesic Regression in Diffeomorphisms

The theory discussed in this section can be found in the references [NHV11, SHJ13].

Geodesic shooting in diffeomorphisms can be seen as a generalization of linear regression

(in a Euclidean space) to Φ, the space of diffeomorphisms. A straight line in euclidean
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space is fully parameterized by a single point and a slope. Similarly, the geodesic φt is

fully parameterized by its initial value/point φ0 = Id and its initial velocity/momentum

or slope v0 = Km0. For linear regression in a euclidean space we find the slope and

intercept parameterizing a line that best matches a sampling of data. Similarly, in the

geodesic shooting framework, we find an initial momentum that parameterizes a geodesic

that best matches I(x) to J(x). The initial transformation is fixed because a straight

line (or geodesic) should theoretically be able to pass through any two points perfectly.

However, similar to the euclidean case we can generalize the geodesic shooting framework

to include an arbitrary number of images in a time series. Given n images I0, ..., In of

the same anatomy imaged at times t0, ..., tn, one such generalization is to let the image

matching functional become the sum:

Dreg(I0, ..., In) =
n∑
i=1

D(I0 ◦ φ−1
ti
, Ii) (1.19)

That is, the time interval is now t ∈ [t0, tn] and the path φt attempts to optimally

interpolate between transformations that map the initial image I0 to each of its follow

up images.

There is only one resulting modification to the geodesic shooting framework presented

in the previous section. The first variation of the matching functional now includes terms

for the matching at all time points t1, ..., tn. These appear as jump conditions in the

backward integration of the adjoint equation ∂tĨ + ∇ · (vĨ) + ∇ · (P ṽ) = 0. That is,

Ĩti− = Ĩti+ +∇−1
φti
D(I0 ◦ φ−1

ti , J) · ∇I0‖∇I0‖2 .

1.4 Review

We represent medical images as continuous functions I(x), J(x) over the closed and

bounded domain Ω ⊂ Rd for some dimension d. The continuity of the images is achieved

through some interpolation scheme.
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The notion of difference between the forms evident in a pair of images I(x) and J(x)

is made precise by studying transformations φ that act on I(x) as φ · I = I ◦ φ−1 such

that I ◦ φ−1 is similar to J(x).

Similarity is quantified by an image matching functional which takes two images as

input and returns a scalar value, determined by some function of the spatially coincident

image intensities, indicating how similar the two images are.

Rigid and affine alignment are a good first step in quantifying the difference between

two images. Subsequent nonrigid registration accounts for the residual matching in form.

Diffeomorphisms are an ideal mathematical object for nonrigid registration of anatom-

ical images. They are constructed through integration of smooth velocity flows. Velocity

flows are guaranteed to be smooth by minimizing their norm with respect to a metric

that increases with roughness. The optimal flow of diffeomorphisms is a geodesic.

The geodesic property can be enforced explicitly through the EPdiff equations for the

space of diffeomorphisms. The LDDMM matching problem can be rewritten as a geodesic

shooting problem, where optimization only takes place over an initial scalar momentum

field. The initial momentum generates the velocity flow which in turn generates the flow

of diffeomorphisms.

The geodesic shooting algorithm can be generalized such that the geodesic interpo-

lates transformations that optimally match arbitrarily many images in a time series, a

framework known as geodesic regression in diffeomorphisms (GRiD).

In the next chapter we will look at the challenges that arise when building an imple-

mentation of the GRiD method; in particular we will look at a specific implementation

built in pursuit of this dissertation and used for all experiments presented herein.
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CHAPTER 2

Implementation

The goal of this chapter is to show how the continuous domain theory of the previous

chapter can be turned into a practical discrete domain implementation. First we look at

an overview of the entire GRiD method, then we discuss the specific numerical approaches

to solving each of its components one at a time. Finally, we provide some documenta-

tion for our particular implementation utilizing a code base built in the pursuit of this

dissertation: the Python Registration Prototyping Library, or PyRPL for short.

2.1 GRiD: From Formulas to Algorithms

The GRiD algorithm is a gradient descent on objective function 1.14. A high level sketch

of the algorithm is as follows:

Algorithm 1: GRiD Overview

Initialize P0(x) = 0 ∀x.

1. Solve system 1.13 to obtain v(t) for t ∈ [0, 1].

2. Solve equation 1.8 to obtain φ(t) for t ∈ [0, 1].

3. Compute equation 1.17 to obtain Ĩ1

4. Solve system 1.16 backward in time to obtain P̃0

5. Update P0 by gradient descent, the gradient is given by equation 1.18.
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6. Repeat steps 1-5 until objective function 1.14 converges or a fixed number of iter-

ations is reached.

To implement GRiD, we must reduce these operations to increasingly precise and imple-

mentable pseudo-code.

2.1.1 The Forward System

Item 1 asks that we solve system 1.13. This system is initialized with the current values of

P0 and I0 (the moving input image). The solutions to the system are the time dependent

flows Pt, It, and vt. Item 2 asks that we solve the equation 1.8. The system requires vt

and its solution is φt, the path of diffeomorphisms. Both tasks require solving differential

equations forward in time over the same interval, which can be done using some form of

time marching; meaning that the two problems can be solved simultaneously.

If φt is available, rather than solve ∂tI + ∇I · v = 0 to advance I, we can simply

interpolate the original image with It = I0 ◦ φ−1
t [VRR12a]. Indeed, this was the original

definition of the time evolution of the image, and the first equation of system 1.13 is just

its time derivative (check for yourself). Similarly, rather than solve ∂tP +∇ · (Pv) = 0

to advance P , we can again interpolate using Pt = det(Dφ−1
t )P0 ◦ φ−1

t [VRR12a]. Here,

the Jacobian determinant of φ−1
t appears because the momentum is a conserved quantity.

The norm of the momentum is ‖P0‖ = 〈P0, K(P0)〉L2 =
∫

Ω
P0 ·K(P0)dx. With the change

of coordinates φ−1
t , the Jacobian determinant must be there to account for the change

in the volume element of integration, ensuring that the total momentum is conserved.

With Pt available, vt is simply computed from its relationship with the momentum vt =

−K(Pt∇It).

Of course, equation 1.8 gives us φt, but what we need to warp the image and mo-

mentum is φ−1
t . Importantly, recall that we only know the value of φt(x) on a discrete

sampling of grid points; φt(x) tells us where particles originating on those grid points at

time 0 have ended up at time t. The backward transformation that we require, must tell
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us where points that have arrived at regular grid point locations at time t originated at

time 0. This data is not directly available from φt, and so it is not trivial to invert it. To

solve this problem, first consider the following short derivation [BMT05]:

d

dt

(
φ−1
t ◦ φt(x)

)
=

d

dt
(x)

=⇒
(
∂tφ
−1
t

)
◦ φt +

(
Dφ−1

t

)
◦ φt · ∂tφt = 0

=⇒
(
∂tφ
−1
t

)
◦ φt +

(
Dφ−1

t

)
◦ φt · vt ◦ φt = 0

=⇒ ∂tφ
−1
t (y) +Dφ−1

t (y)vt(y) = 0 (2.1)

In going from line 2 to 3, we have used equation 1.8 and in going from line 3 to 4 we have

let y denote the coordinates of Ω after the forward warp at time t; that is y = φt(x).

Equation 2.1 gives us exactly what we want, it is an equation for the time evolution

of the inverse transformation, in the coordinates of the space at time t, as a function

of the (known) forward velocity vt. Equation 2.1 can be integrated to solve for φ−1
t .

Equation 2.1 is an advection equation; that is, the vector field φ−1
t is being advected

(or pulled along) by the velocity vt. Finite volume methods are stable and accurate

numerical schemes for integrating advection equations but a discussion of their theory

and implementation is beyond the scope of this work. PyRPL contains an implementation

of the standard finite volume corner transport upwind method with several flux limiter

options [LeV02, VRR12a].

With these considerations in mind, we consider steps 1 and 2 of algorithm 1 replaced

with the following more precise pseudo-code:

Algorithm 2: The Forward System

Let t ∈ [0, 1] be discretized into the set {0, ..., tn−1}

For all ti in {0, ..., tn−1}:

1. Compute Iti = I0 ◦ φ−1
ti

2. Compute Pti = det(Dφ−1
ti )P0 ◦ φ−1

ti

22



3. Compute vti = −K(Pti∇Iti)

4. Compute φti+1
= φti + (ti+1 − ti)vi ◦ φti ; this is a forward Euler implementation of

equation 1.8.

5. Compute φ−1
ti+1

= φ−1
ti +F (φ−1

ti , vti); where F represents the solution to the advection

equation by finite volume method.

2.1.2 Image Matching Residuals

Step 3 of algorithm 1 asks that we compute equation 1.17, the initial conditions to the

adjoint system. This amounts to computing the gradient of the image matching functional

with respect to the transformation. In section 1.2.1 we showed the four most common

image matching functionals. Here, we provide formulas for their gradients; though we

omit the derivations, which can be found in [HCF02].

Sum of squared differences:

∇φ−1
1.0
SSD(I ◦ φ−1

1.0, J) =
1

2
(I ◦ φ−1

1.0 − J)×∇(I ◦ φ−1
1.0) (2.2)

Global Correlation Coefficient:

Recall, Î and Ĵ are I and J adjusted to have mean intensity of 0 over their support. Let

v1 be the variance of I: v1 =
∫

Ω∗
I
Î(x)2dx.

Let v2 be the variance of J : v2 =
∫

Ω∗
J
Ĵ(x)2dx.

Let v12 be the covariance of I and J : v12 =
∫

Ω∗
I∩Ω∗

J
Î(x)Ĵ(x)dx.

∇φ−1
1.0
GCC(I ◦ φ−1

1.0, J) = 2
(
Ĵv1v2v12 − (Î ◦ φ−1

1.0)v2
12v2

)
/(v1v2)2 ×∇(I ◦ φ−1

1.0) (2.3)

Local Correlation Coefficient:

The formula is the same as that for GCC, but with the definitions of Î, Ĵ , v1, v2, and

v12 changed to account for local rather than global statistics:

Let Î(x) be a mean filtered version of I.

Let Ĵ(x) be a mean filtered version of J .
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Let v1(x) be a local variance image of I: v1(x) =
∫
wx

(I(x′)− Î(x))2dx′.

Let v2(x) be a local variance image of J : v2(x) =
∫
wx

(J(x′)− Ĵ(x))2dx′.

let v12(x) be a local covariance image of I and J : v12(x) =
∫
wx

(I(x′) − Î(x))(J(x′) −

Ĵ(x))dx′.

Here wx is an isotropic window with side length w centered at x. The obvious method

for obtaining the mean and variance images is by convolution, however they are much

more efficiently obtained using the method of summed area tables.

Mutual Information:

This formula assumes the joint intensity distribution of the moving and fixed images

PI◦φ−1
1.0,J

(i, j) is constructed via Parzen-window density estimation using the density kernel

ψ, which is typically a 2D isotropic Gaussian. Let L = ln

(
P
I◦φ−1

1.0,J
(i,j)

P
I◦φ−1

1.0
(i)PJ (j)

)
; then:

∇φ−1
1.0
MI(I ◦ φ−1

1.0, J)(x) = − 1

|Ω|
[
ψ ? ∂iL

]
(I ◦ φ−1

1.0(x), J(x))×∇(I ◦ φ−1
1.0) (2.4)

where ? denotes convolution. To clarify, the MI residual at a position x is equal to the

the partial derivative of the function L with respect to its first argument, smoothed by a

Gaussian filter, evaluated at the intensities I ◦φ−1
1.0(x) and J(x). However, if PI◦φ−1

1.0,J
(i, j)

was smoothed to account for the Parzen density estimation at the time it was constructed,

the Gaussian smoothing in this formula is redundant and should be omitted.

All of the image matching functional gradients are proportional to ∇(I ◦ φ−1
1.0). How-

ever, the second component of equation 1.17 shows that this gradient is to be normalized

out. Hence a practical implementation will not return the vector fields indicated by the

residuals above, but rather the scalar fields proportional to ∇(I ◦ φ−1
1.0); in which case

the ∇I
‖∇I‖2 term in equation 1.17 can be ignored. The proportionality of the residual to

the moving image gradient is reintroduced implicitly in the third component of equation

1.16.
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2.1.3 The Backward System

Step 4 of algorithm 1 requires that we solve system 1.16. Similar to the numerical solution

given for the forward system, we would like to leverage the path of diffeomorphisms φt

rather than solve the system of PDEs directly. Vialard et al. [VRR12a] provide just such

a numerical scheme wherein they prove that if Ĩ(t) and P̃ (t) solve system 1.16, then they

are unique solutions and they also satisfy the below integral relations 2.5. For shorthand,

let φs,t = φt◦φ−1
s ; that is, φs,t maps points from the coordinate system at time s to points

in the coordinate system at time t. Then:


P̃t = P̃1 ◦ φt,1 −

∫ 1

t
[∇I(s) · ṽ(s)] ◦ φt,s ds

Ĩt = det(Dφt,1)Ĩ1 ◦ φt,1 +
∫ 1

t
det(Dφt,1)[∇ · (P (s)ṽ(s))] ◦ φt,s ds

ṽt = −K(Ĩ∇I − P∇P̃ )

(2.5)

We would like to eliminate the unusual double compositions φs,t from the integral

relations. Let P̂t = P̃ ◦ φt and Ît = det(Dφt)Ĩt ◦ φt. Note that, because P̃1(x) = 0 ∀x by

equation 1.17, P̂1(x) = 0 ∀x as well. These transformations turn system 2.5 into:


P̂t = −

∫ 1

t
[∇I(s) · ṽ(s)] ◦ φs ds

Ît = det(Dφt)Î1 ◦ φt +
∫ 1

t
det(Dφt)[∇ · (P (s)ṽ(s))] ◦ φs ds

ṽt = −K(Ĩ∇I − P∇P̃ )

(2.6)

Further, note that P̂0 = P̃0, meaning that system 2.6 can be solved instead of system 2.5

and we will still obtain the same gradient as in equation 1.18.

With these considerations in mind, we consider step 4 of algorithm 1 replaced with

the more precise pseudo-code:

Algorithm 3: The Backward System

Let P̂1(x) = 0 ∀x

Let Ĩ1 be given by the appropriate residual and let Ît = det(Dφt)Ĩt ◦ φt

Let t ∈ [0, 1] be discretized into the set {tn−1, ..., 0}
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For all ti in {tn−1, ..., 0}:

1. Compute P̃ti = P̂ ◦ φ−1
ti

2. Compute Ĩti = det(Dφ−1
ti )Î ◦ φ−1

ti

3. Compute ṽti = −K(Ĩti∇Iti − Pti∇P̃ti)

4. Compute P̂ti−1
= P̂ti−(ti−ti−1)[∇Iti ·ṽti ]◦φti ; this is a forward Euler implementation

of the first component of system 2.6

5. Compute Îti−1
= Îti + (ti − ti−1)det(Dφti)[∇ · (Pti ṽti)] ◦ φti ; this is a forward Euler

implementation of the second component of system 2.6

2.1.4 Optimization

Finally, steps 5 and 6 from algorithm 1 specify that some form of gradient descent scheme

is used to optimize the objective function with respect to P0. That is, given P̂0 computed

by algorithm 3, the initial momentum parameterizing the geodesic is updated at the kth

iteration as follows:

P k+1
0 = P k

0 − εk
(
∇I ·K(P k

0∇I)− P̂ k
0

)
(2.7)

for some step size εk. The GRiD objective function is nonlinear, and we are optimizing

over a very large number of variables (the entire scalar field P0). Optimizations of this

kind can be very challenging; a smart procedure for dynamically determining εk for each

iteration can help mitigate this challenge. Further, adequate convergence criteria must

be determined. These questions are dealt with specifically in a later chapter.

2.2 PyRPL: The Python Registration Prototyping Library

A bulk of the work in preparation for this dissertation has been in constructing a modular,

robust, and flexible implementation of the GRiD formalism in the Python programming

26



Figure 2.1: PyRPL design overview: PyRPL contains code at four levels of abstrac-

tion. Image level code handles fundamental image operations like interpolation and reg-

ularization. Model level code implements formulas for specific registration algorithms.

Optimizer level code implements gradient descent and other optimization procedures.

User interface level code implements file input and output and collecting registration

parameters from the user.

language. The result, called the Python Registration Prototyping Library (or PyRPL for

short), is the basis for all experiments which are presented in later chapters. PyRPL is

sufficiently modular that its components could easily be rearranged to construct registra-

tion algorithms other than GRiD. We will discuss these modular components separately,

and then how they are utilized in the particular case of GRiD. In the hope that other

researchers will find it useful, this chapter also serves as limited documentation for the

organizational structure and usage of PyRPL. Figure 2.1 shows the general organization

of the PyRPL package, which is discussed in detail below.

PyRPL makes heavy use of the numpy python package, and occasional use of the

scipy python package. Some familiarity with these packages may help in learning to

use PyRPL. A d-dimensional image is represented in PyRPL as d-dimensional numpy

array. This includes objects like the input images, the initial momentum, or any other
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scalar field required for a registration method. A d1-dimensional vector field over a d2-

dimensional space is represented by a (d2 + 1)-dimensional numpy array, where the last

dimension has d1 components representing the components of the vector field.

2.2.1 Image Level Functions

The algorithms and formulas from the previous section require several fundamental oper-

ations to be performed on images. These include application of vector calculus operators

such as gradients and Jacobians (e.g. ∇I and Dφ−1
t ), composition of images with defor-

mations (e.g. I ◦φ−1
t ), and regularization of vector fields (e.g. K(P0∇I0)). Each of these

three fundamental tasks is implemented in a separate Python module.

The vcalc module contains 4 function definitions; parameters with the same name have

common meaning to all functions, and are only defined once. All derivatives are computed

using a central finite difference formula.

1. partial(img, vox, axis, mode=’wrap’)

Compute the partial derivative of img along the axis dimension

• img: a scalar image

• vox: the voxel size of the grid sampling of img in millimeters

• axis: the axis along which to take the derivative (e.g. 0, 1, 2)

• mode: how to handle derivatives at the boundary of the domain

2. gradient(img, vox)

Compute the gradient of the scalar valued img

3. jacobian(img, vox, txm=True)

Compute the jacobian matrix of the vector field img

• txm: A boolean indicating if the vector field represents the displacement field

of a transformation. If True, the identity matrix is added to the jacobian field
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computed from img

4. divergence(img, vox)

Compute the divergence of the vector field img

The transformer module contains a single class, the transformer class. Construction of

an instance of the transformer class requires no input parameters. An instance of the

transformer class has two public facing methods.

1. resample(img, vox, res, vec=False)

Resample img (could be a scalar or vector field) to resolution res.

• img: A scalar or vector valued image

• vox: the voxel size of the grid sampling of img in millimeters

• res: the new resolution to resample img to

• vec: boolean indicating if img is a vector field

2. applyTransform(img, vox, u, vec=False)

Apply the transformation φ(x) = x+ u(x) to img.

• u: a displacement vector field

Finally, the regularizer module contains a single public facing class, the regularizer class.

Construction of an instance of the regularizer class requires a single input parameter: tp,

which must be either the string ’gaussian’ or the string ’differential’. If tp is ’gaussian’

then K(·) is a Gaussian regularizer, if tp is ’differential’ then K(·) is the differential

operator (a∇2 + b∇(∇·) + c)−d An instance has three public facing methods.

1. initialize(a, b, c, d, vox, sh)

Initialize the regularizer with regularization parameters with the grid size and

shape.
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• a: If Gaussian, related to width of Gaussian kernel. If differential, weight of

Laplacian term

• b: If Gaussian, related to the extent of the Gaussian kernel. If differential,

weight of the gradient of divergence term

• c: If Gaussian, does nothing. If differential, weight of the identity term

• d: If Gaussian, does nothing. If differential, order of the differential operator

(typically d = 2)

• vox: the voxel size of the grid sampling of images that will be regularized by

instance

• sh: the shape of the grid of images that will be regularized by instance

2. regularize(f)

Regularize the vector field f, that is compute K(f).

• f: a vector field to be regularized

3. convolve(f)

Apply the metric kernel L, that is compute L(f) = K−1(f)

• f: a vector field to be convolved

These three modules are sufficient to implement all the fundamental functions required

for algorithms 2 and 3 and for computing the matching functionals and their residuals

with one exception. The finite volume method required to solve the advection equation

in algorithm 2. The fvm module implements the finite volume method required to solve

the advection of the diffeomorphism. The module has only one method.

1. solve advection ctu(q, v, vox, dt, t)

Advect the displacement vector field q by velocity field v for duration of time dt.

• q: a displacement vector field for a transformation
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• v: a velocity vector field

• vox: the voxel size of the grid sampling of both q and v in millimeters

• dt: the duration of time which q is advected along v

• t: a transformer object (see transformer module)

2.2.2 Model Level Functions

The fundamental operations implemented in the vcalc, transformer, regularizer, and

fvm modules are utilized by the model level code to implement functions specific to

registration models. For GRiD in particular, the model level code implements the forward

system (algorithm 2), image matching functionals and their residuals, and the backward

system (algorithm 3). The model level code also includes a module with custom classes

to package all the data, intermediate objects, and parameters necessary for a registration.

These functions are implemented in the following three modules.

The matcher module implements the the four image matching functionals we have

discussed as well as their residuals. The matcher module contains a single public facing

class, the matcher class. Constructing an instance of the matcher class requires a single

input parameter: tp, which must be one of the following strings: ’SSD’, ’CC’, ’CCL’,

or ’MI’. Clearly, tp indicates which of the four matching functionals will be used. An

instance of the matcher class has three public facing methods.

1. dist(ref, tmp)

Returns the matching functional distance between ref and tmp images

• ref: the reference (fixed) image

• tmp: the template (moving) image

2. residual(ref, tmp)

Returns the matching functional residual
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3. force(ref, tmp)

Returns the matching functional residual multiplied by the gradient of tmp

The data containers module contains several classes, each designed to hold the inputs,

intermediate objects, and parameters for a different registration model. We will only

discuss the GeodesicRegressionDataContainer class. Construction of an instance of this

class requires three input parameters: J, T, and params. J is an array of images, the

inputs to the regression. T is a 1-dimensional array of the time values associated to each of

the images in J. Finally, params is dictionary containing the parameters necessary for the

regression identified by keyword. An instance of the GeodesicRegressionDataContainer

class has three public facing methods.

1. resample(res, t)

This method resamples all the objects stored in the instance to a new resolution

• res: the resolution at which to resample the container

• t: a transformer object to assist with resampling

2. satisfy cfl()

This method evaluates internal parameters to determine if the Courant-Friedrichs-

Lewy condition is satisfied, ensuring stable integration of differential equations

3. compute t(T, h)

This method determines how the time interval between the earliest and latest image

sample times will be discretized.

• T: the time points corresponding to the input images

• h: the number of discrete time points at which to solve the forward and

backward models

Finally, the geodesic optimizer module is where algorithms 2 and 3 are implemented.

The module contains a single class, the geodesic optimizer class. Construction of an
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instance of the class requires two input parameters: mType and rType. mType is a

string indicating a matcher type (see matcher module). rType is a string indicating a

regularizer type (see regularizer module). An instance of the geodesic optimizer class has

two public facing functions.

1. solveForward(grdc)

This method solves the forward system for the data stored in grdc (see data containers

module). It also returns the current value of the objective function to be used by

optimization level code.

• grdc: a GeodesicRegressionDataContainer object from the data containers

module

2. solveBackward(grdc)

This method solves the backward system for the data stored in grdc (see data containers

module). It also returns the gradient of the objective function to be used by opti-

mization level code.

2.2.3 Optimization Level Code

The functions and objects defined in the model level code are used by routines in the

optimization level code to implement gradient based optimization algorithms. Several

optimization algorithms are available including steepest descent with a static step size,

steepest descent with a secant method line search, and steepest descent with Barzilai-

Borwein step sizes and a backtracking line search. These methods are discussed in a later

chapter.

2.2.4 User Interface Level Code

Finally, optimization routines are accessible to users through the user interface level

code. This code is responsible for identifying and loading user inputs, performing any
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optional normalization on the inputs (such as histogram matching), and identifying and

following through with user specified outputs. For GRiD in particular, there are only

four mandatory arguments.

• -N: the number of images through which you would like to fit the regression model

• -J: The file paths to the images, must be -N file paths separated by spaces

• -T: The times corresponding to the images given by -J. If the images are a time

series from the same patient, these could be ages. If the images are not a time

series from the same patient, then typically the first image is set to 0 and the last

image is set to 1.

• -out: A directory where results of the optimization will be stored. The only default

output is the optimized initial momentum parameterizing the geodesic (because all

other objects can be reconstructed from it).

All other GRiD parameters (such as matcher and regularizer types) have defaults, but

can also be selected specifically by the user with the appropriate flag. The user can also

specify additional outputs (such as the final transformations φ1.0 and φ−1
1.0) with flags.
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CHAPTER 3

Application

The previous chapter established a practical numerical implementation of the GRiD

model, which is realized in the PyRPL python package. The question now is how the

model can be deployed for scientific investigation. This chapter will cover the expected

preparation of data before use with GRiD in PyRPL. It will also cover several experi-

mental designs which can be completed with PyRPL. Many of the experimental results

presented later in this dissertation were obtained by methods explained here. Figure

3.1 depicts an experimental workflow including all the preprocessing and longitudinal

registration steps discussed below.

3.1 Preprocessing

We present preprocessing steps assuming a longitudinal data set. That is, assume we

have N subjects and for the ith subject we have ni images: I i0, ..., I
i
ni−1. The preprocessing

we discuss is also applicable to cross-sectional data sets if one only considers the steps

applied to the baseline scans. Generally, the objective is to have all scans skull stripped,

all baseline scans affine aligned to a common reference, and all follow up images rigid

aligned to their baseline scans. This enables nonlinear registration of the brain tissue

only for longitudinal pairs, and the construction of a study specific minimal deforma-

tion template (MDT) for the baseline scans. For reproducibility we detail all specific

procedures, software packages, and parameters as precisely as possible.
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3.1.1 Initial Masking of Baseline Scans

To account for affine anatomical variability between subjects, the baseline images for

all subjects will be affine aligned to a common reference space with FSL FLIRT [JS01,

JBB02]. It is only the brain tissue that we care to align and so before performing

these alignments it will be useful to obtain masks for the brain tissue. We use ROBEX

[ILT11] for all brain masking/skull stripping, which requires no user-specified parameters.

ROBEX performance is most robust when the center of the brain is aligned with the

center of the field of view, which may not be the case for many baseline scans. Therefore,

to obtain initial brain masks for the baseline images in their own coordinate systems we

follow the steps in algorithm 3.1.

Algorithm 3.1

input: image to mask A; reference image B

output: brain mask for image A in its native coordinate system

1. FLIRT A→ B, 9 dof, retain xfm file and output image C

2. Invert xfm file with FSL convert xfm

3. Obtain brain mask for C with ROBEX

4. Dilate mask with fslmaths mean dilation, kernel sphere = 2

5. Apply inverted xfm from step 2 to dilated mask from step 4

6. Dilate mask again with fslmaths mean dilation, kernel sphere = 2

The output of algorithm 3.1 is a brain mask for image A in image A’s own coordinate

system. In order to run algorithm 3.1 on all baseline images, we must select a common

reference image, which will be image B above. We use for the common reference image

B an individual MRI scan that has already been affine aligned to the ICBM template

[MTE01]. The ICBM template has 1mm3 isotropic resolution, the brain tissue is centered

and occupies the majority of the field of view. However, because it is a template average

of multiple brains, the boundaries between structures are somewhat blurred. Hence, we
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use the individual image registered affine aligned to ICBM space, which is sharper than

the ICBM template itself, but also has the desirable properties of the ICBM template.

We run this algorithm for all baseline images in the data set to obtain brain masks for

those images. We also run steps 3, 4, and 6 on the ICBM aligned reference image to

obtain its own initial brain mask.

3.1.2 Affine Alignment of Baseline Images, Brain Masking

We can now obtain affine alignments of the baseline images to the ICBM reference space

aided by the masks obtained from algorithm 3.1. To obtain the alignments we follow

the steps in algorithm 3.2. Step 1 corrects for large scale misorientation. In step 2,

we perform more fine scale affine alignment where only the data under the initial brain

masks is considered. In step 4 we obtain a new brain mask for the baseline image that

is in the ICBM reference coordinate system.

Algorithm 3.2

input: image to align A; reference image B; masks MA and MB

output: xfm file mapping A to B; brain mask for A in reference coordinates

1. FLIRT image A→ B, 9 dof, -coursesearch = 45 -finesearch = 9

retain xfm file

2. FLIRT image A→ B, 9 dof, initialize with xfm from step 1

-inweight = MA -refweight = MB, retain xfm

3. Apply xfm from step 2 to image A, reslice to same resolution as B.

4. ROBEX result from step 3, retain mask
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3.1.3 Rigid Alignment of Followup Images, Brain Masking

The follow up scans must be corrected for variable head position relative to the baseline

scan; this is also handled with FSL FLIRT [JS01, JBB02]. For these alignments, we

expect the non-brain tissue, in particular the skull, to have undergone very little to no

change between the baseline and followup time points. In fact, due to its stability in

shape we expect the skull to stabilize the longitudinal rigid alignment. Hence, we do

not require initial brain masks for this step. Additionally, we restrict the alignment to

be rigid with 6 degrees of freedom (translation and rotation) to prevent losing any brain

tissue atrophy due to scaling. To obtain followup images corrected for variable head

position and in the common ICBM reference space, we follow the steps of algorithm 3.3,

taking care to interpolate the images only once, consistent with the treatment of the

baseline images.

Algorithm 3.3

input: followup image A; baseline image B; xfm file from algorithm 2

mapping baseline image to ICBM reference coordinates

output: xfm file mapping A to ICBM reference coordinates

brain mask for image A in ICBM reference coordinates

1. FLIRT image A→ B, 6 dof, retain xfm file

2. concatenate xfm from step 1 and corresponding xfm from algorithm 2

3. Apply result of step 2 to image A, reslice to resolution of reference image

4. ROBEX result from step 3, retain mask

3.1.4 Quality Check, Combine, Dilate, and Apply Masks

After completing algorithms 3.1, 3.2, and 3.3 for all baseline and followup images, the

entire dataset is affine aligned to the common reference space and resampled to the same
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resolution. We also have brain masks for every image in the common reference space.

Before proceeding, we will inspect the results for quality using the following procedure.

We visually inspect the center most sagittal, axial, and coronal slices of the masks overlaid

with their corresponding images to identify segmentation failures. We classify two types

of failure: (1) when the brain mask substantially exceeds the dura mater and (2) when

the brain mask does not include a substantial amount of brain tissue. For failed masks in

either case, we inspect the masks for the other images in the same time series. For masks

in category (1), we replace the failed mask with the intersection of the failed mask and

a non-failed mask from the same time series. For masks in category (2), we replace the

failed mask with the union of the failed mask and a non-failed mask from the same time

series. These corrections inflate or trim failed masks where appropriate. For any time

series where every mask in the series failed, the images can either be tested through an

alternative brain masking program, the masks can be adjusted by hand, or if the masks

cannot be corrected by any means, the data must be discarded from further analysis.

It is important for the subsequent nonlinear registration step that the same mask be

applied to every image in a time series; otherwise a region where voxels were masked

out in baseline but not in a followup image will appear to have grown which of course

would only be an artifact from poor preprocessing. After failure correction, we take the

union of all masks in each time series to create one mask per subject. Those masks are

dilated (fslmaths mean dilation, kernel sphere = 2) and applied to all images in their

corresponding time series. This step completes our preprocessing goals: all images are

affine aligned to a common coordinate system and non brain tissue has been excluded.

3.2 Study Specific Minimal Deformation Template

We will require a standard coordinate system in which to spatially normalize results to

perform statistical calculations. An average of images that have been nonlinearly regis-

tered to a common space is often called a study specific minimal deformation template
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(MDT). It is ideal to construct an MDT that in some way captures what we think of

as the average form over the population of images. In the diffeomorphic registration

framework this can be defined as a Karcher mean estimation problem on the manifold of

diffeomorphisms [VRR12b, SHJ13, ZSF13, DPT09, DPT13].

3.2.1 The Karcher Mean

Given a sampling of vector valued data xi for i ∈ {0, ..., n}, the sample mean µ is of

course µ = 1
n

∑n
i=0 xi. This formula is in fact the closed form solution of a more general

definition of the mean:

µ = argminµ̂

n∑
i=0

‖xi − µ̂‖2 (3.1)

The norm of the difference between the data points and µ̂ is of course the Euclidean

distance separating them. So, the sample mean is the unique point at which the total

squared distance from it to the data is minimal. This definition easily generalizes to

arbitrary metric spaces (including geodesically complete manifolds):

µ = argminµ̂

n∑
i=0

d(xi − µ̂)2 (3.2)

where d(·, ·) is the distance metric for the space. We saw in chapter 1 that the GRiD for-

malism considers the space of diffeomorphisms from which we select out optimal matching

to be a manifold. Further, the geodesic distance on that manifold between the images

I(x) and J(x) was given as d(I, J) =
∫ 1

0
〈vt, Lvt〉L2 dt. The problem of finding an MDT

for a data set of images can be formulated as a Karcher mean estimation, where the total

distance of the template to the dataset is given by the sum of the objective functions for

individual registrations of the template to each image.

So, suppose we have a population of images Ii for i ∈ {0, ..., n} and we have selected

an image (possibly one of the images Ii) to be µ, an initial estimate for the MDT. If we
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use the GRiD framework to register µ to each of the Ii, where µ is the moving image,

the result is a set of initial momentum fields P i
0 parameterizing geodesics between µ and

each image Ii. The P i
0 all lie within the same coordinate system, that of µ, and are

members of the vector space V ∗; as such, they can be averaged like any other vector.

Let P ∗ = 1
n

∑n
i=0 P

i
0, then the geodesic parameterized by P ∗ theoretically moves µ to

the center of the dataset. That is, if φ1.0∗ is the end point of the geodesic parameterized

by P ∗, then µ ◦ φ−1
1.0∗ is theoretically the Karcher mean of the input images. We say

theoretically to emphasize that, due to the many unavoidable sources of approximation

error in going from the continuous domain theory to a discrete domain implementation,

µ ◦ φ−1
1.0∗ may not be perfectly centered to the data set. For that reason, we iterate the

procedure using µ ◦ φ−1
1.0∗ as the new MDT estimate. Figure 3.2 graphically depicts an

iteration of the MDT algorithm.

3.2.2 An Explicit MDT Algorithm

The steps to construct a study specific MDT as a Karcher mean, on the manifold of

diffeomorphisms, of a population of input images is presented explicitly in algorithm 3.4.

Notice that we do not intensity average the spatially normalized images at every

iteration. We prefer to move the initial template closer to the center of the image set and

reuse it at every iteration (taking care to always interpolate from the original image).

This way, the atlas has higher contrast between tissue boundaries at every iteration,

enabling more precise registrations. We intensity average only after the final iteration.

The resulting MDT has higher contrast between tissue boundaries, but is also more

biased toward the shape of the initial template.

3.2.3 Cross Sectional Registration to MDT

As we mentioned previously, the purpose for building an MDT is to have a coordinate

system wherein results from different individuals can be spatially normalized to account
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Algorithm 3.4

input: N images, I0, ..., IN−1

output: Atlas representing shape and appearance average of inputs

Let Ai be the template at the ith iteration, let mtot = 0

1. Select k and set A0 = Ik

2. Histogram match I0, ..., IN−1 to Ik

3. Register via geodesic shooting I0, ..., IN−1 to Ai

4. Compute average mavg of the initial momenta m0, ...,mN−1

5. Let mtot = mtot +mavg

6. Shoot Ik with geodesic specified by mtot, let Ai+1 equal the result

7. let i = i + 1, Repeat steps 3 - 6 until convergence

8. Compute average A∗ of I0 ◦ φ−1
0 (x, 1.0), ..., IN−1 ◦ φ−1

N−1(x, 1.0), output A∗

for variability in individual anatomy. The MDT represents a form and intensity average

constructed from a large set of images within a population. Hence, it is a reasonable place

to perform this spatial normalization. All baseline images are registered using GRiD to

the MDT and the deformations φ1.0 and φ−1
1.0 are retained.

3.3 Longitudinal Experimental Design

We return to the case of a population of longitudinal time series I i0, ..., I
i
ni−1 acquired at

times ti0, ..., t
i
ni−1 for i ∈ {1, ..., N}. Now that the images have been preprocessed to re-

move non brain tissue and normalize affine differences in form, they can be longitudinally

registered with GRiD. Consider first, for each subject, registering their baseline image

to each of their followup images separately. For the ith subject, this will yield the initial

momenta and forward transformations: P i
0,t1
, ..., P i

0,tni−1
and φit1 , ..., φ

i
tni−1

. What infor-
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mation do these objects contain about the population that may be of scientific interest?

3.3.1 The Jacobian and Jacobian Determinant

Consider first as an example a generic transformation φ. Recall, φ(x) = x + u(x) for

some displacement vector field u(x). The Jacobian matrix of the transformation is:

Dφ(x) =


1 + ∂x1u1(x) ∂x2u1(x) ∂x3u1(x)

∂x1u2(x) 1 + ∂x2u2(x) ∂x3u2(x)

∂x1u3(x) ∂x2u3(x) 1 + ∂x3u3(x)

 (3.3)

and it represents a local linear approximation to the transformation. The Jacobian con-

tains a great deal of information about the local properties of the deformation, in partic-

ular the infinitesimal (or, practically, the voxel volume) shape change of the anatomy at

location x. It has become a great subject of interest to associate such properties of shape

change, either over time within the same subject or between two different subject, with

neurological or psychiatric conditions [HHC13, HCM16, VSG15, HLA16, CFI15, LCT10,

WZG10, GFC15].

The determinant of the Jacobian matrix δ(x) = det(Dφ), which is guaranteed to

be strictly positive everywhere for a diffeomorphism (see section 1.3.1 and [You10]), is a

measurement of the local image expansion or contraction evident from the transformation

φ. A 0 < δ(x) < 1.0 indicates the moving image at x has contracted by the factor δ(x)

to match the fixed image; whereas a 1.0 < δ(x) < ∞ indicates the moving image at x

has expanded by the factor δ(x) to match the fixed image. Clearly, δ(x) = 1.0 indicates

the moving image at x has neither expanded nor contracted. If φ is a mapping from a

baseline to a follow up image, such as in the case with φiti , then δ(x) is a map of the

expansion and contraction of tissue across the entire anatomy. This information is very

useful in the case of growth and development, where we might be interested in seeing

which areas of the brain are changing volume and by what rates over time. This is of

course also applicable when studying neurodegeneration in either healthy or diseased
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populations.

3.3.2 Measuring and Validating Atrophy

From the deformations φitj , we can compute the Jacobian determinant maps δitj(x) and

study the longitudinal volume change of our population. We are interested in comparing

these maps to each other across the population, so they are moved to the MDT coordinate

system by composition with the transformations that were learned between I i0 and the

MDT (see section 3.2).

For neurodegenerative diseases, rarely would we be interested in the tissue change at

a single ≈ 1mm3 point, rather we are interested in the bulk volume change of regions.

Hence, we consider some region of interest in the MDT domain ω ⊂ Ω and compute:

αitj =

(
1.0− 1

|ω|

∫
ω

δitj(x)dx

)
× 100.0 (3.4)

We call αitj the atrophy score for subject i at time point tj over region ω. The formula

includes the average Jacobian determinant in the region, which is a measurement of the

factor by which the total volume of the region has changed between ti0 and tij. We subtract

that number from 1.0 so that a volume change factor indicating atrophy will be positive,

and a volume change factor indicating growth will be negative. Finally, we multiply by

100.0 in order to represent the volume change as a percentage of the original volume at

time ti0. Hence, αitj is the percent volume lost within region ω for subject i over the time

interval tij − ti0 as evident in the image pair I i0 and I ij, measured by GRiD.

Of course, the atrophy scores αitj must be validated. First, we might ask if the

measurements are consistent. One method to evaluate this is to check the transitivity of

the measurements. That is, suppose we do the following three registrations:

• Register I i0 to I i1 providing φit1

• Register I i1 to I i2 providing φit1,t2

44



• Register I i0 to I i2 providing φit2

The composition φit1,t2 ◦ φ
i
t1

, is a map from I i0 to I i2. Of course, φit2 is also a map from

I i0 to I i2, however obtained from a single registration. We can compute an atrophy score

over some region from the composition map φit1,t2 ◦ φ
i
t1

, and a separate atrophy score

over the same region from the individual map φit2 . We can repeat this experiment for all

subjects in the population and then ask, over the entire population, are the two methods

of measuring atrophy score for the same region statistically different? If not, then the

atrophy measurements are transitive and consistent with one another.

A second validation must be to check if the atrophy scores share information with any

known measurements, even indirect ones, of neurodegeneration or its effects. Suppose,

each time each subject was imaged, they were also given a cognitive test for dementia.

This is typically part of the study design for image data collection in neurodegeneration

studies. The atrophy scores should be checked for statistical relationships to performance

scores on cognitive tests.

3.3.3 Data Driven Region of Interest

To compute an atrophy score, we require a region of interest (ROI) ω delineated on the

MDT. This region may be based solely on anatomy, for example the temporal lobes may

be a good first choice to study atrophy. However, there may be regions within the ROI

that in fact are not associated with disease affects. In that case, those subregions weaken

the connection between the atrophy score and relevant clinical effects. We would like an

ROI that includes only locations where significant disease effects occur [HHC13, HCM16].

Such a region can be constructed from training data as follows.

Suppose you have an independent population of images from subjects that can be

grouped into two diagnostic categories: healthy controls and disease afflicted. Let I ij

represent the jth image from the ith subject in the healthy control subset, and let J ij

represent the jth image from the ith subject in the disease afflicted subset. Suppose we
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have obtained Jacobian determinant maps δiI for the healthy control population and δiJ

for the disease afflicted population. The maps must be from registrations where the

duration of time between the baseline image and followup image is approximately equal

for all subjects in both diagnostic categories.

Now, we perform a two tailed t-test at every voxel comparing the groups δiI and δiJ .

The significance threshold must be corrected for multiple comparisons using for example

a Bonferroni correction, where the number of tests is equal to the number of voxels in the

MDT support. Voxels that pass this significance test are in regions that are significantly

associated with the disease. These voxels can be selected as a statistically determined

region of interest (stat-ROI).

Importantly, if the stat-ROI is to be used in an atrophy quantification study, to avoid

bias, it must have been learned from an independent data set that is not part of the

immediate study.

3.3.4 Using Atrophy Scores: Sample Size Estimates

The N80 sample size statistic was proposed by the ADNI Biostatistics core to quantify the

sensitivity of an atrophy quantification method. In words, N80 is the expected number

of subjects required for a hypothetical clinical trial to detect a 25% reduction in atrophy

with 80% power and 95% confidence using a two sided test in a hypothetical two arm

study (treatment vs. placebo). The N80 formula is:

N80 =
2σ2(z1−0.05/2 + z0.8)2(

0.25µ
)2 (3.5)

where zx is the value at which the standard normal cumulative distribution equals x.

After substituting the proper value for (z1−0.05/2 +z0.8)2, equation 3.5 simplifies to N80 =

250.88× (σ
µ
)2. Here, µ and σ are the mean and standard deviation of the atrophy scores

for a specific population of test subjects.

46



Figure 3.1: Preprocessing and longitudinal registration workflow: Some arrows

are labeled with transformation, or compositions of transformations. A horizontal arrow

with a transformation indicates learning that transformation; a vertical arrow with a

transformation indicates applying that transformation. These steps are covered very

thoroughly in the text.
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Figure 3.2: MDT as a Karcher mean on a manifold of diffeomorphisms: An

initial guess for the template is registered by geodesic shooting to all images in the data

set. The average initial momenta parameterizes an average geodesic. The template is

warped along that geodesic, the result is more central to the data set. This procedure is

iterated a few times.
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CHAPTER 4

Matcher Optimization

This chapter represents a study wherein the four previously discussed matching func-

tionals are evaluated against each other for their ability to drive a registration algorithm

quantifying atrophy. This section contains some duplicate material from chapters 1-3; it

is retained here for those who may have skipped those introductory chapters.

4.1 Introduction

Nonlinear image registration represents the shape change evident in a pair of anatomical

images as a displacement vector field. The LDDMM (large deformation diffeomorphic

metric mapping) framework for diffeomorphic registration [BMT05] restricts the dis-

placement field to be a diffeomorphism, which is constructed by integrating the flow of a

time-dependent velocity field. Consequently, LDDMM constructs a path within a space

of diffeomorphisms; Beg et al. show that at optimality this path is a geodesic. In the

geodesic shooting in diffeomorphisms (GSiD) formulation, rather than optimizing the

entire velocity flow, only the initial momentum of the flow is considered a free variable,

and the path is constructed by integrating the appropriate Euler-Poincaré differential

equation (EPdiff) [MTY06, VRR12a, NHV11, AF11, SHJ13]; this guarantees the path

will be a geodesic throughout optimization. Further, as shown by Miller et al. [MTY06],

at optimality the initial momentum is proportional to the moving image gradient. Hence,

the objective of GSiD is to find a scalar momentum field that parameterizes an optimal

matching between the given images.
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Like most registration methods, GSiD requires an image matching functional that

takes two images as input and returns a scalar value quantifying how well aligned the

images are. Many matching functionals have been proposed in the literature [SM99].

Generally speaking, the primary difference between them is the extent to which they

attempt to normalize unwanted features from the image intensities. For example, the

sum of squared differences functional makes no attempt to account for meaningless image

intensity differences, and hence would be a poor choice for noisy or cross-modality regis-

trations, whereas the mutual information functional is invariant to some transformations

between the image intensity histograms.

A great deal of the theoretical work on LDDMM and GSiD is agnostic about the

choice of matching functional, and we have not seen an evaluation of the impact of

matching functional choice on the quality of measurements in the GSiD context. In

particular we are interested in the application of GSiD to longitudinal MRI time-series

of the brain to quantify atrophy. In that case, deformations are often very low amplitude

even relative to the spatial resolution of the images. However, atrophy of as little as 5%

in critical brain areas can be associated with significant clinical effects [HCM16]. Hence,

it is crucial to measure atrophy, and therefore longitudinal deformations, with the highest

degrees of accuracy and precision possible. In such a case, the selection of image matching

functional may significantly impact our ability to capture atrophy evident in the image

time-series.

4.2 Methods

4.2.1 GSiD

A complete discussion of the GSiD model is beyond the scope of this paper; for a thorough

discussion of the following equations, please see [VRR12a]. For a moving image I and

fixed image J , the GSiD objective function is:
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E(P0) =
1

σ2
〈P0∇I,K(P0∇I)〉L2 +D

(
I ◦ φ−1

1 , J

)
(4.1)

where D(·, ·) is a functional taking two images as input and returning a scalar value

that quantifies how well the images are matched. Equation (1) must be minimized with

respect to the initial scalar momentum field P0. The initial momentum P0 provides the

remaining initial condition for the EPdiff equation(s), which govern the time evolution

of the momentum and moving image:


∂tI +∇I · v = 0

∂tP +∇ · (Pv) = 0

v +K(P∇I) = 0

(4.2)

The third equation relates momentum and velocity, where K plays the role of an inertia;

K is a smoothing kernel and K(w) is taken to mean the convolution of vector field w

with K. The path of diffeomorphisms φt is constructed from the velocity flow v(x, t)

according to the ODE:

 ∂tφt = vt(φ)

φ0 = Id
(4.3)

this yields the geodesic path of diffeomorphisms φt, where the end point φ1 is used to

match I and J . The matching residual ∇φ1D(·, ·)/∇I, which resides in the coordinate

system of J , must be brought back to the coordinate system of I while respecting the

geodesicity of the whole path φt. This is done by integrating the adjoint system backwards

in time with initial conditions Î1 = ∇φ1D(·, ·)/∇I and P̂0 = 0:


∂tÎ +∇ · (vÎ) +∇ · (P v̂) = 0

∂tP̂ + v · ∇P̂ −∇I · v̂ = 0

v̂ +K(Î∇I − P∇P̂ ) = 0

(4.4)
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The solution of system (4) provides the gradient of equation (1) with respect to the initial

momentum P0 enabling optimization by some form of gradient descent.

4.2.2 Matching Functionals

Let I(x) and J(x) be two images such that x ∈ Ω ⊂ R3 with δΩ the boundary of Ω and

I(δΩ) = J(δΩ) = 0. We review the functional form, interpretation, and some implemen-

tation details (including any free parameters) for four different matching functionals. We

do not derive the gradients of the functionals; for those details see [HCF02].

Sum of squared differences: This is the simplest functional:

SSD
(
I, J
)

= ‖I − J‖2
L2

=

∫
Ω

(
I(x)− J(x)

)2
dx (4.5)

The SSD(·, ·) functional considers the input images elements of a Euclidean vector space;

it deals directly with the input image intensities, and has no free parameters.

Global Correlation Coefficient:

Let Î(x) = I(x)− 1
|Ω∗
I |

∫
Ω∗
I
I(x)dx (where Ω∗I is the support of I(x) and |·| denotes volume);

i.e. Î(x) is I(x) adjusted such that the mean intensity value over its support is 0. Let

Ĵ(x) be defined similarly. The global correlation coefficient is then:

GCC
(
I, J
)

=
COV (I, J)2

V AR(I)× V AR(J)

=

( ∫
Ω∗
I∩Ω∗

J
Î(x)Ĵ(x)dx

)2∫
Ω∗
I
Î(x)2dx

∫
Ω∗
J
Ĵ(x)2dx

(4.6)

The GCC ranges from 0 for distinct images of random noise to 1 for images that differ

only by a linear mapping of the image intensities. Due to this invariance, GCC is more

robust to global confounds of the image intensities that might occur due to scanner drift

(for images taken at different times) or scanner differences (for images taken at different

sites). GCC also has no free parameters.
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Local Correlation Coefficient: This functional is the application of the GCC formula

to all patches of a fixed window size in the image support. That is, if wx is a window

centered at x and x′ is a coordinate local to wx then the LCC is:

LCC(I, J) =

∫
Ω∗
I∩Ω∗

J

GCC[I(wx), J(wx)] dx = (4.7)

∫ (∫
wx

(
I(x′)− Îwx(x)

)(
J(x′)− Ĵwx(x)

)
dx′
)2

∫
wx

(
I(x′)− Îwx(x)

)2
dx′
∫
wx

(
J(x′)− Ĵwx(x)

)2
dx′

dx

where Îwx and Ĵwx are mean filtered images with window size w. As opposed to GCC,

LCC accounts for local rather than global image intensity statistics. This makes LCC

more robust to nonlinear transformations of the image intensity histogram, which might

occur under various circumstances including if one or more intensity gradients or con-

founds due to a large nonlinear field inhomogeneity are present.

Computing the LCC requires mean filtering both images, which can be efficiently

implemented using summed area tables (faster than FFT methods). The LCC has one

free parameter, the window size w, which should be selected based on the size scale of

features the registration is attempting to match.

Mutual Information: Mutual information has several equivalent definitions; we will

present only one. First, let pI(i) and pJ(j) be the normalized intensity histograms for

images I and J and let pIJ(i, j) be the normalized joint intensity histogram for both im-

ages. Here, i and j are image intensity values. Then, mutual information is defined as the

Kullback-Leibler divergence of the joint intensity distribution from the joint distribution

under the assumption of independence:

MI(I, J) =

∫
R2

pIJ(i, j) ln

(
pIJ(i, j)

pI(i)pJ(j)

)
didj (4.8)

MI(I, J) is minimal when I(x) contains no information about J(x); that is, when know-

ing the intensity at a particular location in I tells you nothing about what intensity
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might be at the same location in image J . In that case, I and J are independent and

pIJ(i, j) = pI(i)pJ(j) and MI(I, J) = 0. MI(I, J) is maximal when I(x) fully determines

J(x) (and vice versa); in that case, pIJ(i, j) = pI(i|j)pJ(j) = pJ(j) = pI(i) and MI(I, J)

reduces to
∫
R pI(i) ln

(
1

pI(i)

)
di which is the Shannon entropy of the image.

MI requires estimation of the joint intensity distribution (the individual image distri-

butions are then obtained by marginalizing the joint distribution). First, a number of bins

must be selected in which to count the image intensities. Second, the joint distribution is

constructed by Parzen-window density estimation. This can be efficiently implemented

by first constructing the joint intensity histogram and then Gaussian smoothing. Hence,

with this implementation, MI requires two user parameters: the number of bins and the

width of the smoothing kernel.

4.2.3 Histogram matching

We will consider the previous four matching functionals both with and without histogram

matching (HM) of the input data. HM is a nonlinear transformation of the image in-

tensities of one image such that its histogram matches that of another. HM may be

particularly appropriate for longitudinal image pairs considering anatomical structures

are expected to be comparable in size and intensity, modulo any atrophy. Hence, HM of

a follow-up image to a baseline image, for example, is expected to compensate for some

noise and intensity differences due to scanner drift or other acquisition confounds.

4.3 Experimental Results

We took 100 randomly chosen subjects from the ADNI-2 longitudinal MRI dataset -

publicly available at adni.loni.usc.edu - and registered their baseline scans to their 24-

month follow-up scans using GSiD. We repeated these registrations with five different

choices for matching functional: SSD, GCC, LCC with a window size of w = 11× 11×

11mm, LCC with a window size of w = 21× 21× 21mm, and MI with 256 bins and an
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Figure 4.1: ROI significantly associated with atrophy in AD used to compute atrophy

scores

isotropic Gaussian smoothing kernel standard deviation of 2.5 bins. Further, we repeated

these five experiments on the same data set but first histogram matched the follow-up

image to the baseline image. Hence, we present results for a total of 10 experimental

conditions. Before GSiD, the images were preprocessed according to the protocol detailed

in [FGF15, FFG].

After GSiD, the Jacobian determinants of the deformations mapping the baseline

to the 24 month followup images were moved to a common coordinate system. The

Jacobian determinants were averaged in a region where the rate of atrophy is significantly

associated with Alzheimer’s Disease (AD; Fig. 1) to produce a scalar value atrophy score

that represents the percent volume loss within the region for each subject [HCM16]. The

region was constructed from registrations of baseline to 24 month followup images from

a completely separate data set of healthy controls and AD subjects from ADNI-1. Using

the Jacobian determinant maps from those registrations, a statistical test was performed

at every voxel to test for significant differences between healthy controls and AD subjects.

The region used here is made up of the voxels whose p-value was below 10−14.

We first ask if the choice of matching functional significantly affects atrophy mea-
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Figure 4.2: p-values for pairwise Student’s t-test on atrophy scores for every pair of

experimental conditions, bold indicates not significant at a threshold of 0.05/45 ≈ 0.001;

all other entries are significant. w11: 11x11x11mm window; w21: 21x21x21mm window.

Figure 4.3: Left: correlation of atrophy scores with diagnostic group (DX corr) and mini

mental state exam scores (MMSE corr). Right: N80 sample size estimates for healthy

controls (HC), early mild cognitive impairment (EMCI), late mild cognitive impairment

(LMCI), and Alzheimer’s disease (AD)

surements. We performed a pairwise t-test between the atrophy scores for all pairs of

experimental conditions. Figure 2 shows the p-values of those tests. Using a significance

threshold of 0.001 ≈ 0.05/45. We find that nearly all matching functionals produce at-

rophy scores significantly different from atrophy scores produced by the other matching

functionals with a few exceptions. In particular, it seems that the correlation based

matching functionals are less likely to produce distinct measurements from each other

than from the non-correlation based functionals. This may indicate that for this dataset,

the local intensity statistics are sufficiently similar to the global intensity statistics, in

which case GCC may be preferred for speed. Another important observation is that the

mutual information functional produced atrophy scores that were different from all other

methods, with the exception of itself when HM was included.
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We also ask how the choice of matching functional impacts the correlation of atrophy

scores with known clinical measures of dementia. Atrophy scores obtained by longitudinal

registration have been shown to correlate with the diagnostic group of the subject and

with their performance on clinical assessments of dementia. The left side of Figure 3

shows the Pearson’s correlation coefficient with diagnostic group (DX corr) and mini

mental state exam scores (MMSE corr). In both cases, the choice of matching functional

does not seem to have a large affect on the correlation between the atrophy scores and

clinical variable with one exception. The LCC with the larger window size correlates less

with the clinical variables than the other results, something which histogram matching

seems to correct.

The correlation is a measurement of the strength of a linear relationship between two

variables, however it says nothing about the slope of that relationship. We also would like

to assess the impact of matching functional on the distribution of atrophy scores within

diagnostic groups. One measurement that captures information about these distributions

is the N80 sample size estimate; in words the N80 is the estimated number of individuals

required to detect a 25% reduction in the mean rate of atrophy, with 80% power, and

with 95% confidence in the result. As a formula, the N80 is:

N80 =
2σ2(z1−0.05/2 + z0.8)2(

0.25µ
)2 (4.9)

where µ is the average atrophy score for a population, σ2 is its standard deviation, and zα

is the value at which the cumulative standard normal distribution equals α. Substituting

in the values for z reduces the N80 formula simply to N80 = 250.88× (σ/µ)2.

The N80 is a function of the breadth of the distribution of atrophy scores normal-

ized by the average amplitude of the atrophy signal. A lower N80 indicates a stronger

signal, less variance in the signal, or both. The right side of Figure 3 shows N80s for

all 10 experimental conditions for each of four diagnostic groups: healthy controls (HC),

early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and
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Alzheimer’s disease (AD). In general, the N80s tend to decrease for matching functionals

that are increasingly invariant to confounds in the intensity matching. In particular, MI

seems to offer some of the lowest N80 sample size estimates while retaining correlations

to the clinical variables comparable to the other functionals. Finally, we acknowledge a

few matching functionals which we did not include in this study, but may evaluate in

future studies [CDH07, LYC07].
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CHAPTER 5

Optimization Strategies

This chapter represents a complete study evaluating different optimization strategies for

utility in atrophy quantification. This section contains some duplicate material from

chapters 1-3; it is retained here for those who may have skipped those introductory

chapters.

5.1 Introduction

The LDDMM (large deformation diffeomorphic metric mapping) framework for diffeo-

morphic image registration is described in significant procedural detail in the seminal

paper by Beg et al. [BMT05]. LDDMM proposes encoding the shape difference evi-

dent in two images of the same anatomy as a point on a manifold of diffeomorphisms.

The objective of the algorithm is to construct a path on that manifold beginning at

the identity and ending at the diffeomorphism that optimally matches the two images;

Beg et al. show that at optimality the path is a geodesic. In the geodesic shooting

formulation, the path is parameterized by an initial momentum vector field, from which

the entire geodesic can be reconstructed by integrating the appropriate Euler-Poincaré

differential equation (EPdiff) [MTY06, VRR12a, NHV11, AF11, SHJ13]. Also, Miller et

al. [MTY06] show that at optimality, the initial momentum vector field is proportional

to the spatial gradient of the moving image. Hence, the objective of geodesic shooting

in diffeomorphisms (GSiD) is to find a scalar momentum field that parameterizes an

optimal matching between the given images.
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An implementation of GSiD can be viewed as having three mathematical components:

(1) construction of the model itself, which can include decisions about representation

[SHJ13] and selection of parameters that dictate properties of the space of diffeomor-

phisms [RVW10], (2) numerical integration of differential equations [VRR12a], and (3)

an optimization procedure for the initial momentum field. The majority of work in the

field has been in areas (1) and (2), with substantially less attention to paid to (3). With

the exception of [AF11], most studies report using gradient descent with some step size

ε, though details of the procedure including the determination of ε, are typically omit-

ted. Very little information relevant to optimization is known about the GSiD objective

function, such as its smoothness and curvature characteristics. Further, it is not known

how variable these characteristics are to different inputs. Nonetheless, to build a GSiD

system robust to variable inputs, some optimization procedure must be selected.

We consider here gradient descent with three different procedures to determine the

step size ε: (1) a static step size, (2) a secant method line search, and (3) the Barzilai-

Borwein method [BB88]. Methods (2) and (3) compute the step size at every iteration

using limited local curvature data estimated from the objective function; hence, ε is

adaptable to the inputs and the particular iteration of the optimization.

5.2 Methods

5.2.1 GSiD

A complete discussion of the GSiD model is beyond the scope of this paper; for a thorough

discussion of the following equations see [VRR12a]. For a moving image I and fixed image

J , the GSiD objective function is:

E(P0) =
1

σ2
〈P0∇I,K(P0∇I)〉L2 + ‖I ◦ φ−1

1 − J‖2 (5.1)

which must be minimized with respect to the initial scalar momentum field P0. A given
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initial momentum provides the initial conditions for the EPdiff equation(s), which govern

the time evolution of the momentum and moving image:


∂tI +∇I · v = 0

∂tP +∇ · (Pv) = 0

v +K(P∇I) = 0

(5.2)

The third equation states the relationship between momentum and velocity, where K

plays the role of an inertia; K is a smoothing kernel and K(w) is taken to mean the

convolution of vector field w with K. The path of diffeomorphisms φt is constructed

from v(x, t) according to the ODE:

 ∂tφt = vt(φ)

φ0 = Id
(5.3)

This yields the geodesic path of diffeomorphisms φt, where the end point φ1 is used to

match I and J . The matching residual J−I ◦φ−1
1 , which resides in the coordinate system

of J , must be brought back to the coordinate system of I while respecting the geodesicity

of the whole path φt. This is done by integrating the adjoint system backwards in time

with initial conditions Î1 = J − I ◦ φ−1
1 and P̂0 = 0:


∂tÎ +∇ · (vÎ) +∇ · (P v̂) = 0

∂tP̂ + v · ∇P̂ −∇I · v̂ = 0

v̂ +K(Î∇I − P∇P̂ ) = 0

(5.4)

P̂0 completes the gradient of equation (1) with respect to P0. In a gradient descent

scheme, that gradient is used to update P0:

P k+1
0 = P k

0 − ε
(
∇I ·K(P k

0∇I)− P̂ k
0

)
(5.5)

ε is one of the few user selected parameters in the GSiD model. A poor selection of ε

can result in intractable compute times (if the user insists on running to convergence),
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sub-convergent results (if the optimization is stopped early due to time considerations),

or numerical instability and divergence (if ε is too large). We are concerned in particular

with the application of GSiD to longitudinal MRI time series of the brain to quantify

atrophy. In that application, deformations are typically very low amplitude even relative

to the spatial resolution of the images. Despite that, atrophy of as little as 5% in critical

brain areas can have a significant impact on quality of life [HCM16]. Hence, it is crucial

to measure longitudinal deformations with the highest degrees of accuracy and precision

possible. In such a case, the selection of ε can be critical to ensuring accurate and

unbiased measurements.

5.2.2 Adaptable gradient descent steps

The simplest option is to select a priori a static value for ε which is fixed throughout the

optimization. This value may perform well for some instances of data, and poorly for

others. Even for a fixed input, it may perform well for a subset of iterations and poorly

for others. We include this option as a baseline for comparison with more intelligent

choices.

The secant line search method: Suppose we would like to optimize a function f(x) by

gradient descent. Then, for iteration k, we would like to minimize f(xk − εkf ′(xk)) with

respect to εk. Take the truncated Taylor expansion (we temporarily omit the subscript

k):

f(x− εf ′) ≈ f(x) + ε
(
∂εf(x− εf ′)|ε=0

)
+
ε2

2

(
∂2
ε f(x− εf ′)|ε=0

)
(5.6)

If used directly, the second-order term will require the Hessian matrix of f . GSiD is a

very high-dimensional optimization, hence the Hessian matrix f ′′ is intractable. We can

replace the second-order term in the Taylor expansion with a finite difference approxi-

mation on the gradients:
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∂2
ε f(x− εf ′) ≈ ∂εf(x− εf ′)|ε=σ − ∂εf(x− εf ′)|ε=0

σ

=
−f ′(x− σf ′)Tf ′ + f ′Tf ′

σ
(5.7)

Substitute (7) into (6), apply the remaining partial derivative, and further differentiate

each side with respect to ε. You will arrive at the expression:

∂εf(x− εf ′) ≈ −f ′Tf ′ + ε

σ

(
f ′Tf ′ − f ′(x− σf ′)Tf ′

)
Finally, we set this equal to zero and solve for ε. Also, to use this formula for GSiD we

must account for the metric in the space of momenta; the inner products must include

the operator K. With these two final steps we arrive at the formula:

εk =
σkf

′T
k K(f ′k)

f ′Tk K(f ′k)− f ′(xk − σkf ′)TK(f ′k)
(5.8)

Where f ′k = f ′(xk). Essentially, the secant method approximates the objective function

in the gradient direction as a parabola, the curvature of which is estimated by formula

(7). Because the function may not be well estimated locally as a parabola, for a given

gradient descent iteration k, formula (8) is applied iteratively giving a series of steps

εik. For the ith secant method iteration, σik = −εi−1
k , which leverages every gradient

computation efficiently. σ0
k is set to a default value. This line search is stopped after a

certain number of fixed iterations or when the magnitude of the update ‖εf ′k‖ falls below

a threshold. Note, though we must evaluate multiple gradients during the line search

iterations, we only move in the direction f ′k until the line search is stopped and we move

to gradient descent iteration k + 1.

The Barzilai-Borwein method: We derive the method assuming f(x) = 1
2
xTAx−bTx.

The gradient is then f ′ = Ax−b and the Hessian is f ′′ = A. Newton’s method, a second-

order optimization that accounts for the curvature of the objective function, proceeds as

xk+1 = xk −A−1f ′k. (For a symmetric positive definite quadratic form, this will converge
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in a single step and is equivalent to Gaussian elimination). The objective of the BB

method is to let ε be determined by the simplest possible approximation to Newton’s

method:

−εf ′ = −(ε−1Id)−1f ′ ≈ −A−1f ′ (5.9)

Let sk = xk− xk−1 and yk = f ′k− f ′k−1. For the quadratic form, A satisfies Ask = yk. So,

we will let ε be the solution to the least squares problem:

εk = argminα
1

2
‖sk − αyk‖2 (5.10)

which has the closed-form solution:

εk =
sTk yk
yTk yk

(5.11)

Again, to apply this to GSiD we must account for the metric in the space of momenta:

εk =
sTkK(yk)

yTkK(yk)
(5.12)

Similar to the secant method, the BB method approximates second-order information,

but it does not require a second gradient computation. Even so, in some places formula

(9) is likely to be a very poor approximation. It is well known that as a result, BB

step sizes do not provide monotonic optimization; that is, occasionally εk is too large.

However, for nonlinear optimization, some degree of nonmonotonicity may be desired as

it may help escape spurious local minima. Hence, the BB method is often coupled with

a backtracking line search [Fle05]. In our case, εk is iteratively cut in half until the first

Wolfe condition is satisfied:

f(xk − εkf ′k) ≤ maxjf(xj)− γεkf ′Tk K(f ′k) (5.13)
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where max(k−M,0) ≤ j ≤ k. M controls the degree of monotonicity (we use M = 10) and

γ is related to our expectation of the objective function’s local curvature. γ is typically

chosen to be small (we use γ = 10−4).

5.3 Experimental Results

Figure 5.1: Region of interest with significant atrophy in AD, used here to compute

atrophy scores

We took 100 randomly chosen subjects from the ADNI-2 longitudinal MRI dataset

- publicly available at adni.loni.usc.edu - and registered their baseline scans to their

24-month follow-up scans using GSiD. We did these registrations under 5 different ex-

perimental conditions: static step sizes of 0.001, 0.01, and 0.1, the secant method with

ε0k = 0.01, and the BB method with ε0 = 0.01. For all five approaches, the stopping

criterion was the same: the optimization was stopped when the gradient magnitude

(relative to the initial gradient magnitude) fell below a chosen threshold, or after 300

iterations, whichever came first. Before GSiD, the images were preprocessed according

to the protocol detailed in [FGF15, FFG].

After GSiD, the Jacobian determinants of the deformations mapping the baseline

to the 24 month followup images were moved to a common coordinate system. The
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Jacobian determinants were averaged in a region where the rate of atrophy is significantly

associated with Alzheimer’s Disease (AD) (Fig. 1) to produce a scalar value atrophy score

that represents the percent volume loss within the region for each subject [HCM16]. The

region was constructed from registrations of baseline to 24 month followup images from

a completely separate data set of healthy controls and AD subjects from ADNI-1. Using

the jacobian determinant maps from those registrations, a t-test was performed at every

voxel for significant differences between healthy controls and AD subjects. The region

used here is made up of the voxels whose p-value was below 10−14.

Figure 2 shows the convergence characteristics of the five optimizations. Contrary to

equation (1), we did not use sum of squared differences to drive the registration. Instead

we used the squared Local Correlation Coefficient (LCC) which is also used in [AYP10];

the LCC increases as the images become better matched. Fig. 2a shows the LCC for

all 100 subjects throughout optimization, and Fig. 2b shows the gradient magnitude.

Curves that do not extend to the full 300 iterations are instances that stopped early

due to the gradient magnitude stopping criterion. The largest static step size clearly

causes oscillations in all instances. The smallest static step size did not permit any

instances to complete before reaching 300 iterations so it is possible that some instances

are subconvergent. The middle static step size appears to be a compromise, but for many

instances, the gradient magnitude for that step size oscillates. None of the static step sizes

is appropriate for all instances of the data or through all iterations of the optimization.

The secant and BB methods show better convergence characteristics overall, with more

instances finishing early. However, for the secant method not all instances converged.

The spikes in the gradient magnitude for the bb method are due to the nonmonotonicity

discussed above.

Regarding the atrophy scores, a good first question to ask is whether the choice of

optimization procedure had a significant impact on the measurements. Figure 3 shows

the p-values from paired t-tests between the measured atrophy scores for all pairs of op-

timization approaches. All five optimization procedures produced atrophy measurements
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that were significantly different from the others. Figure 3 also shows the average num-

ber of iterations and the number of instances that failed to converge due to numerical

instability. In practice, the failed instances would have to be rerun with the parame-

ters adjusted by hand. The BB method clearly had the fastest convergence, and was

sufficiently adaptable that no instances failed to converge.

Atrophy measurements such as these have been shown to correlate with diagnostic

category and performance on cognitive tests. The data set included subjects from four

diagnostic categories: healthy controls (HC), early mild cognitive impairment (eMCI),

late mild cognitive impairment (lMCI), and Alzheimer’s disease (AD). Each subject also

had a mini mental state exam (MMSE) administered at the 24 month follow up time

point. The MMSE scores from 0 - 30, where scores below 24 typically indicate some level

of dementia. Table 1 also shows Pearson’s correlation coefficients between atrophy scores

and diagnostic group and also between atrophy scores and MMSE scores for each of the

five optimization approaches. The correlations are sufficiently similar across optimization

approaches to suggest that faster or more adaptable optimization approaches do not

compromise the ability to measure clinically meaningful atrophy.
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(a) LCC through optimization

(b) Gradient magnitude through optimization

Figure 5.2: Optimization performance; curves that do not extend the full 300 iterations

stopped early due to the gradient magnitude stopping criteria. LCC: Local Correlation

Coefficient
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Figure 5.3: Statistical tests, convergence information, and correlations; DX: diagnostic

group; MMSE: Mini Mental State Exam
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CHAPTER 6

ADNI-2 Atrophy Study

This chapter represents a complete study evaluating the ability of GRiD to quantify

atrophy for healthy controls, subjects with mild cognitive impairment, and subjects with

Alzheimer’s disease. This section contains some duplicate material from chapters 1-3; it

is retained here for those who may have skipped those introductory chapters.

6.1 Introduction

People with Alzheimer’s disease (AD) experience severe cognitive and behavioral changes

including progressive impairments in learning and memory that eventually encompass

almost all cognitive domains, including language, emotion, and self-control. Even early

post mortem histologic studies found a correlation between clinical symptom severity

and markers of AD pathology such as plaque and tangle accumulation and neuronal

loss [MG98, BB]; this observation has been corroborated by many modern neuroimaging

studies [JKJ10]. The aggregate loss of many neurons over time results in functional dis-

connection of multiple brain systems, as well as local volumetric contraction of the tissue

structure with compensating expansion of neighboring fluid-filled spaces. It is of great

interest to study these volumetric deformations in AD and healthy aging populations

with the highest accuracy, precision, and spatial resolution possible to understand the

disease pathology and factors that might resist it or promote it. In particular, recent

studies have identified candidate therapies that are effective at clearing amyloid plaques

in AD patients [SCB16], however it has not yet been evaluated whether they impact the

accelerated rate of neuronal cell death. We propose a sensitive analysis method capable
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of detecting the presence of such an effect.

T1-weighted structural magnetic resonance imaging (sMRI) provides an image of the

brain where the voxel intensity contains information that depends on the tissue class,

composition, and density. In a longitudinal study of brain morphology, sMRI images

are collected from the same individuals at approximately regular time intervals over a

multi-year period. The image time series represents a discrete sampling of a continuous

time deformation of the brain which must then be estimated and somehow represented

from the time series.

Image registration has been extensively studied as a means to measure tissue deforma-

tion. In classical image registration, a method takes two images as input and provides as

output a correspondence between the spatial domains of the images. Linear registration

restricts the correspondence to be a linear map, and can be used to normalize differences

in head orientation. Subsequent nonlinear registration provides a dense point to point

correspondence between the images as a displacement vector field. This displacement

can be taken as a measurement of the tissue deformation which occurred between the

two image collection time points. By studying such vector fields and their derivatives

we can quantify volumetric deformations experienced by the brain over time. In par-

ticular, one can consider the Jacobian determinant of the vector field as a measure of

local volume contraction or expansion: this method is commonly known as Tensor Based

Morphometry (TBM) [HHC13].

Many registration based pipelines for studying volumetric deformation in AD have

been proposed, where the key difference and most extensively studied component is the

nonlinear registration model and its implementation. In the TBM studies [HHC13] and

[HCM16], Hua et al. use an elastic deformation model driven by a mutual information

image matching functional. They consider the average Jacobian determinant within a

Region of Interest (ROI) to be a measure of the total tissue atrophy of the ROI. Atrophy

measurements for subjects in the same diagnostic group are used to compute sample

size estimates for hypothetical clinical trials. We adopt a similar approach, but with
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key differences in preprocessing of the images and a more modern transformation model.

In a similar TBM study [VSG15], Prashanthi et al. use the Symmetric Normalization

(SyN) formulation of the Large Deformation Diffeomorphic Metric Mapping (LDDMM)

framework from the open source registration package ANTs. They achieve comparable

sample size estimates to Hua et al. Finally, in the recent work [HLA16] Hadj-Hamou

et al. use the Stationary Velocity Field (SVF) framework and report brain areas where

significantly more tissue is lost in AD relative to controls.

A major component missing from the three transformation models used in those stud-

ies is a mathematically principled way to incorporate the notion of time. In all cases,

the first image of the time series is registered to each followup image independently and

the algorithm has no knowledge of the nominal time separating the two image acquisi-

tions. Further, none of the methods assessed in the MIRIAD challenge [CFI15] formally

incorporate the notion of time when measuring atrophy. However, a complete analysis of

temporal dynamics often involves explicit modeling of a process in time and/or regression

of the dependent variables over time. The Geodesic Shooting in Diffeomorphisms (GSiD)

framework is a formulation of the LDDMM transformation model [BMT05] that defines

the optimal deformation matching two images to be the end point of a geodesic shot from

the identity on a manifold of diffeomorhpisms [VRR12a, AF11]. Given two images and

the corresponding times at which they were collected, GSiD fits a continuous time gener-

ative model of deformation between the images enabling interpolation and extrapolation

in a principled way.

We have been developing a modular python package for fast design, implementation,

and testing of nonlinear registration algorithms which we call the Python Registration

Prototyping Library or PyRPL (pronounced like ”purple”). Using PyRPL, we imple-

mented GSiD to evaluate it as a nonlinear registration model for TBM. This study

includes over 2,500 registrations of baseline to followup images from the second phase

of the Alzheimer’s Disease Neuroimaging Initiative (ADNI-2) data set. To validate our

implementation of GSiD for TBM we present four experiments: a transitivity test on
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atrophy measurements, a voxel-wise t-test for locations significantly associated to AD,

we compute sample size estimates for hypothetical clinical trials for all followup time and

diagnostic category combinations, and finally we study how normalizing followup times

along the geodesics affect the sample size estimates. To facilitate unbiased comparison

with future studies, we provide a full description of all components in the processing

pipeline, parameter values, and a complete list of the Patient ID numbers (PIDs) used

in each experiment.

6.2 Materials and Methods

In addition to registration, the analysis pipeline includes components designed to nor-

malize the following confounds to estimating true deformation of the anatomy. Inhomo-

geneities in the magnetic field strength and susceptibilities of the read coils at acquisi-

tion may result in intensity bias and geometric distortion across the image. The images

contain non-brain tissues that we do not wish to study, the inclusion of which would

substantially slow down the pipeline. The orientation of the head is likely different in

each image in a time series. And finally, in order to study the population of deforma-

tions statistically, the anatomical variability between subjects must be normalized. All

of these issues are specifically addressed in the pipeline; a complete work flow diagram is

presented in figure 1. Our figure 1 is very similar to figure 1 from [HLA16] and compari-

son of the two illustrates differences in our approach. Each component of the pipeline is

discussed in detail below.

6.2.1 Data set: acquisition, corrections, and demographics

Data used in the preparation of this article were obtained from the Alzheimers Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched

in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether serial magnetic resonance imag-
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Figure 6.1: Workflow diagram for atrophy quantification from longitudinal time

series of ADNI images. Transformations LA and LR are affine and rigid respectively.

Transformation ψ is a nonlinear deformation to the study specific minimum deforma-

tion template and φj is a deformation between the baseline and the jth followup image.

|Dφj| ◦ ψ is the Jacobian determinant of φj in the MDT coordinate system. Each step

in the pipeline is covered thoroughly in the text.
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ing (MRI), positron emission tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimers disease (AD).

A total of 3,063 T1-weighted 3 Tesla scans from the ADNI-2 study were downloaded

from the ADNI Image Data Archive (IDA, https://ida.loni.usc.edu/) on October 7th,

2014. The images consist of baseline, 3, 6, 12, and 24 month follow-up scans from

approximately 830 subjects. Only subjects with baseline and at least one follow-up scan

were analyzed. A smaller set of 1.5 Tesla images from ADNI-1 was used for the voxel-wise

t-test for effects associated with AD so that the ROI of significant voxels could be used

to study the ADNI-2 atrophy measurements without mixing training and test data. The

ADNI-1 data set included baseline and 24 month followup images from 282 subjects. The

exact number of scans by gender and diagnostic group as well as mean population ages

are given for every experiment presented in this paper in table 1. Complete lists of PIDs

for every experiment are available online in supplementary files.

For the ADNI-2 data set, high-resolution sMRI scans were acquired at 55 ADNI

sites using 3 Tesla scanners manufactured by one of the following: GE Healthcare,

Philips Medical Systems or Siemens. The GE scanners used inversion recovery-fast

spoiled gradient recalled sequences and Philips and Siemens used magnetization-prepared

rapid gradient-echo sequences. Detailed MRI scanner protocols are available online

(http://adni.loni.usc.edu/methods/documents/mri-protocols/). Scan quality was eval-

uated by the ADNI MRI quality control center at the Mayo Clinic to exclude ”failed”

scans due to motion, technical problems, or significant clinical abnormalities. Standard

image corrections were applied to correct for intensity bias and geometrical distortion

using a pipeline called grinder which included ”N3” bias field correction [SZE98] and

gradient unwarping [JCG06]. These corrections were applied before the images were

downloaded from the IDA. For the ADNI-1 data set, the images were collected at one of

59 sites on 1.5 Tesla scanners using a sagittal 3D MP-RAGE protocol. The images un-

derwent the same quality control and image corrections that were applied in the ADNI-2
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case.

3mo 6mo 12mo 24mo 12mo to 24mo ADNI-1 24mo

CN 84 [75.1 (6.6)] 84 [75.2 (6.8)] 84 [75.8 (6.8)] 70 [76.5 (7.0)] 69 [76.5 (7.0)] 91 [77.9 (5.4)]

81 [72.8 (5.6)] 83 [72.6 (5.6)] 79 [73.8 (5.2)] 65 [74.6 (5.6)] 60 [75.2 (5.2)] 83 [78.5 (4.2)]

SMC 20 [73.3 (5.4)] 6 [71.9 (3.7)] 12 [74.4 (4.2)] 3 [73.5 (1.9)] 3 [73.5 (1.9)]

33 [71.3 (4.6)] 4 [68.2 (4.9)] 11 [72.3 (4.3)] 2 [70.5 (1.0)] 2 [70.5 (1.0)]

EMCI 91 [72.7 (7.2)] 83 [73.1 (7.0)] 85 [73.6 (7.0)] 64 [74.5 (7.2)] 63 [74.2 (7.1)]

72 [69.9 (6.7)] 62 [69.9 (6.3)] 62 [70.4 (6.5)] 49 [71.9 (7.1)] 46 [71.6 (7.0)]

LMCI 82 [73.5 (7.3)] 79 [73.9 (7.3)] 72 [74.6 (7.0)] 53 [73.9 (7.6)] 49 [74.7 (7.2)]

62 [71.4 (7.9)] 70 [71.8 (7.8)] 67 [72.5 (7.9)] 56 [72.8 (7.9)] 53 [72.9 (8.1)]

AD 68 [76.0 (7.5)] 60 [76.1 (7.8)] 57 [76.7 (7.5)] 15 [76.6 (8.7)] 15 [76.6 (8.7)] 57 [78.1 (7.1)]

45 [72.6 (8.1)] 38 [73.7 (7.8)] 34 [74.8 (7.9)] 10 [79.3 (7.3)] 9 [79.8 (7.5)] 51 [77.5 (7.6)]

Table 6.1: Pairwise registrations: population size and age demographics by

gender and diagnostic group. N [mean age (std age)]. For each diagnostic group

the first row is male the second is female. CN = Control, SMC = Significant Mem-

ory Complaint, E/LMCI = Early/Late Mild Cognitive Impairment, AD = Alzheimer’s

Disease

6.2.2 Affine alignment and masking of baseline scans

To account for affine anatomical variability between subjects, the baseline images for

all subjects will be affine aligned to a common reference space with FSL FLIRT [JS01,

JBB02]. It is only the brain tissue that we care to align and so before performing

these alignments it will be useful to obtain masks for the brain tissue. We use ROBEX

[ILT11] for all brain masking/skull stripping, which requires no user-specified parameters.

ROBEX performance is most robust when the center of the brain is aligned with the

center of the field of view. Therefore, to obtain initial brain masks for the baseline

images in their own coordinate systems we follow the steps in algorithm 1.

The output of Algorithm 1 is a brain mask for image A in image A’s own coordinate
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Algorithm 1

input: image to mask A; reference image B

output: brain mask for image A

1. FLIRT A→ B, 9 dof, retain xfm file and output image C

2. Invert xfm file with FSL convert xfm

3. Obtain brain mask for C with ROBEX

4. Dilate mask with fslmaths mean dilation, kernel sphere = 2

5. Apply inverted xfm from step 2 to dilated mask from step 4

6. Dilate mask again with fslmaths mean dilation, kernel sphere = 2

system. For us image A is a baseline image from a particular subject and image B is

an individual image that has been affine aligned to the ICBM template [MTE01]. We

run this algorithm for all baseline images in the data set to obtain brain masks for those

images. We also run steps 3, 4, and 6 on the ICBM reference image to obtain its own

initial brain mask.

We can now obtain affine alignments of the baseline images to the ICBM reference

space aided by masks obtained from algorithm 1. To obtain the alignments we follow the

steps in algorithm 2. Step 1 corrects for large scale misorientation. In step 2, we perform

more fine scale affine alignment where only the data under the initial brain masks is

considered. In step 4 we obtain a new brain mask for the baseline image that is in the

ICBM reference coordinate system.

6.2.3 Rigid alignment and masking of followup images

The follow up scans must be corrected for variable head position relative to the baseline

scan; this is also handled with FSL FLIRT. For these alignments, we expect the non-

brain tissue, in particular the skull, to have undergone very little to no change between
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Algorithm 2

input: image to align A; reference image B; masks MA and MB

output: xfm file mapping A to B; brain mask for A in reference coordinates

1. FLIRT image A→ B, 9 dof, -coursesearch = 45 -finesearch = 9

retain xfm file

2. FLIRT image A→ B, 9 dof, initialize with xfm from step 1

-inweight = MA -refweight = MB, retain xfm

3. Apply xfm from step 2 to image A, reslice to same resolution as B.

4. ROBEX result from step 3, retain mask

the baseline and followup time points. In fact, due to its stability in shape we expect the

skull to stabilize the longitudinal rigid alignment. Hence, we do not require initial brain

masks for this step. Additionally, we restrict the alignment to be rigid with 6 degrees

of freedom (translation and rotation) to prevent losing any atrophy due to scaling. To

obtain followup images corrected for variable head position and in the common ICBM

reference space, we follow the steps of algorithm 3, taking care to interpolate the images

only once, consistent with the treatment of the baseline images.

6.2.4 Quality check, combine, dilate, and apply masks

After completing algorithms 1, 2, and 3 for all baseline and followup images, the entire

dataset is linearly aligned to the common reference space and resampled to the same

resolution. We also have brain masks for every image in the common reference space.

Before proceeding, we inspect the results for quality. We visually inspected the center

most sagittal, axial, and coronal slices of the masks overlaid with their corresponding

images to identify segmentation failures. We classified two types of failure: (1) when the

brain mask substantially exceeds the dura mater and (2) when the brain mask does not
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Algorithm 3

input: followup image A; baseline image B; xfm file from algorithm 2

output: xfm file mapping A to reference coordinates

brain mask for image A in reference coordinates

1. FLIRT image A→ B, 6 dof, retain xfm file

2. concatenate xfm from step 1 and corresponding xfm from algorithm 2

3. Apply result of step 2 to image A, reslice to resolution of reference image

4. ROBEX result from step 3, retain mask

include a substantial amount of brain tissue. For failed masks in either case, we inspected

the masks for the other images in the same time series. For masks in category (1), we

replaced the failed mask with the intersection of the failed mask and a non-failed mask

from the same time series. For masks in category (2), we replaced the failed mask with

the union of the failed mask and a non-failed mask from the same time series. These

corrections inflate or trim failed masks where appropriate. Any time series where every

mask in the series failed was excluded from further analysis, which was the case for only

2 time series in the entire dataset.

It is important for the subsequent nonlinear registration step that the same mask be

applied to every image in a time series; otherwise a region where voxels were masked

out in baseline but not in a followup image will appear to have grown which of course

would only be an artifact from poor preprocessing. After failure correction, we took the

union of all masks in each time series to create one mask per subject. Those masks were

dilated (fslmaths mean dilation, kernel sphere = 2) and applied to all images in their

corresponding time series. At this point the images are ready for nonlinear registration

to quantify volumetric deformation.
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6.2.5 Nonlinear registration

This section covers the theory of the GSiD transformation model, the two ways it was

used in this study (cross sectional and longitudinal deformations) and details of our

specific implementation and parameters used.

6.2.5.1 Transformation model: Geodesic Shooting in Diffeomorphisms

The theoretical groundwork for GSiD is thoroughly covered in the literature including

the LDDMM framework [BMT05] and the extension to shooting [MTY06, AF11]. Our

implementation of GSiD is based on [VRR12a] which provides an efficient algorithm

for solving the GSiD problem. We provide an intuitive derivation, however to fully

understand the model and its potential it is essential to review the literature. The

essential concept is that, given a pair of images and the corresponding time points at

which they were collected GSiD fits a generative model of volumetric change over time

that represents the dominant mode of deformation evident in the image pair. The model

enables interpolation and extrapolation of the deformation in time in a mathematically

principled way.

We formalize the nonlinear image registration problem in the standard way: given

two square-integrable images I(x), J(x) ∈ L2(Ω) defined on an image domain Ω with

coordinates x ∈ Ω we wish to find a transformation φ(x) = x + u(x), where u(x) is

a displacement vector field, such that D[I(x) ◦ φ−1, J(x)] is minimal for some image

matching functional D[·, ·]. We would like to construct a set Φ in which to search for

φ such that all elements of Φ are biologically plausible transformations amenable to

subsequent analysis.

A diffeomorphism is a smooth bijective mapping with a smooth inverse. Stricly

speaking smooth means all derivatives of the diffeomorphism are defined; that is a diffeo-

morphism is in C∞. For our purposes, we will accept a weaker notion of diffeomorphism

and replace the smooth requirement with ”sufficiently differentiable;” that is, for us
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diffeomorphisms are in Ck for some sufficiently large integer k. The properties of a dif-

feomorphism ensure preservation of topological properties when it acts on a space; that

is, diffeomorphic transformations do not permit a space, or any function defined on that

space, to tear, crease, or fold over on itself. Consequently, the Jacobian determinant of a

diffeomorphism is positive everywhere, ensuring TBM studies are well defined. We would

like to select the set of all diffeomorphisms (or an appropriate subset of them) of Ω→ Ω

to be our transformation search space Φ. To accomplish this, we define the flow φ(x, t)

as the integral solution to the ODE:

∂φ

∂t
(x, t) = v(φ(x, t), t) (6.1)

φ(x, 0) = Id

where Id is the identity transformation (i.e. φ(x, 0) = x, ∀x), t ∈ [0, 1], and φ(x, 1.0)

is taken as the transformation mapping I(x) to J(x). If the velocity flow v(x, t) is

sufficiently smooth in space and time, the flow φ(x, t) is guaranteed to be diffeomorphic

for all x and t. We now seek to find the flow v(x, t).

We let v(x, t) for any t be taken from the set V of all vector fields on the domain

Ω, yet we select for V an invertible, positive definite, self-adjoint differential operator L

to be a metric kernel. That is, the inner product of two elements v, w ∈ V is 〈v, w〉V =

〈v, Lw〉L2 = 〈Lv,w〉L2 . L is selected such that the norm of a velocity field ‖v‖2
V = 〈v, v〉V

is a measure of both its magnitude and roughness. Hence if the integral of the norm

along the flow
∫ 1

0
‖vt‖2

V dt is small (strictly speaking even if its only finite) then v(x, t) is

everywhere and everywhen differentiable and φ(x, t) is diffeomorphic. We now consider

the LDDMM optimization problem:

v̂ = argminv D[I ◦ φ−1
1.0, J ] +

1

σ2

∫ 1

0

‖vt‖2
V dt (6.2)

subject to equation (1)
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Above and from here on we may omit spatial dependence of images and deformations and

indicate time with a subscript. The solution to (2) is a velocity flow v̂(x, t) that solves

equation (1) such that the moving and fixed images are optimally matched by a smooth

transformation. The trade off between image matching and transformation smoothness

is determined by the value of σ2 and the form and parameters of the metric L.

Recall, the inner product in V was defined as 〈v, w〉V = 〈v, Lw〉L2 . If we fix w, we may

view the inner product as a mapping m : V → R. By the Riesz representation theorem,

m is an element of the dual to V , the space V ∗ of distributions on the domain Ω. If

w = v (which is the case when computing ‖v‖V ), then m = Lv and we refer to m as the

momentum. L is invertible by construction and so we also have Km = v where K = L−1.

These relations indicate that equation (2) might be equivalently reformulated in terms

of a momentum flow m(x, t), which we will subsequently find to be more convenient.

If we view the ordered pair (φt0 , vt0) for some fixed time t0 as an element of the

tangent bundle to a manifold whose points are diffeomorphisms, then L is a Riemannian

metric, equation (1) describes a path on the manifold, and the lengths of paths on the

manifold are well defined. In fact, we recognize the term
∫ 1

0
‖vt‖2

V dt from equation (2)

as the geodesic energy of the path φt. So, the joint solution φ̂t to equations (2) and (1)

is a geodesic on a manifold of diffeomorphisms. The set of diffeomorphisms of Ω also has

a group structure (which is easy to check yourself), hence Φ is a Lie group.

Geodesics in Lie groups must obey the Euler-Poincare differential equations (EPdiff)

for the Lie group, which are uniquely specified by the group’s Lie bracket. The general

form of the EPdiff is:

∂

∂t
mt = −ad∗vtmt (6.3)

where mt = Lvt is the momentum that corresponds to the velocity flow tangent to the

geodesic path and ad∗v is the conjugate operator to the group Lie bracket. For the space of

vector fields V , the Lie bracket is advw = Dvw−Dwv where D is the Jacobian operator.
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Using this definition for adv and the definition of a conjugate operator the explicit form

of the EPdiff equations for the Lie group of diffeomorphisms can be derived; it is:

∂

∂t
m = −(Dv)Tm−Dmv − (∇ · v)m (6.4)

We have omitted the time subscripts on m and v for clarity, but equation (4) holds for

all times. If an initial momentum m0 is specified, then we can construct the geodesic

specified by m0 by integrating (4).

Rather than optimize the entire time dependent velocity (or momentum) flow, we can

optimize only the initial momentum m0 and enforce the geodesicity of φ(x, t) directly

using the EPdiff equations. We now consider the geodesic shooting in diffeomorphisms

optimization problem:

m̂0 = argminm0
D[I ◦ φ−1

1.0, J ] +
1

σ2
〈m0, Km0〉L2 (6.5)

subject to equations (4) and (1)

The inner product in equation (5) is simply the square norm of the initial momentum,

which is equivalent to the square norm of the initial velocity. The solution to (5) is an

initial condition m̂0 to the PDE (4). Given m̂0, equation (4) can be integrated to produce

the flow mt which determines vt through vt = Kmt. The flow vt can be integrated

through equation (1) to produce φt, the endpoint of which φ1.0 is the transformation

mapping together I and J . A graphical depiction of the model and solution to equations

(4) and (1) is shown in figure 2.

Suppose I and J are images of the same anatomy taken at times t0 and t1 respectively

and let ∆t = t1 − t0. Then we let the time interval over which equations (1) and (4) are

defined be t ∈ [0,∆t] and let φ∆t be the transformation mapping the baseline image I

to the followup image J . In that case, the geodesic length
∫ ∆t

0
‖vt‖dt is a proper metric

that quantifies the magnitude of change between the observations I and J .
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Figure 6.2: Graphical depiction of GSiD model and solution to equations (4)

and (1). Given an initial momentum, or as depicted here an initial velocity, equation (4)

provides the entire momentum/velocity flow in the tangent space, equation (1) then forms

the geodesic path of diffeomorphisms on the manifold. The baseline image composed with

transformations along the geodesic estimates deformation of the anatomy over time.
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The optimization of equation (5) is challenging because the residual is a function of the

solution to the nonlinear PDE equation (4) at time ∆t, however we are optimizing only

the initial conditions of equation (4). Equation (5) is optimized by gradient descent. To

compute the gradient of equation (5) with respect to the initial condition m0 at iteration

k, equation (4) is solved forward in time with mk
0 as the initial condition to obtain φk∆t.

The residual matching between I ◦ φ−1,k
∆t and J is computed, however it is defined in

the coordinate system of image J , whereas the initial conditions we are optimizing are

in the coordinate system of image I. The image matching residual serves as the initial

condition for a second PDE called the adjoint system which must be solved backward in

time from ∆t to 0 to obtain the gradient. The form of the adjoint system is determined

by the variation of equation (5) with respect to m0 when equation (4) is enforced as a

constraint; see [VRR12a] and [AF11] for details.

The geodesic fit through the baseline and followup image represents the dominant

mode of deformation evident in the image pair. Equation (4) can be integrated to arbi-

trary times, for example integrating to a time tE > t1 and forming I ◦ φtE is an extrap-

olation of the deformation trajectory. If the model is a good fit, this is a prediction of

the deformation the anatomy will experience in the future. Integrating to a time tI such

that t0 < tI < t1 and forming I ◦φtI is an interpolation of the deformation, which enables

us to estimate the appearance of the anatomy at times between when the subject was

imaged.

6.2.5.2 PyRPL, implementation, and parameters

We have been building a python package for rapid prototyping and testing of nonlinear

image registration algorithms; we call the package the Python Registration Prototyping

Library, or PyRPL (pronounced like ”purple”). PyRPL contains separate modules for

image matching functionals, regularization, image deformation, finite volume methods,

and custom containers to package registration data and parameters. When a first dis-

tribution version is complete, we expect PyRPL to integrate well with existing python
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neuroimaging tools including PyCA, NiPY, and DiPY. We implemented GSiD using

PyRPL. Our implementation uses the definition m0 = P0∇I, that is, the initial momen-

tum vector field is defined as a scalar field times the moving image gradient [MTY06].

In that case, optimization is over the scalar field P0.

For the image matching functional D[·, ·] we used the local squared Pearson’s corre-

lation coefficient, which for images I(x) and J(x) is:

∫
Ω

(∫
Nx

(
I(x′)− ÎNx

)(
J(x′)− ĴNx

)
dx′
)2

∫
Nx

(
I(x′)− ÎNx

)2
dx′
∫
Nx

(
J(x′)− ĴNx

)2
dx′

dx (6.6)

where Nx is a N ×N ×N neighborhood (measured in millimeters) centered around po-

sition x, ÎNx and ĴNx are the mean image values of I and J respectively within Nx, and

x′ is a local coordinate within Nx. This formula measures how well correlated the image

intensities are in corresponding neighborhoods over the entire image domain. Hermosillo

et al. [HCF02] has a thorough derivation for the gradient of the global Pearson’s correla-

tion coefficient. We used their formula for the gradient with all means and variances in

the formula replaced with local versions.

For the metric L in all experiments we use L = (α∇2 +β)k, where ∇2 is the Laplacian

operator, α and β are constant real numbers, and k is a constant integer.

Finally, we used a multi-resolution approach performing a fixed number of gradient

descent iterations at 1283 resolution followed by a fixed number of iterations at 2203.

We used a static gradient descent step size that is constant throughout optimization.

Parameter values used for every experiment in this project are presented in table 2. We

insisted that the parameters to the metric L be the same for all nonlinear registrations,

such that all geodesics lie on the same manifold enabling initial momenta and metric

distances to be directly compared.
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CS Long 3, 6, and 12mo Long 24mo

α 1.0 1.0 1.0

β 0.1 0.1 0.1

k 2.0 2.0 2.0

Nx size 31mm 11mm 11mm

iters at 1283 100 75 75

iters at 2203 1 25 25

σ2 100 100 100

GDSS 0.025 0.01 0.002125

Table 6.2: Parameter values for all experiments. CS: cross sectional registrations.

Long 3, 6, and 12mo: longitudinal registrations to 3mo, 6mo, and 12mo followup times.

Long 24mo: longitudinal registrations to 24mo followup time. GDSS: gradient descent

step size

6.2.5.3 Study specific template

We will require a standard coordinate system in which to spatially normalize results

to perform statistical calculations. We constructed a study specific atlas or Minimum

Deformation Template (MDT). We treat atlas estimation as a Karcher mean estimation

on the LDDMM manifold and use GSiD to solve cross sectional registrations similar to

[VRR12b]. The atlas is built from 50 randomly selected baseline images from the ADNI-

2 data set including images from all diagnostic categories. The steps used to build the

study specific atlas are presented in algorithm 4.

This method deviates from [VRR12b] in that we do not intensity average the spatially

normalized images at every iteration. We prefer to move the initial template closer

to the center of the image set and reuse it at every iteration (taking care to always

interpolate from the original image). This way, the atlas has higher contrast between
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Algorithm 4

input: N images, I0, ..., IN−1

output: Atlas representing shape and appearance average of inputs

Let Ai be the template at the ith iteration, let mtot = 0

1. Select k and set A0 = Ik

2. Histogram match I0, ..., IN−1 to Ik

3. Register via geodesic shooting I0, ..., IN−1 to Ai

4. Compute average mavg of the initial momenta m0, ...,mN−1

5. Let mtot = mtot +mavg

6. Shoot Ik with geodesic specified by mtot, let Ai+1 equal the result

7. let i = i + 1, Repeat steps 3 - 6 until convergence

8. Compute average A∗ of I0 ◦ φ−1
0 (x, 1.0), ..., IN−1 ◦ φ−1

N−1(x, 1.0), output A∗

tissue boundaries at every iteration, enabling more precise registrations. We intensity

average only after the final iteration. The resulting MDT has higher contrast between

tissue boundaries, but is also more biased toward the shape of the initial template. Slices

of the MDT can be seen in the first row of figure 3 a surface model of the MDT cerebrum

is shown in the second row of figure 3. Once the MDT is constructed, it is registered to

every baseline image in the data set.

6.2.5.4 Longitudinal registrations, atrophy scores, and sample size estimates

Baseline images were registered to 3mo, 6mo, 12mo, and 24mo followup time points using

our implementation of GSiD. Additionally, the 12mo followup images were registered to

the 24mo followup images. In all cases, equations (1) and (4) were solved for t ∈ [0,∆t]

where ∆t was the difference in the patient’s age between the two image acquisitions with

precision up to one tenth of a year.
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Figure 6.3: ROIs used to compute atrophy scores The first row is the study specific

MDT, the second row is the temporal lobe ROI, and the third row is the stat-ROI

The transformation φ∆t can be used to estimate the volumetric deformation expe-

rienced by the anatomy between the image acquisitions. The Jacobian determinant

δ(x) = |Dφ∆t| is a strictly positive scalar field where δ(x) represents the factor by which

location x has changed volume. We wish to extract a single number summary of atrophy

from each registration. We define the atrophy score γ to be the average percent tissue

loss within an ROI:

γ =

(
1.0− 1

|χ|

∫
x∈χ

δ(x)dx

)
× 100.0 (6.7)

for some ROI χ with volume |χ|. For all longitudinal registrations, we computed δ(x) and

move it to the MDT coordinate system. We then computed γ for two different ROIs: a

temporal lobe mask and a ”stat-ROI.” The ROIs are shown laid over the MDT in figure

3. The construction of the stat-ROI is discussed in the next section.

We require a metric to assess the utility of the atrophy measurements. The N80 sam-

ple size statistic was proposed by the ADNI Biostatistics core to quantify the sensitivity
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of an atrophy quantification method. In words, N80 is the expected number of subjects

required for a clinical trial to detect a 25% reduction in atrophy with 80% power and

95% confidence using a two sided test in a hypothetical two arm study (treatment vs.

placebo). The N80 formula is:

N80 =
2σ2(z1−0.05/2 + z0.8)2(

0.25µ
)2 (6.8)

where zx is the value at which the standard normal cumulative distribution equals x.

After substituting the proper value for (z1−0.05/2 +z0.8)2, (8) simplifies to N80 = 250.88×

(σ
µ
)2, where µ and σ are the mean and standard deviation of the atrophy scores for a

specific population of test subjects.

6.3 Experiments and Results

6.3.1 Significance test for voxels associated with AD and stat-ROI construc-

tion

The Jacobian determinant maps obtained from the ADNI-1 longitudinal registrations of

baseline images to 24 month followups were moved to MDT coordinates. We performed

a two-tailed t-test at every voxel between the control and AD groups (demographics

presented in table 1). The image resolution including background is 2203, so we used

the conservative Bonferroni correction threshold of αcorr = 0.05/2203 = 4.7 × 10−9.

The significant voxels form a contiguous ROI that appears to overlap with previously

reported regions affected by AD, in particular structure from the limbic system. The

ROI of significant voxels is shown overlaid with the MDT in figure 4. The ROI appears

to be larger and more symmetric than some produced by comparable previously reported

methods [HLA16]. Voxels beneath the more strict threshold of αstat−ROI = 10−14 that

intersected with the temporal lobe mask form the stat-ROI used in the ADNI-2 sample

size calculations, see figure 3.
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Figure 6.4: Voxels significantly associated with Alzheimer’s Disease The ROI

(bottom row) was constructed based on Jacobian determinant maps obtained from base-

line to 24 month followup registrations of AD subjects and normal controls in ADNI-1.

We used the significance threshold: 0.05/2203 = 4.7×10−9; a Bonferroni correction based

on the number of tests, determined by the image resolution of 2203. The ROI was eroded

with a spherical kernel with a small radius to produce an ROI slightly interior to the

significant region. Top row: the mean Jacobian determinant value of the AD group, 0.9

corresponds to 10% tissue loss. Middle row: t-scores for voxelwise t-test between AD

patients and controls.
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6.3.2 Gradient descent step size determination by transitivity test

Recall, we will run registrations for a fixed number of gradient descent iterations with

a fixed gradient descent step size (GDSS). The simplicity of the optimization procedure

is at present constrained by the high dimensionality of the problem; more sophisticated

techniques are suspected to have intractable time and memory requirements. We would

like to select our GDSSs in a way that explicitly minimizes bias to over or under estimate

atrophy.

One assessment of such bias is the transitivity of atrophy measurements. That is, for

a time series of three images I0, I1, and I2, we may measure the total atrophy that has

occurred between the acquisitions at t0 and t2 in two different ways: (1) directly from

the registration I0 → I2 and (2) from a concatenation of the registrations I0 → I1 and

I1 → I2. Because method (2) requires two independent registrations whereas method (1)

requires only one, if the implementation has a systematic bias to over or under estimate

atrophy, then we would expect atrophies computed by method (2) to be systematically

different with statistical significance from atrophies computed by method (1). We expect

such a transitivity to be dependent on details of the numerical implementation, and

therefore select it as criteria by which to establish our GDSS values.

We took our set of baseline, 12 month, and 24 month images to perform transitivity

testing. We registered baseline to 12 month and 12 month to 24 month images using

a GDSS of 0.01 and composed the obtained deformations. We computed the Jacobian

determinant maps of the composed deformations, moved them to MDT coordinates, and

computed atrophy scores using the temporal lobe ROI. We also registered baseline to 24

month images for a range of GDSS values. We similarly computed atrophy scores from

these registrations.

We did a paired two-sided t-test between the atrophy scores obtained from the com-

position with fixed GDSS and each set of atrophy scores obtained with variable GDSS.

We found that for a GDSS of 0.002125 for the baseline to 24 month registrations, the
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atrophy scores computed via the two different methods showed no significant difference

(p-value = 0.9339, N = 365). Importantly, the GDSS is not a parameter to the GSiD

model itself, rather a parameter to the numerical solution to GSiD. From this test, we

determined a numerical calibration that results in transitive atrophy measurements with

high statistical certainty and conclude that when the implementation is used with proper

numerical calibration atrophy estimates are consistent across time.

6.3.3 Sample size estimates

We computed Jacobian determinant maps for all longitudinal registrations and moved

them to the MDT coordinate system. We computed two atrophy scores from each map,

one for the temporal lobe ROI and one for the stat-ROI, using equation (7). Finally, we

computed N80 sample size estimates using equation (8) for all followup time point and di-

agnostic group combinations. The results are presented in table 3. For reference, table 4

reviews sample size estimates reported in [HCM16] and [VSG15], although, these results

are not immediately comparable as we are unsure how many of the subjects used in this

study overlap with the set of subjects used in those studies. Theoretically, this shouldn’t

matter, especially as the number of subjects increases; however it has been shown that

N80 sample size estimates are very sensitive to the inclusion/exclusion of particular scans

[HCM16]. We have not excluded any scans which survived the preprocessing pipeline.

Additionally, user specified parameter values such as the extent of regularization may

not be comparable. At 6mo, 12mo, and 24mo followup time points our sample size esti-

mates compare favorably to those previously reported. Additionally, the 3mo AD group

compares favorably. Our 3mo sample sizes for other diagnostic groups are comparably

larger.
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6.3.4 Time normalization

The results presented in tables 4 and 5 are supposed to represent sample size estimates

for hypothetical clinical trials conducted at 3, 6, 12, or 24 month followup times. How-

ever, many of the followup images were acquired much earlier or later than those target

followup times. Figure 5 shows the actual distribution of followup times for all the pop-

ulations studied in this paper. It is clear that all these distributions have a heavy tail

on the right side, meaning a large number of patients were imaged at times beyond the

target followup time. This almost certainly will bias the average atrophy estimates to be

larger than what we would expect if followup times were either all exactly at the target

time or symmetrically distributed about the target time. We recomputed sample size

estimates excluding any subject where the followup image was collected greater than one

tenth of a year plus or minus the target followup time; the results are shown in black

font in table 5. The N80 sample size estimates change dramatically.

The GSiD framework provides a continuous time generative model of change and has

full knowledge of the followup image collection time when fitting the geodesic. Given

the initial conditions learned from the data, equations (4) and (1) can be integrated to

arbitrary time points; that is, the deformation trajectory can be interpolated or extrap-

olated to normalize for the inaccurate followup times. We computed the mean followup

time for each followup distribution shown in figure 5 and integrated the geodesics for all

patients to that exact time (3mo: 0.27 years, 6mo: 0.57 years, 12mo: 1.08 years, and

24mo: 2.08 years). We computed Jacobian determinant maps from the resulting defor-

mations, moved them to MDT coordinates, and recomputed atrophy scores and sample

size estimates. They are also shown in table 5 in red/green font. The time normalized

sample size estimates are generally lower than the sample size estimates that exclude

the followup time outliers. They are higher than the sample size estimates in table 2,

however the table 2 estimates benefit from the heavy right side tails shown in figure 5.
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Figure 6.5: Histograms for actual followup times in years for each target time

subject group. Each histogram is asymmetrical with a heavy right side tail, indicating

more patients came in for followup scans after the target time than before. Subjects

outside the dotted vertical lines were excluded from the sample size calculations in black

font presented in table 5.
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6.4 Discussion

It is interesting to note that our study produced smaller sample size estimates than

those from comparable prior studies for nearly all populations and diagnostic categories

except for the control, SMC, and MCI populations at three months. Our choices for

the metric kernel and prior distribution weight parameters (α, β, k, and σ2, see table

2) impose relatively little regularization. That was a deliberate choice as we preferred

to trust the data to inform us when making a biological measurement, rather than rely

on the prior distribution. This could possibly be the explanation for why our sample

size estimates are lower than ones previously reported in cases where we expect more

measurable atrophy between the images, but higher in cases where we don’t expect

to see much signal. Put another way, we have not relied on regularization to correct

deformations when very little atrophy is present. However, it is not possible to say this

with certainty as neither [HHC13], [HCM16], or [VSG15] report the parameters used for

regularization. An interesting project which we plan to conduct as a future study is

to investigate the form of the functional relationship between sample size estimates and

regularization parameters.

Another interesting observation is that in many cases the sample size estimates com-

puted from populations where the followup time outliers were removed (subjects outside

the dotted vertical lines in figure 5) are more similar to the sample size estimates com-

puted from the full time normalized populations than to the sample size estimates from

the full non time normalized populations; that is, the sample size estimates in table 5

are more similar to each other in general then either set is to the sample size estimates

in table 3. This is an implicit observation about the magnitude of the effect of the heavy

right side tails on the actual followup time distributions on sample size estimates (see

figure 5). Sample size estimates from studies that do not normalize for followup time

discrepancies must therefore be viewed in the proper context.

The ROI of significant voxels shown in figure 4 was obtained from registrations of
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baseline images to 24 month followup images in AD and normal control populations from

ADNI-1. We did a voxel-wise t-test for significant differences on the average Jacobian

determinant maps and used the Bonferroni corrected threshold of 0.05/2203 = 4.6×10−9,

where the resolution of the images was 2203. The ROI is larger and more symmetric than

comparable results recently reported [HLA16] and appears to have overlap with many

limbic system structures. To confirm these observations we will require a segmentation of

the study specific MDT to quantify the overlap of the ROI with limbic system structures.

We wish to conduct this work as a separate project to devote more effort and focus to

verifying the structures in the ROI.

The largest differences in sample size estimates between the current project and those

reported in [HCM16] occur using the temporal ROI. We suspect some portion of this im-

provement is due to changes in the preprocessing protocol rather than solely due to the

change in nonlinear registration model. In particular, using brain masks to weight the

linear alignments ensures that the brain tissue alignment is not compromised in the op-

timization by non-brain tissue. It is important to do this with masks rather than skull

stripping before linear alignment, which is explicitly discouraged in FLIRT documenta-

tion, because masking produces a large artificial gradient at the boundary of the masked

region which becomes a large artificial feature in the linear alignment optimization. Im-

provement in the linear alignment of the brain tissue provides a better initialization when

building and registering to the MDT, which improves localization and averaging of re-

sults. Additionally, we use a stat-ROI composed of contiguous regions symmetric across

the hemispheres. The stat-ROI has anatomical interpretability in addition to providing

improved sample size estimates.

Several modifications to the GSiD model and its numerical implementation have been

reported that may be beneficial to longitudinal atrophy quantification. Our implementa-

tion of GSiD currently uses the scalar momentum formulation m0 = P0∇I. Singh et al.

[SHJ13] propose letting m0 be a vector field independent of the initial image gradient.

The initial image gradient is subject to noise and in places may not well represent the
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appearance gradient of the underlying tissue; optimizing vector momentum allows the

model to compensate for noise in such places. Risser et al. [RVW10] have constructed

an extension to the LDDMM framework that imposes different levels of regularization

at different spatial scales. Even low amplitude deformations in longitudinal studies may

contain components from multiple spatial scales. Allowing the regularization to be pa-

rameterized differently at different spatial scales while still respecting the metric space

structure of the LDDMM model would allow the method to smooth artifacts at large

spatial scales without disrupting fine scale deformations. Ashburner et al. [AF11] use

Gauss-Newton optimization, an approximate second order method that may improve

convergence rates or enable the optimization to find better local minima. GSiD extends

naturally to regression through image time series with greater than two images [NHV11];

we consider this a priority to investigate how power to detect atrophy might be affected

by fitting geodesics through all images available for each patient. With the large set

of initial momenta obtained in this project, we may consider constructing spatiotempo-

ral atlases for each diagnostic group using the Hierarchical Geodesic Model proposed in

[SHJ16]. Such 4D atlases would represent the mean shape and deformation trajectory of

healthy aging or AD patients in the age range covered by the data set. Other methods

have also been proposed for spatiotemporal atlas construction [DPT09, DPT13]. It would

be interesting to evaluate an HGM model with 4D atlases built using those methods.

6.5 Conclusions

We have presented results from a longitudinal study of atrophy in normal control subjects,

subjects at various stages of mild cognitive impairment, and subjects with Alzheimer’s

disease. We used Geodesic Shooting in Diffeomorphisms to register baseline to followup

images and extracted atrophy measurements from the deformation fields. Our registra-

tion framework provides several theoretical guarantees that extend the flexibility of the

analysis: the geodesic distances between images form a metric space and geodesics enable
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interpolation and extrapolation of deformations. We found that in addition to the the-

oretical benefits, our implementation of GSiD resulted in lower sample size estimates in

the majority of cases. We also found that if calibrated properly, our implementation can

produce atrophy measurements that are transitive in time. Further, we demonstrated

the use of the geodesic formulation to normalize deformations in time. Finally, the ROI

of voxels significantly associated to AD is larger and symmetric than previously reported

results. From this we conclude that GSiD and our implementation in particular is a

competitive method for atrophy quantification.
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Tempral ROI stat-ROI

N mean (std) n80 (CI) mean (std) n80 (CI)

3mo

CN 165 0.021 (0.151) 12544 (3127, 1135179) 0.053 (0.218) 4272 (1626, 28966)

SMC 53 -0.004 (0.139) 305638 (2444, 10509043) 0.016 (0.217) 43925 (1712, 9660766)

EMCI 163 0.018 (0.155) 18151 (3189, 3658341) 0.066 (0.239) 3246 (1241, 17039)

LMCI 143 0.026 (0.164) 10034 (2262, 1029303) 0.114 (0.315) 1903 (900, 5746)

AD 113 0.094 (0.138) 541 (315, 1017) 0.273 (0.324) 353 (221, 569)

6mo

CN 167 0.137 (0.319) 1362 (783, 2782) 0.252 (0.398) 623 (396, 1056)

SMC 10 0.038 (0.174) 5226 (209, 1558666) 0.032 (0.205) 10378 (255, 1689099)

EMCI 145 0.108 (0.349) 2605 (1133, 10261) 0.295 (0.511) 750 (463, 1329)

LMCI 148 0.213 (0.371) 763 (443, 1450) 0.577 (0.607) 276 (185, 391)

AD 98 0.446 (0.380) 182 (112, 305) 0.989 (0.667) 114 (75, 159)

12mo

CN 163 0.284 (0.468) 683 (398, 1297) 0.658 (0.583) 197 (140, 272)

SMC 23 0.088 (0.506) 8307 (451, 3115229) 0.427 (0.672) 623 (162, 5552)

EMCI 147 0.353 (0.561) 635 (388, 1160) 0.804 (0.792) 243 (182, 326)

LMCI 139 0.599 (0.637) 284 (200, 398) 1.37 (1.03) 142 (108, 184)

AD 91 1.13 (0.677) 90 (54, 147) 2.41 (1.20) 62 (40, 86)

24mo

CN 135 0.465 (0.556) 359 (218, 604) 1.11 (0.724) 106 (72, 147)

SMC 5 0.440 (0.226) 66 (3, 222) 0.503 (0.574) 327 (23, 5272)

EMCI 113 0.525 (0.714) 463 (285, 796) 1.26 (1.01) 163 (118, 217)

LMCI 108 0.966 (0.916) 226 (157, 324) 2.16 (1.50) 121 (92, 153)

AD 25 2.07 (0.998) 58 (27, 105) 3.94 (1.58) 40 (20, 66)

Table 6.3: Sample size estimates for atrophy scores obtained using GSiD. N:

number of registrations; mean (std): mean and standard deviation of atrophy scores

for population; n80 (CI): the sample size estimate and bootstrapped 95% confidence

intervals.
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Hua et al. t-ROI Hua et al. s-ROI Vemuri et al. s-ROI

N n80 (CI) n80 (CI) N n80 (CI)

3mo

CN 164 4807 (1803, 43335) 1229 (649, 3264) 173 1729 (897, 4596)

SMC 53 4288 (953, 1517483) 1279 (572, 6609) 0

EMCI 163 4002 (1449, 33950) 865 (513, 1770) 278 2673 (1409, 7865)

LMCI 146 2514 (1070, 11537) 793 (473, 1816) 147 841 (499, 1754)

AD 111 1630 (760, 6455) 582 (350, 1140) 98 438 (254, 1009)

6mo

CN 162 4074 (1531, 31313) 643 (389, 1306) 164 667 (421, 1332)

SMC 10 2185 (301, 6742127) 1031 (217, 1683650) 0

EMCI 145 7852 (2151, 355793) 859 (525, 1760) 250 898 (580, 1605)

LMCI 149 964 (552, 2254) 276 (190, 423) 138 286 (202, 428)

AD 96 438 (269, 851) 132 (91, 220) 76 107 (70, 192)

12mo

CN 155 1323 (751, 2940) 241 (171, 379) 132 276 (200, 404)

SMC 20 11598 (1252, 197296613) 469 (200, 2561) 0

EMCI 143 1232 (631, 3521) 314 (220, 538) 211 272 (205, 375)

LMCI 136 485 (299, 986) 162 (124, 221) 89 154 (108, 230)

AD 89 194 (132, 312) 80 (58, 114) 32 51 (30, 93)

24mo

CN 120 577 (368, 1093) 127 (89, 195)

SMC 0 N/A N/A

EMCI 83 463 (276, 953) 150 (110, 211)

LMCI 77 232 (157, 375) 116 (85, 161)

AD 24 113 (70, 196) 82 (42, 184)

Table 6.4: Sample size estimates from previously published studies. For the n80

columns, red numbers indicate the n80 value is higher than the corresponding entry from

table 3, green indicates a lower n80, and black indicates an equal n80. t-ROI: temporal

lobe ROI, s-ROI: statistical ROI
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temporal ROI stat-ROI

N N80 N80

3mo

CN 148/165 33793/20751 10397/5260

SMC 52/ 53 8253393/359489 20431/29018

EMCI 149/163 18813/18471 3956/3220

LMCI 134/143 10794/10786 2090/1885

AD 103/113 624/603 420/370

6mo

CN 139/167 1723/1355 726/645

SMC 9/10 2973/3157 17520/8982

EMCI 124/145 3470/3142 947/787

LMCI 131/148 801/729 266/249

AD 91/97 182/173 97/93

12mo

CN 142/212 740/719 212/206

SMC 21/23 143127/8892 860/591

EMCI 124/147 635/637 224/236

LMCI 121/139 256/283 148/143

AD 83/60 94/88 60/58

24mo

CN 115/116 375/388 116/139

SMC 5/5 66/62 327/497

EMCI 96/113 404/557 166/216

LMCI 88/108 226/212 122/151

AD 24/25 57/33 41/28

Table 6.5: The effect of time normalizing data. Each entry contains two sample

size estimates, first in black is the N80 from populations where outliers to the target

followup time have been removed. The following number in green or red is the N80 from

the entire population where the geodesics are normalized to the mean times: 3mo: 0.27

years, 6mo: 0.57 years, 12mo: 1.08 years, and 24mo: 2.08 years. Green indicates a lower

sample size estimate.
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CHAPTER 7

Groupwise Similarity Prior

This chapter represents a complete study evaluating a new model that enforces sharing

of information between multiple registrations occuring simultaneously. This section con-

tains some duplicate material from chapters 1-3; it is retained here for those who may

have skipped those introductory chapters.

7.1 Introduction

Nonlinear image registration in brain imaging has progressed to an advanced stage with

powerful mathematical tools for sensitive and precise measurements with important the-

oretical properties. The LDDMM framework establishes a setting wherein constructions

like the Fréchet mean and geodesic regression in a space of diffeomorphisms are well

defined [ZSF13, NHV11]. For some lines of work, the availability of such statistical con-

structs has promoted a more probabilistic view of transformations. Real image data is

noisy, and transformations estimated from it are susceptible to over fitting to this noise.

For example, given three images of the same anatomy acquired over time, it is not likely

that a geodesic can be drawn in the transformation space that passes through the iden-

tity and the optimal transformations for both of the follow up images. (For example, see

Figure 4 in [LPF14].) Hence, an initial momentum characterizing the geodesic between

the identity and the optimal transformation for the first or second follow up image does

not describe the optimal geodesic that would be obtained from geodesic regression of all

three images.
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In this paper we attempt to estimate initial momenta from only two images with

improved ability to predict future unobserved images, by simultaneously registering many

image pairs that share information throughout optimization. Our approach can be viewed

in two equivalent ways: we maintain a group level representation of a transformation

and constrain individual transformations to be similar to this representation, which is

equivalent to compressing the variance of the set of transformations about their mean.

Both of these techniques have precedent in the literature. For example in [WAA14],

to estimate functional networks from resting state fMRI data, the authors construct

a hierarchical Markov Random Field (hMRF) where the highest level of the hierarchy

is a group-wise representation of the network estimate. Edges connecting this level to

the individual levels represent a group-wise consistency constraint. Shrinkage of the

transformations about their mean is also reminiscent of a James-Stein estimator [JS61],

where we have chosen the average momentum as the prior estimate of the true geodesic

regression slope. From this perspective, our method can be viewed as an empirical Bayes

prior.

This work uses cross-sectional information in a longitudinal study, which also has

precedent in the literature. Other works have used statistical information to constrain

registration, but more often in the form of a prior learned from a training set as suggested

in [PSA05] and implemented in [BLP11]. These authors constrained the strain tensor

of an elastic transformation to be similar to an average strain learned from training

data. More recently, the authors of [LPF14] use the transformations of normal controls

to refine transformations of AD patients for effects due to the disease. Perhaps most

similar to our proposal is [SHJ16], in which a group level trajectory is jointly estimated

with individual trajectories. The group level trajectory is considered a latent generator

for the individual trajectories, but unlike the proposed work, deviation from the group

level is not explicitly penalized. In all cases, the incorporation of group level information

resulted in transformations with features not found without the group level information,

and in many cases, these features were shown to be desirable.

104



7.2 Methods

Background, the LDDMM framework: We begin with a brief review of the LD-

DMM framework for nonlinear image registration [BMT05]. Given I0, I1 ∈ L2(Ω,R), the

LDDMM energy functional is defined as:

E(v, I0, I1) =

∫ 1

0

‖v‖V dt+ ‖I0 ◦ φ−1
1 − I1‖L2 (7.1)

where v ∈ L2([0, 1], V ) is a time dependent velocity field drawn from the reproducing

kernel Hilbert space (RKHS) V . The RKHS is specified by the choice of kernel K, and the

inner product in V is then given by 〈K−1u, u〉L2 for any u ∈ V . The transformation φ(t, x)

is given by the flow of the velocity v(t, x) through the ODE: (d/dt)φ(t, x) = v(t, φ(t, x)),

with initial condition φ(0, x) = x. v(t, x) and φ(t, x) will be written as vt(x) and φt(x).

The minimizer of (1) is considered the optimal φ for the registration of I0 and I1.

The second term on the right hand side of (1) is a quantitative assessment of the sim-

ilarity between the images I0 ◦ φ−1
1 and I1, whereas the first term is the geodesic energy

of the flow of vt(x). For suitable choices of K, φt(x) is always a diffeomorphism [Tro98];

hence, (1) defines φ1 to be the transformation that best matches I0 and I1 such that

φt is a geodesic in a space of diffeomorphisms specified by the choice of K. As φt is

a geodesic when E(v, I0, I1) is optimal, E(v, I0, I1) defines a metric distance d(Id, φ1)2

in the space of diffeomorphisms. This can also be considered a metric d(I0, I1)2 on the

orbit given by the group action of the space of diffeomorphisms on the template image I0.

Background, geodesic shooting algorithm: Several approaches to optimizing (1)

have been proposed. In this paper we use the geodesic shooting approach [MTY06,

VRR12a], which we now review. The kernel K can also be considered a mapping between

V ∗, the space of linear functionals on V , and V itself. Note that V ∗ is also a Hilbert

space. An Element of V ∗ is called a momentum. Hence for any momentum m ∈ V ∗ there

is some v ∈ V such that Km = v and K−1v = m.
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An optimal solution to (1) specifies a geodesic, which is uniquely determined by its

initial velocity v0(x), or equivalently, its initial momentum m0(x). mt for all t, and

hence vt and φt, can then be determined by solving the co-adjoint equation [MTY06]:

(∂/∂t)mt = −ad∗Vmt = −(Dv)Tmt − Dmtv − div(v)mt, where D denotes the Jacobian

operator and div(.) the divergence operator. If the initial momentum is assumed to

be proportional to the template image gradient, that is m0(x) = p0(x)∇I0(x) for some

scalar field p0, the adjoint equation can be separated into a disjoint system of differential

equations for I0,t and pt respectively [VRR12a], where I0,t = I0 ◦ φ−1
t . Considering these

equations and the gradient of (1) with respect to vt, we arrive at a system of partial

differential equations that completely specifies φt given initial conditions I0 and p0 (?

denotes convolution):


(∂/∂t)p+∇ · (pv) = 0

(∂/∂t)I +∇I · v = 0

(∂/∂t)v +K ?∇Ip = 0

(7.2)

With this in mind, (1) is replaced with a functional of the initial momentum exclu-

sively:

E(p0, I0, I1) = 〈p0∇I0, K ? p0∇I0〉L2 + ‖I0,1 − I1‖2
L2

(7.3)

and optimization proceeds within V ∗ only. In order to optimize (3) by gradient descent,

we need the gradient of (3) with respect to p0, subject to the geodesic shooting constraints

(2). This naturally gives way to an optimal control problem. Time dependent Lagrange

multipliers p̂t, Î0,t, and v̂t enable us to write an augmented functional for (3) incorporating

the constraints (2):
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Ẽ(p0, I0, I1) = E +

∫ 1

0

〈p̂t, (∂/∂t)p+∇ · (pv)〉dt +∫ 1

0

〈Î0,t, (∂/∂t)I +∇I · v〉dt +∫ 1

0

〈v̂t, (∂/∂t)v +K ?∇Ip〉dt

(7.4)

The first variation of (4) gives the gradient of (3) subject to (2):

∇p0E = ∇I0 ·K ? p0∇I0 − p̂0 (7.5)

where p̂0 is specified by a system of partial differential equations solved backward in time

termed the adjoint system:


(∂/∂t)p̂+∇p̂ · v −∇I ·K ? v̂ = 0

(∂/∂t)Î +∇ · (Iv) +∇ · pK ? v̂ = 0

(∂/∂t)v̂ + Î∇I − p∇p̂ = 0

(7.6)

with initial conditions Î1 = I1−I0,1 and p̂1 = 0. The gradient descent proceeds by solving

the system (2) forward in time to acquire pt, I0,1, and vt for a sufficiently dense sampling

of t ∈ [0, 1], then solving (6) backward in time to acquire p̂0. p0 is then updated with

(5), and the process is repeated until convergence.

Group-wise similarity prior: We consider the case where we are given N longitudinal

image pairs I i0, I
i
1 ∈ L2(Ω,R), i ∈ [1, 2, ..., N ], all taken approximately the same time

interval apart. We take Ω to be the unit cube with periodic boundary conditions, and

the time interval to be [0, 1]. Additionally, we are given N transformations ψi mapping

the initial images I i0 to a Minimal Deformation Template (MDT) coordinate system, that

is, Ik0 ◦ψk ∼ Ij0 ◦ψj for all k and j. To consider all N registrations simultaneously with no

modification to the geodesic shooting approach, we could write Ẽtot =
∑N

i=1 Ẽi where Ẽi

is equation (3) for the ith image pair. The first variation of Ẽtot with respect to an initial
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momentum pi0 will only include terms for the ith pair, that is, the N transformations

are decoupled. However, we would like the N transformations to explore the space of

diffeomorphisms as a group. We couple them by considering equations of the form:

Ẽtot = αG(p1, p2, ..., pN) +
N∑
i=1

Ẽi (7.7)

G(.) is intended to enforce some criteria that we may think all pi0 must satisfy. In this

paper, we consider longitudinal studies where all N image pairs come from patients in

the same diagnostic group, where a predictable distribution of volume change is known to

occur. Because V ∗ is a Hilbert space, we can calculate statistical moments in this space

in an ordinary manner, being careful to spatially normalize the pi0 to a MDT coordinate

system using coadjoint transport [YQW08]. First, let pmdt,i0 = |Dψi|pi0 ◦ ψi, be the ith

initial momentum in the MDT coordinate system. Let pmdt,avg0 = (1/N)
∑N

i=1 p
mdt,i
0 be the

sample average initial momentum in MDT coordinates. Let pmdt,cen,i0 = pmdt,i0 − pmdt,avg0

be the mean centered initial momentum for image pair i in MDT coordinates, and let

A = [pmdt,cen,10 , pmdt,cen,20 , ..., pmdt,cen,N0 ]T be the mean centered design matrix for all initial

momenta in MDT coordinates. We take G(.) to be:

G(p1, p2, ..., pN) = Trace(AAT ) =
N∑
i=1

‖pmdt,i0 − pmdt,avg0 ‖2
L2

(7.8)

the trace of the sample inner-product matrix for p0.

First we consider the rightmost form of (8). We see that this term maintains a group-

wise average of the initial momentum, and requires that all momenta be close to this

average. This is similar to hierarchical latent variable models that maintain a group-

wise representation of the data and constrain updates to predictions to be similar to this

representation.

Now consider the middle form of (8). The covariance matrix ATA has the same eigen-

values as the inner-product matrix AAT . Covariance matrices are symmetric positive-

definite, and therefore have all real non-negative eigenvalues. Finally, the trace of a
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matrix is invariant to rotation. So, considering the canonical form of ATA, we see that

Trace(AAT ) =
∑N

i=1 λi where λi is the ith eigenvalue of the sample covariance matrix.

Each λi is a measurement of the magnitude of the corresponding principal axis of the

covariance. Hence, by minimizing
∑N

i=1 λi, we are compressing the covariance about the

mean.

To minimize (8) we need to consider the contribution of G(.) to the gradient (5). In

our implementation, pmdt,avg0 is considered to be constant during any given iteration (see

section on gradient descent strategy). Hence, the gradient of G(p1, p2, ..., pN) with respect

to pk0 for some k in MDT coordinates is simply found to be:

∇pk0
G(p1, p2, ..., pN) = 2α(pmdt,k0 − pmdt,avg0 ) (7.9)

to put this back into individual coordinates, we compose with the appropriate inverse

transformation:

∇pk0
G(p1, p2, ..., pN) = 2α|D(ψk)−1|(pmdt,k0 − pmdt,avg0 ) ◦ (ψk)−1 (7.10)

and so the complete gradient of (7) with respect to an initial momentum pk0 in the co-

ordinate system for the kth template image is the sum of equations (5) and (10). The

result is that for every update of pk0 it is pulled in such a way as to map Ik0 to Ik1 by (5),

but it is also held close to the group representation of p0 by (10).

Gradient descent algorithms for optimization of (7): We now consider optimizing

(7) with respect to each pi0 one at a time. Multiple strategies are available for the order

in which we update the pi0. The most rigorous update would be to use the maximum

amount of information possible at each update. That is, for the (l+1)st update of the kth

momentum, pavg0 in (10) equals (1/n)
∑k−1

i=1 p
i,l+1
0 ◦ψi+(1/n)

∑N
i=k p

i,l
0 ◦ψi. This approach

requires the N registrations to be done in series for every iteration and is exceedingly

costly in both time and memory.
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An alternative is use (1/n)
∑N

i=1 p
i,l
0 ◦ ψi for pavg0 for all N at the (l + 1)st iteration.

This way, for a given iteration, the N pi,l0 can be updated in parallel. Subsequently, each

pair shares its updated value pi,l+1
0 to compute pavg,l+1

0 = (1/n)
∑N

i=1 p
i,l+1
0 ◦ψi to be used

in the (l+ 2)nd iteration. We used this strategy to compute the results presented in the

next section.

7.3 Results

Experimental setup: We downloaded screening, 1 year follow up, and 2 year follow up

1.5 Tesla T1-weighted images for 57 participants in the Alzheimer’s Disease Neuroimaging

Initiative (ADNI). All 57 participants had been diagnosed with Alzheimer’s Disease (AD)

prior to the acquisition of their screening image. The population consisted of 32 males

mean age 75.91 +/- 7.85 years and 25 females mean age 75.08 +/- 8.15 years. This was

the maximum number of individuals we could download from the ADNI 1 cohort that

were in the AD group and had screening, year 1, and year 2 follow up images available. All

images were corrected for geometric distortion and bias in the static field with GradWarp

and N3 before downloading as part of the ADNI preprocessing protocol. Subsequent to

downloading, the images were linearly registered to the ICBM template and skull stripped

using ROBEX [ILT11]. Transformations ψi mapping the template images I i0 into a MDT

coordinate system were computed using a preexisting implementation of [YTO07].

We used a multi-resolution approach for 50, 30, 20, and 5 iterations at 643, 803, 963,

and 1283 resolutions respectively to register the screening images to the year 1 follow up

images. We used the second strategy described in the above section to optimize (7) with

respect to the initial momenta for the 57 pairs. To test the influence of the group-wise

term G(.), we ran the algorithm over a range of values for α including 0.0 (control),

0.01, 0.025, 0.05, 0.075, 0.1, and 0.5. After completion, we computed and compared the

average and variance of the initial momenta for each value of α. We then solved the

system (2) over the interval [0, 2], which in this case represents 2 years, and compared
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Figure 7.1: Mean and variance images for different values of α. Top: Mean images,

Bottom: Variance images, Columns correspond to α values from left to right: 0.0, 0.01,

0.025, 0.05, 0.075, 0.1, and 0.5.

the computed image I0,2 to the year 2 follow up images for all values of α.

Mean and variance images: Coronal slices for the final mean and variance of the

initial momenta are shown in Figure 1 for all values of α. As α increases, both the mean

and variance become smaller in magnitude, however the variance falls off at a much faster

pace. The primary features of the mean image, including the change in the ventricles

and temporal lobes, remain the strongest with increasing α, while individual features

fade away with increasing group-wise influence.

The sum of squared difference during registration: The initial sum of squared

difference (SSD) between the screening and year 1 image was retained and used to nor-

malize the SSD at every iteration. This normalized SSD was summed over all 57 image

pairs. The results for all values of α are shown in Figure 2. Clearly, as α increases

the total normalized SSD increases for every iteration, which is expected considering the

forms of equations (7) and (10). As alpha increases, exact matching to the target is

compromised for more coherence with the group-wise representation. The spikes occur

where the resolution changes in the multi-scale registration approach.
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Figure 7.2: Normalized SSD throughout optimization for all values of α. The Spikes

occur when the resolution changes.

Prediction of year 2 images from initial momenta: The momenta learned for all

values of α were integrated from [0, 2], representing a 2 year period, and the screening

images were transformed with the resulting diffeomorphisms. These images were quan-

titatively compared to actual year 2 follow up acquisitions. The SSD between the year 2

prediction and actual year 2 image, normalized by its value for α = 0.0, is presented in

Figure 3. A value less than one indicates the prediction at a particular α level is closer

by SSD than the prediction for α = 0.0. Clearly, for many images the prediction im-

proves with increasing α. These images are those for which the true, unobserved, initial

momenta lies closer to the group-wise mean. For some images, the prediction becomes

worse with increasing α. These images are those for which the true, unobserved, initial

momenta does not lie closer to the group-wise mean. An immediate extension of this

work to address this issue is to modify (8) to allow for multiple subgroup-wise represen-

tations and/or to accommodate outliers.

We performed a one-sided student’s t-test to determine if the SSD for predictions

with α not equal to zero were significantly different from those with α equal to zero.
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Figure 7.3: SSD between year 2 images predicted by integration of initial momenta and

actual year 2 image acquisitions for all 57 image pairs and all ln(α) values. The red stars

represent the mean.

All values of α except α = 0.5 have significantly different SSD values (at a standard

significance level of p = 0.05) for their predictions. The relevant values are presented in

Table 1.

Prediction of year 2 images from average momenta: The average momentum

for all α in MDT coordinates was transformed into individual coordinates for the ith

image pair using coadjoint transport through (ψi)−1. The resulting average momenta

in individual coordinates were integrated over [0, 2], representing a 2 year period. The

screening images were transformed with the resulting diffeomorphisms and the resulting

images were compared to the actual year 2 acquisitions. The results are presented in

Figure 4.

We performed a one-sided student’s t-test to determine if the SSD for predictions

from the average momenta with α not equal to zero were significantly different from

those with α equal to zero. All values of α have significantly different SSD values (at
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α 0.001 0.005 0.01 0.025 0.05 0.075 0.1 0.5

µ 13.70 70.21 120.51 222.10 287.75 306.79 324.23 157.03

σ 52.25 143.67 278.01 586.49 953.82 1177.70 1335.04 2066.4

T 1.98 3.70 3.27 2.86 2.28 1.97 1.83 0.57

p .026 .00025 .00092 .003 .013 0.027 0.036 0.29

Table 7.1: t-test results comparing all α not equal to zero with α = 0 for SSD between

year 2 prediction and acquired year 2 image. µ is the average difference between SSD

values for α = 0 and α 6= 0, σ is the standard deviation, T is the t-statistic, and p is the

p-value. Recall, there were 57 image pairs. Significant results are bold.

a standard significance level of p = 0.05) for their predictions. The relevant values are

presented in Table 2.

α 0.001 0.005 0.01 0.025 0.05 0.075 0.1 0.5

µ 10.91 46.26 81.55 148.97 203.29 230.76 246.85 259.22

σ 9.04 37.91 67.28 127.07 179.47 207.67 224.56 249.41

T 9.11 9.21 9.15 8.85 8.55 8.39 8.30 7.85

p 2.22e-12 1.53e-12 1.92e-12 5.89e-12 1.82e-11 3.34e-11 4.69e-11 2.59e-10

Table 7.2: t-test results comparing all α not equal to zero with α = 0 for SSD between

year 2 prediction from average momenta and acquired year 2 image. µ is the average

difference between SSD values for α = 0 and α! = 0, σ is the standard deviation, T is

the t-statistic, p is the p-value. Recall, there were 57 image pairs. Significant results are

bold.

7.4 Discussion

The first feature of the above presented methods and results to discuss is the obvious

compromise between exact image pair matching and group-wise consistency represented
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Figure 7.4: SSD between year 2 images predicted by integration of average momenta and

actual year 2 image acquisitions for all 57 image pairs and all ln(α) values. The red stars

represent the mean.

by the parameter α. Figure 2 demonstrates the sensitivity of the exact image matching

to this parameter. It’s interesting to note that the solution trajectory over iterations is

very similar in shape for all values of α, though we get less exact matching as α increases

as expected. Figure 3 and Table 1 demonstrate the potential advantage to group-wise

consistency in learning momenta that more accurately reflect the unobserved long term

change. Figure 3 and Table 1 both suggest that there are some values of α that strike a

potentially desirable compromise between exact image matching and improved prediction

of long term change.

Of course, for some images, the momenta learned with coupling are worse predictors of

long term change. As mentioned previously, one avenue to address this is to allow multiple

sub-group representations and assign each image pair to the sub-group representation

that best approximates it. One interesting question that arises is what is the optimal

number of sub-groups for a given population? Additionally, what differences will the

sub-group representations encode in them after convergence? Alternatively, the mean
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is sensitive to outliers, and we could consider replacing the group representation with a

different statistic more robust to such variation.

The proposed work has made no effort to normalize temporal misalignment in disease

progression across patients. The experimental results suggest that AD disease progres-

sion is sufficiently similar at different stages of the disease for group level information to

be applicable to individual trajectory estimation. However, this may not be the case for

other populations such as the Mild Cognitively Impaired (MCI) or other Neurodegener-

ative disorders with less well characterized structural changes. Hence, explicit modeling

of temporal misalignment in age and disease progression as done in [SHJ16] may improve

results.

It is important to mention that momenta learned with this technique should not be

naively used for statistical tests. We have explicitly minimized the trace covariance of

these momenta, so any voxel-wise statistics computed from them are biased [TAC12].

This issue can be compensated for by determining the null distribution for a particu-

lar statistic and establishing significance relative to this learned distribution. However,

non-statistical inference applications such as momenta or change map atlas construction

and shooting of individual templates via the learned momenta are not affected by this

problem.

7.5 Conclusions

We have presented a mathematical framework for coupling the registration of N image

pairs in the geodesic shooting approach for the optimization of the LDDMM energy func-

tional. Individual registrations are coupled by maintaining a group-wise representation

of their initial momenta and constraining updates to stay close to this representation.

This is an explicit minimization of the variance of the initial momenta in the Lie algebra

for the space of diffeomorphisms specified by the choice of metric K. This establishes a

trade-off between exact image matching for individual image pairs and group-wise con-
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sistency. We’ve shown that increasing group-wise consistency can improve the prediction

of long term change encoded within individual momenta. Finally, we have described

some of the strengths and weaknesses of our initial choice for the coupling term G(.) and

suggested methods to address those weaknesses.
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CHAPTER 8

Groupwise Registration and James-Stein Estimators

This chapter details an extension to the GRiD model wherein initial momenta from sep-

arate registrations are used to inform one another. This section contains some duplicate

material from chapter 1-3; it is retained here for those who may have skipped those

introductory chapters.

8.1 Introduction

In the large deformation diffeomorphic metric mapping (LDDMM) framework for non-

linear image registration [BMT05], interpolation and extrapolation of longitudinal image

time series can be accomplished with geodesic regression [NHV11]. In this setting, a

geodesic on a manifold of diffeomorphisms is estimated such that it passes maximally

close to transformations that optimally map the initial image to all subsequent images

in the time series. The geodesic is parameterized by an initial transformation (here fixed

at the identity for simplicity) and a single vector field (tangent to the manifold at the

identity), which specifies the direction of the geodesic. If one assumes this vector field is

everywhere proportional to the initial image gradient [MTY06], then the geodesic is fully

specified by a single scalar-valued image, henceforth referred to as the momentum. The

task of geodesic regression can then be formulated as: given the time series of images

I1(x), ..., IN(x), find the momentum p(x) such that the geodesic parameterized by p(x)

passes through φ2(x), ..., φN(x) and
∑N

i=2 d(I1 ◦ φi, Ii)2 is minimal; where d(I, J) is some

quantitative assessment of similarity between images I and J .
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As in any learning task, our confidence in the ability of the geodesic model to make

accurate predictions at unobserved time points increases with the number of observa-

tions. Unfortunately however, due to the high cost of collecting anatomical images,

many longitudinal studies of brain structure collect images at fewer than 5 time-points

per individual, and often at relatively small time intervals. The short time intervals are

particularly problematic considering the slow dynamics of many neurodegenerative dis-

eases. Such a small number of observations, prone to noise, over a short time interval

may be insufficient to fit a geodesic that generalizes to unobserved time points with an

acceptable level of confidence. We address the challenge of improving geodesic model

generalization for an individual time series by pooling information from multiple time

series cross-sectionally, and using it to regularize the individual geodesic models. Such

an approach may have practical implications on study design, wherein a researcher may

choose to acquire fewer images over a shorter time period from more individuals, and

yet achieve similar confidence in the accuracy of individual geodesics had they collected

more images over a longer period of time from fewer individuals.

We find a natural mathematical setting to implement this in the James-Stein esti-

mator. The James-Stein estimator is a classical statistical model that improves upon

the maximum-likelihood estimate for the mean of a Gaussian random variable. That is,

the James-Stein estimator is closer in Euclidean distance on average to the unobserved

ground truth value of the mean than its maximum-likelihood estimate. James-Stein esti-

mators are commonly used for massively parallel data sets where the same inference must

be made for many samples. Information is pooled across the samples and used to regular-

ize the inference of each individual sample. This model reflects the case in neuroimaging

where only short sparsely sampled time series are available but for many patients. Using

James-Stein estimates as opposed to maximum-likelihood estimates can offer substantial

improvements on model accuracy on average [Efr10]. We utilize the James-Stein estima-

tor to leverage the information contained cross-sectionally in a population of time series

to improve the geodesic fit for each individual time series.
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A necessary first step for James-Stein estimators is to estimate a groupwise represen-

tation of the samples. Several recent works have proposed methods for constructing a

groupwise representation of image time series data, any of which is compatible with our

proposal. In [DPT09, DPT13] the authors proposed a method to register time series of

images in both space and time simultaneously; a groupwise representation of the time

series, or spatiotemporal atlas, can then be found in the common spatiotemporal coor-

dinate system. In [SHJ16] the authors propose a hierarchical geodesic model in which

individual geodesics are estimated, then used to construct a groupwise geodesic. Their

proposed probabilistic model allows an extension that is not fully explored in [SHJ16],

which is to re-estimate the individual geodesics after the groupwise representation has

been constructed. If the groupwise representation is used as a prior (which is suggested

by the probabilistic model), the new estimates are similar to the James-Stein estimates

for the individual trajectories. The James-Stein estimator shows how to do this second

inference optimally.

After a groupwise representation is obtained, James-Stein estimators shrink individ-

ual estimates toward the groupwise representation. We show below that this is in fact a

maximum a posteriori (MAP) estimate, where the shape of the prior distribution is in-

ferred from the data itself. This can also be viewed as a groupwise consistency constraint.

Other recent works have proposed groupwise consistency to cope with difficulty in es-

timation of individual models. In [WAA14], the authors propose a hierarchical Markov

random field (hMRF) for segmentation of structural MRI images into functional net-

works based on fMRI time series. Individual segmentations are constrained to be smooth

and consistent with the fMRI data for that individual. They are also constrained to

be similar to a grouplevel representation of the network which is jointly estimated with

the individual networks. The authors show that this cross-sectional constraint improves

the recovery of networks in ficticious data and results in smoother networks with more

anatomical meaning in real data.

Similarly, in [FGF15], pairs of longitudinal brain images from a population of indi-
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viduals diagnosed with Alzheimer’s disease (AD) were registered simultaneously. The

optimal set of transformations was defined not only to map the template images to their

references, but also to satisfy a groupwise consistency constraint. The authors showed

that the resulting geodesics predicted a third time point image not used in the learning

step more accurately on average than geodesics learned without the groupwise consistency

constraint. We demonstrate below that their approach is in fact a special case of James-

Stein estimators. Establishing the connection with James-Stein estimators grounds that

work in a probabilistic model from classical statistics that provides better intuition for

the meaning of parameters and how to find their optimal values.

8.2 Methods

2.1 Derivation of the multivariate James-Stein estimator for momenta: For

simplicity, we consider time series with two images. Because the derivation of James-

Stein estimators will deal exclusively with momenta, the generalization to time series of

arbitrary length is trivial. Let Ii and Ji for i ∈ {1, ..., N} be initial and follow up image

acquisitions of the same anatomy for N patients. In order to share information cross

sectionally we must have a common coordinate system. So we also assume we’re given

transformations ψi such that Ii(ψi) ∼ Ij(ψj) for all i and j. This can be accomplished by

finding a study specific atlas, or minimal deformation template (MDT), for the images

Ii. All further formula are assumed to be in the common coordinate system. (That is, all

momenta have been moved to the common coordinate system by co-adjoint transport,

which for the scalar field pi is Dψi · pi(ψi), where D is the Jacobian operator.)

Now, suppose pi specifies a geodesic beginning at identity and passing through an

optimal φi such that Ii(φi) ∼ Ji for all i. The true values of the pi are unknown, but let

βi be a noisy estimate of pi acquired via geodesic regression. Now, suppose the following

probabilistic model:
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pi ∼ N (p∗, A), (8.1)

βi|pi ∼ N (pi, σ
2
0 · Id). (8.2)

Equation (1) indicates the unobservable pi are independent samples from a normal dis-

tribution with mean p∗ and covariance A. This distribution models the variability in

time series trajectory across individuals due to differing contributions of the underlying

processes that affect the dynamics of aging and disease. The mean momentum parameter-

izes a geodesic representing the average dynamics over time for images in the population.

(Hence, any one of the previously discussed methods for construction of a groupwise

representation of time series [DPT09, DPT13, SHJ16] can be taken as a definition for

p∗.)

Equation (2) indicates the observable βi are independent samples from a normal

distribution with mean pi and covariance σ2
0 · Id, where Id is the matrix identity of the

appropriate size. This distribution models the variability of the momentum measurement

βi due to image noise and registration inaccuracies. Hence, each βi is distributed about

its (unobserved) ground truth value of pi with isotropic variability, the extent of which

is given by σ2
0. This is consistent with standard noise assumptions in much of the image

registration literature.

These distributions have the form of a prior and likelihood, which enables us to write

the posterior distribution for the pi:

P (pi|βi) =
P (βi|pi)P (pi)∫
P (βi|pi)P (pi)dpi

= N (βi − σ2
0B(βi − p∗), σ2

0B), (8.3)

where B = (A+ σ2
0 · Id)−1. We see from (3) that the MAP estimate of pi is:

pmapi = βi − σ2
0B(βi − p∗). (8.4)

Equation (4) reveals what we gain by incorporating (1) as a prior to regularize βi. We
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see that pmapi is equal to the measurement βi minus an adjustment: σ2
0B(βi−p∗). The ad-

justment is a linear transformation of the difference vector βi−p∗. If that transformation

were the identity, this would simply move βi toward p∗. However, the linear transfor-

mation is actually the covariance matrix of the posterior distribution: σ2
0B. Hence, (4)

begins with the idea of moving βi toward p∗, but takes into account the shapes of the

prior and likelihood distributions and adjusts the direction in which we move the esti-

mate accordingly. The net affect is the rearrangment of the observations βi such that the

scatter of the pmapi is more consistent with the prior covariance structure A. Assuming

the prior (1) is correct, pmapi is guaranteed to be a better estimate of pi on average than

the original measurement βi [JS61, Efr10].

Unfortunately, we cannot use (4) directly, as σ2
0, p∗ and A are unknown. However,

with N independent parallel time series at our disposal, we can estimate them directly

from the data. First we observe the marginal distribution for βi:

P (βi) =

∫
P (βi|pi)P (pi)dpi = N (p∗, A+ σ2

0 · Id) (8.5)

The maximum likelihood estimate for the mean of a Gaussian random variable is the

sample mean. Hence, the maximum likelihood estimate for p∗ is simply: p∗ ∼ β̂ =

1
N

∑N
i=1 βi. Next, we define the sample covariance matrix for the βi as: S =

∑N
i=1(βi −

β̂)(βi − β̂)T . Because βi is a random variable, so too is S; which hence must have a

corresponding distribution. In fact, the sample covariance matrix of a multivariate normal

random variable (such as βi) is distributed by the Wishart distribution, a multivariate

analog of the χ2 distribution. We now observe:

E
{

(N − d− 1)σ2
0S
−1
}

= σ2
0B (8.6)

where d is the dimensionality of βi and the expectation is taken with respect to the

Wishart distribution. From (6) then, we see that (N − d − 1)σ2
0S
−1 is the maximum

likelihood estimate for σ2
0B. Combining this with β̂ (the maximum likelihood estimate
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for p∗) and equation (4) we arrive at the James-Stein estimator for image time series

momenta:

pjsi = βi − (N − d− 1)σ2
0S
−1(βi − β̂). (8.7)

The final ingredient is to estimate σ2
0. Recall, in this model σ2

0 does not model any

biological variability, which is entirely captured by the prior covariance A in (1). σ2
0 is

the noise in the βi estimates exclusively due to image noise and registration inaccuracy.

Hence, any method for estimating the variability due to noise and registration inaccuracy

can be used to estimate σ2
0.

We note here that if we let d be the number of image voxels (the naive dimensionality

of βi), it is almost certain for image analysis applications that d >> N , which is generally

prohibited if equation (8) is to be useful. Furthermore if d >> N , S is certain to be

singular and therefore the estimation of S−1 becomes problematic. This is the crux issue

to be dealt with if one wants to use pjsi for the proposed application. Below, we make the

simplest (and least informative) assumption to contend with this issue and then discuss

alternatives that might improve the framework.

2.2 Connection to groupwise registration with similarity constraint: To incor-

porate cross sectional information into the registration of a population of N time series,

recent works [FGF15] proposed an objective function of the form:

αP [φ1, ..., φN ] +
N∑
i=1

D[Ji, Ii[φi]] + γS[φi] = min (8.8)

Here, the typical image similarity term D and smoothing prior S are summed over the N

pairs of images. The objective is augmented by a new term P that is a function of the full

set of N transformations, or in the diffeomorphic case, of the estimated transformation

momenta in MDT coordinates βi. Specifically, for P those works proposed:
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P [β1, ..., βN ] =
N∑
i=1

‖βi − β̂‖2 (8.9)

which is the sum of squared difference of the N momenta from their sample average. The

Euler-Lagrange equations for this term are: ∇βiP [β1, ..., βN ] = 2α(βi − β̂) such that at

every iteration the estimate for βi is updated according to:

βt+1
i = βti − 2α(βi − β̂)−∇βiD −∇βiS (8.10)

The first two terms in equation (10) are very similar to equation (4). In fact, if B in (4)

were proportional to the identity matrix then the first two terms in (10) would be identical

to (4): a shrinkage of the estimate βi directly toward β̂ proportional to some scalar value.

B is proportional to the identity if and only if A in (1) is proportional to the identity. This

reveals two things: the simultaneous registration with groupwise consistency is equivalent

to using pjsi with an isotropic prior distribution instead of βi at every iteration, and that

the parameter α in (10) is a function of A and σ2
0. The perspective of James-Stein

estimators thus enables us to generalize the groupwise consistency to anisotropic prior

structures and provides an interpretation of the groupwise consistency parameter α.

8.3 Experiments and Results

3.1 Images: We downloaded screening, 1 year follow up, and 2 year follow up 1.5 Tesla

T1-weighted images for 57 participants in the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI). All 57 participants had been diagnosed with Alzheimer’s Disease (AD) prior

to the acquisition of their screening image. The population consisted of 32 males mean

age 75.91 +/- 7.85 years and 25 females mean age 75.08 +/- 8.15 years. This was the

maximum number of individuals we could download from the ADNI 1 cohort that were

in the AD group and had screening, year 1, and year 2 follow up images available. All

images were corrected for geometric distortion and bias in the static field with GradWarp
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and N3 before downloading as part of the ADNI preprocessing protocol. Subsequent to

downloading, the images were linearly registered to the ICBM template and skull stripped

using ROBEX [ILT11]. Transformations ψi mapping the template images Ii into a MDT

coordinate system were computed using a preexisting implementation of [YTO07]. We

then registered the screening (Ii) to the follow up images (Ji) to acquire the βi using our

own implementation of the geodesic shooting algorithm proposed in [VRR12a].

3.2 Experimental design: The multivariate James-Stein estimator, equation (7),

presents some computational challenges for image data. The full image resolution for

most image data sets (a total of d voxels) is very large. Hence S and S−1 may be com-

putationally intractable to compute or store. The easiest way to avoid this problem is

to assume A and thus S and S−1 are proportional to the identity. In that case, the

coefficient in front of the second term in (7) reduces to a scalar value:

pjsi = βi − α(βi − β̂) (8.11)

The scalar α can then be estimated empirically using cross-validation, which is what

we’ve done for our first tier validation experiments. This assumption is permitted in the

context of James-Stein estimators, and more accurate assumptions about the prior struc-

ture can only improve results. More elegant solutions that would allow for anisotropic

prior densities are explored in the discussion.

3.3 Results: Using the empirically determined value α = 0.098, we computed pjsi ac-

cording to equation (11). We then compared the ability of the βi and the pjsi to predict

the year 2 follow up images (Ki) by extrapolating their geodesics forward to the year 2

time point and composing the initial image Ii with the resulting transformations. This

produced two predictions for each Ki, which we label Kβ
i and Kjs

i respectively. We cal-

culated the square Euclidean distances d(Ki, K
β
i )2 and d(Ki, K

js
i )2 between the ground
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truth year 2 images and those predictions. In Figure 1 we present
d(Ki,K

js
i )2

d(Ki,K
β
i )2

for all 57

patients.

Figure 1 shows that by measure of sum of squared differences, the pjsi make better

predictions of the third time point image for nearly all patients by about 5% on average.

In the best case, an improvement of 20% is achieved. We also subjected the differences

d(Ki, K
β
i )2−d(Ki, K

js
i )2 to a pairwise one sided Student’s t-test to evaluate the likelihood

of achieving these improvements by chance. The p-value of 0.0002 suggests that these

results are significant, and that the improvements are due to the use of the James-Stein

estimates.

We also inspected the predicted images Kβ
i and Kjs

i for any qualitative differences.

While the majority of gains due to pjsi are spread thinly throughout the whole image,

some improvements clearly correspond to an anatomical interpretation. Figure 2 shows

one such case, where β overestimates the expansion of the posterior horn of the left

ventricle. The top row is the time series of images I, J , and K from left to right.

The bottom row are the predictions corresponding to β and pjs. The heat map shows

|K−µ
σ
− Kjs−µjs

σjs
|− |K−µ

σ
− Kβ−µβ

σβ
|. That is, it is the difference of the absolute values of the

difference images, normalized to their own intensity distributions. This reveals, in cool

colors, the locations where pjs provided a better estimate of K. The boxed areas show β

overestimates the expansion of the ventricle more severely than pjs.

8.4 Discussion

Consistent with expectations, the results indicate the James-Stein estimates pjsi provide

geodesics that extrapolate more accurately on average. Hence, our choice of an isotropic

prior covariance (that is, A = a·Id for some scalar a) to cope with the high dimensionality

of the βi is sufficient to gain some improvement in trajectory estimates. A more accurate

prior model can only provide more information to improve results.

The simplest relaxation is to let A be diagonal but not necessarily proportional to
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Student T test results for

d(Ki, K
β
i )2 − d(Ki, K

js
i )2

µ 187.23

σ 341.84

T 4.135

p .0002

Figure 8.1: Square euclidean distance between ground truth year 2 images and predictions

made with pjsi for α = 0.098. For each i the distance is normalized by the distance

between the ground truth year 2 image and the prediction made with the unrefined βi.

This reveals (by the distance under the red line) the percent improvement earned by

using pjsi instead of βi. The pairwise one sided student’s T test shows the improved

predictions are due to the use of pjsi .
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Figure 8.2: A time series of images from one patient is shown in the top row. The

predictions for the year 2 image derived from β and pjs are in the bottom row. The heat

map shows in cool colors areas where the pjs improved the prediction over β. For this

patient, pjs reduced an over estimation of ventrical expansion.
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the identity. In that case, we only have to estimate d variables, an independent variance

at every voxel. Different parts of the brain are more or less likely to change over time

depending on age and pathology, hence this is more biologically plausible than A = a ·Id.

More plausible still is to allow A to be non diagonal, but assume that it is sparse. The

spatial dependence between voxels is likely to fall off after some appropriate distance,

hence many entries in A are likely to be zero or near zero. In that case, many recent

methods for learning with sparsity constraints may be brought to bear.

Possibly the most elegant solution would be to use a low dimensional parameterization

for the βi. One option would be to use a subset of the principal components. First one

would have to determine an optimal number of components that retains the fine scale

variability inherent to longitudinal deformations while reducing the dimension to an

acceptable level. A second possibility is to use a band limited Fourier basis. It was

recently shown that geodesics for cross-sectional image registration can be parameterized

with as few as eight Fourier coefficients per spatial dimension without compromising

registration accuracy [ZF15].

Above, we used the estimate p∗ ∼ β̂ = 1
N

∑N
i=1 βi, which is the maximum likelihood

estimate of p∗ under the marginal distribution for βi. However, for many groupwise

representations of time series, p∗ is a function of time. Hence, the βi would need to be

normalized in time (as well as in space) before averaging. Similarly when computing

pjsi , which involves a term (βi − p∗), p∗ should be normalized in the time domain to βi.

Propagating p∗ along a geodesic is a simple matter of parallel transport, however finding

the appropriate correspondence in time between subjects is not trivial. The naive solution

is to use nominal time, however aging and pathological effects may not have constant

velocity in time. Also, the age of onset of pathological affects is not known for most

patients. Hence, a method that infers temporal correspondence directly from the data

independent of the acquisition times of the images such as those in [HSK14, DPT09,

DPT13] would be needed.
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8.5 Conclusion

We have presented the derivation of multivariate James-Stein estimators in the context

of image time series regression. We have established a previously published method as

a sub-optimal special case of the current model. Further, we have demonstrated that

the use of James-Stein estimators can improve the extrapolation of individual geodesics

in a population of time series, even with the most naive prior structure. We conclude

that for the purpose of interpolation and extrapolation of individual time series within a

population, the James-Stein estimate of the geodesic is a more accurate representation

of the underlying biological dynamics than the raw measurement.
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