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ABSTRACT

The théory of cifcular'intenslty diffefential scattering (C1DS)
of light by a solution of randomly orieﬁted molecules of arbitrary geo-
metry has been derived. The molecules are treated as a set of polar-
izing tensors. The CIDS as a function of'scattering'angle is obtained
in ﬁlosed form. The CIDS depends on the distances and angle between
~all the pdlarizabilities in the molééule. 4Numerical calcuiations
of helices méde up of uni-axial polarizabi]ities,'directed along the
tangént to the helix, are shown as a function of helical_geometry.
The calculated values of the CIDS indicate that they should provide a
useful, néw experimental téchniqﬁé to'detérmine.the structures of

biomolecular aggregates.
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INTRODUCTION

The theory of the circular intensity differential scattering (CIDS) of
oriehted chiral molecules has been publiéhed recently. ' Measurement of
the CIDS as a function of scattering angle can give structural information
.aBdut chiral macromolecular systems. The CID scattering patterns contain more
detail and information than the corrésponding total scattering patterns;
the sign of the CIDS signal is directly related to the handedness of the
chiral scatterer. While thé'traditional,chiroptical methods, such as
:circular dichroism and optical rotatory dispersion give information about
. the short range structure of the ogtically active species (less than approx-
imately ZCZ),‘the éIDS contains structural information about molecular dimen-
sions of the order of the wavelength éf light used in the scattering experimént.
CIDS is not restricted to wavelengths of light within the absorption band
of the chromophores in the scatterérs; different wavelengths can thus probe
different critical dimensions in the macromolecules.

In this paper we will consider the case of randomly oriented molecules.
A’molecuie is represented by an arbitrary set of polarizability tensors,
and the scattering pattern is averaged over all orientations of the molecule.
Thé organization of the paper is as follows: In partul the spatial averagings
of the CIDS equations will be presented,‘in part 11 the resulting expressibns

will be applied to a helical scatterer, and in part}ll, numerical computations

of the CIDS vs. the scattering angle will be presented.



I. The Spatial Averaging of CIDS Equations. N
The circular intensity differential scattering (CIDS) is defined by:5

IL(¢’X) = lR(¢’X) ’ -

CIDs = @) + T(6,x)

where IL’R(¢,x) is the intensity of light scattered in the direction

(¢,X) in space when left or right circularly polarized light is incident
upon the sample. For a homogeneous solution of scatterers.the scattered
intensities in a chosen direction are measured to provide,6 alternatively,
<IL-I§>SV. and <|L+I§>év.‘ 'Tﬁe measured signal is <ClDS>év. = <IL-lﬁ>av./
<IL+'ﬁ>av.' wé must theréfore find the average of the numerator and the
denominator of the CIDS rétio. Instead of deriving the averaged total
scattered intensity for right and {eft circﬁlar]y polarized light (IL+IR),
wé will derive <'H+|l>év. where l" and '1 are the intensities scattered in
a given direction, when the incident light is polarized parallel and per-
pendicular to the scattering plane. The total scatteréd intensify is
independent of the orthogonal states used to chéracterize the incident
radiétion, but therderivation is simpler this way.

Theory

Let the scatterer be described by aset of point polarizability tensors.

The field scattered by this array, due to field, EO’ is given by:

ikt o iAker |
E(:') =-C e ikr (l_El:).zelAE :J(_%"Eo.‘ _ M

J

where j labels each polarizability in the scatterer; k and k are the modulus

and a unit vector along the scattered wave-vector of the radiation; r. and aj

-~

are the position and the polarizability tensor for each j, respectively;



r' is the position'gf observation in space, Ak = k-ko, and C is a propor-

tionality constant containing some inverse distance factors. Next we define

the incident circular polarizations of the radiation:

E

>
+
1@

So,L 2)
Eo,r =A - 1B

w[th A and B two arbitrary orthogonal vectors, both perpendicular to the
direction of incidence of the light. Similarly, the polarizability tensor

can be written in terms of its components along principal axes ej.
e, v ,.‘ - . . (3)?

where in general there will be three éomponents for each tensor. From (1)
and using (2) and (3), we can write the difference fn scattered intensity
for incident left and right circularly polarized light at a given direction
in space, as:
Mg 0 T (aB) - (e (e e ) - (e ) (e 0]
(4)

G aepl
IL-IR = 2iC §§e
t)

Equation (4) is the expression in the numerator of the CIDS ratio that must
be averaged; it involves the product between space fixed (é, E, AE, g) and
molecule-fi*ed quantities (gj, ers Ej’ Ei)’ In order to do the averaging,
we must define space and molecule-fixed frames, in terms of whose axes the
corresponding quantitites can be written.

First we define a molecule-fixed coordinate system, with orthogonal

unit vectors i', j' and k'. We orient this frame so that without loss of

~ ~



generality, e. is chosen to lay in the plane i',k', while e; is completely
arbitrary with components along the three orthogonal axes. Furthermore,

the k' axis of the molecular frame is oriented along the distance vector

Ri' between polarizabilities i and j in the scatterer, with Rij = rj-ri;

~

The spacé-fixed frame with axes labeled a, b and ¢ is oriented so that one
of its axes (the ¢ axis) is along the momentum transfer vector of 1light,
Ak = k-ko; the scattering plane defined by k and k, coincides with the

c,b plane. We can now express the space-fixed quantities in terms of the

axes of this frame:

Ak = (hm/X) sing c
E = cosB E + sinB < (5)
id = cosf P - sinfB c

where k and ko are unhit vectors along the scattered and incident wave-vectors;

B is one-half of the scattering angle subtended between these two vectors.
Having defined this space-fixed coordinate system we can now rewrite
the polarization vectors of light (2) as:

E .

Eo.L.R [ati(sinB b + cosB c)] | (6)

= A*iB =‘—L—
-~ ~ ﬁ
where the + sign must be used for L and the - sign for R. Similarly we can

write, from (6):
AxB =

%’(SinB c - cosB E) (7)



~

Equations (5) - (7) together with the corresponding expression of e &>

e, X e, written in térms of the molecular frame, can be replaced in Equation
(4). The resulting expression will contain the dot products between the
axes of the two frames. Notice that because of our particular choice in

orienting these two frames, the exponential e'AB.Bij can be written as

ei(S.E{), i.e., in terms of the dot product between just one axis or each’
frame. Indeed, the product (5-5') in the éxponential is a constant for
any'orthogonal transfdrmafion betweeﬁ the two coordinate systems, with the
exception of the transformétion involvihg'tﬁe angle 8 betWeen c and 5'. This
greatly simplifies thé deerations. |
To relate the space-~fixed vectors to the molecule-fixed vectors, we
use the'Euler transformation matrix7 to éxpress any product between space;
fixed and molecule-fixed basis-vectors, in te%ms of the three Euler angles
(6,x,59) (see Figure 1).. The ;patial éveraging of any function f(8,x,9)
of thevEuler ang]es.ﬁnvolvgs the spatial integrations over the three Euler
angles: -
T 2W 2T T 2m 2m
<f(8,x,9)> =SS [ £(8,Xx,9)sin06dédyxde¢/S S [ sinBdBdydd (8)
00 O 00 O
Using the Euler matrix, it can be shown fhat the only terms that survive the
averaging process'(see Equation 8) are the combinatiogs of dot products

between the molecule and space-fixed frames, such that the integration with

respect to the polar angle 0:

LU ' |
[ eld cosb £(6)s in6do with q %F Rij sinB (9)
0 .



is a purely imaginary number. This is related to the facf that Equation (9)
is the Fourier transform of f(8)sin® in the q-épace, and a necessary and
sufficient>condition8 for this re§ult is that f(8)sind ~ be an odd function
of its argument, i.e., f must be an even function of 6. The imaginary result

of the averaging integrations is of course necessary for Equation (4) to

be real. Here we will just give only: the results of the integrals that

appear in the averaging of IL-iR{

™ . .

s e'9°%0%c0s0sinade = 2i j, (a)

T iqcos8 3 N

J e'99%%0s0sin’0do = b4i jp(a) (10)
0 - ,

T,
S e'qcosecos3esin6d6
0

2i(j,(q) - 2j,(a)/q)

where j](q) and jz(d) are the first and second order spherical Bessel

9

functions, respectively, defined by:

j] (q) = Slnzq . Ccos )
q q
. _ (11)
JZ(Q) =. ('}?']—) sing --%COSq

a° q . q

The resulting averaged expression for 1-ta in terms of (10) and (11)

is then:

* ~
<t -1> a.a, (e.xe.)*R.,.
L Rav _ ] ~j ~i” ~1] . . s
2 ? ? > {[(gi gj)(JZ/q J])

- (egR; ) (e, R, ) (55,70 - 31 (sing + sin®g)) (12)



where the argument of the spherical Bessel functions, q (see Equation (9)),
has been omitted for simplicity. |In Equation (12) the geometry of the
scatterer has been left completely general. The whole expression is multi-

plied by the factor:
).:.B.. ) » . (13)

Clearly this form-factor vanishes for any two groups in the scatterer whose
rvelative orientation .posse'sses g céenter o‘f.Symmet_ry, i.e. /
for nonchiral arrays of poiht dipolés in space. Expression (13) can be
rearranged to yield:

, = (fi x R..)-gj = m, e, : (14)

(ej X'Si).BiJ ~1] ~i <]

thch resembles the expression fof'fhe rotational strength fn optical activity
theory:]o indeed, m. = e, X Eij is the transition magnetic dipole associated
with_électronic transition Si'b The last expression in (14) shows that the
factor (13) is the produét of an axial and a polar vector. Axfaj or pseudo-
vectors do not change sign whgn'ah inversion of theif coordinates is carried
out; as a result, expression (12) will have the same value, but bpposite sign
for a chiral molecule and its mirror image. This chiFal discrimination
appearing ih the_avéraged equations makes CIDS much more sensitive than
regular light scattering to the ;trutture of optically active molecules. Only
B (equal to one-half of the scattering angle) appears in Equation (12); this
simple dependence gives the differential scattering pattern the ''ring structure'
of constant intensities similar to those observed in powder patterns in

knR, . .
crystallography.]] For small values of q = A'J sinB, (i.e., for A > Rij)’

we can expand the spherical Bessel functions in terms of powers of their



arguments to obtain:

lim j,(a) = ¥ q : | (15a)
>0 ' .

and

lim j,(q)/a TLS_ q (15b)

0

From these expressions,an asymtotic equation for <IL-IR>av can be obtained:

1im 3 = 5y lzrs aia.(e.xei)'R1.(ei'e.)(sin B+sin B)
q>0 c i J o~y ~ )~ ) ,
: (16)
Clearly, in the forward direction (B =0, q = 0) <t =lg>, and therefore

the CIDS ratio, vanishes. This conclusion is only valid within the first
Born approximation]2 to the local field, used in de?iving the above equations.
Now we must obtain the spatial averaging for the total scattering. The
scattering inténsity due to.a.collection of polarizable points in space, each

characterized by a polarizability tensor ai'= a.e.e., is:

i~i~i’

O I\.‘_

l(l") = ZZ éiqcoseqTa. [E".
c? [ -

: ~ % AN A
0 3i3i'§j§j'§o - Edsigi'kk'EJEj'Eol (17)

A A

where Qs aj, ers ej, k, g, and & have the same meaning as Befofe. EQ is -
the incident electric unit vector. For light polarized perpendicular to the

scattering plane



E. = a , ' (18a)
and for light polarized parallel to the. scattering plane:

Ep=cosg b+ sinB ¢ o ) : ’ (18b)

The scattered intensity for light perpendicular to the scattering plane is then:

|
4% = L Le
c B N |

|qcosea a; [(a-e )(E.EJ)EI.tJ - (f'éi)(éi.g)(fj.g)(f.éj)]
(19)

and the scattered intensity of light incident parallel to the scattering plane

is given by:

e%— = pxeld0s8* alleee )= (e, -k)(e-k)]{SIn Blbee;) (bee,)+
c iJ
-cos B(c-e )(c'e )+snn8cosB[(b-e )(c "e; )+ {cee, )(b-e 11} (20)

~ ]

Equations (19) and (20) must be spatially averaged. The derivation follows
closely along the lines shown for lL IR’ We will omit the details and will
present only the results. The spatially averaged total scattered intensity

is:' (details of the derivations can be found e'lsewhere)]‘3
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<I +I1, > .

15> _ 8 2, .2 2, Koo o
=2 "1 %'“il (1-sin"8 cos™g)+ f?iaj{(fi R (250R;5)
{(LGgmiy7a) + sin?B(3j,/q - J'o)](E;'EJ-) - z(gi-gij)(gj-gij) .

[(G1/a = 4ip/a%) = sin® j/a° + sin'8(j,/a - 3ip/a0) 1} +

(e oR; ) (2R D [(165,/a7 = 35,70 + Jg) + sin“B(bj,/a” -

3J;/a + Jg) - hsinuﬁ(j]/q - 3J2/q2)]} - (1 -_%((Eijxgi)z +

(R; <t ) (53 ,/a° = 517a) + sin’8(jg=5,/a) - sin'B(g -
35.,/q%)] -.((t xR. ) (t xR, ))2[(1/8) (-9j,/q + 2], /q + j ) -
1779 i 2y TV 1279 hra g
N S Cho 2
(174)sin"B(3j,79" = 4j/q = jo) - (1/8)sinB(9),/q" + 2j,/q +
3j4) 1] - (t -(E xt ))2[(1/8)(51 /q2 +2j.,/q - j.) + %sin%g'
0 SRR 2 1 0

C 2 . b2 .
(-5j,/a" + 2j,/a + jg) + (1/8)sin"B(13j,/9" - 6j,/q - j,)1} (21)
where jo = Einil is the first order spherical Bessel function. Equation (21)
gives the total scattering as a function of the scattering angle (2B), due to
an ensemble of scatterers (each described by a set of point polarizable groups),
adopting all possible orientations in space. In this expression only three

sperical Bessel functions contribute: jo, j] and jz. All the Bessel functions
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in this equation appear in the form, jn/qn, which is always symmetric in B.
This together with the fact that only the'O?h, an and hth powér of sin B |
are present means that the scattering pattern must be symmetric about the
direction of incidence of light. Equatioﬁ (21) is an extension of the
spatially averaged scatterihg of a collection of point polarizabje groups,
originally derived by Debyelh for the caée of spherically éymmetric point

polarizabilities. A somewhat different form of Equation (21) has been derived

by Horn]S for polymers which are rigid rods or Gaussian chains.

1. CIDS of an Ensemble of'Randomly Oriented Helices.

Here we will apply the results of the last section to the casé éf a
helical scatteref made up of uniaxial point polarfzable groups which are
evenly spaced. The position of the.jth group in the helical scatterer with
respect to an arbitrary coordinate syStem (see Figure 25 can be written:

Pjto

e, + ——— e . (22)

fj = a cosjT 3

+ .
o€ a sinjt,

with a, the radius of the helix; T, the winding angle of the helix groups
in radians; :and P, the pitch of the helix. Next we assume that the single-

principal axis of each polarizability (tj) is tangential to the helix,

‘+ (a/M)cosjT

| 0 %2

L = -(a/M)sinjt

+ (P/27M) 3 (23)

where M is a normalization constant: M = (a2 + Pz/hﬂz)]/z. From Equations

- (22) and (23) and using the corresponding definition for the unit vector

distance between groups ith and jth, Rij = rJ.-ri / |rj-ril, we can write
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Equation (13) for the case of a helical scatterer. Due to the symmetry of
the helix, the result is that both the total'(|"+ ll) and the differential

scattering (IL-IR) can be written in terms only of the angular distance iij

h .

between groups it and jt R (Tij = (j-i)To):

<l -1, >
L g v . (aZp/bnM?) 3 T (1/6,;) [2(1-cost; ;) -7, ;sinT,, ]

L ij

{(I/MZ)[(azcosrij + Pz/unz)(jz/q - jl) - (1/Gij)[azsinTi. +

j
(P2 /%)t 12(53,/a - 5)) (2
with: G,. = [2a®(1-cosT..) + (Pr../2m)%]
_ ij ij ij

By exploiting the helical symmetry, Equation (24) can be greatTy sim-
plified for the purpose of calculations, allowing us to.write it in terms
of a single summation. The result is similar to (24) with Ty 3T, and

- | N-1 |

Gij = Gk, andvthe two summations replaced by T (N-k).
' ' k=1

An equivalent expression for the denominator of the CIDS ratio can be
obtained for the helix, but we will not write it here to save

space.

111. Numerical Calculations.

"~ We have carfied out calculations using Equation (24) and its
equivalent for the total scattering, for an ensemble of randomly oriented
helices in solution as a fuﬁction of the helix parameters and the wave-

length of light. Figure 2 shows the polar plots of CIDS (labeled CIDS AV)
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and total scattering (labeled SCAT AV) vs. the scattering angle, for
three different ‘'values of pitch (P), radius (R) and wavelength of light.
Positive values of the CIDS are depicted with lfght lines and négative
values with dark lines (see figure caption for details). The first thing‘
to notice in this figure is how much more sensitive CIDS (left column)

is to a change in the heliéal'parameters, when comﬁared to the total scat-
tering (right column). It is also remarkable that even for ratios of

P/A close to 0.5 and R/X ~ 0.3 the CID scattering pattern shows at least
one zero. The CID and total scattering values have been normalized for
the purpose df the plotting; the order of magﬁitude of the CIDS ratio
calculated rénged between 162 and ]67'(see figure caption for maximum
values obtained). Such values are cohmonly measured in the typica],CD'
experiment, and therefore from these calculations we can predict that the
CiDs effeet corresponding to helical molecules of this size could in
frprinciple be detected.

| Figure 4 shows.the dependence of the magnftude of the CID and

total scattering on the length of the helices in solution. The pitch of
the helices is 3#';” and the radius 11 ; . The lengths are given in.
nﬁmber of turns as follows: upper plate = 500 turné, middle = 73 and
lower plate = 7.3 turns. Notice that while the total scattering becomes
more spherically symmetric for smaller helices, the plDSppattern does
not.change much. The plots have been normalized for comparison, since
both CIDS and total scattering values decrease with the decreasing

length of the helix. The independence of CIDS to the length of highly
symmetric and periodic chiral scatterers, frequently found in biological
aggfegates, indicates the sensftivity and uniqueness of the CIDS signal.
It will characterize the cHirél nature-qf certain elements of an object,

but it will not respond to other elements.
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CONCLUSIONS .

in this pap;r the'theory of ﬁirchlar intensity differential sca-
ttering presented earlier]'h has been extended to include the general
case of chiral scafterers of arbitrary geometfy which are randomly oriented
iﬁ space. fhe relevant equations are equations (12) and (21, whose
ratio give the spatially avéraged CIDs. [t can be seen that in the
process of averaging, the phase relationship between two point-polarizable
groups in the scatterer is lost. This result-formalTy means that an
inverse Fourier tranéforﬁation of (12) and (21), or their‘ratio; cannot
be-déne to obtain direct geometric information from the measured C1iDS
signal. This is not differeﬁt from any other spatfally aVeraged op-
tical sighal, therefore the use of equations (12) and (21) to interpret
CIDS in terms of structure is necessarily restricted to the comparison of
model-structures with experimental data. On the other hand, the equa-
tions derived here, and the calculations performed, show that CIDS is
much more sensitive than averaged total scattering to the geometry and
structure of chiral molecules. In all numeficél computations shown
here, the absolute values of the CIDS ratié obtained were found between

-2

10 © to 10_7, a range accessible to the measuring devices of current

CD spectropolarimeters.
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FIGURE CAPTIONS

Figure 1. The three Euler angles between the space-fixed and the
molecule-fixed coordinate system, are shown. In the text g and k'
are the polar axes of these frames.

Figure 2. A helix of polarizabilities. The polarizabilities are shown

as ellipsoids of revolution whose symmetry axes are directed along the _
vectors t,, tz, ..... etc, shown in the figure to be tangential to the helix.
In our cslcuTations the other two axes of the polarizability were taken
equal to zero. t. is the angular distance between the dipoles; a is the

radius of the helix-and p its pitch.

Figure 3. Polar plots of total scattering(left column) and CIDS(right column)
for ramdomly oriented helices, for different values of pitch P, radius A

and wavelength of light W.The angular distance between the polarizabilities
is 0.682 radians.The maximun CIDS value was obtained for the top case and
was 2.81 x 1073.The thick lines indicate negative lobes whereas the thin
ones correspond to positive CIDS values.

Figure 4. Polar plots.of CIDS (left column) and total scattering (right
column) for randomly oriented helical scatterers. Three different lengths
are shown with the other parameters of the helix kept constant.(top) length
= 500 turns, (middle) length = 73 turns and (bottgm) length = 7.3 turns. ’
The wavelength of light is 4442 A, radius = 11 A, pitch = 34 A. Notice
that in the bottom figure the total scattering of the helix is like the
scattering from a point, with the scattering intensity at right angles

equal to one-half of that in the forward direction.
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- This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.
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