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Abstract

Essays in Environmental Economics

by

Kathleen Courtney Foreman
Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Maximilian Auffhammer, Chair

Policy makers are increasingly choosing market-based policies over command and control
options. In this dissertation, I explore two instances of policy choices in environmental
economics: a relatively novel market-based approach to handle congestion in transporta-
tion policy; and, government provision and control in the arena of water policy.

The first chapter estimates the traffic volume and travel time effects of the recently im-
plemented road congestion pricing on the San Francisco-Oakland Bay Bridge. I employ
both a difference-in-differences and regression discontinuity approach to analyze previ-
ously unexploited data for the two years spanning the price change and obtain causal
estimates of the hourly average treatment effects of the policy. I find evidence of peak
spreading in traffic volume and significant decreases in travel time during peak hours. I
also find suggestive evidence of substitution to a nearby bridge that is not subject to con-
gestion pricing. In addition, I show significant decreases in travel time variability. Using
my results, I calculate own- and cross-price elasticities for trips due to the toll change and
include back-of-the-envelope calculations for the welfare effects of the policy.

The second chapter I explore the impact of government water delivers in California’s
Central Valley. California’s agricultural sector receives large quantities of irrigation water
from the federal and state water projects. In recent years, there have been significant
restrictions on these deliveries due to droughts and regulation to protect endangered
species. This chapter empirically tests the hypothesis that higher deliveries to water
districts in a given county lead to higher agricultural employment and cropped area and
provides point estimates of this effect and uncertainty around the estimates. The results
show robust evidence of a statistically and economically significant impact of irrigation
water deliveries on employment and area. This effect is robust to different definitions of
employment, alternate control groups, and different windows of data.
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Chapter 1

Crossing the Bridge: The Effects of
Time-Varying Tolls on Curbing
Congestion
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In 2010, urban road congestion cost the US $101 billion, including nearly two billion
gallons of wasted fuel and 4.8 billion hours of travel delay1. To address the problem, the
US Department of Transportation has called for measures such as road congestion pricing
to be implemented to help alleviate the problem. While theory suggests that congestion
pricing should work, there is little empirical evidence as to the magnitude of change we
should expect from and the effectiveness of pricing programs. In this paper, I provide
point estimates of the causal effects on traffic volume and travel time from the recent
implementation of congestion pricing on one of the main toll bridges in the San Francisco
Bay Area. I also show reductions in travel time variability, calculate the ranges for price
elasticities, and conduct back of the envelope calculations of the welfare impacts of the
policy.

Pricing traffic congestion is based on the economic theory of negative externalities: the
driver of a vehicle imposes costs on all the other drivers on the road and, due to the open-
access nature of government-funded roads, the driver does not internalize those costs; this
results in an inefficiently high number of drivers using the road. In theory, the optimal
corrective policy is a tax equal to the marginal social cost imposed by the additional driver,
which makes drivers internalize the external costs. The optimal fee should therefore be
a time-varying fee that depends on real time traffic conditions. The pricing increase on
the San Francisco Bay Bridge was primarily implemented to raise funds to pay for bridge
maintenance and seismic retro-fitting, but it is in fact a peak time pricing program. While
it falls short of being an optimal fee, the time-varying congestion pricing on the bridge
studied in this paper does reflect the higher marginal social damage during times of heavier
traffic, and it is one of the few attempts to implement time-varying congestion pricing on
roads in the United States. There is a wide body of literature focused on the theory of
externalities and congestion, but existing empirical studies of road congestion are scarce
due partially to limited instances of actual implementation.

In this paper, I test the hypothesis that congestion pricing decreases traffic volume
and results in a shorter travel time during peak hours on the bridge. In addition, I
investigate the possibility that marginal drivers switch to traveling during off-peak times
or substitute to an alternate route that lacks congestion pricing, and that travel time
variability on the Bay Bridge during peak hours decreases. If the pricing plan is successful
in altering behavior, it could have important consequences for use in policy-making to
stem the costs associated with road congestion. Furthermore, because road use is linked
to other outcomes (e.g. air and noise pollution, traffic accidents, and petroleum use and
importation), policies that affect driver behavior could have consequences in other areas2

1Schrank, Lomax and Eiseleand (2011) and USDOT (2008)
2For example, Currie and Walker (2011) demonstrate that road congestion contributes to poor infant

health, and easing road congestion can reduce prematurity and low birth weight. Levy, Buonocore, and
von Stackelberg (2010) estimate that the value of small particulate matter related mortality attributable
to congestion is $31 billion annually. Schrage (2006) shows the incident and costs of accidents are higher
with higher congestion. Dickerson, Peirson and Vickerman (2000) show that the accident externality
increases substantially with high traffic volumes. Treiber and Kesting (2008) show that traffic congestion
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I use two methods for estimating driver response: difference-in-differences and regres-
sion discontinuity. Using a difference-in-differences approach and two years of data, I
find that the 50% increase in toll price during peak hours in my study results in statis-
tically significant decreases of 312 vehicles per hour (4.4%) during peak hours as well as
increases in traffic volume hours just before and just after peak periods. In addition, I
find a statistically significant decrease in travel time of between two to six minutes (10%
to 24%) during peak hours. Finally, I find evidence consistent with a small amount of
morning peak substitution to an alternate bridge that lacks congestion pricing. In order
to estimate short-term effects of the policy, I use a regression discontinuity approach to
analyze two months of data. I find the immediate response was a decrease in peak traffic
volume of 639 vehicles per hour (9%), and a decreased travel time of 4.4 minutes (21%),
both of which are statistically significant at the 1% level. In addition, I find statistically
significant decreases in the standard deviation of travel time during peak hours of up to
5.4 minutes.

I use my point estimates of decreases in traffic volume to calculate price elasticities,
and I find the peak hour own-price elasticities to be around -0.084, and ranging from 0 for
mid-peak hours to -0.2 for shoulder peak hours. I find the off-peak response to peak-hour
price increases to be around 0.034, and ranging from 0 for non-shoulder off-peak hours to
0.38 for off-peak shoulder hours. I do back-of-the envelope welfare calculations, and find
the value of time saved to be between $1-28 million annually; the value of fuel savings to
be around $1 million annually; and, the amount of CO2 abated to be 2240 tons per year,
which is equivalent to taking 480 commuting cars off the road.

This paper is organized as follows: section 1.1 provides some background on existing
work; section 1.2 explains the empirical design; section 1.3 describes my data; section 1.4
shows my results; section 1.5 discusses the policy implications and welfare impacts; and,
section 1.6 suggests directions for future work and concludes.

1.1 Background
The economic literature is rich with theory on congestion pricing that dates back

to Vickrey (1963) who originated the theory of policies to handle road congestion and
pointed out the need for different prices during peak and off-peak hours. Small (2005)
noted the open-access problem inherent in our publicly-provided (and under-priced) road
systems, and suggest that charging an optimal fee to access the roads could encourage
a more efficient allocation. Baumol and Oates (1988) suggest that the optimal solution
to congestion is to impose a Pigouvian tax (equal to marginal damage) on the drivers,
who are the producers of congestion externalities. Small (1983) investigates the distri-
butional impacts of congestion tolls using a modal choice equilibrium model and survey
data, and concludes that “in almost all cases, the net result is benefits for all income
groups”. Boardman (1977) model the speed and flow relationship of traffic and test the

can increase fuel consumption by 80% and travel time by up to a factor of 4.
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model using data from a limited access highway. They conclude that congestion prices
must vary by time of day to encapsulate the hour-dependent private and social costs of
driving. Using numerical simulations of a spatial general equilibrium model, Anas and
Rhee (2006) compare congestion pricing and urban boundaries, essentially comparing a
price regulation to a standard, as a means of reducing congestion and urban sprawl, and
find that congesting pricing is first best and that using urban boundaries actually reduce
welfare. Pricing negative congestion externalities is going to become more important with
the introduction of increasingly stringent Corporate Average Fuel Economy (CAFE) stan-
dards, which will likely decrease the private per mile cost of driving, and consequently
increase congestion.

McFadden (1974) emphasizes the importance of proper planning and policy in devel-
oping urban transportation systems, and he notes that travel decisions have many dimen-
sions, including purpose, timing, and mode, all of which are important considerations for
pricing road congestion. McFadden (1974) also provides evidence that travel time is val-
ued linearly and increasing in the wage rate; additionally, he presents suggestive evidence
that more salient costs associated with driving, such as tolls, appear to be weighted more
heavily than less salient driving costs, such as mileage and maintenance costs. However,
recent work done by Finkelstein (2009) shows that collecting tolls electronically can have
the effect of rendering tolls less salient, and that the adoption of electronic toll collection
makes the short run toll price elasticity of driving more inelastic.

Elsewhere in the economics literature, non-pecuniary attempts to decrease traffic and
congestion have been shown to be ineffective. For example, Davis (2008) shows that a
one-day-a-week ban on driving a vehicle in Mexico City, which was a policy aimed at
reducing air pollution that has been replicated in several locations in South America, did
not decrease air pollution, and resulted in more, and disproportionately higher-emissions,
vehicles being driven. The author concludes that the restrictions were unsuccessful in
prompting drivers to reduce usage of private vehicles, which suggests that if such a policy
were implemented to curb congestion, it would be equally unsuccessful. Additionally,
expanding road capacity is found to be an ineffective way to reduce congestion, as found
by Duranton and Turner (2011), who echo previous findings that peak traffic grows to fill
the maximum available capacity, in short: if you build it, they will come.

Time-varying congestion pricing on roads had previously been implemented in only
four other locations in the US (see table A.1): in 1995 in Orange County, California;
in 1998 in San Diego, California; in 1998 in Lee County, Florida; and, in 2006 a short
test run was done in Oregon. In San Diego, non-HOV drivers can use the HOV lanes
of Interstate 15 for a price that varies dynamically with traffic demand with the goal of
keeping the HOV lanes flowing at full speed, and the time saved is estimated to be about
one hour for each round trip made by a vehicle. In Orange County, lanes running parallel
to State Route 91 for 10 miles can be used by drivers by paying a predetermined price
by time of day and day of week, the amount of which is adjusted every three months and
is based on previous demand. The reports on the effectiveness of this program maintain
that the speeds in priced lanes during peak hours are about 60-65 mph, while speeds in
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unpriced lanes are 15-20mph. The Florida pricing scheme was introduced on two Lee
County bridges and offers a 50% discount on travel in pre- and post-peak periods; the
program is reported to have shifted 5% of travel from peak to off-peak times. Since the
Bay Bridge pricing policy was introduced, a few other areas in the US have introduced
various forms of congestion pricing, including Seattle and San Jose.

The limited number of implemented congestion pricing schemes means there are not
very many opportunities for economists to study the impacts, and in fact, there is little in
the empirical economics literature about the instances of congestion pricing. One notable
exception is Small (2005), which uses survey data and revealed and stated preference
models to study drivers’ preferences around the pricing of route 91 in Orange County. The
authors model drivers’ decisions around acquiring an Electronic Toll Collection (ETC) tag,
using priced or unpriced lanes, and carpooling or driving solo. They find that people have
a median value of travel time of $21.46/hr, and a median value of travel time reliability
of $19.56/hr. Another study, Brownstone et al (2003), uses revealed preference data from
Interstate 15 in San Diego and finds the willingness to pay to reduce travel time to be
$30 per hour.

Congestion pricing on roads has been implemented in several locations outside of the
US, including London, Singapore, Stockholm, Norway, and Milan. Reported outcomes
from policies in these cities include reductions in vehicle miles traveled (VMT), decreases
in traffic and travel times, reductions in accidents and emissions, and increases in vehicle
speeds.

The reports on these policies are not in the economics literature and rely mainly on
comparing the unconditional means of outcome variables before and after policy changes to
evaluate the impact and success of congestion pricing. For example, the report on Milan’s
policy claims the policy resulted in a reduction of 12% in traffic in 2008, the year the
policy was implemented. However, concurrent factors (such as the global financial crisis
and oil prices rising above $100/barrel) were not taken into account. In subsequent years,
Milan found that traffic increased back to pre-policy levels, which brings into question
the effectiveness of the policy. The report does not attempt to disentangle the traffic
reductions due to the policy and the reductions due to confounding factors.

A recent report on the Bay Area toll changes (Deakin and Frick (2011)) uses a small
data set (as low as 8 observations in some cases) and compares the hourly means before and
after the policy change (sometimes comparing observations of before and after in different
months of the year). The report finds that there was a small and statistically insignificant
decrease in overall morning peak traffic of 1.4% and evening peak decrease of 0.1%. Broken
down by hour, they find statistically significant increases in traffic volume during some
off-peak shoulder hours, but they find mixed results of increases and decreases in traffic
volume during peak hours, which seems to suggest that the pricing policy might not be
working as intended to decrease congestion during peak hours. They also find decreases
in travel time during some morning peak hours, and a small decrease in travel time
during the evening peak, although this is somewhat perplexing, given that the travel time
decreases happen during some of the hours where they find both insignificant increases
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and decreases in traffic volume.
A simple comparison of means before and after policy changes and the overall dearth

of evidence of the causal effects of road congestion pricing is unhelpful for policy-makers
hoping to use congestion pricing to curb traffic problems. To address this lack of evidence,
I employ large and previously unexploited data sets and use an empirical econometric
design to estimate the causal effect of congestion pricing on traffic volume and travel
time. My work builds on the established theory of congestion pricing and fills some of
the existing knowledge gap in the effects of the practice of the few congestion-targeted
policies that have been implemented.

1.2 Empirical Design

1.2.1 Quasi-Experimental Setup
In the San Francisco Bay Area in California, there are three bridges that link com-

munities in the East Bay with the San Francisco peninsula. The San Francisco-Oakland
Bay Bridge (hereafter Bay Bridge) is the main bridge connecting downtown San Francisco
with smaller cities in the Easy Bay (see figure 1.1) and is used heavily by drivers commut-
ing for work and traveling for leisure activities; it is used by roughly 124,000 vehicles per
weekday in each direction. The two smaller bridges, the San Mateo and the Dumbarton
Bridges, lie 18 and 25 miles south of the Bay Bridge, respectively. The San Mateo Bridge
carries about 46,000 vehicles per weekday per direction, while the Dumbarton Bridge
carries about 31,000 vehicles. Besides those three bridges, the main option for people
crossing the Bay is to take the light rail system (Bay Area Rapid Transit, or BART).
Very few people take the ferry, and two roundabout routes could be taking two bridges
(the Richmond and Golden Gate Bridges) or driving south around the Bay. These latter
two options would require most drivers to pay two tolls, drive over 50 miles out of their
way, or both. Thus, I assume they are not reasonable substitutes for the Bay Bridge and
I consider the ways that drivers can substitute away from the three bridges I study in this
paper to be limited.

On all three bridges, tolls are only collected on vehicles crossing westward onto the San
Francisco peninsula. At all times, there are dedicated lanes for Electronic Toll Collection
tag holders, known in the Bay Area as “FasTrak” tags. Using a FasTrak lane decreases
the delay from toll collection by allowing drivers to slow to 25mph instead of stopping
completely to pay the toll. Also available at all times are cash lanes, which allow drivers
to pay with cash or pay with their FasTrak tags. Cash lanes move much slower than
FasTrak lanes, as drivers who are using cash must stop completely to pay the toll, thus
decreasing vehicle throughput. During peak hours only (weekdays from 5am to 10am and
from 3pm to 7pm), there are dedicated lanes for carpools3. During off-peak hours, the

3Carpools are three or more people on the Bay Bridge and two or more people on the San Mateo
and Dumbarton Bridges. Other vehicles that are allowed to use the carpool lanes are motorcycles and
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Figure 1.1: Map of the Bay Area Bridges
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Table 1.1: Summary of toll charges on weekdays before and after July 1, 2010
Before After

Peaka Off-peak
Regular Carpoolb Regular Carpoolb,c Regular Carpoold

Bay Bridge $4 $0 $6 $2.50 $4 N/A
San Mateo Bridge $4 $0 $5 $2.50 $5 N/A
Dumbarton Bridge $4 $0 $5 $2.50 $5 N/A

a Peak hours are weekdays from 5am to 10am and from 3pm to 7pm.
b Three or more people required in carpools on the Bay Bridge and two or more people
required in carpools on the San Mateo and Dumbarton Bridges.
c FasTrak tag required to access carpool lanes after the change.
d There are no carpool lanes during off-peak hours.

carpool lanes are either closed, or they revert to bus, FasTrak or cash lanes. There is no
toll for any vehicle on the eastbound trip.

Prior to July 1, 2010, the toll was the same for all three bridges at all times of the day
and was a flat $4/vehicle for vehicles with 2 axles (vehicles with more axles face higher
rate). Carpools using the carpool lanes during peak hours were allowed to use the bridge
toll-free.

On July 1, 2010, the tolls on all seven Bay Area Bridges were increased to raise funds
to pay for maintenance, transport projects, and seismic retro-fitting. The tolls on the San
Mateo and Dumbarton Bridges4 increased uniformly by 25% from $4 to $5 per vehicle,
with carpools now required to pay a toll during peak hours, albeit at a reduced rate of 50%
of the regular toll: $2.50 per vehicle. In addition, since the change, carpools are required
to carry FasTrak tags in order to take advantage of the lower rate. There is no carpool
discount during off-peak hours. Also on July 1, 2010, the Bay Bridge changed its rates,
but implemented non-uniform congestion pricing: $6 per vehicle during weekday peak
hours; $4 per vehicle during weekday off-peak hours; and, $5 per vehicle on weekends.
The carpool vehicles on the Bay Bridge are treated the same as on the other bridges,
that is, they are now required to carry a FasTrak tag and pay $2.50 per vehicle during
peak hours, with no discount off of the $4 toll during off-peak hours. Table 1.1 shows a
summary of the tolls on weekdays before and after the change.

The non-uniform change in pricing provides a quasi-experimental setting that allows
me to empirically test the hypothesis that peak time congestion pricing reduces traffic
volume and travel time, and travel time variability.

vehicles with DMV-issued Clean Air decals. I refer to them collectively as “carpools”.
4The same toll increase took place on four others: Antioch, Benicia, Carquinez, and Richmond Bridges.
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1.2.2 Empirical Method
I test the hypothesis that congestion pricing affects traffic volume and travel time over

the Bay Bridge during peak hours by using a difference-in-differences (DD) approach with
day of week and week of sample fixed effects. Using my hourly-level data, I compare traffic
volumes and travel times during each hour of the day from 1:00am to 11:00pm before and
after July 1, 2010 on the Bay Bridge. I use the midnight hour before and after the policy
change as a control. This allows me to identify the causal effects of the congestion pricing
on peak and off-peak (non-midnight) traffic volume and travel time.

In my DD estimating equation 1.1, Yhdw represents either traffic volume or travel time
during hour h on day of the week d in week of sample w. afterw is a binary indicator equal
to one if the week of the observation is after the policy change on July 1, 2010. When
after is interacted with a coefficient for each hour of the day (1-23), as in βhafter, the
resulting βh’s are my coefficients of interest, that is, my estimates of the hourly average
treatment effect of the pricing policy. My estimating equation is:

Yhdw = α0 +αh + β0afterw + βhafterw + γd + θw + εhdw (1.1)

Equation 1.1 includes a set of fixed effects for: hours of the day from 1:00am to
11:00pm, αh; day of the week, γd (excluded category is Monday); and, week of sample,
θw. For my week of sample, my excluded categories are January 1-7, 2010 and 2011. I do
not use the data from the partial weeks at the beginning and end of the sample, so the
first full week of sample is July 2-8, 2009 and the last is June 18-24, 2011. I also do not
use the data from the week the policy change took place, as it was part way through a
week. Thus, I use a total of 102 weeks of data, 51 before the policy change and 51 after.
Finally, εhdw represents an unobserved disturbance.

Applying a difference in difference approach is predicated on two key identifying as-
sumptions: stable unit treatment value assumptions (SUTVA); and, absent treatment,
traffic volume and travel time during peak and off-peak (non-midnight) hours have simi-
lar trajectories as the midnight hour. For example, populations changes or weather shocks
might affect traffic volumes and travel times in both non-midnight and midnight hours
similarly. Presuming these assumptions hold, I am able to infer causality from my point
estimates. I discuss these assumptions and test their validity in the results section.

1.2.3 Predictions from Theory
The most elementary economic principle at work here is the law of demand, which

predicts that the toll price increase during peak hours will result in a decrease in the
quantity of vehicle trips demanded during those hours. The reductions in trips during
peak hours could result from: overall trip reduction from trip avoidance or trip combining;
shifting the timing of trips from peak to off-peak hours, in which the toll price did not
change; shifting the trip to a lower-priced route, for example, the San Mateo Bridge; or,
shifting modes from driving to public transit (e.g. BART, bus). While a 50% increase in
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the toll from $4 to $6 during peak hours seems like a large increase that might result in
substantial decreases in the number of trips taken, the predicted result becomes less clear
when one considers the total trip cost, the availability of substitutes, and the toll salience
compared with other costs of traveling.

First, many drivers use FasTrak tags to pay their tolls, which decreases the salience
of the toll and would thus dampen the price effects of the toll change. One would expect
that drivers paying cash would be more responsive to the price change. Anecdotally, I
have spoken to a fair number of people about the toll, and many of them could not even
tell me how much it is and did not know that it had changed, which suggests that their
behavior would not have been directly affected by the toll change.

Second, the total cost of driving across the bridge is much higher than the toll alone.
For example, someone driving from Walnut Creek (a city in the East Bay that is located
23 miles from the San Francisco Central Business District) can expect the drive to cost
anywhere between $23 and $100 per round trip5, meaning that the cost increase per trip
due to the toll was closer to a 2-5% increase in cost instead of a 50% increase. Thus, the
price response might be much lower than expected if drivers are taking into account the
full cost of driving.

Finally, the availability of substitutes will impact the marginal driver’s response. The
prices of BART and buses did not change during this period, so one would expect some
substitution toward public transit for some people living closer to transit options who
were right on the edge of taking transit beforehand. Also, for the Bay Bridge, the off-
peak hours did not have a price increase, so one would expect that marginal drivers who
were driving during peak shoulder hours (that is, the hours on the shoulder of the peak:
5:00am, 9:00am, 3:00pm, and 6:00pm) might substitute from the peak shoulder hour to
the closest off-peak shoulder hour (that is, the hours on the shoulder of the off-peak:
4:00am, 10:00am, 2:00pm, and 7:00pm). These drivers are likely to change their time
only if they were already traveling close the off-peak hours. For example, someone who
used to drive at 5:10am might leave a little earlier and now travel at 4:50am. Conversely,
it is less likely that a driver who used to travel at 5:50am would switch to driving at
4:10am. Finally, if a driver used to use the Bay Bridge and his point of origin is located
right on the edge of the middle in between the Bay and San Mateo Bridges, he might
substitute toward the San Mateo during the peak hours, since it is now one dollar cheaper.

Overall, it’s unclear if the congestion pricing would work to reduce traffic volume, and
if it does work what the magnitude of the reduction would be. The availability (or lack)
of substitute travel times and routes, the decreased toll salience due to FasTrak, and the
toll being just a small part of total cost of driving may dampen the effect of the toll price

5Based on the following calculation: toll = $4-6; mileage = $9-26 (based on a 23.5 mile trip in each
direction and either a mileage rate reflecting only gas use of about $0.20/mile, which approximates the
marginal cost of driving, or the IRS’s standard mileage rate of $0.555/mile allowance that is meant to
include gas, repairs, and other costs of operating a vehicle, which is closer to the average cost of driving);
parking in the San Francisco Central Business District = $5-$45 per day; and time costs of 33 minutes
to an hour each way = $5.5-$30 depending on the value of travel time used.
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increase.

1.3 Data
In this paper, I employ two panel data sets. The first data set is previously unexploited

in the economics literature and measures the traffic volume, reported in number of vehicles
crossing a bridge per hour. The second data set measures the travel time, reported as
the median trip time to cross a bridge in a given hour. I do not observe vehicle- or
driver-level data. I use data from the year before and the year after the toll change,
resulting in an hourly data set for each bridge spanning from July 1, 2009 to June 30,
2011. After excluding weekends and holidays, as well as the few hours when the Bay
Bridge was closed for repair, I end up with around 10,000 hourly observations per bridge,
per outcome variable.

1.3.1 Traffic Volume
The traffic volume data come from the San Francisco Bay Area’s Metropolitan Trans-

portation Commission, and comprise the total number of vehicles crossing the three Bay
Area Bridges controlled by the Bay Area Transportation Authority (the Bay, San Ma-
teo, and Dumbarton Bridges) by hour, by lane, and include the lane type (described
below). My outcome variable of interest is the number of vehicles that cross a given
bridge (counted at the toll plaza), in a given hour, on a given date.

Lane Type Each of the bridges have three types of lanes for the purposes of toll pay-
ment: carpool-only, FasTrak-only, and cash lanes (lanes in which drivers can pay with
cash, or they can use a FasTrak, but most cash lane users pay with cash, so I refer to them
as cash lanes). As of July 1, 2010, vehicles using the carpool lanes must carry a FasTrak
for payment. The two carpool lanes on the San Mateo Bridge revert to FasTrak-only
during off-peak periods. The solo carpool lane on the Dumbarton Bridge is closed during
off-peak periods. There are four carpool lanes on the Bay Bridge during peak hours,
and in the off-peak hours, two of them revert to cash lanes and the other two revert to
bus-only lanes.

Data on traffic volume over time on the Bay Bridge can be seen graphically in figure
1.2. The monthly mean of hourly traffic volume fluctuates between 5000 vehicles per
hour to 5600 vehicles per hour, depending on the season, with traffic generally higher
in the summer and lower in the winter. The percent of vehicles using the carpool lanes
is fairly consistent at just under 10%, with a visible drop around the time of the policy
change. The percent of vehicles using FasTrak lanes is under 40% at the begining of
2006, but increases to almost 60% by mid-2011. The percent of vehicles using cash lanes
changes from under 60% to around 40%. This is important, as FasTrak lanes have a higher
throughput per hour, and the increasing percent of traffic using FasTrak lanes could affect
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Figure 1.2: Bay Bridge, traffic volume over time

my estimates; this is one reason I control for week of sample in my estimation. Analogous
graphs for the San Mateo and Dumbarton Bridges are in the appendix; they show similar
seasonality patterns and lane type usage trends.

Data on the traffic volume profile for weekdays on the three Bay Area bridges for the
year before the policy change can be seen in figure 1.3. The vertical red lines in the graphs
indicate the start (5:00am and 3:00pm) and end (10:00am and 7:00pm) of peak periods.
The graph shoes the mean, fifth and ninety-fifth percentile of traffic volume. The solid
blue lines show traffic volume on the Bay Bridge: during early morning hours, traffic
volume is, on average, under about 1000 vehicles per hour. By the height of morning
peak, traffic volume reaches over 8000 vehicles per hour on average. This decreases to
about 6000 vehicles per hour in between the peaks, and then rises to over 7000 vehicles
per hour in the evening peak, after which it tapers back down to about 2000 vehicles by
11:00pm. The spread between the fifth and ninety-fifth percentiles remains largely in the
1500-2000 range throughout most of the day, except for the morning pre-peak period,
where it is mainly below 300.

On the San Mateo Bridge (red dashed lines), during early morning hours, traffic volume
is very low. By the height of morning peak, traffic volume reaches around 4750 vehicles
per hour on average. This decreases to about 2000 vehicles per hour in between the peaks,
and then rises slightly in the evening peak, after which it tapers back down. The spread
between the fifth and ninety-fifth percentiles is below 200 in the morning pre-peak period,
then rises to 900 by 9:00am, then after 10:00am decreases and remains largely between
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Figure 1.3: Mean, 5th and 95th percentiles of hourly traffic volume

400-600. On the Dumbarton Bridge (green dotted lines), during early morning hours,
traffic volume is very low. By the height of morning peak, traffic volume reaches over
4000 vehicles per hour on average. This decreases to just over 1000 vehicles per hour
in between the peaks, and remains about there through the evening peak, after which
it tapers back down. The spread between the fifth and ninety-fifth percentiles is below
100 in the morning pre-peak period, then rises to 1000 by 9:00am, then after 10:00am
decreases and remains largely between 200-300.

The peakiness feature of the weekday volume profiles of the three bridges suggests
that the bridges could be good candidates for congesting pricing during high traffic times.

1.3.2 Travel Time
The travel time data are from the Department of Transportation’s Performance Mea-

surement System (PeMS). These data provide the median time for vehicles carrying Fas-
Trak tags to get from one FasTrak sensor to another, by hour, and provides an estimate of
how quickly traffic is flowing. I use various sensor pairs to measure the time to westward
on the Bay, San Mateo and Dumbarton Bridges6. My outcome variable of interest is the
median time for FasTrak carriers to cross a bridge, in a given hour, on a given date.

6Median time to cross is measured from the sensor pairs: (1) Bay Bridge: the combination of four
originating sensors on the East Bay and two destination sensors in San Francisco CBD, for a total of
eight routes (2) San Mateo Bridge: SR 92 from Hayward to Foster City (3) Dumbarton Bridge: SR 84
from Fremont to US-101.
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Figure 1.4: Mean, 5th and 95th percentiles of hourly travel time

To be clear, my travel time data do not comprise the universe of vehicles crossing the
bridge: they comprise only those vehicles carrying FasTrak tags traveling between my
chosen sensor pairs, so I am only tracking the travel times of those vehicles. In principle,
vehicles carrying FasTrak tags ought to be able to cross the bridges faster than non-tag
holders because the FasTrak lanes have higher throughput and do not require vehicles to
stop to use them, unlike the cash lanes. In addition, since the policy change, carpools
are required to carry FasTrak tags, and they tend to cross the bridge even faster than
FasTrak lane users because they do not need to stop at metering lights after the toll plaza,
so if the number of carpools changes, it could bias my results. For example, if the number
of carpoolers decreases, my results might be biased downward, since carpools tend to
cross faster. However, the measurement I use is the hourly median travel time of the
tracked FasTrak tags, and since carpools make up fewer than half of all FasTrak holders
for an hour, any changes in the carpool should not affect my results. Moreover, part of
the congestion issue with the Bay Bridge is the bottleneck that forms before vehicles can
select into lane types. Hence, if a carpool or FasTrak user is stuck in the pre-bridge traffic,
it will have a similar travel time to the cash lane user beside it, and the congested time
of day is precisely the time that the policy is aimed at affecting. Finally, the percent of
vehicles using FasTrak for payment is roughly 65%, so the travel time measurement I use
captures the experience of two-thirds of the vehicles crossing.

A summary of the data on the fifth percentile, mean, and ninety-fifth percentile of
median time to cross the three bridges on a weekday is shown in figure 1.4. During early
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morning (uncongested) hours, crossing the Bay Bridge takes (solid blue lines), on average,
around 12 minutes (an average speed of 41 mph). By the height of morning peak, travel
time has increased to almost 30 minutes on average (17 mph). This decreases to about 17
minutes in between the peaks, and then increases again in the evening peak, to over 36
minutes (under 14 mph), after which it tapers back down to the uncongested rate. The
spread between the fifth and ninety-fifth percentiles is around 6 minutes in the morning
pre-peak period, and then increases to 29 by 7:00am, decreases to about 11 by noon, and
then increases again to 29 by 3:00pm, after which it decreases to about 6.5 by 8:00pm,
where it remains steady for the rest of the day. The data for the San Mateo (dashed red
lines) and Dumbarton Bridges (green dotted lines) show weekday travel times profiles of
10-12 minutes (60 mph) and 9-10 minutes (75 mph), respectively, with very little difference
between peak and off-peak hours. For the San Mateo Bridge, the spread between the fifth
and ninety-fifth percentiles is at or below 1 minute for most of the day, but spikes to 4, 7,
and 2 minutes at 7:00am, 8:00am, and 9:00am, respectively. For the Dumabarton Bridge,
the spread between the fifth and ninety-fifth percentiles is at or below 1 minute for most
of the day, and never gets much higher than 2 minutes at any time of the day.

The weekday travel time profile graph suggests strongly that the Bay Bridge is an
excellent candidate for congesting pricing, and also suggests that the San Mateo and
Dumbarton Bridges are operating at or below capacity and would benefit less from time-
varying congestion pricing. In addition, it shows wide variation in travel times on the Bay
Bridge during most of the day, making trip times across the bridge quite unpredictable.
If congestion pricing is able to decrease the travel time variance in addition to reducing
travel time, there could be additional benefits to drivers, which is a further reason that
the Bay Bridge is a good candidate for congestion pricing.

1.4 Results

1.4.1 Key Identifying Assumptions
As mentioned previously, the difference-in-differences approach is predicated on two

key identifying assumptions: the SUTVA and similar evolution of outcomes for the treated
and control groups absent treatment. I test the validity of those assumptions here.

The SUTVA, also referred to as the no interference assumption, requires that the
control’s outcomes are unaffected by the treatment; for this paper, it requires that the
pricing change for the peak hours does not affect traffic during the midnight hours. It
seems reasonable to believe the the midnight hour on the Bay Bridge is not a good
substitute for, and was not affected by the toll change in the peak hours. Figures 1.5 and
1.6 reflect this assumption in the lack of change in traffic volume and travel time during
the midnight hour (the lower, black line in the graphs) at the time of the policy change.
Statistical test also show no significant shift in these variables in the post-policy year.

The assumption of similar trajectories for the treated and control groups is key to
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Figure 1.5: Bay Bridge monthly mean traffic volume over time

the difference-in-differences estimation because any factors that are specific to either the
treated or control hours but do not change over time, or factors that change over time
equally for both time groups are netted out in the estimation. The reasonableness of
this assumption is less obvious and requires testing. The evolution of peak and off-peak
outcomes for the Bay Bridge from January 2007 to June 2010 (before the policy change)
and from July 2010 to June 2011 (after the policy change) are shown as monthly means
in figures 1.5 and 1.6.

The graph for traffic volume (figure 1.5) appears to show similar evolution of monthly
means between the midnight hour and each of: peak (non-shoulder) hours, peak shoul-
der hours, off-peak shoulder, and off-peak (non-shoulder) hours. Statistical tests indeed
indicate that the trajectories are not statistically different. This is true when testing the
entire time period shown in the graph (January 2007 - June 2010), the three full years be-
fore the policy change (July 2007 - June 2010), and the full year before the policy change
(July 2009 - June 2010), which is the data I use in my DD estimation. For comparison,
the figure also shows the monthly means for the year following July 2010; the peak, peak
shoulder, and off-peak shoulder hours appear to have been affected by the policy, while
the midnight and off-peak non-shoulder hours appear to have been unaffected by the
policy, which strengthens the SUTVA. I conclude that the traffic volume in the treated
and untreated hours have similar trajectories, absent treatment, and thus these data are
suitable for a difference-in-difference approach.

The graph for travel time (figure 1.6) appears to show similar evolution of monthly
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Figure 1.6: Bay Bridge monthly mean travel time over time

means between the midnight hour and each of: peak (non-shoulder) hours, peak shoulder
hours, off-peak shoulder, and off-peak (non-shoulder) hours. Statistical tests, weighted
by the the number of vehicles using each route, show mixed results. For each of the
three periods tested (the full sample from January 2008 to June 2010; the two years
before from July 2008 to June 2010; and, one year before from July 2009 to June 2010),
the midnight hour shows a statistically significant, but practically insignificant trend
increase of 1.2 seconds. The off-peak shoulder trend is statistically not different from
the midnight hour. The off-peak (non-shoulder) and peak shoulder hours show trends
differing from the midnight trend by less than 3 seconds, significant at the 10% level.
The peak (non-shoulder) hours have a trend that is different from the midnight hour
by -7.2 seconds, significant at the 5% level. Overall, although there is mild statistical
significance, the practical significance of the differences in trend are small enough to be
considered insignificant, and I conclude that the travel time in the treated and untreated
hours have similar trajectories, absent treatment, and thus these data are suitable for a
difference-in-differences approach.

In summary, the validity of the SUTVA and the evidence shown above regarding com-
mon evolution of the outcome variables in treated and control hours suggest that employ-
ing a difference-in-differences approach using the midnight hour as a control is a tenable
method for estimating the hourly average treatment effect of the recently implemented
congestion pricing on the Bay Bridge.
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Table 1.2: Traffic volume regressions results, by bridge
Dependent variable: Bay San Mateo Dumbarton
Traffic volume (vehicles/hr) (1) (2) (3) (4) (5) (6)
After July 1, 2010 -87.19 -5.68 -14.75 -11.63 -48.08 -10.59

(41.63)∗∗ (18.58) (16.14) (6.65)∗ (14.40)∗∗∗ (2.91)∗∗∗

Peak hours 6476.53 2884.43 2280.49
(26.00)∗∗∗ (15.44)∗∗∗ (19.11)∗∗∗

Off-peak hours 2934.28 989.95 585.16
(35.99)∗∗∗ (10.82)∗∗∗ (6.53)∗∗∗

Peak hours, after -312.00 32.46 -58.97
(35.19)∗∗∗ (22.41) (26.91)∗∗

Off-peak hours, after 65.23 -24.06 -24.53
(50.08) (15.28) (8.99)∗∗∗

Const. 5254.72 1111.80 1922.20 261.81 1321.93 124.33
(31.28)∗∗∗ (13.12)∗∗∗ (11.54)∗∗∗ (3.83)∗∗∗ (10.39)∗∗∗ (1.80)∗∗∗

Off-peak mean 3879 3879 1169 1169 654 654
Peak mean 7428 7428 3157 3157 2370 2370
Obs. 11594 11594 11594 11594 11594 11594
F statistic 4.39 27732.7 .84 16638.35 11.15 9629.48
Significance is at the 10%=*, 5%=**, and 1%=*** levels and use Newey-West standard
errors with 26 lags. All specifications include only weekdays from 1 July, 2009 to 30 June,
2011, excluding holidays and hours when the Bay Bridge was closed for repair.

1.4.2 Traffic Volume
Before running my main regression for traffic volume, I begin with more simplified

comparisons for each bridge: comparing the traffic volume before and after the policy
change; and, comparing pooled peak and pooled off-peak changes before and after, still
using midnight as the control hour. The results, using Newey-West standard errors with
26 lags, are shown in table 1.2. Column 1 shows that when comparing the unconditional
means of hourly traffic volume before and after the policy change, there is a statistically
significant decrease of 87 vehicles per hour (1.7%) on the Bay Bridge. When separating the
data into peak and off-peak hours7 (column 2), the data show that after the change, the
average peak hour traffic volume decreased by a statistically significant 312 vehicles per
hour, a change of 4.2%, which is much larger than the statistically insignificant decreases
found by Deakin and Frick (2011). The overall off-peak change was an increase of 65
vehicles per hour, but is not statistically significant.

The results for the San Mateo Bridge for before and after (column 3) show the expected
direction (a decrease of 15 vehicles per hour) due to the increase in price from $4 to $5,
although it is insignificant. When broken down into peak and off-peak hours (column

7Off-peak excludes the hour from midnight to 1:00am
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4) the results for the San Mateo Bridge again show the expected sign for off-peak hours
(decrease of 24 vehicles per hour), as well as evidence consistent with traffic substituting
from the Bay Bridge to the San Mateo Bridge during peak hours (an increase of 33 vehicles
per hour), although neither of these estimates is statistically significant.

The results for the Dumbarton Bridge for before and after (column 5) show the ex-
pected direction: a statistically significant decrease of 48 vehicles per hour for the increase
in price from $4 to $5. When broken down into peak and off-peak hours (column 6) the
results for the Dumbarton Bridge show a statistically significant decrease in both peak
and off-peak hours: 59 and 24 vehicles per hour, respectively. This is consistent with
little, if any, substitution toward the Dumbarton Bridge.

I then run my full estimation for my Bay Bridge data, estimating each hour indepen-
dently and including day of week and week of sample fixed effects. The point estimates for
the change in traffic volume in each hour caused by the congestion pricing changes can be
seen graphically in figure 1.7. The graph shows small and statistically insignificant changes
in the off-peak hours from 1:00am-3:00am, 11:00am-1:00pm, and 8:00pm-11:00pm. The
estimates for the peak hours are all negative and mostly significant, indicating that the
congestion pricing worked to decrease traffic volume during peak hours. The estimates
for the peak shoulder hours (5:00am, 9:00am, 3:00pm, and 7:00pm) are, as expected, all
large, negative, and significant, ranging from 400 to 550 fewer vehicles per hour (decreases
of 6% to 8%). The estimates for the off-peak shoulder hours (4:00am, 10:00am, 2:00pm,
and 7:00pm) are, as expected, large, positive and significant, ranging from 225 to over
400 more vehicles per hour (increases of 4% to 20%).

These results confirm what the long-standing theory predicts will happen when peak
time congestion pricing is implemented: (1) overall traffic volume decreased–because of
the higher price, people are making fewer driving trips across the bridge, and (2) some
travelers substituted from driving during peak hours to driving during the less congested
off-peak hours, resulting in peak-spreading.

The analogous graph for the San Mateo Bridge is figure 1.8. The graph shows small
and mostly statistically insignificant decreases from 9:00am onward. The estimates for
the remaining morning peak hours are positive, and the estimates for the hours between
5:00am-7:00am are statistically significant and range from 100 to 200 more vehicles per
hour (around a 5% increase for each of those two hours). This lends further suggestive
evidence that some morning travelers may be substituting away from the higher priced
Bay Bridge toward the San Mateo Bridge. However, the number of drivers substituting
bridges is likely to be small, as there was an overall decrease of 312 vehicles per hour
during peak hours on the Bay Bridge, and an overall increase of only 32 vehicles per hour
during peak hours on the San Mateo.

The analogous graph for the Dumbarton Bridge (not shown) indicate small to mod-
erate and mostly statistically significant decreases from 8:00am onward. The estimate
for the 6:00am hour is small, positive, and significant, but represents only around a 2.5%
increase in traffic volume in that hour. This is inconclusive, although one possible ex-
panation is that the drivers substituting from the Bay Bridge Bridge to the San Mateo
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Figure 1.7: Bay Bridge point estimates of traffic volume treatment effect

Figure 1.8: San Mateo Bridge point estimates of traffic volume treatment effect
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Bridge are crowding out some drivers who previously used the San Mateo Bridge, who
are now substituting toward the Dumbarton Bridge.

1.4.3 Traffic Volume by Lane Type
Breaking the average treatment effects down by lane type yields some insight into

what kinds of drivers are time-shifting versus route-shifting. Carpool lane usage on the
Bay Bridge has decreased by between 300-500 vehicles per hour during all peak hours.
This is unsurprising, and likely a direct result of two factors: the new requirement to
carry a FasTrak in order to use the carpool lanes; and, the toll for carpoolers in peak
hours going from $0 to $2.50. These two factors also have nuanced indirect effects.

The new requirement for carpoolers to use a FasTrak to pay for the toll is a barrier
in itself because people must acquire a FasTrak tag, and besides actually going out and
buying one, some drivers may be afraid to carry a FasTrak tag because they do not
want their toll crossings to be observable by the toll authority. In addition, the FasTrak
requirement means that toll violators are easier to catch: previously, with no toll, there
was no need to catch toll-violators, so it was more difficult to catch those who were using
the toll-free carpool lanes without the required number of people. Now, if a vehicle does
not have a Fastrak and tries to use the carpool lane, a photograph is taken of the vehicle’s
license plate in order to collect the toll. This likely discouraged anyone who was previously
crossing with fewer than the required number of people in the carpool.

The price increase from zero to a positive number, besides having a direct price effect
on those who no longer deem the effort to organize a carpool worthwhile, also has likely
impacted what is known in the Bay Area as “casual carpooling”. The Bay Area has various
known locations where people who would like a ride across the bridge can go and wait.
Those who are driving over the bridge and wish to take advantage of the carpool discount
and designated lanes can stop by and pick up the people who are waiting for a ride. With
no toll, the riders just got into the car and were driven across the bridge. Since the price
increase from $0 to $2.50, there is now the social awkwardness of a positive price. Should
each rider offer to pay one third ($0.80) or one half ($1.25) of the toll? Should the driver
request part of the toll to be paid by riders or accept any offer of partial toll payment?
Surveys of the casual carpool community have shown a decrease in casual carpools since
the toll hike, and social awkwardness is one main reason stated for the decrease (see
Deakin and Frick (2011)). Most designated pickup locations have developed a norm for
what amount is considered acceptable for the rider to offer and the driver to accept in
response to the toll hike. Again, the salience offers an insight into the curiosity of human
behavior: there is little social awkwardness in not offering to help pay for gas or other
costs of driving, but the toll, because it is paid for while the riders are in the car, causes
driver and rider to behave differently.

Focusing only on the non-carpoolers, that is the FasTrak and cash lane users (see figure
1.9), there is time-shifting occurring around the shoulder hours and little change in the off-
peak non-shoulder hours. However, there are increases during the mid-peak hours, which
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Figure 1.9: Bay Bridge point estimates of traffic volume treatment effect for non-carpool
lanes

suggests that the FasTrak and cash lanes are absorbing some of the carpool decreases,
leading to overall increases in some peak hours for the non-carpool lanes. This result is
perhaps an unforeseen consequence of increasing the price of carpooling. Much of the
non-shoulder hour decrease in non-carpool usage comes from the cash lanes, suggesting
that cash-payers are more price sensitive, which is in line with economic theory about
FasTrak tags and toll salience (see Finkelstein (2009)).

1.4.4 Travel Time
For my travel time results, I again begin with more simplified comparisons for each

bridge: comparing the travel time before and after the policy change; and, comparing
pooled peak and pooled off-peak changes before and after, still using midnight as the
control hour. The results are shown in table 1.3. Column 1 shows that when comparing
the unconditional means of hourly travel time before and after the policy change, there
is a statistically significant decrease of 1.6 minutes (9.6%) on the Bay Bridge. When
separating the data into peak and off-peak hours8 (column 2), the data show that after
the change, the average peak hour travel time decreased by a statistically significant 2.9
minutes (14%). The off-peak hour travel time decreased by 20 seconds (3%).

The results for the San Mateo Bridge for before and after (columns 3) show no change
8Off-peak excludes the hour from midnight to 1:00am
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Table 1.3: Travel time regressions results, by bridge
Dependent variable: Bay San Mateo Dumbarton
Travel time (minutes) (1) (2) (3) (4) (5) (6)
After June 30, 2010 -1.60 -.12 .03 .04 .008 .17

(.12)∗∗∗ (.09) (.09) (.03) (.08) (.04)∗∗∗

Peak hours 9.51 .41 .97
(.12)∗∗∗ (.12)∗∗∗ (.10)∗∗∗

Off peak, exl 12am 2.08 -.07 .47
(.07)∗∗∗ (.06) (.04)∗∗∗

Peak after change -2.94 .02 -.17
(.14)∗∗∗ (.14) (.11)

Off peak, after -.34 -.07 -.16
(.09)∗∗∗ (.06) (.05)∗∗∗

Const. 16.64 10.74 10.45 10.23 8.58 7.75
(.10)∗∗∗ (.06)∗∗∗ (.08)∗∗∗ (.02)∗∗∗ (.08)∗∗∗ (.03)∗∗∗

Off-peak mean 12.5 12.5 10.2 10.2 8.1 8.1
Peak mean 20.5 20.5 10.6 10.6 8.5 8.5
Obs. 77104 77104 9963 9963 9954 9954
F statistic 166.12 2724 .12 39.6 .008 144.13
Significance is at the 10%=*, 5%=**, and 1%=*** levels and use Newey-West standard
errors with 26 lags.
All specifications include only weekdays from 1 July, 2009 to 30 June, 2011, excluding
holidays and hours when the Bay Bridge was closed for repair.

in travel time due to the increase in price from $4 to $5. No change is also the case when
the hours broken down into peak and off-peak hours (column 4). This suggests than any
extra traffic the San Mateo Bridge may have experienced as a result of drivers substituting
from the Bay Bridge was easily absorbed by the San Mateo Bridge.

The results for the Dumbarton Bridge for before and after (column 5) show no change
in travel time due to the increase in price from $4 to $5. When broken down into peak
and off-peak hours (column 6) the results for the Dumbarton Bridge show a statistically
significant (though practically small) decrease in off-peak hour travel time of 9.6 seconds.
This suggests that there was little, if any, effect on travel time on the Dumbarton Bridge.

Turning to the results for the full set of hours, the estimates for the hourly average
treatment effect of the toll change on travel time over the Bay Bridge can be seen in figure
1.10. The estimates for the overnight hours between 8:00pm and 5:00am are extremely
small and largely insignificant. The estimates for the morning peak hours from 6:00am
to 9:00am show decreases in travel time of 2 to 6 minutes (a 12% to 24% decrease in
travel time). Additionally, I see a decrease in travel time during all evening peak hours
of between 2 to over 4 minutes, as well as small (less than one minute) in travel savings
during some between-peak hours. These findings suggest that the congestion pricing
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Figure 1.10: Bay Bridge point estimates of travel time treatment effect

worked, as intended, to decrease traffic congestion and allow vehicles to travel at higher
speeds during peak hours.

The estimates for the San Mateo and Dumbarton Bridges (not shown) indicate that
travel times did not change on those bridges: all estimates are under 1 minute in magni-
tude and almost all are statistically insignificant. This is consistent with the hypothesis
that these two bridges are being used at or below capacity and do not require peak time
pricing of congestion. In addition, this again suggest that any extra traffic the San Mateo
Bridge may have experienced as a result of drivers substituting from the Bay Bridge was
easily absorbed by the San Mateo Bridge.

Travel Time Variability In addition to ascertaining the decrease in expected travel
time, I also calculate the change in the variability of travel time, since travelers care not
only how long a trip takes on average, but also the reliability of their expected trip time.
Figure 1.11 shows that the standard deviation of median travel time decreased in most
hours throughout the day on the Bay Bridge. The decrease in standard deviation can be
as much as 4.3 minutes (7:00am hour) or 5.6 minutes (3:00pm hour). The decreases are
significant at the 1% or 5% level, except for hours 3:00am, 11:00am, 8:00pm, 9:00pm, and
10:00pm, none of which are peak hours. This holds true for both Levene’s tests centered
either at the mean or the median.
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Figure 1.11: Bay Bridge standard deviation of travel time

1.4.5 Robustness Checks
I run the same regressions but with the log of traffic volume (instead of level) and get

qualitatively and quantitatively very similar results. This robustness check suggests that
my estimated treatment effect is not being driven by the combination of a small level
change in my midnight travel outcome and a large level change in my outcome in my
treated hours. These results can be seen in the appendix, in figure A.3.

In another robustness check, I expand my control hours from midnight alone to include
all hours from 11pm-3am and the results do not change substantially. This robustness
check suggest that my estimated treatment effect is not driven by choosing a single unaf-
fected hour. These results can be seen in the appendix, in figure A.4.

Additionally, if I relax assumptions from the difference-in-differences and use a triple
difference approach instead (using the Dumbarton Bridge as the additional control), then
I find similar results to my difference-in-differences. My triple difference estimates suggest
that my treatment estimates are not driven by the assumption of treated and midnight
hours evolving similarly; I only need to assume that, to the extent that the outcomes
evolve differently, they evolve similarly on the two bridges. These results can be seen in
the appendix, in figure A.5 and A.6.

I also use the last toll price change, in 2007, as a falsification test to see how drivers
responded to a flat toll increase from $3 to $4. The results show small and barely sig-
nificant decreases in most hours, with some moderate and barely significant increases in
traffic volume in the morning peak hours. This is a very different result from the ef-
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fects of the congestion pricing put into practice in 2010, which strengthens my findings
of peak-spreading from the time-varying congestion pricing. These results can be seen in
the appendix, in figure A.7.

1.4.6 Alternative Methodology: Regression Discontinuity
As an alternative to the DD approach, I employ a regression discontinuity (RD) design

to capture the short-run effects of the congestion pricing to see if they are much different
from the longer-run effects captured in the DD. For the RD, I use daily averages of the
outcome variable by hour category (e.g. peak, off-peak) and use data from one month
before and one month after the change. For comparison, I show the same data for the two
years before and the year after the policy change. As can be see in figure 1.12, there is
very little, if any, change in peak hour traffic volume in the 2008, 2009, and 2011 periods.
However, the 2010 graph shows a large drop in peak hour traffic volume of 639 vehicles
per hour (significant at the 1% level). There is also a statistically significant increase in
the morning off-peak shoulder hours of 289 vehciles/hour (not shown). All other hour
categories show insignificant changes on 1 July, 2010 on the Bay Bridge.

Interestingly, although the immediate decrease was large (and larger than the decrease
shown by the DD: 639 compared to 312), there seems to be evidence of a fairly quick
recovery of peak hour traffic volume in 2010, as shown by the upward sloping fit line in
the second half of the 2010 figure. In addition, the 2011 graph shows the traffic volume
seems to be below the 2008 and 2009 levels, but above the July 2010 levels, suggesting
that traffic volume ended up half way between the 2008 and 2009 levels of around 7500
vehicles per hour during peak hours and the July 2010 levels of around 7000 vehicles per
hour. One explanation for this could be that the initial response of drivers to a $2 toll
increase was to react strongly to it, but after they saw the decreased travel time benefits
of the policy or just figured that $2 was not a large increase after all, they started to
increase their trips again, albeit to lower levels that the pre-policy change period.

Similarly, I show the RD results for travel time in figure 1.13, which shows a small,
but significant, decrease in peak hour travel time of 4.4 minutes per hour in 2010. The
other years show little, if any discontinuity at the 1 July date. As above, the other hour
categories have small (under 20 seconds) and mostly insignificant changes in travel time.

1.5 Policy Implications and Welfare Impacts
From a policy maker’s perspective, there are important lessons to be learned from this

analysis. First of all, congestion pricing seems to work fairly well at decreasing traffic
volume, travel time, and travel time variability during higher-priced hours: drivers seem
to peak spread by shifting the time of their travel to off-peak hours; and they avoid making
unnecessary trips. Some broader implications and welfare impacts are discussed below.
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Figure 1.12: Bay Bridge graphs of Regression Discontinuity

Figure 1.13: Bay Bridge graphs of Regression Discontinuity
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1.5.1 Price Elasticities
One potentially useful measure of drivers’ responses to congestion pricing are the

price elasticities of demand for driving. Both own- and cross-price elasticities can be
calculated. For peak hour travel over the Bay Bridge, the overall own-price elasticity is
-0.084, meaning that a 10% increase in the Bay Bridge toll decreases across-bridge trips
by under 1%. Or, as actually happened, a 50% increase in the toll during peak hours
decreased peak trips by about 4.4%. If elasticities are broken down by hour, then the
range of own-price elasticities for peak hours is 0 to -0.20, the largest of which is during
the 5:00am hour. For off-peak hour travel over the Bay Bridge, treating the peak hours
as substitutes for off-peak hours, the overall cross-price elasticity is 0.034, meaning that a
10% increase in the Bay Bridge peak hour toll increases across-bridge trips during off-peak
hours by one third of one percent. Or, as actually happened, a 50% increase in the toll
during peak hours increased off-peak trips by about 1.5%. If elasticities are broken down
by hour, then the range of cross-price elasticities for off-peak hours is 0 to 0.38, the largest
of which is during the 4:00am hour.

My estimate of the overall own-price elasticity of demand is in line with previous
similar estimates. Finkelstein (2009) estimates the price elasticity of tolls to be around
-0.061.

These elasticities might seem small; a 50% increase in toll prices sounds large, but it
is only a $2 increase, and the toll, while salient, is only a small portion of the average
total costs of driving. Other costs of driving include gas, parking, maintenance, and time
costs. As stated above, for a round trip from a mid-distance communting city, such as
Walnut Creek, these costs can add up to between $23 and $100, so the toll change is a
smaller percentage change of costs if all costs of driving are considered. If the full costs
($23-100) are considered, then peak own-price elasticities are more in the range of -1.05
to -2.1, and off-peak cross-price elasticities are more in the range of 0.42 to 0.84. Average
total costs of driving are important in the long run decisions drivers make about their
daily commute, living and working locations, and other considerations. More pertinent in
the short run is the marginal cost of driving, which, again considering a trip from Walnut
Creek might be between $24 and $90, and would mean the peak own-price elasticities are
lower, at around -0.50 to -1.89, and off-peak cross-price elasticities are more in the range
of 0.20 to 0.75.

Although these estimates of elasticities are internally valid and can provide some guid-
ance to urban planners, their external validity for other congested areas may depend on
the availability of substitutes (time-shifting, alternative routes, efficacy of public transit),
income, travel time, and numerous other factors. In addition, the use of these elasticities
for anything other than traffic volume predictions should be done very carefully. As with
time-varying electricity pricing, shifting driving from one part of the day to another is not
always a one-for-one transfer in terms of time savings, emissions, and the like. Perhaps a
more useful analysis is a categorization of the welfare impacts of the congestion pricing.



29

1.5.2 Time Savings
Using my point estimates of the causal impacts of the toll price change, I construct

estimates of the value of time saved due to the time-varying nature of the congestion
pricing. Because my travel time data only track FasTrak users, I can only generate
bounded estimates of the benefits from travel time savings. For the lower bound, I assume
that the only people who have saved time due to the congestion pricing are those that I can
track who are using FasTraks, then I have a daily flow of those users on my eight routes
of about 30,000 between the hours of 4am and 8pm, and on average each of those vehicles
saves 1.7 minutes, which sums to annual savings of about 210,000 hours. The total value
of the hours saved depends on the willingness to pay for travel time savings. I used two
estimates: $5 and $30 per hour9, which gives annual savings from decreased travel times
of between $1 and $6.4 million. Some reasons my lower bound might be too low include: I
only have FasTrak data for eight routes; many vehicles have more than one person in the
vehicle; an increased number of people are using the FasTrak lanes; and, some people put
their FasTrak tag away when not in use (thus they would not be measured). In addition,
I haven’t estimated the travel time savings for the return trip (which could double these
estimates) or any travel time savings from spillovers of decreased bridge traffic to other
roadways, which would decrease congestion and reduce travel time for those road users.

If I assume that every vehicle crossing the bridge saves 1.7 minutes of travel time on
average, then my daily flow is 124,000 vehicles (as measured by total traffic count instead
of FasTrak), then annual travel time savings are almost 900,000 hours, which translates
into a value of savings between $4.4 and $27.6 million. This is likely to be an overestimate
of travel time savings because those in the cash lanes have not likely experienced as much
of a decrease in travel times, although it is not necessarily an overestimate because I
don’t consider travel time savings from the return trip or spillovers. Additionally, there
are likely to be gains from decreased travel time variability, which are valued at around
$19.56 per hour (see Small (2005)).

1.5.3 Fuel Savings
The relationship between fuel efficiency and speed suggests that driving at speeds of

around 50mph is optimal in terms of fuel usage10. Decreasing congestion can decrease
fuel usage per mile driven by increasing speeds toward the optimum. Based on my travel
time estimates and the distance of each route to cross the Bay Bridge, I find that average
miles per hour increased from the low 40’s to the high 40’s, resulting in increased fuel
efficiency, and a lower bound on fuel savings of 230,000 gallons per year. With gasoline

9If minimum wage in the Bay Area is $10/hour and people value leisure time at half that of working
time, so $5 per hour. If the estimates from Brownstone et al (2003) are used, then WTP for travel time
savings is more in the range of $30 per hour.

10I use the emissions factors from the California Air Resources Board’s EMFAC model, which have
estimates that are specific to the Bay Area.
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prices currently hovering right around $4/gallon, this results in savings to drivers of
nearly $1 million per year. As before, this is likely to be a lower bound, both because
I do not consider the return trip, and because traffic is more likely to be stop-and-go
with congestion, which would increase fuel usage, and thus there would be increase fuel
savings from decreased congestion. This is small compared to an estimate of total fuel
used to cross the Bay Bridge every year (about 10 million gallons11), but is nonetheless a
significant positive savings, and again is likely to be a lower bound.

1.5.4 Emissions Abatement
Similarly to the speed-mpg relationship, the relationship between CO2emissions and

speed suggests that driving about 50mph emits the lowest amount of CO2 per mile
driven12. Decreasing congestion can decrease CO2 emissions per mile driven by increasing
speeds toward the optimum. Based on my travel time estimates and the distance of each
route to cross the Bay Bridge, I find a lower bound on CO2abated of 2240 tons per year.
This is equivalent to taking about 470 commuting cars off the road every year13. If I ap-
ply a value on carbon dioxide of $20/tCO2, then those savings have generated benefits of
nearly $45,000 annually by reducing CO2 emissions. This is a lower bound both because
I do not consider the return trip and because the price I use for carbon is on the lower
end of what many economists think the price for carbon ought to be.

Other air pollutants (e.g. NOX, volatile organic compounds, ozone, CO, and particu-
late matter) that are emitted from vehicles have complicated emissions structures and mix
unevenly to produce pollution due to weather patterns and other factors14. This makes
the effects on these other pollutants difficult to estimate, but if traffic volume deceased
overall, then the effect would have been to decrease these pollutants as well.

1.5.5 Other Welfare impacts
Decreasing traffic volume and travel time is likely to have other positive welfare im-

pacts, such as decreased noise pollution, reduced water pollution, lower infrastructure
damage, less vehicle maintenance required, beneficial psychological effects from being
stuck in traffic less (reduced road rage), and potentially decreased traffic accidents.

Since the time-varying congestion pricing on the Bay Bridge was designed to raise
revenue for bridge maintenance and the prices were chosen to bring in roughly the same
revenue as would have been brought in from a flat increase from $4 to $5, it seems like the

11Roughly 124,000 vehicles per day * 250 work days per year * 8 miles * 0.041 gallons per mile (at a
speed of around 40mph) = 10 million gallons.

12Again, I use the emissions factors from the California Air Resources Board’s EMFAC model, which
have estimates that are specific to the Bay Area.

13Calculated as: 12,000 VMT per vehicle/year *0.0003989 tCO$_2$/VMT = 4.8tCO2 per vehicle per
year. Divide total tCO2 saved by 4.8CO2 to get 470 vehciles.

14See Auffhammer and Kellogg (2011)
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benefits from implementing time-varying pricing are just generating additional consumer
surplus.

1.6 Conclusions
This paper analyzes the effectiveness of the recently implemented congestion pricing

on the San Francisco-Oaklsand Bay Bridge. Using hourly data on traffic volume and
travel time, and employing a difference-in-differences empirical econometric approach, I
find that the policy change decreased traffic volume across the Bay Bridge by and average
of 312 vehicles per hour during peak hours. My analysis indicates that drivers took fewer
trips overall and some drivers substituted from the peak hours to the off-peak shoulder
hours, which resulted in decreases in travel time of 2-6 minutes (7-20% decreases) during
peak hours. I find suggestive evidence of drivers substituting toward the San Mateo
Bridge, which is an alternative route that lacks congesting pricing. I also show significant
decreases in travel time variability during peak hours.

Using hourly data on traffic volume and travel time, and employing a regression dis-
continuity empirical econometric approach, I find that the policy change decreased traffic
volume across the Bay Bridge by and average of 639 vehicles per hour during peak hours.
There were also immediate average decreases in travel time of 4.4 minutes during peak
hours.

In addition, I calculate peak-hour own-price elasticities on the Bay Bridge. If only the
toll price is considered, then the own-price elasticity is -0.084 overall, and -0.20 for a peak
shoulder hour. If the overall cost of driving is considered, then the elasticities are more in
the range of -1.05. For the off-peak-hour cross-price elasticities on the Bay Bridge, if only
the toll price is considered, then the cross-price elasticity is 0.034 overall, and 0.38 for an
off-peak shoulder hour. If the overall cost of driving is considered, then the elasticities
are more in the range of 0.42.

Using back-of-the-envelope calculations, I find a lower bound of the annual welfare
impacts of this program to include: travel time savings of between 210,000 to 900,000
hours; fuel savings of around 230,000 gallons; and, emissions abatement of around 2240
tons of CO2. The value of these savings is in the range of $6.4 to $35 million.

My future work to extend the current analysis will include integrating data on public
transit ridership to estimate inter-modal substitution and cross-price elasticities between
driving and two modes of public transit.
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Chapter 2

Estimating the Impact of Reducing
Agricultural Water Supplies On
Farm Employment and Fallowing for
California’s Central Valley
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2.1 Introduction
California has experienced nine large-scale multi-year droughts since 1900. The two

most recent of these occurred in 2000-2002 and 2007-2009. These droughts, and less
pronounced dry spells, have decreased water inflow to the San Francisco Bay Delta, the
largest estuary in the western US. Besides being an important habitat for a number of
threatened and endangered species, the Delta is the origin of water purveyed by the State
Water Project (SWP) and the federal Central Valley Project (CVP) to 23 million Cal-
ifornians, including many farmers in the agricultural heartland of California - the San
Joaquin Valley. Legislative protection of a specific species of fish, the so-called Delta
Smelt, combined with these decreased inflows have significantly reduced water deliveries
to farmers. In 2009, only 40% of SWP and 10% of CVP water delivery requests were
filled leading to a severe shortage of surface irrigation water. In one of the most sensitive
areas supplied by the CVP, the west side of the San Joaquin Valley, contractors have
only received their full allocation for three years since 1990 and have received more than
three quarters of their full allotments for only eight years since 1990. During the latest
multi year drought (2007-2009), it was reported that famers abandoned large orchards
and vineyards due to these water shortages (DWR, 2012). While some farmers do have
backstop groundwater available, not all areas of California have good groundwater re-
sources. Farmers in the Central Valley have decried the decrease in water available for
crop irrigation. Congressman Devin Nunes testified that up to 80,000 jobs may be lost
as a result of the water delivery restrictions, which, if true, would amount to 63% of the
126,000 jobs held in the farming sector in the whole of the Central Valley in 20071. He
further went on to blame some of the unemployment rate of 20-50% in his congressional
district on the decrease in government water deliveries. A common slogan has been that
the drought is “government-imposed”.

This paper addresses the question of whether irrigation water deliveries from the CVP
and SWP are positively correlated with agricultural employment and cropped area, which
would suggest that shortages may indeed lead to decreased farm employment in agricul-
tural counties in California. The subject of government water delivery effects on farm
employment in California is relatively novel to academia, and it has been largely ignored
in the peer-reviewed literature. In one of the few studies looking at this issue, Howitt,
MacEwan and Medellin-Azuara (2009a) estimates job losses from a 90% shortage in ir-
rigation water to be in the range of 60,000-80,000, agricultural jobs, which they state is
between 20-26% of direct and indirect agricultural employment in the Central Valley. The
authors use a modified version of the Statewide Agricultural Production Model (SWAP),
which is a calibrated optimization model, to obtain revenue estimates. They then input
the revenue estimates into REMI (a regional economic model) to get estimates for job
losses. In another study, Michael (2009a) uses IMPLAN, an input-output model for eco-
nomic analysis, to produce estimates of 6,000 jobs lost due to decreases in government

1Calculated using the BEA’s NAICS data on farm employment in 2007.
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water deliveries. When he includes both indirect and induced job losses, Michael (2009a)
puts an upper bound of 11,700 on the total job losses. He further points out several
interesting facts about employment in the San Joaquin Valley. First, he notes that, for
the last ten years, there has been a farm labor shortage in California, which suggests
that reduced water deliveries could merely be decreasing the shortage of workers and not
causing net unemployment. He also notes that, despite the drought, farm employment
has increased by 3,200 jobs since 2007, while non-farm industries (such as construction)
have experienced a decrease of 40,400 jobs, most likely due to the recession and subprime
mortgage crisis (the San Joaquin Valley had the highest foreclosure rates in the nation).
He also shows that the unemployment rate in the San Joaquin Valley has been high for
some time, even during wet years with full water deliveries, so it is unlikely that the water
delivery decrease is the main driver of the high unemployment rate in the Valley. He
suggests that his estimates are an upper bound on the true number of jobs lost.

Howitt, MacEwan and Medellin-Azuara (2009b) revised their previous estimates of
job losses from 80,000 down to 21,000. The authors use two methods to produce these
numbers: a "bottom-up" approach designed to estimates how changes in water affect
changes in yields, which in turn affect employment; and, a "top-down" approach that
uses aggregated employment data. They warn that using the top-down approach fails
to account for intra-county variation in water distribution, which can cause job losses to
be concentrated in smaller areas. Michael (2009b) subsequently revised downward his
estimates of job losses from reduced water availability to 8,500 jobs in all sectors. None of
Howitt, MacEwan and Medellin-Azuara (2009a), Howitt, MacEwan and Medellin-Azuara
(2009b), Michael (2009a) nor Michael (2009b) use econometric techniques in combination
with observed data on deliveries and employment.

The contribution of this paper is to empirically estimate the response of employment
and cropped area to changes in irrigation deliveries, while controlling for unobservable
confounders constant at the county level (e.g. soil quality and groundwater availability)
as well as common shocks affecting all counties at the same time (e.g. business cycles).
We have constructed a detailed dataset which matches both employment and irrigation
water deliveries to California counties. We find a statistically and economically significant
impact of water deliveries on agricultural employment and cropped area. Our estimates
are close to those of Michael and suggest that between 5,000 and 9,000 jobs would be
lost during a year with a 90% shortage in deliveries. We further show that this effect is
mostly due to area fallowed during shortage years. Our results are robust to a number
of specifications and different definitions of the control group. We further show that
employment in counties with better groundwater resources is less sensitive to deliveries.

The remainder of this paper is structured as follows: section 2.2 develops our empirical
model, section 2.3 describes the dataset used for estimation. Section 2.4 contains the
empirical results and discussions, and section 2.5 concludes.
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2.2 A Simple Empirical Model
The analysis begins with the assumption that Nit is the agricultural employment in

county i during year t, and Dit are the deliveries from the federal and state water projects
to the water districts in county i in year t. Without controlling for any other observable
and unobservable confounders, a basic statistical model estimating the correlation between
Nit and Dit is given by:

Nit = a+ b1Dit + eit (2.1)

.
The identifying assumption required in order for Ordinary Least Squares to provide

consistent estimates of b1 is that E[eit|Dit] = 0. Any factor not included in this simple
model, which is correlated with deliveries would violate this assumption. Examples that
come to mind are soil quality and availability of groundwater. One could explicitly control
for observable confounders by including them in a regression as given in equation 2.2
below:

Nit = a+ b1Dit + b2Zit + eit (2.2)

.
The vector Zit contains potential observable confounders at the county level, which

may be correlated with the deliveries variable and vary over time. Failing to control for
these confounders will lead to biased and/or inefficiently estimated coefficients. Since one
may not observe any or all confounders varying at the county level over time, one can
estimate a model of the type:

Nit = ai + dt + b1Dit + eit (2.3)

where the ai are the county specific time invariant confounders and the dt are the shocks
common to all counties. The identifying assumption then becomes E[eit|Dit, ai, dt] = 0.
This assumption would be violated if one failed to include any confounders that are
correlated with deliveries over time within a county.

One could estimate this equation on a sample containing just the counties receiving
deliveries or a sample of counties receiving deliveries and include, as a control group,
counties that do not receive deliveries. In the material that follows, we show that the
estimation results are robust to using either sample. In the first sample, the identifying
source of variation is within county time series variation. For the larger sample it is
within county variation relative to the control group county variation, which identifies
the coefficient of interest b1.
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2.3 Data
The data used in this analysis are comprised of an annual panel data set covering the

years 1980 to 2009. Counties included in the dataset, which receive irrigation water from
either the CVP or SWP are the following: Fresno, Kern, Kings, Merced, San Joaquin,
Stanislaus and Tulare. As a control group, to capture the effects of general changes in
the agricultural economy, we use six California counties that do not receive Delta water
deliveries: Madera, Imperial, Monterey, Sutter, Yolo and Yuba. The data period covered
by our analysis evidences significant variation both in employment and water deliveries.
It also includes two of the largest droughts in the recent past (1987-1992 and 2007-2009).

County-level employment data are publicly available, and we obtained them from the
Bureau of Economic Analysis (BEA)2. We distinguish between direct farm employment,
and total agricultural employment. Direct farm employment includes anyone who works
in the direct production of agricultural commodities, including crops and livestock (SIC
codes 01 – 02; NAICS code 111 - 112)3. Total agricultural employment is the sum of
direct farm employment and employment in the agricultural services sector (SIC code 07;
NAICS code 113 - 115). The agricultural services sector includes farm labor contractors.

The data we used from 1980 – 2000 are categorized in the Standard Industrial Classifi-
cation (SIC) system. In the 1990s, a new classification system (North American Industrial
Classification System (NAICS)) was introduced, in part to facilitate accounting under the
North American Free Trade Agreement. The SIC data series was discontinued in 2000. In
that year, the BEA shifted to reporting sectoral employment based on the SIC industry
classification to reports based on the NAICS classification. The BEA provides a concor-
dance to match industry descriptions between the two coding systems. As we control
for year fixed effects in our preferred specification, if there are year-to-year differences
in employment that are due to the new classification, our method implicitly controls for
these differences.

Government water delivery data include both state deliveries from the State Water
Project (SWP) and federal deliveries from the Central Valley Project (CVP). The state
water delivery data come from the California Department of Water Resources’ Bulletin
132 and the Kern County Water Agency.4,5 The federal water deliveries data are from

2Bureau of Economic Analysis, Regional Economic Accounts, Local Area
Personal Income, Table CA25-Total employment by industry, accessed at
http://www.bea.gov/regional/reis/default.cfm?selTable=CA25, June 1, 2011.

3Bureau of Economic Analysis, Local Area Personal Income Methodology, Ap-
pendix: Concordance between BEA industry descriptions and SIC codes, accessed at
http://www.bea.gov/regional/pdf/lapi2008/appendix.pdf, February 25, 2011.

4California Department of Water Resources, State Water Project Analysis Office, Bulletin 132, Ap-
pendix B. Years 1995-2007 accessed at: http://www.water.ca.gov/swpao/bulletin.cfm, July 21, 2009.
Years 1973-1994: PDF copies received via electronic communication with DWR, October 14, 2009. Years
2008-2010: Microsoft Excel tables received via electronic communication with State Water Contractors,
February 24, 2011.

5Kern County Water Agency, SWP Supply and Delivery Summary. Years 1970-2008, received via elec-
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the Bureau of Reclamation.6 We used a Geographic Information System to allocate water
deliveries to counties. We first took the intersection of the boundaries of each of the water
districts and counties. We then calculated the acreage of the district-county intersection
and divided that by the acreage of each of the districts. We multiplied this ratio by
the water deliveries in each water district and summed the share of water deliveries in
the district-county intersection over counties. Thus, water deliveries are allocated to the
county level according to the share of acres of each water district that falls within each
county.7 Annual deliveries are reported in acre-feet.

The data set also includes harvested acres by county. These data come from the
Agricultural Commissioners’ Offices of Fresno, Imperial, Kern, Kings, Madera, Merced,
Monterey, San Joaquin, Stanislaus, Sutter, Tulare, Yolo and Yuba counties for the years
1980 through 2009.8 We consider land allocated to a subset of crops: almonds, avoca-
dos, broccoli, cotton, grapes, hay, lemons, lettuce, oranges, pistachios, rice, strawberries,
tomatoes and walnuts. We use a subset of crops for this analysis because acreages are
more consistently defined for these individual crops than for total harvested acreage. For
example, some counties include rangeland in total area statistics in some years, but not
in other years. The crops in our analysis account for roughly two-thirds of total harvested
acreage in the San Joaquin Valley.

Table 2.1 displays average employment, water deliveries and harvested acreage by
county from 1980 to 2009. Fresno County has the highest number of total employed
workers and the highest number of employed farm workers, while Kings County has the
lowest in both categories. Fresno County has the largest area harvested while Stanislaus
County has the smallest. Kern County is second in terms of harvested acreage. Fresno
County has the highest average level of federal and state water deliveries from the Delta.
These large differences across counties show the importance of controlling for unobservable
differences across counties via a fixed effects estimation strategy.

tronic communication with KCWA, September 29, 2009. Year 2009 received via electronic communication
with KCWA on February 24, 2011.

6US Bureau of Reclamation Mid-Pacific Region Central Valley Operations, Report of Operations
Monthly Delivery Tables. Years 1985-2009 accessed at: http://www.usbr.gov/mp/cvo/deliv.html, Octo-
ber 21, 2009. Years 1970-1984: PDF copies received via electronic communication with USBR, November
5, 2009.

7Cal-Atlas Geospatial Clearing House, boundaries of “Federal,” “State” and “Private” water districts
accessed at: http://www.atlas.ca.gov/download.html, May 26, 2009. Boundaries of Counties obtained
from ESRI ArcGIS basemap layers.

8Source: Various County Crop Reports.
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Table 2.1: Summary Statistics by County
County Total Direct Farm Total Ag Acres Total Delta

Employment Employment Employment Harvested Deliveries
Fresno 363 29 58 844 1029
Kern 279 17 40 597 985
Kings 45 5 8 300 285
Merced 78 10 14 282 144
San Joaquin 228 13 20 261 37
Stanislaus 178 12 18 200 100
Tulare 153 18 37 419 11

Note: Employment is in thousands of jobs, acres harvested is in thousands of acres, and
water deliveries is in thousands of acre-feet.

2.4 Estimation Results

2.4.1 Employment Results
We first estimate the effects of water deliveries on employment using the basic model,

which does not control for confounders, using the data from 1980 to 2009 on the sample
of the seven counties that receive Delta deliveries. As described above, the specification is
Nit = a+ b1Dit + eit. We denote this specification Model (1). The estimated coefficient of
b1 is 0.00981 and is significantly different from zero at the 10% level. The standard errors
in this estimation are clustered at the county level to control for serial correlation. In
Model (2) we control for time invariant county characteristics by including county fixed
effects to the basic model. The specification of this Model (2) is Nit = ai + btDit +eit, and
under this specification the estimated coefficient of b1 drops to 0.00414. This estimate is
statistically different from zero at the 10% level.

In Model (3) we further control for shocks affecting each county in a given year via
year fixed effects, or Nit = ai + dt + b1Dit + eit. Under this specification the estimated
coefficient of b1 drops to 0.00374 and is statistically different from zero at the 10% level
with clustered standard errors. Finally, we use the same model and expand the sample to
include control counties that do not receive deliveries from the Delta in my Model (4) in
Table 2.2. The control areas help to separate out the influence of macroeconomic trends
and other broad changes in the agricultural sector. In this model, the coefficient drops
slightly to 0.00341 and is statistically significant at the 10% level.

Next we consider the influence of Delta deliveries on total agricultural employment
by county. Table 2.3 displays the results of this analysis. The models correspond to
those discussed above, with the exception that the dependent variable is the sum of direct
farm employment and agricultural service sector employment. As before, Model (4) is
our preferred specification since it is estimated on a dataset including a group of control
counties. As before, the estimated coefficient on deliveries is positive, this time with a
value of 0.00450. It is significant at the 1% level. To put this estimated coefficient into
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Table 2.2: Ordinary Least Squares Regression Results of Country Level Farm Employment
on Delta Deliveries
Model (1) (2) (3) (4)

Farm Emp. Farm Emp. Farm Emp. Farm Emp.
Delta water deliveries 0.00981 0.00414 0.00374 0.00341

(0.00479)∗ (0.00194)∗ (0.00187)∗ (0.00166)∗

Constant 11,216 13,314 14,360 10,427
(2,560)∗∗∗ (716.7)∗∗∗ (582.3)∗∗∗ (805.3)∗∗∗

County FEs No Yes Yes Yes
Year FEs No No Yes Yes
Control Counties No No No Yes
Observations 210 210 210 385
R-squared 0.340 0.070 0.543 0.456
Number of Counties 7 7 7 13

Note: The dataset used in these regressions is comprised of annual data for the period
1980 – 2009. The dependent variable in each regression is farm employment at the county
level. Deliveries are acre-feet of water delivered to the districts within a county by the
Central Valley Project or State Water Project. Standard errors are clustered at the county
level. Coefficients are significantly different from zero at the 1% (***), 5% (**) or 10%
(*) level.

perspective, it indicates that reducing water deliveries by 222.22 acre-feet results in the
loss of one farm job.

The statistical models above confirm that reductions in water deliveries from the Delta
have a statistically significant effect on farm employment in the San Joaquin Valley. To
illustrate the size of this effect, we calculate the implied reduction in farm employment
from the 2009 water export restrictions as compared to 2005. This calculation is per-
formed using our preferred Model (4) in Tables 2.2 and 2.3. Considering just direct farm
employment, the reduction in 2009 deliveries causes an estimated loss of 6,884 jobs, which
is equivalent to a 7% decline in employment. Our county-level model therefore is consis-
tent with the proposition that reductions in water supplies in 2009 caused economically
and statistically significant losses in employment in the agricultural production sector.

Reductions in water deliveries in 2009 caused even larger losses in total agricultural
employment, which includes farm labor contractor employees as well as farm employees.
Using the estimated coefficient in Model (4) of Table 2.3, we conclude that the reduction
in 2009 deliveries causes an estimated loss of 9,091 jobs. This estimate is significantly
different than zero at the 1% level.
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Table 2.3: Ordinary Least Squares Regression Results of Country Level Total Agricultural
Employment on Delta Deliveries
Model (1) (2) (3) (4)

Total Ag. Emp. Total Ag. Emp. Total Ag. Emp. Total Ag. Emp.
Delta water deliveries 0.0246 0.00467 0.00457 0.00450

(0.00810)∗∗ (0.000510)∗∗∗ (0.00127)∗∗ (0.000886)∗∗∗

Constant 19,674 27,448 25,345 21,569
(6,065)∗∗ (199.1)∗∗∗ (1,633)∗∗∗ (766.6)∗∗∗

County FEs No Yes Yes Yes
Year FEs No No Yes Yes
Control Counties No No No Yes
Observations 193 193 193 352
R-squared 0.431 0.028 0.508 0.388
Number of Counties 7 7 7 13

Note: The dataset used in these regressions is comprised of annual data for the period
1980 – 2009. The dependent variable in each regression is total agricultural employment
at the county level, defined as the sum of direct farm employment and employment in the
agricultural services industry. Deliveries are acre-feet of water delivered to the districts
within a county by the Central Valley Project or State Water Project. Standard errors
are clustered at the county level. Coefficients are significantly different from zero at the
1% (***), 5% (**) or 10% (*) level.
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2.4.2 Area Under Cultivation Results
While the models above do not formally test the mechanism of how changes in water

deliveries influence job losses, one would expect that acreage planted to crops would
decrease if deliveries are short, which would lead to lower labor requirements to service
this smaller area. We therefore test whether deliveries are correlated with total acreage
cropped in the seven counties in our sample receiving deliveries.

Below we find that there is a strong and statistically robust relationship between
water deliveries and area harvested in the San Joaquin Valley. The model specifications
are the same as those used in the models explaining direct farm employment and total
agricultural employment, only that we use total area cropped in acres as the left hand
side variable. The estimated coefficient on deliveries in Model (4) is 0.0797, which is
significantly different from 0 at the 1% level with clustered standard errors. This finding
suggests that increasing Delta exports in a given year significantly increases the amount
of land under cultivation in the relevant counties.

The estimated coefficient in Model (4) of Table 2.4 suggests that over the histori-
cal record from 1980 to 2009, a reduction in water deliveries of 12.55 acre-feet causes
one additional acre to be fallowed. Recall that the model is estimated based on plant-
ings of a subset of crops accounting for roughly two-thirds of total harvested acreage in
the San Joaquin Valley. Accounting for the crops not in the sample, and assuming the
same acreage response to changes in water deliveries, it follows that a reduction in water
deliveries of around 8.37 acre-feet would result in an extra acre of total fallowing.

It is also instructive to estimate the amount of fallowing caused by the water delivery
reductions of 2009 as compared to 2005. Model (4) indicates that roughly 240,000 acres
were fallowed in the San Joaquin Valley in 2009 as a result of the water delivery reductions.
This figure is calculated by multiplying the change in deliveries between these two years
by the coefficient on deliveries in Model (4) and then adjusting for the fact that Model
(4) is based on a subset of crops accounting for two-thirds of total acreage.

2.4.3 Heterogeneity of Estimated Effects
There is evidence that the existence of groundwater stocks reduced the economic

impacts of the drought in certain regions of California, for example in Kern and Kings
Counties. To illustrate this point, we rerun our analysis of direct farm employment
allowing for the influence of water deliveries on farm jobs to vary between Kern and
Kings Counties and the rest of the San Joaquin Valley. This formulation with a county-
specific treatment effect allows one to compare the influence of surface water deliveries on
farm employment between areas with differential access to groundwater.

Table 2.5 displays the results of this analysis. The model formulation and variable
definitions are exactly as in Table 2.5, with the addition of an interaction term on deliveries
that allows deliveries to have a different effect on farm employment in Kern and Kings
Counties than in the rest of the sample. This finding is consistent with the mitigating
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Table 2.4: Ordinary Least Squares Regression Results of County Level Area Harvested
on Delta Deliveries
Model (1) (2) (3) (4)

Acres Harv. Acres Harv. Acres Harv. Acres Harv.
Delta water deliveries 0.404 0.0741 0.0827 0.0797

(0.0959)∗∗∗ (0.0135)∗∗∗ (0.0314)∗∗ (0.0226)∗∗∗

Constant 265,077 387,186 389,448 287,329
(49,924)∗∗∗ (4,989)∗∗∗ (17,007)∗∗∗ (16,531)∗∗∗

County FEs No Yes Yes Yes
Year FEs No No Yes Yes
Control Counties No No No Yes
Observations 210 210 210 385
R-squared 0.683 0.093 0.246 0.251
Number of Counties 7 7 7 13

Note: The dataset used in these regressions is comprised of annual data for the period
1980 – 2009. The dependent variable in each regression is harvested acreage for a subset
of crops at the county level. Deliveries are acre-feet of water delivered to the districts
within a county by the Central Valley Project or State Water Project. Standard errors
are clustered at the county level. Coefficients are significantly different from zero at the
1% (***), 5% (**) or 10% (*) level.

effect of groundwater reserves.
While groundwater extraction can serve as an important buffer against reduced sur-

face water deliveries, reducing the amount of groundwater in storage has economic costs.
Because groundwater reserves are a stock as opposed to a flow, there are two economic
costs associated with depleting them. The first cost is the expenditures of capital and
energy required to bring groundwater to the surface. The second type of cost is user
cost. Unlike pumping lift costs, user cost does not entail an actual monetary outlay,
but rather relates to the fact that groundwater pumping in any given year increases the
cost of future pumping and, if groundwater reserves are finite, may limit the amount of
groundwater that can be extracted in the future. Also included in user cost is the risk of
land subsidence caused by overdraft.

The costs of groundwater overdraft can be large. Pumping lift costs depend on ground-
water elevations and other factors such as pump efficiency and energy prices. User costs
also depend on specific hydrogeologic conditions as well as contractual and legal limita-
tions on groundwater extraction. We should note that Kern County has a highly developed
system of groundwater banking, with a careful accounting system and rules limiting the
amount of water that can be withdrawn from storage. Taking account of all these fac-
tors, and also the amount of groundwater that was withdrawn in the San Joaquin Valley
during the drought to compensate for reduced surface water deliveries, we conclude that
the economic costs of reliance on groundwater are large, easily reaching into the hundreds
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Table 2.5: Ordinary Least Squares Regression Results of County Level Farm Employment
on Delta Deliveries Including Interaction Term of Deliveries with Kern and Kings County
Model (1) (2) (3) (4)

Farm Emp. Farm Emp. Farm Emp. Farm Emp.
Delta water deliveries 0.0156 0.00643 0.00584 0.00436

(0.00252)∗∗∗ (0.000997)∗∗∗ (0.000581)∗∗∗ (0.000567)∗∗∗

Interaction -0.0117 -0.00461 -0.00433 -0.00557
(Deliveries and Kern or Kings) (0.00288)∗∗∗ (0.000998)∗∗∗ (0.000748)∗∗∗ (0.000680)∗∗∗

Constant 11,207 13,301 14,245 10,490
(2,428)∗∗∗ (188.3)∗∗∗ (886.8)∗∗∗ (506.1)∗∗∗

County FEs No Yes Yes Yes
Year FEs No No Yes Yes
Control Counties No No No Yes
Observations 210 210 210 385
R-squared 0.547 0.092 0.561 0.472
Number of Counties 7 7 7 13

Note: The dataset used in these regressions is comprised of annual data for the period
1980 – 2009. The dependent variable in each regression is farm employment at the county
level. Deliveries are acre-feet of water delivered to the districts within a county by the
Central Valley Project or State Water Project. Standard errors are clustered at the county
level. Coefficients are significantly different from zero at the 1% (***), 5% (**) or 10%
(*) level.
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of millions of dollars annually. These withdrawals helped mitigate the effects of reduced
surface deliveries, but the costs of groundwater extraction, as well as the long-term limi-
tations of groundwater overdraft, are real and should be borne in mind when considering
the effect of future reductions in surface deliveries to the San Joaquin Valley.

2.5 Conclusions
In this paper we show evidence of an economically and statistically significant effect

of irrigation water deliveries from California’s state and federal water projects on both
county level employment as well as area cropped. We show that for a shortage similar
to that experienced in 2009, California’s agricultural employment in these counties would
be lowered by roughly 9000 jobs. Further, we show that the likely mechanism through
which this operates is the fallowing of large swatch of farmland. For the same reduction
in irrigation water deliveries we estimate that 240,000 acres would be fallowed.

Importantly, we find that employment and area cropped in areas with good ground-
water resources appear to be less sensitive to irrigation water deliveries than areas with
less favorable groundwater. This should not be regarded as good sign, as withdrawal of
groundwater has both private as well as higher social costs, which should be taken into
account when evaluating the full costs of irrigation water shortages.
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A.1 Other Examples of Congestion Pricing



52

Table A.1: Examples of previously existing road congestion pricing
Location Description of Pricing Reported Outcomesa

San Diego, CA Non-HOV can pay to use Saves commuters 30 minutes on
Interstate 15 HOV lanes. Price are their commute each way.b
since 1998 adjusted dynamically with

traffic in 25 cent increments.
Orange County, Four variably-priced lanes In peak hours, speeds in priced
CA run parallel to unpriced lanes are 60-65mph and speeds
State Route 91 lanes for 10 miles. Toll in unpriced lanes are 15-20mph.
since 1995 schedule is pre-set and During Friday peak (5-6pm), each

adjusted every 3 months priced lane serves twice as many
based on previous demand.c vehicles as each unpriced lane.

Lee County, FL Two toll bridges offer 50% 5% shift from peak to off-peak
Two bridges off toll charges for weekday travel.d
since 1998 travel during pre-

and post-peak hours.
London, Per day charge of £8 for Decrease of 15% in traffic in
England travel within a central central London. Travel delays
Central London London zone along with reduced by 30%. Waiting time
since 2003 improved public transit. for buses reduced by one-third.
Singapore Variable time-of-day Reduced traffic by 13% and
since 1975 pricing on expressway increased vehicle speed by

system and peak pricing 22%.
in morning rush hour.

Stockholm Decreased travel times,
City center Cordon pricing in vehicle trips, accidents,
since 2006 the city center. and emissions. Increase in

ridership on inner city buses.
Milan Charge of E2 to E10 to 12.3% reduction in traffic
City Center enter the city center on and 14-47% reduction in
since 2008 weekdays between various atmospheric pollutants.e

7:30am and 7:30pm.
[a] Unless noted, outcome estimates come from USDOT (2008).
[b] Estimates from Orange Country Transportation Authority (2006)
[c] For example, as of January 1, 2013, the toll for going east on Fridays from 3:00-4:00pm is set at $9.55;
and going west on Mondays - Thursdays from 7:00-8:00am is $4.75. There are special tolls for major
holidays. Source: http://www.octa.net/91_schedules.aspx
[d] Estimates from USDOT (2006)
[e] Vehicle miles traveled.
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Figure A.1: San Mateo Bridge traffic volume over time

A.2 Traffic Volume Data
Data on traffic volume over time on the San Mateo Bridge can be seen graphically in

figure A.1. The monthly mean of hourly traffic volume fluctuates between 1825 vehicles
per hour to 2175 vehicles per hour, depending on the season and year, and display a
decreasing trend over time. Similar to the Bay Bridge, traffic is generally higher in
the summer and lower in the winter. The percent of vehicles using the carpool lanes
decreases in steps from about 18% to around 10% midway through 2007, when there were
lane regonfigurations, to under 10% around the time of the toll change. The percent of
vehicles using FasTrak lanes is under 30% at the begining of 2006, but increases to almost
50% by mid 2011. The percent of vehicles using cash lanes decreases from under 60% to
around just over 40%.

The analogous graph for the Dumbarton Bridge is in figure A.2. The monthly mean of
hourly traffic volume fluctuates between 1200 vehicles per hour to 1500 vehicles per hour,
depending on the season and year, and display a decreasing trend over time. Similar to
the Bay and San Mateo Bridges, traffic is generally higher in the summer and lower in
the winter. The percent of vehicles using the carpool lanes decreases from below 10% to
closer to 5% around the time of the toll change. The percent of vehicles using FasTrak
lanes is around 30% at the begining of 2006, but increases to around 45% by mid 2011.
The percent of vehicles using cash lanes changes from over 60% to around 45%.
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Figure A.2: Dumbarton Bridge traffic volume over time

A.3 Robustness Checks

A.3.1 Using Logs Instead of Levels
My first robustness check is to use logs instead of levels of my outcome variables. The

results are quantitatively and qualitatively the same as my estimates done in levels.

A.3.2 Using 11:00pm - 3:00am as the Control (instead of mid-
night)

My second robustness check is to use 11:00pm till 3:00am as a control (instead of
the midnight hour). This is to expand the control to include more hours that might
capture more of the changes that might have happened apart from the toll policy change
(e.g. population growth, fuel prices, etc.). Again, the results are quantitatively and
qualitatively similar to the results just using the midnight hour as a control.

A.3.3 Triple Difference Approach
The difference in differences approach requires the SUTVA to hold in addition to the

treated and control hours having similar trajectories before and after the policy change
(absent treatment). Using the Dumbarton Bridge as an additional control and taking a
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Figure A.3: Bay Bridge point estimates of traffic volume treatment effect (logs)

Figure A.4: Bay Bridge point estimates of average treatment effect using 11pm-3am as
control
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Figure A.5: Bay Bridge, triple difference of traffic volume treatment effect

triple difference approach allows me to relax the assumption that requires similar trajecto-
ries; I now only require that, to the extent that outcomes for each hour evolve differently
over time, the differences affect each hour on the Bay and Dumbarton Bridges similarly.

Thus, my estimating equation becomes:
Yhdwb = α0 +αh + β0afterw + βhafterw + γd + θw + δ0Bay + δhBay+

τ0afterwBay + τhafterwBay + φdBay + ρwBay + εhdwb

Where the only changes from the difference-in-differences approach are the interactions
of the terms with the binary indicator Bay, which is equal to one for the Bay Bridge,
resulting in the τh’s being my coefficients of interest, where hour of the day (1-23) is
interacted with after and Bay. The τh’s have a causal interpretation of the impact of
the congestion pricing on the change in traffic volume and travel time.

Traffic Volume The results for the triple difference for traffic volume on the Bay Bridge
are shown in figure A.5. They show time-shifting behavior from peak shoulder hours to
off-peak shoulder hours as well as decreases in peak and increases in off-peak traffic volume.

Travel Time The results for travel time on the Bay Bridge are shown in figure A.6.
They show similar results to the DD approach.
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Figure A.6: Bay Bridge, triple difference of travel time treatment effect

A.3.4 Falsification Tests Using a Previous Toll Change
The last toll change on the Bay Area bridges happened on January 1, 2007, when all

prices increased by $1 from $3 to $4 for all three of the bridges in my analysis. I use this
change to test how traffic volume changed after that toll change. The results for the Bay
Bridge are shown in figure A.7. As theory would predict with a price increase, most hours
experience a decrease in traffic volume, although most estimates are statistically insignif-
icant. The morning peak hours experience small and positive and sometimes statistically
significant changes. There results suggest that morning travelers (probably commuters)
are less sensitive to price changes and there might even be latent demand from drivers
who think the travel time will decrease due to the higher toll.
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Figure A.7: Bay Bridge, falsification test of traffic volume treatment effect using 2007 toll
change
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