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THE USE OF ANTICOMMUTING nrnEGRALS 

IN STATISTICAL MECHANICS II 

Stuart Samuel 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

October 9, 1978 

ABSTRACT 

* 

This paper deals with the following exactly 

solvable two dimensional statistical mechanics problems: 

The Ising model, the free fermion model, and close-packed 

dimer problems on various lattices. The emphasis is on 

graphical calculational techniques. Using them, the 

partition functions of the Ising and free fermion models 

are rederived. A diagrammatic set of rules is obtained 

which allows one to quickly calculate the pa.rti tion 

functions of a wide class of dimer problems. Finally, I 

present a simple procedure to calculate the vacuum 

expectation value of an arbitrary product of Ising spin 

variables. 

Work has been supported by the High Energy Physics Division of 
the United States Department of Energy. 

I. INTRODUCTION 

In the first paperl) (to be referredto as I) certain partition 

functions are represented as fermionic-like lattice field theories 

using Grassmann integrals. This allows one to use powerful field 

theory methods to attack statistical mechanics problems. Several 

models had quadratic action representations. Among these were 

the two-dimensional Ising model and the two-dimensional square 

lattice dimer problem. They are pseudo-free theories and are exactly 

solvable. In this paper, these two partition functions are explicitly 

computed (Sec. II). This is a straightforward calculation: one 

transforms to momentum space just as one would do with a free field 

theory. This partically diagonalizes the problem; it breaks up 

into a product of 4 x 4 determinants. Next, graphical methods 

are introduced to organize the algebra (Sec. III). They are useful 

because they are systematic and pictorial. Section IV considers the 

general class of solvable 2-dimensional close-packed dimer problems 

on various lattices. A set of rules are derived which quickly 

compute partition functions. These rules are illustrated using the 

square lattice and applied to the hexangonal lattice. Next, the 

rules are extended to general pseudo-free theories. This means 

that, given any quadratic action, there is a simple systematic 

calculational procedure. For the free fermion model anticommuting 

variable correlations are calculated (Sec. V). They are first 

considered in momentum space where the computations reduce to 

solving modified ~ature dimer problems. The Ising model is 

included in the free fermion model, so that the results of Sec. V 

can be used to calculate spin correlations. Section VI exemplifies 
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this by considering two horizontal spins. The approach generalizes 

so that one may, in principle, compute the vacuum expectation value 

of an arbitrary number of spins, although the form of the answer is 

cumbersome. This is because spin variables, which are the physical 

variables, are complicated functions of the anticommuting variables, 

which are the mathematical variables in terms of which computations 

are simple. 

Paper I was a pedagogical introduction to Grassmann integral 

techniques. It emphasized how to use anti commuting variables and 

how to express partition functions as fermionic-like field theories. 

This paper emphasizes computational methods. It illustrates how to 

calculate partition functions and correlation functions. It provides 

graphical rules which simplifY complicated calculations. 

This paper considers only solvable models. They form the 

testing ground to see how and if the techniques work. They also 

form a solid foundation upon which unsolved problems may be attacked 

by approximation methods. The real power of anti commuting variables 

will come when they are applied to these unsolved models. 

II. THE PARTITION FUNCTIONS FOR THE DIMER AND ISING MODELS. 

In paper I, the two-dimensional Ising model was represented 

as a Grassmann integral over a pseudo-free fermionic-like action. A 

similar representation was obtained for the close-packeddimer problem. 

By pseudo-free action, I mean a quadratic action. Such theories are 

solvable by the same methods that solve free theories: transform to 

momentum space. This partially diagonalizes the problem because of 

translational invariance. What results is a product of Pfaffians of 

4T x 4T dimensional matrices. The variable, T, is the number of 
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~'s and ~t,s per site. If bilinears occur as ~~t,s the problem 

simplifies to a product of determinants of TxT dimensional 

matrices. This is why it is important that the number of variables 

per site not be too large. 

I will always choose a to range from -M to M and B to 

range from -N to N, so that there are (2N + 1) rows and (2M + 1) 

columns. In the Ising model there are (2N + 1)(2M + 1) sites, 

whereas in the dimer problem, there were 4 sites per (a, B) unit 

so that there are 4(2N + 1)(2M + 1) sites in all. 

Going to momentum space means writing 

r L 
_1 _ _ 1_ (2rrias + 2rri(?t ) r 

~B -V 2M+l -V2N+l 
exp 2M + 1 2N + 1 ast 

s,t (2.1) 

+ 1 1 (-2rriaS _ 2rri(?t ) r t r 
L ~aB = -V 2M+lV 2N +l 

exp 2M + 1 2N + 1 ast 
s,t 

In eq. (2.1) 
rt 

and ast are an equivalent set of anticommuting 

variables; s ranges from -M to M and B ranges from -N to N. 

The determinant of this transformation is one. One should think in 

terms of the correspondence: 

(a, B) .- (x, y) , 

(2.2) 

" 

«, 
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The variables sand t are simply momentum variables. Equation 

(2.1) implies periodic boundary conditions. These conditions will 

2 
always be chosen, so that one is working on a torus ). 

Equation (2.1) implies the following useful formulas: 

1: 
q t r 

1: 
qt r ( 2rris ) T]at3 11a +lp 

ast 3.st exp 2M+l ' 
at3 st 

1: T]q rt 
r t (-2rris) T]O:+1t3 1: a

q 
at3 st ast exp 2M+T ' 

at3 st 

q t r q t r 

1: 1: ( 2rrit ) 
T]at3 T]at3+1 a

st 
ast exp 2if+l , 

0:13 st 

1: T]q rt 1: a
q r t (-2rrit) 

at3 T]at3+1 st 
st ast exp 2N + 1 ' 

at3 

1: ~~ =1: a
q r 
st a -s-t 

at3 st 

1: 
q t rt 

1: 
q t rt 

T]at3 T]at3 
a
st 

a_
s

_t 
at3 st 

(2.3) 
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The variables, q and r, refer to the types of anticommuting 

variables. The "operator" ( 2Jris ) exp 2M + 1 is like the quantum 

mechanical operator exp (iLX px) which shifts one unit in the 

x-direction. 

Let us first solve the close-~ckeddimer problem. The square 

of the partion function has the representation given by eqs. (1.4.1) 

and (I. ~2). Using eqso (2.1) and (2.3) 

and 

2 
Zd o (zh' Z ) 1.IDer v foada t exp(A) , 

A = 1: Ast 
st 

Ast = [~ (a!ta;! + ~::a~t) + Z 
v 

+ [term with a~t and a~: interchanged and 

exponents conjugated] 

In going from paper I to eq. (2.4) I have set 

B 
Z = Z v v 

The integrals over each (s,t) can be done individually using 

eq. (I. 2.6) yielding the determinant of the following martix: 
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0 h 0 _v "\ 
s t \ 

Mst -h_s 0 v 0 \, t 

0 -v 0 -h ) -t -s 

V_t 0 h 0 s 

" // 
with 

h = zh (1- 2rris ) 
s exp 2M + 1 

(2.6) 

vt 
( 2rrit ) ~ 1- exp 2if+l 

[( 2rrs ) 2 2rrt 2]2 
2 - 2 cos 2M + :rib + (2 - 2 2N + l)ZV • 

The total answer is the product of these determinants: 

2 
Zdimer (z v' ~) 1

M N 

exp ~ ~ £n(det 

The free energy per unit site in the thermodynamic limit, 

f '" - kT .en Z 

1 
-f3f = 4' 

becomes 

(2.8) 

which agrees with the well-known answer3,4,5,6). In obtaining 

eq. (2.9) sums have been replaced by integrals in the standard way 

2rrs 2rrt 1 
and Px = 2M + 1 and Py = 2N + 1· Finally the factor of 4' is 

dueto fact that there are 4(2N + 1)(2M + 1) sites. 
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Now consider the two-dimensional Ising model, which can be 

related to the partition function for closed polygons (reviewed 

in Section III of paper I). The corresponding action is given 

byeq. (I. 4.4). In calculating the partition function, any values 

of b' s and a's satisfying b
h 

= ± 1, bv 

may be used. For convenience choose bh = bv = 1, al and 

a4 = - a2 = i 

action 

Equations (I. 4.4), (2.1), and (2.3) result in the 

A closed polygons 

. h t v t . v h v v t h h t] 
+ l.a a + l.a a + a a + a a . st -s-t st -s-t st st st st (2.10) 

The (s,t) variables mix with (-s, -t) variables. Therefore, 

after doing the integrations, eq. (2.10) will result in a product of 

Pfaffians of 8 ~ 8 dimensional matrices. However, transforming 

(2.11) 

for both horizontal and verical variables, the action, (except for AOO) 

becomes of aa t form (this would not have worked for the choice 

.. 

.":: , 



.,. 

... where 
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( 2:n:is ) 
hs = 1 - ~ exp 2M + 1 ' 

( 2:n:i t ) 
1 - zv exp 2N + 1 

By eq. (I. 2.6) the integration over (s,t) and (-s, -t) variables 

is the determinant of the following matrix: 

h -1 ° -i s 

-1 vt i ° Mst (s,t) ~ (0,0) (2.14) 

° -i h -1 -s 

i ° -1 v_t 

det M t = h h vtv t - (h + h )( vt + v t) + 4 s s -s - s -s -

( ) t t 1 d · -(det M
OO

)1/2 The 0,0 integral mus be done separa e y an g1ves 
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I conclude 

Z closed polygon TT (det M )1/2 
st , 

st 

x .En [(1 + Z~)(l + Z~) + 2(1 - Z~)~ cos Px + 2(1 - Z~)Zvcos pJl 

(2.16) 

The exponent, 1/2, compensates for double counting (s,t) and 

(-s, -t). In the last step of eq. (2.16) the thermodynamic limit 

has been taken. The angular integration variables, Px and Py' 

are simply momentum variables. Equations (2.16), (I. 3.7), and 

(L3.8) [or (I. 3.9)] yield the famous Onsager result7) for the free 

energy per unit site 

If 

L I
:n: dp 

...:.Jl. .En 
2:n: 

-If 

+ sinh 2i3Jh cos p + sinh 2i3J cos p ] x v y 

III. GRAPHICAL EVALUATION OF PARTITION FUNCTIONS 

In this section I will introduce a graphical method to calculate 

partition functions. Later, it will be extended to correlation 
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functions. I do this because when the number, T, of variables 

at a site becomes large, the evaluation of Pfaffians and determinants 

becomes cumbersome. It is important to have a systematic approach. 

I will introduce a diagrammatic method which organizes the algebraic 

computations. For the models dealt with so far, it will seem 

superfluous; however, when more complicated models are encountered, 

it will be quite useful. The one danger is the possibility of 

overlooking a graph. 

Consider Ast in eq. (2.4). It is like a miniature dimer 

problem on four sites. The first and second brackets [on the left 

hand side of eq. (2.4)J correspond respectively to the dimers of 

figs. la and lb. Together they form the miniature dimer problem 

of fig. lc. Figure 2 gives the four possible coverings of fig. lc 

and their weights. Overall signs are determined by the rules of 

fig. (1.8). The sum of these diagrams yields eq. (2.7) as it should. 

Let us now solve the generalized closed polygon problem 

given by (I. 4.4), using the diagrammatic approach. This model 

is called the free-fermion mode18). This problem has been solved 

by expressing the partition function as a product of fermion creation 

and annihilation operators acting on a vacuum9). This is the reason 

for the name free-fermion. The method of reference 9 is, however, 

different from the one used here. In particular, anti commuting 
r st 

variables satisfy (~,~ ) = 0 and cannot be thought of creation and 
t t 

annihilation operators which satisfy (*r, *s ) = 0 
rs 
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In momentum space the action of eq. (I. 4.4) becomes 

If (s,t) and (-s, -t) variables are grouped together, the 

miniature dimer problem associated with eq. (3.1) is illustrated 

in fig. 3. There are nine possible coverings as fig. 4 shows. The 

sum of these is 

( 
2:n:s 2:n:t) 

L 2M + 1 ' 2'N"+'l 

where 

h = bh - ~ exp ( 2:n:is ) 
s 2M + 1 

(3·3) 

= b ( 2:n:it ) v t - z exp .2N'+l v v 

or 
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( 
2rrs 2rrt) 

L 2M+l'2N+l 

The partition function is 

Z . = (IT L(s t)) free ferm10n st ' 
1(2 

which becomes in the thermodynamic limit 

-t3ffree fermion 

rr 
_1 f dpx 
- 2 2rr 

-rr 

where L is given by eq. (3.4). The factor of 1(2 is due to 

double counting of (s,t) and (-s, -t). Equations (3.4) and (3.6) 

agree with the known result8,lO). 

IV. SOLVABLE TWO-DIMENSIONAL DIMER PROBLEMS 

This section considers solvable two-dimensional dimer 

problems. By solvable, I mean solvable by the usual Pfaffian methods5 ). 

The models will be translated into Grassmann integral form, from which 

a series of graphical rules will be derived. The treatment used 

here does not differ from the usual Pfaffian treatment. What is 

gained is a simple graphical approach which allows one to rapidly solve 
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a dimer problem. Furthermore, the diagrammatic methods extend to any 

pseudo-free field theory. This section serves as a pedagogical 

introduction to graphical methods. 

I refer the reader to the standard method of solution5 ). 

There are two key points: 

1. Solvability Condition. A planar dimer problem is solvabJe 

if its bonds may be oriented so that every elementary polygon is 

clockwise odd. Planar means it may be drawn on a piece of paper 

so that bonds do not cross. The bonds are then given an orientation. 

The direction is usually denoted by an arrow. A polygon is clockwise 

odd, if when traversing clockwise, one encounters an odd number of 

bonds oriented in the opposite direction. An elementary polygon is 

a non self-intersecting polygon made up of bonds which has no bonds 

in its interior. 

II. The Method of Solution. Fix a standard B configuration 

which covers the lattice. Each covering (these new ones will be called 

A coverings)when combined with the B configuration results in a 

set of closed polygons and isolated dimer pairs, the partition function 

of which has a Pfaffian representation. 

Condition I and Observation II make the problem solvable by 

Pfaffian methods5 ). 

For every model satisfying I, the Method of SoJution II can 

be translated into Grassmann integral form: A bond oriented from 

point, P, to point, Q, upon which on A-dimer may be placed 

corresponds to a term ~P~Q in the action (see fig. 5a). A standard 

B-bond between P and Q corresponds to a term ~4~; (see fig. 5b). 

A-dimer operators are ordered with the graph orientations, whereas 
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B-dimer operators are ordered oppositely to the graph orientations. 

The action is schematically of the form 

Adimer L zA1)1) + L 1)t1)t (4.1) 

A-dimers B-dim.ers 

The Boltzmann factors of A-dimers are zA' whereas B-dimers have 

unit Boltzmann factors. It is not hard to see that this action 

produces the closed polygons and isolated dimer pairs used in the 

Method of Solution II. The signs are all positive because of 

Condition I. This may be proved by induction on the length of a 

polygon and employing Kasteleyn's theoremll). Figure 6a illustrates 

one set of orientations on a square lattice which makes every 

elementary polygon clockwise odd. Figures6b and 6c show the A-dimers 

and a standard B-dimer configuration consisting of horizontal dimers. 

It is convenient to group the sites in units of four as in fig. (I.5). 

The corresponding action is 

(4.2) 

where the notation is that of Paper I (secs. III and IV). Some dimer 

problems satisfy 
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SimplifYing Condition C. A graph satisfies Simplifying 

Condition C if vertices can be grouped into two sets (which I call 

odd and even) such that no two odd (or even) vertices have a bond 

in common. 

When this condition is satisfied, transform 1) ~ 1)t and 

1)+ ~1) at all even sites. This makes the bilinears in the action 

of the form 1)1)t, the partition function becomes a product of 

determinants rather than Pfaffians,the graphical rules simplify, 

and calculations are easier to do. Figure 7 shows the rectangular 

lattice after this transformation. 

Graphical Rules When Condition C Holds 

or 

Rules When Bilinears Are of nnt Form 

1. Group vertices into repeating units that fill a square 

array. Use (a,~) to label the units and use r = 1,2,3, ••• , T 

to label the different vertices within a unit. Figure (I.5) is an 

example for the square lattice. 

2. Consider one unit, U. There are two kinds of bonds: 

(a) those which are contained within U and (b) those which go from 

U to some other unit. Of the latter, [(b)], for every bond which 

goes from a type r vertex in U to a type q vertex in another unit, 

there is. one bond which goes from a type r vertex in another unit 

to a type q vertex in U. Thus, they occur in pairs. Half are 

to be included in U and the others ignored and erased. Figure 8 

illustrates this for the square lattice. 

... 
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3. Keep (a) type bonds as they are. For a (b) type bond 

which goes from an r in U to a q in another unit, "fold" 

it back into U, so that it goes from r to q within U (see fig. 5}. 

If q is on "0" located in a unit m horizontal spaces to the 

right and n spaces upward (m and n may be negative) multiply the 

bond weight by 

exp (imp + inp ) x y 

If q is an "x" multiply the bond weight by the complex conjugate 

of eq. (4.3), that is 

(4.4) 

Figure 9 illustrates this. Figure 10 shows all the weights in the 

square lattice example after Rule 3 has been carried out. 

4. Rules 1 through 3 result in a mhriature dimer problem. 

Solve it by finding all coverings and their weights (see fig. 11 

for the square lattice). Call the sum of the diagrams L(px' Py) 

The free energy per Site, f, is 

dp 
~ £n L(p , P ) • 
2rr x y 

1 The factor of T occurs because there are T sites per unit. 

Figures 12-15 illustrate the solution for the hexangonal 

lattice dimer problem. Figure 12 shows the lattice, the bond 

orientations, the units of eight vertices, and the even and odd 

sites. The "horizontal" direction is in the x-direction; the ''vertical'' 
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direction is in the y-direction. Both these directions are also 

shown in Figure 12 (one must tilt the figure a bit). There are 

three Boltzmann factors, and corresponding to the 

three directions in which bonds may point. The Boltzmann factors, 

the A-dimers, and the standard B-dimer configuration are shown in 

Figure 13. The folded-over miruature dimer problem is shown in 

Figure 14. The possible coverings and their values are given in 

Figure 15. The result is eq. (4.6) with T = 8 and 

(4.6) 

+ 2zh2zx2 exp(- ip ) + 2zh2z2 exp (ip ) - 2z2z2 exp(ip - ip ) I . 
x y y xy y x J 

Graphical Rules When Condition C Fails 

or 

Rules When Bilinears Are of nn and ntnt Form 

These rules will be exemplified by treating the square lattice 

dimer problem of eq. (4.2). Although Condition C is satisfied, the 

simplifying transformation will not be performed. Thus the action 

will be eq. (4.2) as it stands. Figures 6b and 6c show the A and 

B dimers. 

1. Same as above. 

2. Same as above. 

3· Draw two copies of U (see fig. 16). Call them Ul and 1~ 

For (a) type bonds going from r to q draw two lines: one from 

r in Ul to q in U2 and one from r in U2 to q in U
l 
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(see fig. 17). For ~~ dimers (i.e. A-dime~ of (b) type originating 

at an r in U and terminating at a q in another unit, again 

draw two lines. First draw one from r in Dl to q in U2 

and multiply its weight by exp(- imp - inp ), x y 
then draw one from 

r in U 
2 

to 

(see fig. 18). 

q in Ul and multiply its weight by exp (impx + inpy ) 

For ~t~t dimers (i.e. B-dimers) do the same as 

for ~~ dimers but multiply weights by the complex conjugated 

phase factors of the ~~ case (see fig. 18). In all cases, if 

bonds are oriented from r to q they remain so, regardless 0 f 

whether they go from Ul to U2 0r U2 to 

the resulting weights for the square lattice. 

Figure 19 shows 

4. Solve the m:in:iature dimer problem (see fig. 20) and call 

the result L(px' Py). The free energy per unit site is 

rr 

-(3f 1 frr 
2T f -rr -rr 

Graphical Rules For A General Pseudo-Free Theory 

In general, there will be ~~t, and ~ t ~ t products. 

Two copies, U
l 

and U2, of U are to be drawn. Follow the 

second set of rules, 1,2,3, for ~~ and ~t~t products. For ~~t 

terms use rule 3 of the first set for the Ul copy of U but for U
2 

use complex conjugated phase factors. Finally, use eq. (4.7) and rule 

4. Figures 3 and 4 illustrate this for the action given in eq. (I. ~.4). 
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V. ANTICOMMUTING VARIABLE CORRELATIONS 

This section will compute the anti commuting variable 

correlations (or "propagators") for the free fermion model [eq. (I. 4J+)J. 

The configurations and their weights were given in fig. I. 11. 

In addition, there are and z Boltzmann factors for each unit v 

of horizontal and vertical Bloch wall. 

The correlation functions will first be calculated in 

momentum space and then in coordinate space. It will be done 

graphically. The variables sand t will be used instead of 

Px and Py. The 

Consider places a dimer 

between the 

Unlike exp 

h h t 
z(astast ) 

"0" and "x" at the horizontal (s, t) site. 

h ht 
(astast )' however, one must use it. Therefore, 

is related to the mimature dimer problem (MDP)of fig. 3, 

where one inserts a "superbond" and erases all other bonds which connect 

to the (s,t) horizontal sites. The result is the modified minURlixe dimer 

h ht 
problem (MMDP) of fig.21(a~ ~allculate (astast) take the value of 

the MMDP and divide it by the value of the MDP of fig. 3. 

General Rules For Calculating Momentum Space 

Correlation Functions 

1. Obtain the MDP using the rules of the last section. 

Since s and t variables are used rewrite, and in terms 

of sand t using the correspondence of eq. (2.2). Calculate the 

( 
2rrs 2rrt) value of the MDP and call it D(s, t) = L(px' Py) = L 2M+l' 2N+l 
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2. Let a+ and a2 denote two generic anti commuting 

variables in the MDF of rule 1. To calculate (al a2 ) draw 

a superbond from 1 to 2 and assign it unit weight. Erase all 

bonds involving the 1 and 2 variables. This is the MMDF. Call 

its value N(s, t). Then 

Figures 21-24 calculate the non-zero (aat ) free fermion 

correlations, by showing first the MMDF and then its. coverings. 

In these figures, the upper left and upper right variables are 

v t v v t 
respectively a:t , ast ' and a_s _t ' a_s _t 

h ht h 
lower right pairs are ast ' ast ' and a_s _t ' 

The lower left and 
ht 

a_s _t ' The bond weights 

are those of Figure 3. The superbonds, denoted by darker lines, 

have unit weight. Figure 25 shows the MMDF's for the (aa t ) 

correlations which have no coverings. They have zero value. Figures 

26-28 and Figures 29-31 calculate the non-zero (aa) and (a+a t ) 

correlations. Finally fig. 32 shows the MMDF's for the two 

remaining correlations which have no coverings. The tabulated 

results are 

(Fig. 24), (5.5) 
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v ht 
(asta -s-t > = 0 (Fig. 25(a», (5.6) 

h v t 
(asta_s_t ) = 0 

h ht 
(asta_s _t ) = 0 (Fig. 25(c», (5.8) 

v vt 
(asta -s-t) = 0 

(Fig. 26), 

(aVta
V 

t) = a2a
3

(h - h ) / D(s, t) s -s- -s s (Fig. 27), 

o 

(Fig. 29), 

(Fig. 30), 

o 

where hs' vt ' and D(s, t) are given by eqs. (3.3) and (3.4). 

Of course, correlations involving (s, t) and (s~ t') variables 

vanish if neither (s, t) f (s', t') nor (s, t) = (- s' ,-t'). 
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To obtain coordinate space correlations, use eq. (2.1) to express 

~'s in terms of a's, and then use the results of eqs. (5.3)-(5.18). 

The thermodynamic limit can be taken and the correlations are 

1l 1l 

h h f dpx f dp ( ] (~11a'13') = 2;- i! exp i(O: - 0:' )px + i(13 - 13' )Py II< 

-1l -1l 

al a2 llv(p ) - v(- p )1 / L(p , P ) 
Y y- x y' 
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where 

v(p ) = b - z exp(ip), y v v y 

and L is given by eq. (3.4)0 Equations (5.18), (5.19), (5. 20), 

(5.21), (5.22), (5.23), (5.24), (5.25), (5.26), and (5.27) are 

respectively obtained from eqs. (5.2), (5.3), (5. 4), (5.5), (5.10), 

(5.11), (5.12), (5.14), (5.15), and (5.16) by replacing hs and vt 

.. 

... 
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by the corresponding momentum valued ~unctions o~ eq. (5.28). The 

~actors exp riCa - a')pxJ and exp[ i(~ -~' )pyl in eqs. (5.18) -

(,024) are translation operators. Equations (5.25) - (5.27) have 

conjugated translation ~actors because daggered variables are involved. 

Equations (5.18) - (5.27) are the coordinate-space anti commuting 

variable correlation ~unctions ~or the ~ree ~ermion model. 

VI. THE ISING MODEL CORRELATION FUNCTIONS 

This section will calculated the correlation ~nction o~ two 

spin variables in the same row. It will be compared to the known 

result as a check on anticommuting variable techniques. Two 

horizontal spins are chosen ~or illustrative purposes only. The approach 

extends to an arbitrary pair; in ~act, the vacuum expectation value of 

several a's can be computed. The only drawback is the cumbersome 

form o~ the answer: a P~a~fian o~ (in general) large size. In short, 

everything you ever wanted to know about the Ising model is 

expressible as a Pfa~~ian. 

We will need the ~ree ~ermion anti commuting variable 

correlations [eqs. (5.18) - (5.27)J. Bond variables will be used, in 

which case the Ising model is related to the free ~ermion (or closed -

polygon) partition function by eqs. (I. 3.7) and (I. 3.9), when 

- 1 . (6.1) 

The weights o~ con~igurations are given in ~ig. I.ll. These values 

must be used (as opposed to the less restrictive conditions 

2 2 
a l a

3 
= a2a4 = bv = bh = 1) because correlation ~nctions, unlike the 

the partition ~nction, need not have the same number o~ a
l 

and a
3 
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type corners, a 2 and a4 type corners, etc. This is obvious 

~rom eqs. (5.18) - (5.27) where correlations are not simply ~unctions 

etc. 

Spin variable correlation ~ctions can be considered as 

partition ~ctions on a de~ective lattice5 ). I refer the reader 

to re~erence 5, ~. 248 - 257. This means that spin correlations are 

(up to multipJ_i~atiye constants) the partition functions o~ Ising 

models with modified Bloch wall Boltzmann factors along selected 

paths. For example, is m zh times the Ising 

model with the usual and Zv Boltzmann factors ~or all Bloch 

walls except ~or the horizontal ones between (1,0) and (m + 1, 0) 
-1 

where is the Boltzmann factor. This defective lattice 

partition ~nction is obtained by replacing 

[~ h t h ~ -1 h t hl 
by exp ~ ~lJcxo lJcx+l 0 +~(Zh -zh)lJcxolJcx+l oj 

\ TIm r -1 h t h 1 
OJ a= ll+ (Zh -~)1Ja.QlJcx+l 0 so that 

(6.2) 

Equation (6.2) typifies how spin variable correlations are related 

to anticommuting variable correlations. Equation (6.2) can be 

generalized to the case when the left hand side is the vacuum 

expectation value of several a's. 
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For pseudo-free theories, the following formulas are useful: 

where 

where 

(TJ TJ ) . 
i j 

(TJltTJ1TJ2tTJ ••• Tl tTl ) = det M{J" 2 'Im'lm • 

(6.4) 

(6.6) 

These formulas are the anologues of Wick's expansion. In eq. (6.3) 

one sums over all pairings of TJ'S, the sign of which is determined 

by how many permutations are required to get the TJ's in paired 

form. 

The vacuum expectation value of an arbitrary product of 

spins is expressible as a linear combination of anticommuting 

variable correlations. These vacuum expectation values can be 

computed using eqs. (5.18) - (5.27) and eq. (6.3). I will demonstrate 

-28-

Therefore 

(a a ) d t M 1,0 m+l, 0 e ij' 

where 

(6.8) 

I

n: dp In: dp 
2n: x if- exp [ ip)j (6.8) 

-n: -n: 

In obtaining eq. (6.8), eq. (5.18) has been used. Equations (6.7) 

and (6.8) expres's the correlation function of two horizontal spins 

as a Toeplitz determinant, as is usually done and yields the correct 

result 4,5). 

To calculate the vacuum expectation value of a product of 

spin variables, proceed analogously. It will be equivalent to an 

Ising model on a defective lattice. When expressed in terms of 

anti commuting variables, it will result in an expression of the form 

this for two horizontal spins. (llia's) 

(6.9) 

«c12 + ~2TJ1TJ2)(c34 + ~4TJ3TJ4)"{~12m+ d2m_l 2mT)2m-1TJ 2m))' 

Equations (5.22) and (5.25) imply (TJ~oTJ~o) 

for all a and t3. Apply eq. (6.5) to (6.2). The 

ht h t 
(TJa oTJ t3o) 0 

zh term of 

~ 2 ht h 
lZh + (1 - zh)TJaO Tla+l 0 I in eq. (6.2) multiplies the same factor 

as the term in the Wick expansion obtained by contracting 

In eq. (6.9) TJ i denotes an anticommuting variable such as 

h ht v v t 
~, TJat3 , Tlat3' or TJat3 • The variables ci , i+l and di i+l are, 

constants determined by the defective lattice. For convenience 

.. 
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write any values of d, 
l 

satisfying this will do. 

Wick's expansion along with eq. (6.3) tells us that eq. (6.9) is 

(lTO" s) (6.10) 

where 

(6.11) 

d,d,(~,~,) - O. 1 J,cl'-l l" i even. l J l J l-

The (~~) correlations are given in eqs. (5.18) - (5. 28). 

In principle, all Ising model spin correlations may be 

calculated using the above method. The reason they result in such 

cumbersome expressions is the following: The variables which solve 

The Ising model are the ~'s. They might be called the mathematical 

variables because they represent it as a pseudo-free field theory. 

Correlation functions of anti commuting variables are simple to 

compute. Contrast this with the spin variables. They are the physical 

variables. They are, however, complicated functions of the mathematical 

variables, the ~'s, which means that spin variable computations 

result in cumbersome expressions. In conclusion, there are two types 

of variables, spin variables which have a simple physical interpretation 

but are mathematically awkward to work with and ~ variables which do 

not have as simple a physical interpretation but are easy to work 

with mathematically. 
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VII. SUMMARY 

Here is a summary of these first two papers. The focus of 

attention was solvable two-dimensional statistical mechanics 

models, in particular, the Ising model, the free-fermion model, 

and the close-packed dimer problems. The partition functions 

were expressed as integrals over anti commuting variables. In this 

form they resembled fermionic field theories. The solvable models 

had quadratic actions, which were computed by using free 

field theory techniques. More importantly, a series of graphical 

rules were derived which allcmed one to compute partition 

functions and anti commuting variable correlation functions by solving 

miniatU'e dimer problems. This provided a quick and simple graphical 

calculational approach. Many models can be solved by drawing a few 

diagrams. Finally, I showed how to calculate the vacuum expectation 

value of an arbitrary number of Ising spin variables. 

For the most part, there are no new results. What has been 

gained is a powerful reorganization of old methods. Abstruse Pfaffian 

techniques have been rewritten as a set of simple graphical rules so 

that calculations are straightforward and systematic. The Grassmann 

integral has formulated the problem in terms of a field theory where 

powerful field theory methods have been applied. 

These first two papers have dealt with solvable models. One 

need only add a term, 
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to the free-fermion action of eq. (I. 4.4) to break the free-fermion 

constraint and obtain the general eight vertex mode18). This model 

is unsolved. It is an interacting field theory. The approximation 

methods used for interacting field theories can be applied to it. 

Here is where the real power of anticommuting variables is. Most 

interesting statistical mechanics problems are not solvable; an 

example is the 3-d Ising model12 ). It is important to have viable 

approximation schemes. Such schemes will be obtained via Grassmann 

integrals. Furthermore, they will be, in general, systematic and 

simple. 

In short, these first two papers have formed a testing 

ground for anticommuting variable techniques. They formed a solid 

foundation of solvable models upon which unsolvable models can 

be approached. 
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Figure 1. The MinUrture Dimer Problem. Figures (a) and (b) are the 

graphical representation of the first and second terms in 

Ast of eq. (2.4)0 The hs' vt ' etc. (eq. 2.6) factors 

are the weights of the dimers. The sum of (a) and (b) 

form the mimature dimer problem of (c). 

Figure 2. The Four Possible Coverings. The weights of these diagrams 

Figure 3. 

Figure 4. 

Figure 5. 

are: (b) (hsh_s )2, (c) (hSh_sVtV_t ), 

The sum yields eq. (2.7). 

The Miniature Dimer Problem for the Free-Fermion model. 

v v t 
The upper left "0" and "x" are a st ' ast ; the lower 

v t 
a_s _t ; left are the upper right are v 

a_s_t ' 

h ht 
a_s_t ' a_s _t · The weights of bonds the lower right are 

are as indicated with hs and vt given by eq. (3.3). 

The Possible Coverings of fig.3. The arrows are shown 

to aid in determining the sign [use rules of fig. (I.8)J. 

The values of there diagrams are (a) (hSh_sVtV_t), 

(b) (- al a
3
hsvt ) , (c) (- al a

3
h_sv_t ), (d) (al a

3
a l a

3
), 

(e) (- a 2a4hs v -t)' (f) (- a2a4h_sVt)' (g) (al a2a
3
a4), 

(h) (al a2a
3
a4), and (i) (a

2
a

4
a2a 4) 0 

The A and B Dimer Operators. In (a) is a typical bond 

oriented from P to Q. In the action will correspond 

the term 1)p1)Q as in (b) . If a standard B-dimer lies 

on this bond then there is a term t t 
1)Q1)p as in (c). The 

A-dimers are associated with 1)1) products, whereas 
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B-dimers are associated with 1)t1)t products. 

Figure 6. Square Lattice Dimer Problem. Figure (a) shows the 

orientations which make every elementary square clockwise 

odd. Figure (b) represents the A-dimer operators and fig. 

(c) is the standard B-dimer configuration consisting of 

horizontal dimers. 

Figure 7. The Simplifying Transformation. Condition C holds for 

Figure 8. 

the square lattice of fig. 6. After the transformation 

1)t~1) at even sites, the dimer operators of figs. 6a and 

6b become those shown here. The B-dimers are drawn above 

the A-dimers. 

Illustration of Rule 2. Figure (a) shows the (a,~) unit. 

There are two B-dimers and four A-dimers entirely contained 

in (a, ~). There are eight A-dimers which connect sites 

in (a,~) to sites in nearby units. They occur in pairs. 

3 2t 
For example, the upper right A-dimer, ~11a~+1' has a 

3 2t 
partner, the lower right A-dimer, ~-l ~. Rule 2 erases 

one bond from each pair. Figure (b) is an example of what 

results. 

Figure 9. Rule 3 for 1)1)t Products. Figure (a) shows the two dimers 

of fig. 8b which start in the (a,~) unit at sites 2 and 3 

and go to the sites 1 and 4 of the (a + l,~) unit. Rule 3 

says to "fold" these back into the (a,~) unit as shown 

in (b). Let "0" and "x" correspond to the anti commuting 

variables a and at. Then the a;al bond weight gets 

multiplied by exp(ip ) whereas the t weight gets x a
3

a4 

multiplied by exp( -ip ). x 
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Figure 10. The Weights for the Square Lattice. Rule 3 applied to 

fig. 8b results in this figure. The weights of the 

B-dimers remains 1 as indicated. The A-dimer weights 

have contributions from (a) type bonds as well as (b) 

types. When added they result in the factors 

Figure ll. 

h(px) =zh[l- exp(iP)J, v(Py) =zv[l- exp(iPy)J, etc. 

The Two Coverings of Figure 10. The value of (a) is 

h(p )h(- P ) = z2(2 _ 
x x h 2 cos px) 0 The value of (b) is 

v(p )v(- P ) = z2(2 _ 
y y v 2 cos Py)' The sum of these is 

L(px' Py)' When put into eq. (4.5), the free energy 

per site is obtained. 

Figure 12. The Hexagonal Dimer Problem. This is the hexagonal 

lattice. The above bond orientations make every elementary 

hexagon clockwise odd. The units are outlined by dotted 

lines. There are eight sites in each, and (a,~)' label 

them. This lattice satisfies Simplifying Condition C; 

the odd sites are denoted by larger dots. The x-direction 

is northeast and the y-direction is northwest as 

indicated. 

Figure 13. The Dimer Operators. Figure (a) shows the A-dimers and 

their weights. Only half of the "external" dimers have 

been kept in accord with rule 3. Figure (b) shows the 

B-dimers. Their weights are unity. If this B 

configuration is chosen in every unit, then eVEry site is 

covered by a B-dimer. 
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Figure 14. The Miniature Dimer Problem. Rule 3 applied to Figure 13 

results in this minia~e dimer problem with the indicated 

bond weights. 

Figure 15. The Coverings of Figure 14. There are nine coverings. 

Their values are (a) (z~), (b) (z~ exp(- 2iPx))' 

(c) (z~exp(2iPy))' (d) (z~z~exp(-iP))' 

(e) (z~z~ exp(- iP)), (f) (z~~ exp(iPy))' 

(g) (~z~ exp(iPy ))' (h) (- z~z~ exp(iPy - iP)) and 

(i) 1- z2 z2 exp(ip - ip )). The sum of these values \ x y y x 

gives the L(Px' Py) of eq. (4.6). 

Figure 16. The Two Copies. For the square lattice, U consists of 

four sites. Rule 3 says to draw two copies of U. These 

are labelled Ul and U2• The different sites within 

each U
1 

have been numbered 1,2,3, and 4. One should 

think of U
l 

as representing (s, t) variables and U2 

as representing (-s, -t) variables. 

Figure 17. The (a)-Type Bonds. In Figure (a), there is an A-dimer 

from fig. 6b and a B-dimer from fig. 6c. Each of these 

results in two dimers, one from U1 to U2 and one 

from U2 to U
l 

as (b) indicates. The orientation 

remains the same, so that the A-dimer in U which goes 

from 4 to 3, still goes from 4 to 3 in both cases in 

Figure (b). 

Figure 18. The (b)-tlfpe Bonds. Figure (a) shows one ~~ (b)-typf 

bond and one ~t~t (b) -type bond. Although the latter 

does not occur in the standard B configuration of 

.. 
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fig. 6c, it has been put in here for illustrative 

purposes. If U is the (a,~) unit then the two 

bonds go from the (a,~) unit to the (a + 1, ~) unit. 

Both give rise to two dimers in (b) the weights of which 

get multiplied by the indicated phase factors . 

Figure 19. The Resulting Bond Weights. Figure (a) shows the resulting 

A-dimers and their bond weights. Figure (b) shows the 

Figure 20. 

Figure 2l. 

Figure 22. 

Figure 23. 

B-dimers. Their weights are all unity. Here, 

h(p ) = zh[l - exp(ip)] and v(p ) = Z [1 - exp(ip )]. 
x x y v y 

When superimposed (a) and (b) give rise to a mi.niature 

dimer problem. 

The Coverings of Figure 19. There are four coverings of 

2 
Figure 19. Their values are (a) [h(px)h(- px)] , 

(b) [vep )v(- p ) l, (c) [h(p )h(- P )v(p )v(- P )], and y y x x y y 

(d) [h (p )h (- P )v(p )v( - p )]. x x y Y 
h ht 

The (astast ) correlation. Figure (a) is the MMDPo 

Figures (b), (c), and (d) are the coverings. Their values 

are (b) (h_sVt
V_t ), (c) (- a

l
a

3
vt ) , and (d) (- a2a4 v -t). 

v vt 
Figure (a) is the. MMDP. The (astast ) correlation. 

Figures (b) , (c), and (d) are the coverings. Their values 

are (b) (h h v t)' (c) (- a l a
3
hs )' and (d) (- a2a4h_s~ l -s -

The (a:ta:t ) correlation. Figure (a) is the MMDP. Figures 

(b) , (c) and (d) are the coverings. Their values are (b) 

(- al a2a4 ), (c) (- al a l a
3
), and (d) (alh_sv_t ). 

Figure 24. The (a:ta:~) correlation. Figure (a) is the MMDP. Figures 

(b), (c), and (d) are the coverings. Their values are (b) 

c- a2a
3
a J' (c) (- al a

3
a

3
), and (d) (a

3
h_sv_t )· 
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Figure 25. The zero correlations. 

the 

correlations. None of these 

MMDP's have any coverings. 

Figure 26. The Figure (a) is the MMDP. 

Figures (b) and (c) are the two coverings. ~eir values are 

(b) (al a 2vt ) and (c) (- a
l

a2v_
t
). 

Figure 27. The (a:ta~s_t) correlation. Figure (a) is the MMDP o 

Figures (b) and (c) are the two coverings. Their values 

Figure 28. 

Figure 29. 

Figure 30. 

are (b) (- a2a
3

hs ) and (c) (a2a
3

h_
s

). 

The (a:ta~s_t) correlation. Figure (a) is the MMDP o 

Figures (b), (c), and (d) are the coverings. Their 

values are (b) (a2a2a 4), (c) (al a2a
3
), and (d) (- a2hsv_t~ 

ht ht 
The (asta_s_t ) correlations. Figure (a)is the MMDP. 

Figures (b) and (c) are the coverings. Their values are 

(b) 

The 

Figures (b) and (c) are the coverings. Their values are 

(b) (al a4h_s) and (c) (- ala4hs). 

Figure 3l. The (avtaht ) correlation. Figure (a) is the MMDP. st -s-t 

Figure 32. 

Figures (b), (c), and, (d) are the coverings. Their values 

are 

The 

(b) (a2a4a4), 

(a:ta:t ) and 

(- a4hsv_t)· 

Figures (a) 

and (b) are the MMDP's. Neither has a covering 
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Figure 12 XBL 7810-6620 
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Figure 30 XSL7810-6614 
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Figure 32 XBL7810 -6612 
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