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Abstract 

In this paper we apply emerging theories in probability and statistics to examine the value of 

pooling of inventories under arbitrary non-normal dependent demand structures. Eppen (1979) 

showed that inventory costs in a centralized system increase with the correlation between 

multivariate normal product demands; using multivariate stochastic orders, we generalize this 

statement to arbitrary distributions. We then describe methods to construct models with arbitrary 

dependence structure, using the copula of a multivariate distribution to capture the dependence 

between the components of a random vector. For broad classes of distributions with arbitrary 

marginals, we confirm that pooling of inventories is more valuable when demands are less 

positively dependent.  



1. INTRODUCTION 

Consider a firm having to determine inventory levels for the same product in many retail 

locations with stochastic demand. If inventory is centralized, as opposed to being kept at the 

retail outlets, the demands from all locations are pooled, so the company will face lower 

aggregate demand uncertainty and hence lower costs. Many variations of this �pooling effect,� 

first analyzed by Eppen (1979) in inventory management, exist. Intuitively, this pooling effect 

becomes less valuable as demands are more positively dependent, but almost all such analysis so 

far, including Eppen (1979), has had to focus on the multivariate normal case due to the 

intractability of dealing with multivariate dependence under non-normal distributions. In this 

paper, we show how Eppen�s original results can be generalized to a broad class of non-normal 

distributions with arbitrary marginals.  

 We build on recent concepts in probability theory: multivariate stochastic orders and copulae. 

In the first part of the paper, we discuss multivariate orders and their interrelationships, thus 

synthesizing the theoretical framework for comparing multivariate random variables with 

arbitrary dependence structures in terms of the sum-convex order, the order that is the most 

relevant for studying pooling of inventories with newsboy-type cost functions. We formalize the 

intuitive notion that inventory costs in a centralized system increase as demands are more 

positively dependent. In the second part of the paper, we provide examples to illustrate how the 

theoretical framework can be applied in cases with non-normal distributions with arbitrary 

marginals and a wide range of dependence structures. We use the multivariate stochastic orders 

to derive specific results on the effect of dependence under the sum-convex order for two broad 

classes of bivariate and multivariate random vectors with arbitrary marginals.  
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This paper is organized as follows. In Section 2, we review relevant literature in the areas of 

inventory pooling and in probability theory. In Section 3 we formally introduce the inventory 

pooling problem. In Section 4 we describe the analytical framework required for our analysis. 

We review several existing multivariate stochastic orders and relate them to the sum-convex 

order. Section 5 uses these multivariate orders to state a more general version of Eppen�s (1979) 

result. Section 6 provides a bivariate and a multivariate application of this generalization, using 

copulae to model the dependence structure of a multivariate distribution. Section 7 offers 

conclusions and future research directions. 

 

2. LITERATURE REVIEW 

We first summarize relevant literature related to inventory pooling followed by a review of 

some recent work in probability theory. A large body of work has grown around various 

manifestations of Eppen�s (1979) notion of pooling of inventories, or Eppen and Schrage�s 

(1981) extension that includes lead times. Tagaras (1992) shows that allowing transshipments 

between retailers leads to similar results as including a distribution center. Recently, Dong and 

Rudi (2001) study the impact of correlation on price interactions under transshipment, and 

Netessine et al. (2000) study the impact of correlation on flexible service capacity under 

multivariate normal demand. Van Mieghem and Rudi (2002) further extend the analysis of 

pooling to �newsvendor networks.� 

Jönsson and Silver (1987) present an exhaustive study of the impact of changing input 

parameters on system performance; Gerchak and Mossman (1992) show how the order quantity 

and associated costs depend on the randomness parameter in a simple and highly interpretable 

manner. Erkip et al. (1990) find that high positive correlation among products and among 
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successive time periods (around 0.7) results in significantly higher safety stock than the no-

correlation case. Alfaro and Corbett (2003) analyze the value of pooling under suboptimal 

inventory policies, and report on numerical and empirical experiments with non-normal demand 

data. Federgruen and Zipkin (1984) extend Eppen and Schrage�s (1981) model in three important 

ways: finite horizon, other-than-normal demand distributions, and non-identical retailers.  

The benefits of delayed product differentiation or postponement are quite similar to those of 

the pooling effect, referring to multiple products instead of multiple locations (Garg and Lee, 

1999). Collier (1982) and Baker et al. (1986) propose models to minimize aggregate safety stock 

levels by using component standardization, subject to a service level constraint. More recently, 

Groenevelt and Rudi (2000) and Rudi (2000) have examined the interactions between the 

optimal inventory policy, the degree of component commonality, demand variability and 

correlation under bivariate distributions. Cattani (2000) showed that the benefits of risk pooling 

may be sufficient to offset the higher costs due to selling a universal product. Various types of 

postponement are studied in Lee and Tang (1997,1998) and Kapuscinski and Tayur (1999); Ho 

and Tang (1998) and the references therein contains further discussion of the pooling effect in 

the context of product variety. 

So far, though, this work related to pooling of inventories has generally lacked a framework 

for assessing the impact of dependence on the value of pooling when demands are non-normal. 

Whenever dependence has been explicitly included, it has generally been in the context of 

bivariate or multivariate normal demands; the current paper provides a framework that could be 

used to generalize much of that work to the non-normal case.  

We refer to work on multivariate stochastic orders and on the copula where appropriate. 

Recent work on multivariate orders includes Scarsini and Shaked (1996), Shaked and 
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Shanthikumar (1994), Scarsini (1998), Müller and Scarsini (2000), and Müller and Stoyan 

(2002), while Joe (1997) and Nelsen (1999) provide good overviews of theory and applications 

of copulae. Clemen and Reilly (1999) introduce the multivariate normal copula and discuss its 

use in the context of combining expert opinions. Many of the results presented here draw on this 

body of literature. However, the contribution of the current paper lies in the combination and 

application of these recent concepts from probability and statistics in order to state, in general 

terms, that higher positive dependence leads to higher inventory costs in a centralized system, 

and therefore lower benefits from pooling. In addition, we illustrate how, using the copula, one 

can construct wide classes of bivariate and multivariate random vectors or demand distributions 

with arbitrary marginals and demonstrate that higher positive dependence still leads to higher 

costs.  

 

3. POOLING OF INVENTORIES 

A well-known problem in inventory theory is to decide how much inventory to carry when faced 

with uncertain demand; the decision-maker has to trade off h, the per unit holding costs of excess 

inventory against p, the per unit shortage costs of not meeting all demand. For a single product i 

with stochastic demand  and associated cumulative demand distribution , the decision-

maker�s cost function TC  depends on his inventory level  as follows: 

 where ( . It is well known that the 

optimal order quantity is q . If the firm sells the product at multiple retail 

locations, demand is a multivariate random variable  with corresponding distribution F. It is 

sufficient to determine the optimal inventory levels for each location independently, regardless 

of dependence structure, to minimize total expected costs.  

ix

+

)( ii xF

iq)( iq
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1* Fii = −
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 However, the firm can also keep a central inventory instead of local inventories (ignoring 

transportation lead times), hence aggregating demand from multiple locations into one single 

random variable, allowing it to exploit �statistical economies of scale.� This is referred to as the 

�pooling effect�, first characterized by Eppen (1979). For the decentralized case, the problem is 

given by =∑ =
])([min

1

N

i iDq qTCE
i ∑ =

+ +−N

i iii xqhE
1

])([

= +− +
=

])([ +− iii qxpE , whereas for the 

centralized case it is [ ])(min qTCE Cq ∑ ])([
1

N

i ixqhE ])+([
1=

−∑ qxpE N

i i .  

If demand follows a normal distribution  with correlations ),(~ ΣµNF ijρ  between all 

products ji , expected total costs for the decentralized and centralized cases are: ≠

∑
=

=
N

i
iD KTCE

1

][ σ                   (3.1) 

∑ ∑∑
=

−

= +=

+=
N

i

N

i

N

ij
ijjiiC KTCE

1

1

1 1

2 2][ ρσσσ              (3.2) 

where K is a constant that depends on p and h. We can now examine the effect of dependence on 

total costs before and after centralization. If ii ∀= σσ  and jiij ≠∀= ρρ , then 

=][ CTCE  )1( −+ NNNK ρσ                (3.3) 

so the value of pooling  is nonnegative and decreasing in ][][ CD TCETCE − ρ . If 1=ρ , then 

; if ][][ DC TCETCE = 0=ρ , then NTCE D /][=TCE C ][ ; if )1/(1 −−= Nρ , then . 

We can summarize this well-known effect of correlation on total costs as follows: 

0] =[ CTCE

 

THEOREM 1 (EPPEN 1979): When demand follows a normal distribution, total costs after 

pooling are increasing in all bivariate correlation coefficients ijρ . 
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This is the statement that we will generalize to near-arbitrary distributions with arbitrary 

marginals in Section 5 using the multivariate stochastic orders from the next section. The idea of 

pooling has been applied in many settings, as discussed in the literature review. Almost without 

exception, though, that work has been confined to the multivariate or even bivariate normal case. 

Using the concepts gathered in this paper we can state a much more general version of this result, 

confirm the intuition that the benefits of centralization decrease as the individual demands 

become more positively dependent, and construct examples of multivariate demand distributions 

with arbitrary marginals and a broad range of dependence structures. We next describe the 

multivariate stochastic orders that are essential to generalize Theorem 1 to multivariate non-

normal distributions with arbitrary dependence structures. 

 

4. MULTIVARIATE STOCHASTIC ORDERS 

In this section we introduce several multivariate stochastic orders in order to be able to formalize 

the notion of �more dependent� product demands. First, let us summarize some well-known 

univariate orders, following Shaked and Shanthikumar (1994) or Levy (1998). Let X and Y be 

two univariate random variables with distributions F and G respectively, for which the 

expectations )]([ XφE  and )]([ YφE  exist for the classes of functions φ  used in the definitions 

below. We use  to denote weak dominance. f

 

DEFINITIONS:  if and only if YX FSDf )]([)]([ YX φφ EE ≥  for all increasing functions 

ℜ→ℜ:φ . 

YX SSDf  if and only if )]([)]([ YX φφ EE ≥  for all increasing concave functions ℜ→ℜ:φ . 

 if and only if YX cxf )]([)]([ YX φφ EE ≥  for all convex functions ℜ→ℜ:φ .  
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Note that FSD (first-order stochastic dominance) is sufficient but not necessary for SSD 

(second-order stochastic dominance). One can define a concave order  analogously to the 

convex order. The concave order restricted to increasing utility functions yields the definition of 

SSD. Since it easy to verify that  if and only if , we do not explicitly discuss 

the concave order. Rather, in this paper, we focus on the convex order applied to the sum of 

random variables with arbitrary dependence structures; we call this the sum-convex order. We 

occasionally relate the sum-convex order to SSD, as the latter is widely used for comparing 

portfolios of risky assets from the perspective of a risk-averse investor. 

cvf

YX cvf YX cxp

 

4.1. Multivariate Stochastic Orders 

In order to compare multivariate random vectors, we need to define appropriate multivariate 

stochastic orders. The multivariate version of  is easy to define using multivariate convex 

functions, but often of limited use. To study pooling of inventories, we use an order that we call 

the sum-convex order, closely related to the multivariate extension of SSD. Let  denote 

component i in random vector . 

cxf

iX

X

 

DEFINITIONS: let random vector  and  have dimensions  and  respectively. Then 

 dominates  in the sum-convex order, written as , if and only if 

.  

X Y XN

X

YN

YX

∑

Y

X

i1
Y

scxf

∑ ==
X N

i

N

i i cx1
X f

X

SSDf

 dominates  in terms of second-order stochastic dominance (SSD), written as 

, if and only if 

Y

YX ∑∑ ==
XX N

i i
N

i i 1SSD1
YX f  in the univariate sense. 
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The relationship between  and  is immediate:  scxf SSDf

 

LEMMA 1: . XYYX SSDscx ff ⇒

 

For clarity and continuity of presentation, we defer all proofs of Lemmas and references to 

existing proofs to the Appendix. One could of course dispense with the sum-convex order by 

always writing ; however, it is notationally convenient to define the sum-

convex order separately. Moreover, we can relate it to other multivariate orders that have been 

defined in the probability literature, and show that f  is strictly weaker (and hence more 

general) than these existing orders. The ranking of random vectors under f  depends on the 

variability of aggregate value, which depends on the variability of the individual components and 

on the interdependence between them. The multivariate convex order does not deal with 

variability and dependence in a useful way. Later we explore the notion of dependence of 

multivariate random variables in more depth; first, we need to place the sum-convex order in a 

larger context by reviewing several other existing multivariate stochastic orders generated by 

specific classes of functions 

∑∑ ==
XX N

i i
N

i i 1cx1
YX f

scx

scx

φ . As described in the next section, this is essential to generalize 

Theorem 1 to multivariate non-normal distributions with arbitrary dependence, and also provides 

a basis to generalize other work related to pooling to such distributions. Following Müller and 

Scarsini (2001), define the difference operator  where  is the i-th 

unit vector in ℜ  and 

)()(( XιXX φεφε −+∆ ii :) φ= iι

N 0>ε .  
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DEFINITIONS: a function  is supermodular if  for all X , 

, 

ℜ→ℜN:φ 0)( ≥∆∆ Xφδε
ji

Nℜ∈

Nji ≤<≤1 ji ≠ , and all 0, ≥δε . 

A function  is directionally convex if  for all X , 

, and all 

ℜ→ℜN:φ

0, ≥

0)X(ji ≥φ∆∆ δε Nℜ∈

Nji ≤≤ ,1 δε . 

A function  is componentwise convex if ∆  for all X , 

, and all 

ℜ→ℜN:φ

0, ≥

0)X(ii ≥φ∆δε Nℜ∈

Ni ≤≤1 δε . 

 

Directional convexity does not imply and is not implied by the usual notion of convexity. 

The following lemma provides the relationship between these three definitions. 

 

LEMMA 2: φ  is directionally convex φ⇔  is supermodular and componentwise convex. 

 

We can now define the corresponding stochastic orders: 

 

DEFINITIONS: X dominates Y in the supermodular order, written as , if and only if YX smf

)]([)]([ YX φφ EE ≥  for all supermodular functions φ . 

X dominates Y in the directionally convex order, written as , if and only if YX dcxf

)]([)]([ YX φφ EE ≥  for all directionally convex functions φ . 

X dominates Y in the componentwise convex order, written as , if and only if YX ccxf

)]([)]([ YX φφ EE ≥  for all componentwise convex functions φ . 
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The following lemmas summarize existing relationships between the orders introduced 

previously; Figure 1 also summarizes these relationships.  

 

LEMMA 3: . YXYX dcxccx ff ⇒

LEMMA 4:  ∀i. ii YXYXYX stdcxsm and =⇒ ff

LEMMA 5:  . ⇒YX ccxf YX cxf

LEMMA 6: . YXYX scxdcx ff ⇒

 

The following order, from Scarsini (1998), is useful in the context of portfolio optimization. 

 

DEFINITION: X dominates Y in the positive linear convex order, written as , if and 

only if  for all . 

YX plcxf

YaXa T
cx

T f N
+ℜ∈Ta

 

The following lemmas are immediate: 

 

LEMMA 7: . YXYX scxplcx ff ⇒

LEMMA 8: . YXYXYX plcxstdcx and ff ⇒= ii

LEMMA 9: . YXYX plcxcx ff ⇒

 

In Scarsini�s (1998) application, the components of  are assets an investor can select for 

inclusion in a portfolio. The investor selects an optimal portfolio by choosing the appropriate 

vector of weights a , the proportion of his wealth that he invests in each specific asset. In our 

X
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application, as in Eppen (1979), the firm cannot change the proportion of total sales generated by 

each specific product; all elements of the vector of weights a  are equal to 1. That is why the 

sum-convex order is more appropriate for our purposes than the already existing  order. 

Example 1 below illustrates that the implication in Lemma 7 is strict, which means that 

 is a weaker and hence more general condition than X , despite being a 

mathematically trivial variation on the  order (itself a mathematically simple but useful 

variation of the convex order).  

plcxf

plcxf

(~ N µ

YX scxf

plcxf

X Y

ι=

Yplcxf

X

),( XN Σµ

plcxf

X plcxf

scx

Y

F

 

4.2. The sum-convex order is strictly weaker than the f  order plcx

The  order is useful for choosing between random vectors of arbitrarily weighted 

combinations of components. Here we show that the sum-convex order is strictly more useful for 

choosing between given random vectors than the f  order, as it is easy to find random vectors 

 and  such that  but not . An obvious case is  and  with different 

dimensionality, as  is then not well defined while  is. Example 1 gives a pair of 

equidimensional multivariate normal random vectors with equal marginals but different 

dependence structure, which can be compared in the sum-convex order but not in the  order 

(and therefore not in the supermodular order or other stronger orders).  

plcx

YX scxf

plcx

Y Y

f f

EXAMPLE 1. Assume we have two random vectors  and , each with N = 4 components, 

following normal distributions  and  respectively, where  and , 

with µ  (the four-dimensional vector with all elements equal to one). Further let: 

X

F G ~ ), YG Σ

4
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

















=

1000
0100
0010
0001

XΣ    and  .  



















−−
−−

−−
−−

=

1111
1111
1111
1111

YΣ

Note that both are well-defined covariance matrices as they are positive semi-definite. The 

aggregate values of the random vectors, defined as ∑ =
= 4

1j jXx

)0,4(~ N

 and y  respectively, 

follow a normal distribution, with  and y . Clearly, , or . 

However, take , a convex function of Z : 

∑ =
= 4

1j jY

yx cxf

[)]([ X

)4,4(~ Nx

2)2

YX scxf

)]21()( −+= ZZZφ (Yφφ E<E  so that 

 cannot be true. (One can show that  is also not true.)  The fact that the sum-

convex order allows many more pairs of random vectors to be compared, even with unequal 

dimensionality, than existing orders, is what makes it useful for many applications in operations 

research and decision theory. 

YX plcxf YplcxX p

 

4.3. The sum-convex order and the normal distribution 

Using these orders, results in the literature allow us to state two sufficient conditions for 

 with multivariate normal distributions; we use these to obtain statements for more 

general distributions in Section 6.  

YX scxf

 

LEMMA 10: let  and  be N-dimensional normal random variables with distributions  

and  respectively, where  and G . Then if µ  

and  is positive semidefinite.  

X Y

F

F

YµG

ΣX

),(~ XXN Σµ ),(~ YYN Σµ YX scxf  X =

 YΣ−
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LEMMA 11: let  and  be N-dimensional normal random variables with distributions  

and  respectively, where  and . Denote the elements of  by 

X Y

F

F

G

ij

),(~ XXN Σµ ),(~ YYNG Σµ XΣ

X ,σ  and those of  by YΣ ijY ,σ . Then  if  and YX scxf ii YX st= jiijYijX ,,, ∀≥ σσ . 

 

In fact, for the sum-convex order, a tighter necessary and sufficient condition can be 

formulated. We first need to recall the following lemma to summarize the relationship between 

the variance of a normal distribution and the univariate convex order. 

 

LEMMA 12: let  and  be univariate normal random variables. Then X Y

YXYX σσ ≥⇔cxf  and YX µµ = .  

 

Using this result, we can relate the sum-convex order to the mean-variance framework for the 

multivariate normal distribution:  

 

LEMMA 13: let  and  be normal random variables with  and  dimensions and 

with distributions  and  respectively, where  and G . Denote 

the elements of  by 

X

F

Y

G

XN YN

(N),(~ XXNF Σµ ),~ YY Σµ

XΣ ij,Xσ  and those of  by YΣ ijY ,σ . Then 

∑∑∑∑
====

≥=⇔
YXYX N

ji
ijY

N

ji
ijX

N

ji
iY

N

ji
iX

1,
,

1,
,

1,
,

1,
,scx  and σσµµYX f .         (4.1) 

 

The characterizations in Lemma 10 and 11, based on results for the convex order and the 

supermodular order respectively, are clearly more restrictive than that in Lemma 13, but we will 

see below how Lemma 11 can be generalized to non-normal distributions, unlike Lemma 13. 
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Recall that Example 1 showed that f  is a strictly stronger condition than ; for the normal 

case, we can formalize this fact as follows. Following Debreu (1959, pp. 7-8), define a 

preordering as a binary relation 

plcx

y

scxf

x f  which is reflexive and transitive, and a complete 

preordering as a preordering in which either yx f  or xy f  must be true for all pairs ( . 

Lemma 13 and Example 1 then imply: 

), yx

 

COROLLARY 1: the f  order is a complete pre-ordering on the space of multivariate normal 

distributions  with arbitrary dimensionality that satisfy 

scx

X µ=∑ =
][

1
XN

i iE X  for some given µ , 

while the  and the f  orders are only partial pre-orderings on the space of multivariate 

normal distributions with equal dimensionality. 

plcxf sm

 

4.4. Multivariate Positive Dependence Orders 

In the preceding example, we focused on the multivariate normal distribution. Our objective, 

though, is to examine the value of pooling under arbitrary non-normal demand with arbitrary 

dependence structure. For non-normal distributions, dependence is far more general than just a 

covariance matrix, which only captures bivariate linear dependence relations. Fortunately, there 

exist orders that rank random variables exclusively based on their dependence. We show how 

such multivariate positive dependence orders relate to the orders already introduced. In Section 6 

we discuss how all this can be applied to pooling of inventories. First, we need to review some 

definitions of dependence. 
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DEFINITIONS: the survival function F  corresponding to the multivariate distribution function 

F of a random vector Z is defined by },,1Pr{)( NizzF ii K=∀>= Z . 

X is more positive lower orthant dependent (PLOD) than Y , written as , if and 

only if  

YX plof

NzzGzF ℜ∈∀≥ )()( .

X is more positive upper orthant dependent (PUOD) than Y , written as , if and 

only if 

YX puof

NzzGzF ℜ∈∀≥ )()( . 

X is more concordant than Y , written as , if and only if  and . YX cf YX plof YX puof

 

For the bivariate case, )(1)( zFzF −= , so the PLOD, PUOD and concordance orders are all 

equivalent. The concordance order means that if , then the components of X are more 

likely than the components of Y to take on low (or high) values simultaneously. Though the 

concordance order is intuitively appealing, it is often difficult to verify analytically. However, 

any order that satisfies the nine axioms summarized in Joe (1997) and included here in the 

Appendix is called a multivariate positive dependence order (MPDO). The lower orthant, upper 

orthant and concordance orders all satisfy all nine axioms (Joe 1997, p. 39), as does the 

supermodular order (Müller and Scarsini 2000). For many purposes involving dependence 

structure, the supermodular order has proven to be the most useful. When we construct examples 

of random vectors with various dependence structures in Section 6, we will use the following 

existing relationships between the supermodular and concordance orders:  

YX cf

 

LEMMA 14: . YXYX csm ff ⇒

LEMMA 15:  only for . YXYX smc ff ⇒ 2=N
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So far, we have defined a set of multivariate stochastic orders, enabling comparisons of 

aggregate product demands and comparisons of dependence between non-normal multivariate 

distributions. We now have the results we need to formulate, in the next section, the more 

general version of Eppen�s (1979) result (stated in Theorem 1), to multivariate non-normal 

distributions with arbitrary dependence structures. After that, we illustrate how one can construct 

such non-normal distributions with more general dependence structures in Section 6. 

 

5. DEPENDENCE AND THE VALUE OF POOLING OF INVENTORIES 

Using the concepts gathered in this paper we can generalize Theorem 1 (paraphrased from 

Eppen, 1979), stating that increased dependence reduces the value of pooling, to much broader 

classes of distributions:  

 

THEOREM 2: Let  and  be multivariate random variables with  and  dimensions. 

Then  implies , i.e., the cost after pooling is 

greater under demand  than under .  

X Y

E

XN YN

YX scxf [ ] [ );(min);(min qTCEqTC CqCq
YX ≥

Y

]

]

]

X

 

PROOF: it is easy to verify that the centralized objective function  is convex in 

 for given , so  implies  for any , so also 

.               □ 

[ );( qTCE C X

[ ]);( qY∑ =

N

i i1
X

min TCE
q

q YX scxf

[ ;( qTCC Y

[ ]);( TCEqTCE CC X ≥ q

[ ] )min);( Eq
qC X ≥
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If  is more positively dependent than  under any dependence order which implies 

, such as the supermodular order or (for bivariate cases) the concordance order, we can 

use Theorem 2 and Figure 1 to conclude that the costs after pooling are greater under  than 

under , which generalizes Theorem 1 to multivariate non-normal distributions with arbitrary 

dependence structures. Figure 1 summarizes sufficient conditions for  to hold, and 

hence for costs after pooling to be greater under  than under Y . As more orders are defined 

and more links between them established, more sufficient conditions can be added to the 

framework in Figure 1. In addition, Example 1 (in Section 4.2) shows that using  is a 

strictly weaker (and hence more general) condition than using .  

X

Y

Y

Y

X scxf

X

Y

YX scxf

X

X scxf

YX plcxf

In itself, Theorem 2 is almost tautological; it immediately raises the question �when does 

 hold for any given situation?� However, the framework provided by Theorem 2 and by 

the links between stochastic orders as summarized in Figure 1 allow us to examine the impact of 

dependence on costs in a centralized system for far more general distributions. Analogously, one 

can now return to other existing work on pooling of inventories, postponement of differentiation, 

etc., and verify which of the orders in Figure 1 apply to the objective function considered in that 

work. This will then show that many of those existing results can also be generalized to non-

normal dependent distributions. In the next section, we define broad classes of multivariate 

distributions and show how Theorem 2 can be used to demonstrate that higher dependence leads 

to higher costs using a bivariate and a multivariate example. To do so, we need to model 

dependence in arbitrary non-normal multivariate distributions, for which we use the copula. 

YX scxf

 

6. EXAMPLES: MULTIVARIATE DEPENDENCE AND POOLING 

 18



A relatively recent tool for capturing dependence in arbitrary multivariate distributions is the 

�copula�. This will be useful for us in two ways. First, in constructing stochastic models, the 

copula allows us to combine arbitrary marginals with an arbitrary dependence structure, rather 

than limiting us to the few distributions with tractable dependence structures. Second, comparing 

two multivariate random variables with the same marginals is clearly equivalent to comparing 

their copulae. We illustrate both these uses with examples at the end of this section; first, we 

introduce the basic ideas behind the copula (see, for instance, Joe 1997). 

 

DEFINITIONS: let F~  denote the Fréchet class given a set of marginal distributions; e.g., 

),,(~
1 NFFF K  is the class of multivariate distributions with given marginals .  NFF ,,1 K

For any multivariate distribution ),,(~
1 NFFFF K∈

F x)(

, the copula associated with  is a 

distribution function C  that satisfies . The 

copula C  itself is a joint distribution with uniform marginals. 

F

Nℜ]1,0[]1,0[: →N ( )NN xFxFC ∈= x)(,),(( 11 K

),,( 1 Nuu K

 

Let  and  be multivariate uniform random variables with distributions C  and C  

respectively; we will interchangeably write U  and . Sklar�s theorem (see for 

instance Clemen and Reilly 1999) guarantees that a copula always exists: 

U V U V

Vf VU CC f

 

 SKLAR�S THEOREM: for any multivariate distribution ),,(~
1 NFFFF K∈

iF

, the copula as 

defined above exists. If the  are all continuous, then C  is unique; otherwise, C  is uniquely 

determined on ∏ , where  is the range of . 

iF

)
=

N

1i
(Ran iF )(Ran iF
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 Clemen and Reilly (1999) show that, for differentiable  and C , the joint density can be 

written as  where the  are the densities of 

the marginals  and c , the copula density. From the definition, it 

is clear that the copula is entirely general and fully captures the dependence structure inherent in 

any multivariate distribution F. Using the notion of the copula, we can now state results for 

comparisons between random vectors with equal marginals but different dependence structures. 

iF

( )(,),(()(),,( 1111 NN
N

i iiN xFxFcxfxxf KK ∏ =
=

iF )]()(/[ 11 NN
N xFxFC ∂∂∂= L

) )( ii xf

 

6.1. Comparing random vectors with equal marginals but different dependence structures 

There is an immediate link between multivariate dependence orders and the copula following 

Remark 5.6 in Scarsini and Shaked (1996). Let T  be any transform of a multivariate 

random variable , where T  has the same dimensionality as  and where each component 

 is an increasing transform of the marginal . A multivariate stochastic order f  is said to 

be invariant under increasing transforms if  implies T  for all such 

)(: XX T→

iX

Y (X

X )(X X

(T

)(XiT

X f )) Yf T . 

 

LEMMA 16: let  and  be two multivariate random variables such that , with 

distributions F and G and corresponding copula�s C  and C  respectively. Then for all orders 

 which are invariant under increasing transforms,  if and only if . 

X Y iii ∀= YX st

YCf

X

X

Y

f Yf XC

 

The condition of Lemma 16 follows from Axioms 7 and 8 for multivariate positive 

dependence orders in the Appendix, which yields: 
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COROLLARY 2: the conditions of Lemma 16 are satisfied for all multivariate positive 

dependence orders that satisfy Axioms 1-9, so for all MPDOs one can interchangeably compare 

the distributions or their copulae. 

 

The supermodular order is an MPDO, but orders such as the convex order are not 

dependence orders, and it is easy to find examples in which C  but not . In 

light of Lemma 16, one can model the dependence structure of a random vector using its copula 

and use multivariate dependence orders to assess the effect of increasing dependence. We 

illustrate this procedure in Section 6.2.  

YX Ccxf YX cxf

 

6.2 Constructing Multivariate Distributions with Arbitrary Marginals 

Here we present two examples of a copula and its relationship to the multivariate orders 

discussed so far. Let the X  follow arbitrary univariate distributions  respectively; the  need 

not come from the same family of distributions. To model dependence, we first use bivariate 

Archimedean copulae and then the multivariate normal copula.  

i iF iF

 

THEOREM 3. Let  and Y  be arbitrary bivariate random variables with distributions X

),(~, 21 FFFGF ∈

YX scxf

 and with copulae C  and  respectively. Then C  implies  

and . 

X YC YX Ccf YX smf
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PROOF: since the concordance ordering is an MPDO (Joe 1997, p. 39), C  implies 

that , by Lemma 16. Using the result of Tchen (1980), and Lemmas 4, 6 and 14, we have 

 for bivariate distributions.          □ 

YX Ccf

YX cf

XYc ⇒ YXYX scxsm fff ⇒

 

 This means that, presented with any two bivariate demand distributions with equal marginals, 

the one with the more concordant copula will lead to higher costs in a centralized system. To see 

how Theorem 3 can be applied, consider the class of bivariate Archimedean copulae, which is 

broad (Nelsen 1999 lists 22 families on pp. 94-97) and useful for several reasons: they can be 

constructed easily, a wide variety of families of copulae belong to this class, and they possess 

many nice properties. We will not define the class in general, but consider, for instance, the 

following specific family (our example will work with many others): 

10
))1)(1(1(

),(
/1

21

21
21 ≤<  , 

−−−
= θ

θθθθ uu
uuuuC           (6.1) 

The joint distribution is given by ; moreover, taking the 

limit , the product copula, so  and  are independent.  

))(),((),( 221121 XFXFCXXF θ=

1X 2X21210 ),(lim uuuuC =↓ θθ

 

THEOREM 4. Let  and  be bivariate random variables with distributions X Y

),(~, 21 FFFGF ∈

21

 and with copulae C  and , as defined in (6.1), respectively. 

Then 

),( 211
uuθ ),( 212

uuCθ

θθ ≥  implies , i.e., the cost after pooling is 

greater under demand  than under . 

[ ] min)q
q

≥ [ );( qTCC Y ];(X

Y

min
q

ETCE C

X
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PROOF: Observe that ∂ 0/),( ≥∂θθ baC . Thus, 21 θθ ≥

1θ

0≥

 also implies that 

 . By the definition of the concordance order (Nelsen 

1999, p. 181),   implies that C . Theorem 3 then 

gives  and  for any copula with ∂

),(),( 2121 21
uuCuuC θθ ≥

,( 211
uuCθ

YX smf X f

]1,0[∈

), 21 uu 0[, 21 ∈∀ uu

, 21∀ uu

()
2

Cθ≥

Yscx

]1,
2c θCf

/),( ∂θθ baC

X

. By Theorem 2, X  

implies that the cost after pooling is greater under  than under , so this example illustrates 

how higher dependence leads to higher costs after pooling for bivariate distributions with 

arbitrary marginals and a range of Archimedean copulae. □ 

Yscxf

Y

 

For multivariate distributions, the  order does not imply the f  order, so the construction 

above does not work. However, we can still construct a broad class of multivariate random 

variables using the normal copula, discussed in Clemen and Reilly (1999); it again allows 

arbitrary marginals, but captures dependence exactly as the multivariate normal distribution 

does, using only pairwise correlations. In other words, the multivariate distribution is fully 

defined by the marginals  and the covariance matrix . 

cf sm

iF Σ

 

THEOREM 5. Let  and  be arbitrary multivariate random variables with distributions X Y

),,(~, 1 NFFFGF K∈

XΣ YΣ

 and with normal copulae C  and , characterized by covariance 

matrices  and  with elements 

X YC

ijX ,σ  and ijY ,σ , respectively. Then jiijYijX ,,, ∀≥ σσ  implies 

 and . YX smf X scxf Y

 

PROOF: let  and  be multivariate random variables with copula C , and let  and Y  have 

copula . Then  because the supermodular order is a 

X 'X

X'

X Y '

YC YXY smsmsm ' fff ⇔⇔ YX CC
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dependence order. Now let  and  be multivariate normal random variables; then Theorem 

4.2 in Müller and Scarsini (2000, p. 117), used in Lemma 11 above, shows that the conditions in 

the theorem imply ' , so also , from which the rest follows.     □ 

'X 'Y

X' sm YX f

Yscx

Ysmf

ji,

 

As above,  implies that the cost after pooling is greater under  than under , so 

this example illustrates how higher dependence leads to higher costs after pooling for 

multivariate distributions with arbitrary marginals and a normal copula. Comparing Theorem 5  

with expression (3.2) for normal distributions clearly highlights the trade-off inherent in 

assuming normal marginals. In both cases, the copula is normal: if the marginals are also normal, 

X f X Y

ijYijX ,, σσ ≥  for any  is sufficient for the costs after pooling to increase, while if the 

marginals are not assumed to be normal, we must have ijYijX ,, σσ ≥  for all ji,  to be able to 

show that costs after pooling increase. It is possible that tighter conditions than this can be found, 

though we are not aware of any. For the bivariate case with normal copula but arbitrary 

marginals, Theorem 5 reduces to the statement that inventory costs in a centralized system with 

arbitrary marginals and a normal copula are increasing in the correlation coefficient ρ , as one 

would expect.  

 

7. CONCLUSIONS 

In this paper we have generalized Eppen�s (1979) result, on how inventory costs after pooling 

increase with dependence between the individual demands, to near-arbitrary multivariate 

dependent demand distributions, and we have also illustrated how to construct such distributions. 

In doing so, we have provided a basis to extend the large literature that has sprung from that 

principle to more general demand distributions. Altogether, this framework allows one to address 
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problems of pooling of inventories without needing to resort to assumptions of independence or 

multivariate normality. There are many other potential areas of application of these concepts in 

decision theory, risk assessment, reliability, portfolio comparison and inventory theory; we hope 

that this paper will stimulate more work in these areas.  

 

APPENDIX: AXIOMS FOR MULTIVARIATE POSITIVE DEPENDENCE ORDERS 

 

AXIOM 1 (bivariate concordance):  implies that for any pair 1 , 

 where  and  are the bivariate margins.  

YX f Nji ≤<≤

2)()( ℜ∈∀≥ zzGzF ijij ijF ijG

AXIOM 2 (transitivity):  and  imply . YX f ZY f ZX f

AXIOM 3 (reflexivity): . XX f

AXIOM 4 (equivalence):  and  imply . YX f XY f YX st=

AXIOM 5 (upper bound):  for all random vectors X, where  is the Fréchet upper 

bound (defined in Section 7). 

XX fU UX

AXIOM 6 (invariance to limit in distribution):  for n , and  and 

 as n  imply that . 

nn YX f K,2,1= XX d
n →

YY d
n → ∞→ YX f

AXIOM 7 (invariance to order of indices):  implies 

 for all permutations 

),,(),,( 11 nn YYXX KfK

),,(),,( )()1()()1( NN ππππ YYXX KfK π  of . ),,1( NK

AXIOM 8 (invariance to increasing transforms):  implies 

 for all strictly increasing functions a . 

),,(),,( 11 nn YYXX KfK

),),((),),(( 11 nn aa YYXX KfK

AXIOM 9 (closure under marginals):  implies 

 for all n . 

),,(),,( 11 nn YYXX KfK

),,(),,( )()1()()1( nn ππππ YYXX KfK N<
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APPENDIX: PROOFS OF LEMMAS 

 

PROOF OF LEMMA 1: , where f  is the 

�increasing concave order� defined by Scarsini (1998). 

XYXYXYYX SSDicvcvscx ffff ⇒⇒⇒ icv

 

PROOF OF LEMMA 2: follows from the definitions of supermodular, componentwise convex and 

directionally convex functions. 

 

PROOF OF LEMMA 3: see Müller and Scarsini (2001, p. 728). 

 

PROOF OF LEMMA 4: follows from combining Theorem 2.5 in Müller and Scarsini (2001, p. 727) 

with Lemma 2.2 in Bäuerle (1997, p. 186). 

 

PROOF OF LEMMA 5: follows from Theorem 5.A.13 in Shaked and Shanthikumar (1994, p.159). 

 

PROOF OF LEMMA 6: it is easy to verify that the function )(
1∑ =

N

i iXφ  is supermodular and 

componentwise convex for all convex functions φ . The equivalence in Lemma 2 then implies it 

must be directionally convex, which immediately gives the desired result. 

  

PROOF OF LEMMA 7: follows by restricting a  to , the vector with all elements equal to one in 

the definition of the f  order. 

ι

plcx

 

PROOF OF LEMMA 8: see Theorem 5, Scarsini (1998, p. 101). 
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PROOF OF LEMMA 9: follows from Scarsini (1998), expression (1) on p. 96. 

 

PROOF OF LEMMA 10: Theorem 4 in Scarsini (1998, p. 99) states that the conditions of the 

theorem are true if and only if , from which the result follows by Lemmas 7 and 9. YX cxf

 

PROOF OF LEMMA 11: by Theorem 4.2 in Müller and Scarsini (2000, p. 117), the conditions of 

the theorem are true if and only if , from which the result follows trivially by Lemmas 4 

and 6. 

YX smf

 

PROOF OF LEMMA 12: the definition of the convex order immediately implies 

YXYX σσ ≥⇒cxf , and choosing the convex functions zz =)(φ  and zz −=)(φ  in the 

definition of the convex order gives  and  respectively, proving the 

left-to-right implication. For the converse, consider the function , defined as the 

number of sign changes of the difference between the normal density functions  f  and  g  of  

and  respectively. Inspection shows that  has exactly two finite zeroes whenever 

][][ YX EE ≥

f

][YE−≥

S −

][XE−

)( gf −

X

Y

XYX

g−

Yµµσσ =≥ and  and that the sign sequence is {+,-,+}, so by Theorem 2.A.17 in Shaked 

and Shantikumar (1994), YcxfXYXand ⇒=YX ≥ µµσσ  for the case of normal distributions. 

The result on SSD is Theorem 6.2 in Levy (1998, p. 192).  

 

PROOF OF LEMMA 13: write  for the variance of 2
Xσ ∑ =

XN

j j1
X  and  for the variance of 

. For normal distributions, we know that , so 

2
Yσ

X
2σ∑ =

YN

j j1
Y ∑ =

= XN

ji ijX1, ,σ
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∑∑ ==
≥⇔≥ YX N

ji ijY
N

ji ijXYX 1, ,1, ,
22 σσσσ

XC (ii F XU =

. The result then follows immediately from Lemma 12. The 

result for SSD follows analogously.  

( (()( 1
1

11X FF UU −=

YX dcxf

 

PROOF OF LEMMA 14: see Müller and Scarsini (2000, p. 110). 

 

PROOF OF LEMMA 15: see Müller and Scarsini (2000), Theorem 2.6. 

 

PROOF OF LEMMA 16: by definition, the random variable U  has 

distribution , so that . Define the inverse  appropriately to ensure 

existence. Then 

( ))(,),( 11 NNFF XX K=

)(1
iU−)i iF

)))((, 1
NNN FF U−K

V YC

)),C  and ; 

analogous relations hold between Y , G,  and . Both  and  are 

increasing in their respective arguments, so the result follows from the assumption of invariance 

under increasing transforms of the marginals.            □ 

( ))N(,),()( 11 NX FFC XXX K=

)( iii F XU = )(1
iiF U−

F

 

PROOF OF LEMMA 17: Theorem 4.5 in Müller and Scarsini (2001) shows that the conditions in the 

above Proposition imply , which by Lemma 6 implies the desired result.   □ 
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FIGURE 1: Summary of key relationships between multivariate orders 
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