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Abstract

The development and validation studies of new multisensory biomarkers and sensor-triggered 

interventions requires collecting raw sensor data with associated labels in the natural field 

environment. Unlike platforms for traditional mHealth apps, a software platform for such studies 

needs to not only support high-rate data ingestion, but also share raw high-rate sensor data with 

researchers, while supporting high-rate sense-analyze-act functionality in real-time. We present 

mCerebrum, a realization of such a platform, which supports high-rate data collections from 

multiple sensors with realtime assessment of data quality. A scalable storage architecture (with 
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near optimal performance) ensures quick response despite rapidly growing data volume. Micro-

batching and efficient sharing of data among multiple source and sink apps allows reuse of 

computations to enable real-time computation of multiple biomarkers without saturating the CPU 

or memory. Finally, it has a reconfigurable scheduler which manages all prompts to participants 

that is burden- and context-aware. With a modular design currently spanning 23+ apps, 

mCerebrum provides a comprehensive ecosystem of system services and utility apps. The design 

of mCerebrum has evolved during its concurrent use in scientific field studies at ten sites spanning 

106,806 person days. Evaluations show that compared with other platforms, mCerebrum's 

architecture and design choices support 1.5 times higher data rates and 4.3 times higher storage 

throughput, while causing 8.4 times lower CPU usage.
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Ubiquitous and mobile computing systems and tools; • Computer systems organization → 
Embedded and cyber-physical systems;
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1 Introduction

Smartphones with embedded and wirelessly connected sensors have revolutionized health 

and wellness management via numerous apps. These technologies are also fueling the next 

generation of health research and are leading to novel interventions to improve health and 

wellness [14]. But, their future momentum critically depends on our ability to discover and 

validate new biomarkers for assessing health, wellness, daily behaviors, and contextual 

factors.

1.1 System Requirements

Development and validation of any new mHealth biomarker requires conducting research 

studies in lab and field settings to collect raw sensor data with appropriate labels (e.g., self-

reports). Raw sensor data are of increasing interest as it significantly expands the useful life 

of the information collected. Similar to biomedical studies that often archive biospecimens 

in biobanks so they can be reprocessed to take advantage of future improvements in assays 

and support biomedical discoveries not possible at the time of data collection, raw sensor 

data can be used to obtain new biomarkers that were not available at the time of data 

collection.

For example, if the activity trackers stored raw sensor data from accelerometers and 

gyroscopes (100+ HZ instead of few samples of activity counts per day), the same sensor 

data can also be used to track eating, drinking, brushing, smoking, etc. from hand gesture 
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signatures, in addition to activity counts. Doing so, however, requires a mobile phone 

software platform that can be used to collect both high-rate raw sensor data and associated 

labels in field.

A general-purpose software platform that can enable such data collection needs several 

attributes. First, it must support concurrent connections to a wide variety of high-rate 

wearable sensors with an ability to plug-in new sensors. Second, it must ingest the large 

volume of rapidly arriving data for which native support does not yet exist in the smartphone 

hardware or operating system without falling behind and losing data. Third, it needs to 

support reliable storage of quickly growing volume of sensor data, whose archival is critical 

to the development and validation of new biomarkers.

Fourth, it is desirable to quickly analyze incoming data to monitor signal quality so any 

errors in sensor attachment or placement can be fixed quickly to maximize data yield. Fifth, 

it needs to support the sense-analyze-act pipeline for high-rate streaming sensor data. This is 

necessary to prompt self-reports (for collection of labels) as well as confirm/refute prompts 

for validation of new biomarkers in the field. Sense-analyze-act support is also needed to aid 

development and evaluation of sensor-triggered interventions.

Sixth, it needs seamless sharing of streaming data from multiple sensors to enable 

computation of multi-sensor biomarkers (e.g., stress, smoking, eating). Seventh, the platform 

needs to be general-purpose and extensible to support a wide variety of sensors, biomarkers, 

and study designs. Eighth, it needs to be architecturally scalable so that it can support 

concurrent computation of a large number of biomarkers (each of which requires complex 

processing) without saturating the computational capacity or battery life of the mobile 

phone. Finally, it needs to carefully control interruptions to study participants from various 

sources (e.g., self-report, ecological momentary assessment (EMA) and interventions (EMI), 

fixing sensor attachments) limiting user burden and cognitive overload while satisfying the 

numerous study requirements.

1.2 Our Contributions

In this paper we present mCerebrum, an open-source, generalizable, and reusable platform 

that meets the above requirements (see Section 1.1), in particular, high-rate data ingestion, 

real-time biomarker computation, and burden-aware prompting. The design of mCerebrum 

has evolved from its use in ten research studies with unique study requirements and diverse 

health targets (see Table 1).

To accomplish efficient ingestion and real-time processing of high-rate sensor data (70+ 

million samples/day) for multi-sensor biomarkers, mCerebrum uses an efficient data 

exchange architecture (called DataKit). To ease the burden of frequent and complex 

computation for biomarkers, the architecture natively supports computation reuse and 

microbatching.

To ensure extensibility to new sensors and generalizability to diverse study goals, 

mCerebrum uses a common data format that is flexible for current and future data types, yet 

efficient for communication. To reduce latency and overhead associated with storing rapidly 

Hossain et al. Page 3

Proc Int Conf Embed Netw Sens Syst. Author manuscript; available in PMC 2018 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



growing sensor data (up to 2GB/day), mCerebrum uses a new scalable storage architecture 

called Pebbles. Burden-aware scheduling of user prompts is achieved through a bipartite 

graph design with gradual escalation to ensure meeting study goals, while using adaptive 

feedback for managing user burden.

Evaluations show that when inserting 1k samples at a time, mCerebrum ingests 9.65k 

samples/s, which is 1.5 times higher than AWARE [7] (and 7 times higher for 1 sample 

insertions). For high-rate storage, mCerebrum achieves 92% of optimal throughput, which is 

4.3 times higher than AWARE [7]. Via microbatching of data ingestion and enabling 

efficient reuse of computation, mCerebrum achieves significantly lower CPU utilization (8.4 

times lower than AWARE [7]), which is necessary to enable real-time computation of multi-

sensor biomarkers from high-rate sensor data.

2 Related Work

We compare mCerebrum with some existing software platforms for conducting mHealth 

research studies with sensor data. Table 1 summarizes the comparison on key desired 

attributes.

The first set of platforms related to mCerebrum are various commercial systems, which 

broadly fall into two categories. Among these are the data collection systems that have been 

created by vendors of wearables such as Fitbit, Withings, Polar, and Garmin. Typically, they 

provide mobile apps to let users visualize the data and back-end cloud services for storage, 

web-based access, and RESTful API based distribution to other applications and services. 

Besides being limited to supporting only vendor-specific devices, most of these systems are 

designed to collect low-rate biomarkers computed on the device (e.g. step count) instead of 

high-rate raw sensor data and limit access by third-party applications to be only via web 

service APIs. In rare cases, the raw high-rate sensor data is exposed via an SDK to third-

party smartphone apps, such as with Microsoft Band, but then nothing else is usually 

provided.

The second category of commercial systems are software platforms from the major 

ecosystem players (Apple, Google, and Microsoft) that are device and application vendor 

agnostic, and provide support for a richer suite of services. Of these, the most well-known 

are Apple's HealthKit and ResearchKit services [13, 25] where the former provides a 

smartphone based storage engine optimized for collection and querying of a broad spectrum 

of health-related sensor data, and the latter provides organizers of research studies, that make 

use of such data, support for study management functions such as subject recruitment. 

However, unlike mCerebrum, the HealthKit targets low-rate data and has no native support 

for other critical functions such as data quality assessment, biomarker computation, privacy 

management, and context-triggered user data collection, notifications, and interventions.

Capabilities similar to HealthKit and ResearchKit are provided in the Android world 

respectively by a combination of Google Fit [8] (a cloud-based data collection and 

distribution service that is tightly knit with Android) and various systems that have either 

ported ResearchKit to Android or seek to provide similar study management functions. 
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These too target low-rate sensor data collection with no integrated support for data quality 

assessment, biomarker computation, privacy management, and context-triggered user data 

collection, notifications, and interventions. Microsoft's HealthVault is a similar product in 

this space and shares the same limitations.

Also relevant to mCerebrum are various research systems that have sought to provide 

software frameworks for sensor data collection in social, participatory, and mobile health 

sensing, such as ContextPhone [20], Jigsaw [16], Funf [1], UbiqLog [24], Ohmage [32], 

AWARE [7], Lifestreams [12], and many others. While some of these systems such as 

Jigsaw, Funf, and AWARE have targeted high-rate sensors, most of them are optimized for 

low-rate collection or for local storage. Almost all lack other key functions of data quality 

assessment, biomarker computation, privacy management, context-triggered user data 

collection, notifications, and interventions. Moreover, these systems, for the most part, 

remain limited to small-scale academic usage. By contrast, mCerebrum is not only capable 

of high performance data collection and provides a far more comprehensive set of functions 

and sensor support, but has also proven its robustness and scalability in mission-critical 

settings via its adoption in multiple large studies by independent researchers.

Open DataKit (ODK) [4] is one of the earliest platforms to support high-rate sensor data 

collection from Bluetooth and USB-based wearable sensors. New driver services can be 

added dynamically as plugins to acquire data from external devices as binary streams. ODK 

encodes the stream as meaningful representations before finally making it available to one 

target application through the framework. ODK does not allow top level applications to 

exchange data among themselves through the framework, limiting support for real-time 

computation of biomarkers.

AWARE [7] is a framework that supports data collection from phone sensors (e.g. 

accelerometer, gyroscope), phone activities (e.g. calendar, call, message), and self-report 

(e.g. questionnaires, voice, data labeling). AWARE supports plug-ins of external sensors; 

however, plug-ins are responsible for managing their own data storage and sharing. This 

limits the scalability of storage for high-rate sensor data, overall throughput, and CPU 

utlization.

In addition to software platforms that support data collection from sensors, some platforms 

are optimized for collection of self-reports. First, Commcare [2] is a commercial software 

tool that allows creation, editing, and deployment of mobile applications for research studies 

without a software developer. It supports complex logic that can guide a participant to ask 

the right questions and provide appropriate advice. This platform should be capable of 

collecting low-rate biomarker data, similar to the other platforms; however, we are uncertain 

due to its proprietary nature.

Second, Paco [6] is an open-source platform developed by Google. It operates at meaningful 

moments to log data and/or prompt users to act (e.g., view information or answer research 

questions). This is used for daily experience research, to study participant attitudes and 

behaviors over time, in the context of their daily lives (e.g., for user-centered design of 

products or services); however, it is limited in many of the other capabilities that mCerebrum 
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provides such as sensor data collection and customizable biomarker triggered prompting that 

is burden- and context-aware.

Specific mechanisms in mCerebrum benefit from prior works addressing problems such as 

energy-optimized data collection via smarter sampling and sensor duty-cycling [3], coping 

with high rate sensors [16], energy-optimized context inference via providing inference 

computation as a shared service and making use of specialized processor cores in mobile 

system-on-chips [15, 31], privacy management for sensory data on mobile platforms [5], 

sensor data quality assessment, data storage management on mobile platforms, and power, 

latency, and robustness considerations in partitioning of computation across wearables, 

phones, and the cloud [23]. We note that while many of these problems are solvable in an 

application-specific vertical system operating under carefully managed conditions, they 

become much harder in mCerebrum which seeks to be extensible and support a range of 

sensing devices and work robustly across diverse scenarios and users.

In summary, the higher performance achieved in mCerebrum as compared to other sensor 

data collection platforms is a result of multiple architectural choices such as efficient inter-

application communication, a new scalable storage architecture, and centralized storage. The 

novelty and utility of our framework extends beyond architectural efficiencies as 

mCerebrum provides native support for high-rate data collection, real-time biomarker 

computation, sensor-triggered intervention, burden-aware user prompting, privacy controls, 

among several others. The development of these capabilities is not simply a matter of code 

changes but also iterative refinements based on extensive user feedback from real-life 

studies. These together make our system suitable for data collection in the natural field 

environment in health studies involving development and validation of new biomarkers.

3 Overview of Mcerebrum

We describe the overall architecture in Section 3.1, which includes component-level and 

communication design, real-life deployments in Section 3.2, and key features of mCerebrum 

in Section 3.3.

mCerebrum is designed to operate both as an independent, standalone platform and as part 

of a larger system [10]. The work presented here focuses on the mobile phone components. 

The cloud companion of mCerebrum warrants its own independent article.

3.1 Architecture

To achieve our goal of high-rate streaming data collection, logging, real-time processing, 

and intervention, we built a flexible, layered architecture as illustrated in Figure 1. The 

architecture is composed of five layers: (1) communication interfaces, which include 

support for both smartphone sensors and wearable sensors, (2) data sources that provide an 

interface between devices and the rest of the mCerebrum platform, (3) storage and routing 
interface, which provides persistent data storage and routing of intermediate results among 

the various components and is subject to the rules of a privacy controller, (4) a signal 
processing layer provides the necessary support for long-running applications to receive and 

process data from elsewhere in the system, and (5) the participant interface layer that 
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implements all interactions with the participants. Together, they represent 23 different 

applications across our currently supported studies (see Figure 2 and Table 2).

The mCerebrum platform and all associated applications are publicly available on GitHub 

(github.com/MD2Korg/) under the BSD 2-Clause license.

3.2 Real-Life Deployments

The design of mCerebrum has emerged from half a decade of experience in supporting half 

a dozen completed field studies at independent sites. The current design of mCerebrum is in 

various stages of deployment in ten research studies at different sites throughout the United 

States by independent research teams; however, they currently receive technical support 

from the mCerebrum team. These studies collectively span a total of 2,251 unique 

participants and 106,806 person-days (2.5 million hours) of high-frequency sensor data. We 

estimate the net data generated, processed, stored, and transmitted will be over 100TB and 

about 4.7 trillion data points based on our current data abstraction. Table 3 provides a 

breakdown of these studies. We briefly describe each study to show the diversity in studies 

adequately served by mCerebrum.

The goal of smoking studies (1-5) are to find sensor-based markers that predict smoking 

lapse. Participants who want to quit smoking wear sensors for four days prior to quitting and 

10 days after quitting. The goal of heart failure study (6) is to find sensor-based markers that 

predict hospital readmission. The study tracks activity, eating, medication adherence, lung 

fluid change, blood pressure, and weight for 30 days in recently discharged heart failure 

patients. The goal of oral health study (7) is to find sensor-based markers that predict 

changes in plaque level. Participants wear sensors for six months to track brushing and 

flossing behavior. The goal of cocaine study (8) is to develop and validate a sensor-based 

detector of cocaine use to detect timing of cocaine use in nation-wide clinical trials network. 

Active cocaine users wear sensors for two weeks in field. The goal of behavior change study 

(9) is to study effects of stress interventions for subsequent refinements in smoking and 

obese participants during 14 days of sensor wearing. The goal of job performance study (10) 

is to discover sensor-based indicators of job performance from ten weeks of sensor wearing.

All studies involve continuous data collection from two wrist sensors and smartphone 

sensors. The smoking studies, cocaine study, behavior change study, and the job 

performance study also involves continuous data collection from a chest band. All smoking 

studies involve computation of stress and smoking events on the phone which are used to 

launch stress intervention (study 1) based on a micro-randomized trial design. In the pilot 

phase of study 2, smoking detection is used to prompt a confirm/refute question.

All smoking studies involve generating Ecological momentary Assessment (EMA) prompts 

at random times and in response to detection of stress and smoking. For even distribution, 

one EMA of each type must be delivered within each four hour block between start and end 

times of the day, marked by the participants. Since responding to an EMA results in an 

incentive payment, EMA prompts are to be generated only when the data quality from 

sensors are acceptable several minutes preceding the EMA prompt and the participant is not 

engaged in activities such as exercising or driving a vehicle. Also, successive EMA or EMI 
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prompts are to be separated by a (configurable) minimum time gap to limit burden. Finally, 

participants have an option to suspend data collection from specific sensors and suspend 

prompt generation for privacy purposes.

In all studies, the majority of mCerebrum's components are reused and configuration files 

are the only thing that needs to be changed. Sometimes study requirements necessitate the 

need for custom programmed logic and whenever possible, this is generalized and 

incorporated in the the main components for the benefit of other studies, both current and 

future. We note that all studies are conducted with IRB approvals from their respective 

institutions and their results are being reported in independent articles.

3.3 Key Features of mCerebrum

As the description of the ten studies shows, mCerebrum has been designed as a general-

purpose platform that can support the development and validation of a wide variety of 

mHealth biomarkers and sensor-triggered interventions. It incorporates the complete 

pipeline of sense-analyze-act for high-rate streaming data from multiple sensors. Coupled 

with scalable storage, it supports concurrent real-time computation of data quality and multi-

sensor biomarkers, and ensures burden- and context-awareness in collecting self-reports and 

delivering sensor-triggered interventions.

We now describe the key architectural decisions that made the entire platform feasible. We 

present an evaluation of design choices together with design decisions and follow the 

paradigm of sense-analyze-act to describe key innovations for each stage of the pipeline. 

Finally, we provide an evaluation of energy usage.

4 Sense — Resilient Data Collection, Sharing, and Storage

The sensing layer is responsible for reliable collection, storage, and sharing of streaming 

sensor data from multiple sensors. The first major challenge is to provide high throughput to 

handle the incoming data rate from multiple concurrently connected sensors via different 

radios while providing flexible representations to accommodate current and future data types 

and their associated metadata. The second challenge is to allow efficient sharing of incoming 

data among multiple sources and recipients, while maintaining a high throughput. The third 

challenge is to provide storage support that maintains query responsiveness in the face of 

rapidly growing data. We first describe DataKit and how it provides computation and 

communication efficiencies that allow the handling of high-frequency data rates. Next, we 

describe our scalable storage design that addresses the capabilities necessary to maximize 

the amount of data collected and stored within the system.

4.1 DataKit: Efficient Collection & Sharing of High-rate Sensor Data

mCerebrum's DataKit is designed to collect high-rate sensor data from multiple concurrent 

sources and allow efficient many-to-many sharing of data between data source and sink 

apps. Because data sources will grow in diversity of data types and likewise recipients may 

accept different formats of data from double values to complex JSON encoded Ecological 

Momentary Assessments (EMAs), DataKit provides a flexible structure to handle data 

representations and transport within the system. Additionally, by providing a fast and 
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efficient communication mechanism, computation can be reused by transmitting 

intermediate results through DataKit for other processes to utilize instead of requiring each 

application to compute values as needed.

DataKit is implemented as a data router instead of utilizing a common database for storage 

due to two key limitations. First, SQLite, the de facto standard for Android, is unable to 

efficiently scale (Section 4.2) to the data rates mCerebrum required. Second, having a 

central controller allows for better control over security and privacy of data streams, 

restricting specific data items that are persisted and stored through dedicated APIs.

4.1.1 Data Representation—mCerebrum's data model is built on two abstractions: (1) a 

data point, which is the tuple consisting of a timestamp and value and (2) a data stream, a 

uniquely identifiable collection of data points. A data point value can be composed of any of 

the following: boolean, integer, long, double, string, JSON, and all array variants. By 

constraining most data to primitive types, we allow for efficient serialization and 

communication while allowing for complex data types through JSON encoding. mCerebrum 

utilizes a hybrid encoding scheme that supports two kinds of dat. First, high-frequency 

sensor data (java primitives) is byte encoded to reduce encoding and decoding time. The 

Android IPC is highly optimized to minimize copying and is based on pointer and 

permission manipulation. Hence, compression techniques are unlikely to yield significant 

benefits. Second, a flexible type based on string encoded JSON objects is used to represent 

all other types of data, thus providing nearly unlimited flexibility for complex objects.

4.1.2 Flexible and efficient communication—mCerebrum provides a simple, yet 

flexible and efficient communication mechanism through DataKit and DataKitAPI. The API 

implements functionality common to many publish-subscribe mechanisms with additional 

support for sending query commands through the interface. It allows an application to 

connect and disconnect from DataKit and provides a subscribe and unsubscribe mechanism. 

In order to search for data streams, it provides a find method that allows for partial matching 

of the data stream based on included metadata. Subscribe utilizes a callback mechanism 

which allows DataKit to directly route appropriate data through function callbacks. 

Applications can query by the last N samples and by time-range to retrieve information from 

DataKit. In order to create a data stream and its associated metadata, registration and 

unregistration methods are provided. Finally, an insert method is provided to send data to 

DataKit. These basic building blocks allow for a variety of applications to be constructed 

and their simplicity keeps internal complexity down to ensure efficient data processing and 

routing.

Smartphone resource constraints make communication efficiency crucial to handling high-

frequency data. Android runs applications as separate processes for security and quality-of-

service reasons; however, this introduces the need for inter-process communication (IPC) 

which is provided through three different mechanisms: Intents, which are implemented as a 

message forwarding system but suffers from performance issues with high-frequency data 

due to high resource utilization and latency; anonymous shared memory, is only suitable for 

sharing small amounts of data due to its dependence on mutually accessible RAM; and 

Binder, is a Remote Procedure Call (RPC) mechanism that allows for callback methods to 
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be defined and is utilized by mCerebrum. The Binder mechanism has a shared system 

transaction buffer of 1MB and it is critical that serialization, processing, and 

communications related to the Binder mechanism be as efficient as possible to ensure the 

buffer does not overflow. An initial attempt at utilizing RPC to route data through the system 

resulted in an overflow of this buffer due to too many outstanding transactions when we sent 

unique requests for each data point. To resolve this overflow, a data buffer was introduced 

for high-frequency data streams inside DataKitAPI to ensure that each application receives 

data in the correct order and it automatically buffers data as appropriate to meet performance 

requirements.

We evaluated the performance of mCerebrum for high-rate data handling and compared it 

with Google Fit [8], AWARE [7], and HealthKit [9] (see Figure 3). For Google Fit and 

AWARE, we used a Samsung S5 running Android 5.1.1 and for HealthKit, we used an 

iPhone 5s running iOS 10.2.1. In all cases, a sample application was written to generate 

synthetic data.

The number of samples (of size double) to be ingested was increased exponentially. All 

samples to be ingested together were placed in a buffer and next buffer was inserted when 

the ingestion of last buffer was completed. The data rate ingested in each platform increases 

with buffer size. At one sample per insertion, data rates for Google Fit, HealthKit, AWARE, 

and mCerebrum were 12, 130, 64, and 700 respectively. At 1,000 samples per insertion, 

these rates increased to 1,128, 1,200, 6,378, and 9,650 samples per second, respectively. In 

summary, mCerebrum provides higher-throughput by using centralized and scalable storage 

with microbatching.

4.1.3 Handling Data Representation Diversity—Wearable sensors are still in early 

stages of data standardization. Some commercial devices such as Microsoft Band or Zephyr 

Bioharness provide APIs to send and receive data in well-understood formats. However, in 

other cases, devices send raw data directly from the sensors and require further interpretation 

based on their specifications. Depending upon the radio technology and API 

implementation, data could arrive in blocks associated with a single timestamp or samples 

could be timestamped individually.

Data is reformatted by mCerebrum applications to a common data point abstraction to 

support the wide variability in current and future data sources. mCerebrum supports a 

variety of external and internal sensors as illustrated in Figure 4: Electrocardiogram (ECG), 
Respiration, Accelerometers, Gyroscopes, Magnetometers, Heart Rate, RR-Interval, 
Galvanic Skin Response (GSR), Barometer, Location (GPS), Ambient and UV Light, Ultra-
wideband RF, Sound and Video. Self-report and EMA are represented as JSON documents.

4.1.4 Resilient Communication Management—Sensor devices operate either in batch 

or streaming mode, with some supporting both, and the associated challenges differ. Devices 

sending only biomarkers (e.g., Fitbit trackers) to a smartphone usually operate in batch-

mode, where the smartphone needs to connect frequently enough to ensure that the 

necessary data or biomarkers are synced before any information is lost due to memory 

limitations. Devices collecting raw sensor data that require real-time processing on a 
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smartphone for triggering notifications or interventions, are usually streamed continuously 

without local storage to compensate for battery depletion and is the scenario of usage 

considered here.

In such streaming scenarios, even a brief disconnection can result in lost data; thus, it is 

critical that streaming sensors be able to maintain a persistent connection to the phone. For 

example, a smoking algorithm utilizes five seconds of wrist movement data to aid detection 

of smoking behaviors and if communication with the band were to fail, a critical event could 

be missed.

Radio disconnections between a streaming wearable and smart-phone are another source of 

communication problem and may occur due to many reasons including the wearable and 

phone getting out of radio range due to physical separation, low battery, a user turning of the 

device, and radio frequency interference due to the environment or other devices in radio 

proximity. mCerebrum utilizes a two-step approach to address disconnections. First, it 

attempts to auto reconnect with sensor devices utilizing a back-off mechanism where 

initially it retries every three seconds and incrementally slows to every 30 seconds after 

subsequent failures. Second, the user is notified that a particular device is not connected and 

supplied with guidelines such as to check the battery level, restart device, or reset the system 

to minimize data loss.

4.1.5 Handling Large Data Objects—Audio and video data are typically sampled at 

much higher rates than DataKit's 9,650 samples per second. To allow collection and sharing 

of these two data types in DataKit, we consider two approaches to overcome Android's 

interprocess communication (IPC) limits. First, we split data into chunks and send 

individually to Datakit, where chunks are subsequently recombined, similar to the case of 

TCP packets. This approach requires 0.14 seconds to transfer 10 MB of binary data, 

sustaining 71 MBps of throughput.

Second, a secure file sharing approach between an application and DataKit allows sharing 

though FileProvider which facilitates secure sharing of data by creating a content://Uri, 

allowing a temporary grant of read and write access. DataKit can then directly access this 

file using the Uri. This approach requires 0.11 seconds to transfer 10 MB of binary data at 

90 MBps, resulting in slightly higher throughput and lower IPC load, making it a preferred 

mechanism for handling large data objects in DataKit.

4.2 Scalable Storage of High-rate Sensor Data

SQLite is the de facto datastore layer on mobile devices including Android and iOS, but it is 

unsuitable for storing high-frequency raw sensor data streams. Such workloads, including 

our own, store data that is seldom deleted or updated (e.g., sensor samples), and are often 

small in (record) size e.g., a single message record could be a few hundred bytes, 

mCerebrum records 12 bytes, on average.

Writing data streams to SQLite can be prohibitively expensive due to SQLite database 

journaling and its update-in-place semantics i.e., records reside at a particular location in 

stable storage, and updates mutate the record directly. Furthermore, fash memory (the 
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dominant stable storage medium in mobile devices) is page-oriented, which means that each 

record write corresponds to read and write of an entire page [18]. Common page sizes for 

NAND Flash memory chips today are around 8KB, which further increases write 

amplification for small records that our target applications exhibit. In general, a single record 

inserted into a table with k indexes results in 2 × (k + 1) pages written under SQLite [18].

Consequently, when using SQLite to store raw sensor data, as data size grows, the query 

performance begins to degrade and fall behind the rate necessary for real-time computation 

of biomarkers. After about 8 hours of data collection, biomarker computations begin to 

timeout due to growing query response time.

Log-structured storage systems under development, such as RocksDB [26], may provide an 

alternative to SQLite; however, RocksDB aims to support general RDBMS workloads and 

lacks data sync capabilities between the mobile device and the cloud platform, which is a 

key requirement in mCerebrum.

To address the specific requirements of mobile sensor data workloads, we have developed a 

custom log-structured storage layer called Pebbles, which is optimized for high-frequency 

append-only writes of data arriving in batch or record streams. Pebbles also provides 

transparent data sync, allowing applications to offload data to the cloud for further 

processing and data archive. On the mobile device, data is stored in a circular log to 

maximize the throughput of fash memory. To support fast queries, Pebbles maintains a 

lightweight index on a logical timestamp and topic, which is used to identify data streams.

Figure 5 shows the max write throughput by varying data write sizes of Pebbles versus 

SQLite and a cluster of multiple SQLite databases (used in AWARE [7]). This benchmark 

was performed on the internal fash memory of a Samsung Galaxy Tab S2 . Each system was 

configured with an 8MB in-memory buffer (split across database instances for the cluster 

with round-robin writes) and performed a total of 4GB writes. The optimal throughput of 72 

MBps was determined by performing one large consecutive write to the internal memory.

At lower data write sizes, such as those exhibited by typical mCerebrum applications, 

Pebbles outperforms SQLite by more than 20×. The performance gain of Pebbles is directly 

related to the lower write amplification relative to SQLite. In the lower data write sizes, the 

CPU becomes the bottleneck, preventing Pebbles from saturating maximum storage 

bandwidth. Nevertheless, the achieved throughput is sufficient for mCerebrum.

At large data writes, such as those to be exhibited by the mCerebrum batch data workloads, 

Pebbles is able to saturate storage bandwidth and outperforms SQLite by more than 4×. 

SQLite is not capable of saturating the storage bandwidth at these large write sizes due to 

system overhead, including primary key constraints and index maintenance, which attribute 

to increased write amplification. The SQLite cluster suffers even more performance due to 

its reduced ability to perform sequential writes. In Pebbles, write amplification is minimized 

through the use of a circular log that is clustered with the primary index i.e., both are 

append-only on new data writes and garbage collection is performed, on both, sequentially 

with an optional cloud data sync.
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5 Analyze — Concurrent Computation of Multi-Sensor Biomarkers

The second tenet, analyze, is principally responsible for processing the collected high-rate 

sensor data to compute features and biomarkers that can be used by other apps. For example, 

when validating a new biomarker (a key usage scenario for mCerebrum), its real-time 

computation can be used to prompt participants to confirm or refute the detected event in the 

free-living environment. The main challenge is to screen the data for acceptable quality, 

clean the data, compute hundreds of features, and then apply the machine-learning models of 

all biomarkers, all in real-time, without falling behind the incoming data rate and without 

saturating the CPU and memory of resource constrained phones. One key approach to 

making this feasible is to facilitate efficient sharing of intermediate results (e.g., features) so 

computation can be reused. We first describe in Section 5.1 how data and computation can 

be reused to scale the analytics. Section 5.2 explores and evaluates the techniques to manage 

system overload so as to manage Android's quality of service system to support continuous 

high-frequency sensor data analysis. Finally, Section 5.3 describes Stream Processor that 

implements real-time computation and sharing of features and biomarkers throughout 

mCerebrum. We also analyze the impact of such sharing on improving CPU and memory 

efficiency.

5.1 Data and Computation Reuse

It is not enough to have communication efficiency in each app, the system needs to reuse as 

much data and computation as possible. The modularization of mCerebrum allows sensor 

data to be collected once by a single application that publishes them through DataKit for use 

by other apps. This allows multiple applications to receive data concurrently by subscribing 

to data streams. Computation reuse occurs when various processing components of the 

platform compute intermediate results or resulting biomarkers that are placed on the DataKit 

bus where others can utilize these processed streams instead of recomputing from raw data.

5.1.1 Supporting Onboard Sense-Analyze-Act—To enable the entire pipeline of 

sense-analyze-act locally on the phone, mCere-brum supports three different styles of data 

processing: micro-batch, batch, and on-demand. In each of these instances, the computation 

must not fall behind data arrival rate, i.e., meet a real-time constraint. Streaming operations, 

such as data quality or visualization, need to receive data from the system and process it 

almost immediately; they use a micro-batch latency of one second. On-demand 

computations or batch processing, such as biomarker computation, require the data be 

queried in blocks from DataKit. In our current implementation, for the purposes of 

computing stress and smoking, we use a batch latency of 60 seconds.

Due to high load, computational complexity is a concern for all data processing operations 

within mCerebrum. When possible, computationally efficient algorithms are preferred such 

as online algorithms for mean and variance. For computationally expensive operations such 

as computing percentiles, online approximations are used. In the case of convolution, the 

amount of data to be processed is limited to control CPU load.
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5.2 Handling System Overload

Android is based on the Linux kernel and applications are run as self-contained processes. 

This allows Android to manage the Quality-of-Service (QoS) it provides to the user; 

however, this QoS is designed for regular consumer use and not configurable for long-

running background applications such as the ones we utilize to provide a continuously 

running pipeline of sense-analyze-act. Android selectively kills, and subsequently removes 

from memory, applications as the system begins to run out of resources.

To determine which processes should be killed when low on memory, Android places each 

process into an importance hierarchy based on the components running in them and the state 

of those components. The process types are (in order of importance): foreground, visible, 
service, and cached. Due to the QoS constraints from the OS, we find that our applications 

are the typical ones removed due to their service process state and worse, the OS sends a 

SIGNAL_KILL command instead of a signal that can be trapped by our applications for a 

graceful shutdown. This forces our applications to have a second watchdog application that 

can restart an application if the OS decided to remove it.

mCerebrum adopts three separate mechanisms to combat the overload introduced and 

subsequent semi-random application closing. First, the core service in critical applications is 

declared as a foreground process, which is a way to request that the OS not remove this 

application from a running state. This is especially critical for applications that interact with 

the participant through a user interface or a scheduling algorithm. Second, the mCerebrum 

kernel acts like a watchdog system for the rest of the application services. It periodically 

checks (every 30 seconds) to ensure that the list of services it expects to be running are 

operational. In the event that a service is not functional, it utilizes an exponential back-of 

mechanism to quickly restart a service and in the event of continued failure, it will slow 

attempts to restart processes. Finally, every service must maintain a persistent copy of 

internal state on the internal phone memory and be able to resume when restarted. In 

addition, we adopt several optimizations (described below) to limit system overload and 

avoid application removal by the OS.

5.2.1 Micro-batching to Control Communication Load—Sharing and processing 

data as they arrive in real-time increases both the system and communication load due to the 

maximum bandwidth and maximum buffer size limits for Inter-Process Communication 

(IPC) that are used to share data and intermediate results among the data sources and 

requesting applications.

Our initial implementation serialized measurements from sensors into individual messages 

before sending them through DataKit; however, once the data rate exceeded 700 hertz (on a 

Samsung S4), the system queues overflowed and the system began losing data. We adopt a 

micro-batching design where dataisshared for computation in small batches that introduces a 

small latency, but significantly reduces system overload.

Figure 6 shows the effects of various choices of micro-batching latency on the frequency of 

data the system can process and the CPU cost associated with it. We note that the IPC 

communication buffer size is limited to 1 MB. While introducing micro-batching helps 
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reduce system load, it affects applications that need real-time data. Among them, the most 

delay sensitive is the Plotter for visualizing sensor data such as ECG, accelerometers, and 

gyroscopes. We choose a latency of one second that provides a bandwidth of 3,100 hertz for 

a CPU load of 17 percent. There is a noticeable delay in rendering the plots of sensor data in 

visualization, but it is acceptable for most purposes.

We compare mCerebrum with AWARE framework [7] by varying the sampling rate from 1 

to 150 hertz. We test both low and high data rate applications on both frameworks. To 

minimize discrepancies with sensor comparabilities, we only utilized the smartphone 

accelerometer, gyroscope, and magnetometer sensors. A Monsoon power monitor [17] 

connected to a Samsung S4 smartphone captured five 1-minute experiments. For both 

platforms, we enable accelerometer, gyroscope and magnetometer each with 6, 16 and 50 

hertz, resulting in 18, 48, and 150 hertz respectively. The temperature sensor was utilized for 

low-data rate sampling at 1 hertz.

Figure 7 shows that mCerebrum's benefit grows as the data rate increases resulting in 8.4 

times lower CPU load when compared to AWARE. This effect is principally due to the 

combination of micro-batching and block storage capabilities of the mCerebrum platform 

when compared with other existing platforms; computation reuse provides additional 

performance and energy benefits.

5.2.2 Effects of Buffer Size on System Load—Table 4 illustrates the trade-off 

between buffering data and the computational and memory loads on the system. This 

experiment runs our biomarker computation pipeline and varies the amount of data buffered 

between 30 and 300 seconds. The memory status of the smartphone is recorded by executing 

adb shell dumpsys meminfo command at two hertz. Applications also logged the starting 

time and computation time of each iteration. We ran each experiment for 20 minutes and the 

mean computation time and mean memory usage are computed. Complex biomarkers such 

as stress, smoking or eating, benefit from the additional buffer size which allows them to 

produce more accurate results; however, this comes at the expense of memory utilization. A 

biomarker's utility can be a function of it's temporal locality to the measuring event, such as 

the case with stress, where a five minute delay places any potential intervention outside of 

the episode, thereby reducing overall effectiveness. Additionally, buffering too much data 

increases the computational time and resources needed thus resulting in Android stopping 

certain data collection and processing application rendering this platform unusable. 

Computations on large buffer sizes effectively cause a CPU utilization spike which is 

interpreted by Android as a resource demanding application, and the application becomes a 

candidate for shutting down.

We currently use an operating point of one minute that provides acceptable latency while 

limiting system overload. Improvements in the computational model and hardware profile of 

the phone will change these operating points. Dynamic selection of the best operating points 

given a biomarker model and hardware profile is a subject of future work.
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5.3 Stream Processor: Real-time Computation and Sharing of Features and Biomarkers

The majority of high-frequency signal processing occurs under the Stream Processor 
module, which is designed to support real-time computation and sharing of features and 

biomarkers. It provides appropriate buffering and estimators for several window-based 

signal processing pipelines.

Stream Processor includes a number of design trade-offs that improve processing 

performance or constrain resource utilization so as not to adversely affect mCerebrum's 

system performance. First, data is processed with a batching mechanism where all algorithm 

pipelines receive data every 60 seconds as a way to allow the smart-phone CPU to operate in 

burst mode for better energy efficiency and to limit the amount of reprocessing of data that 

must occur if a sliding window or smaller windows were to be utilized. Second, data is kept 

in RAM for the current window of computation unless the developer explicitly configures 

historic state preservation.

Third, algorithms are usually implemented as pipelines since they gain significant 

computation reuse by sharing originating sensor sources. For example, both stress [11, 30], 

an algorithm designed to compute physiological arousal from ECG and respiration to 

estimate stressful episodes, and smoking [27], combines respiration and wrist motion 

information to determine when a cigarette puff occurs, share common respiration features 

and the smoking algorithm takes advantage of existing computation and augments the 

processing with its new features.

Stream Processor is also responsible for generating a feature vector from the various 

computed data streams and evaluating a learned model for biomarker generation that is 

trained from existing annotated data sets. These models are currently based on a support 

vector machine (SVM); however, any model that is efficiently evaluated is capable of being 

run on mCerebrum. The machine learning models we implement as part of Stream Processor 

are a function of the study requirement and the distributed architecture of the framework 

allows modules to implement different machine learning models for optimal performance. 

Additionally, a module can reuse the results from other modules to improve performance, 

such as if the CPU utilization is high or data quality is poor, a different optimal classifier 

could be chosen at run-time.

Despite efficient design, 14.87 ± 4.12 seconds each minute on average is spent running the 

signal processing algorithms and results in a 13 percent reduction in total expected system 

lifetime (see Table 5). This will only grow as more biomarkers are included for real-time 

local computation. Future work is needed to investigate methods to limit CPU load, e.g., 

explore cloud offloads for biomarker computation from raw sensor data.

5.4 Quantifying the Benefits of Computation Reuse — A Case Study

To analyze the effect of computation reuse, we created a single app for detecting smoking, 

stress, activity, and eating, and additional apps isolating the individual biomarker 

computations. The applications were run simultaneously to measure CPU and memory load 

and once again with computation sharing enabled. Figure 8 shows the features that are 

shared among these four biomarker computations. For example, respiration data is used for 
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both smoking detection and stress detection, allowing preprocessing and many feature 

calculations to be shared resulting in lower CPU and memory utilization. Figure 9 show 27 

percent reduction in CPU time and 47 percent reduction in memory achieved by 

computation reuse.

6 Act — Burden- and Context-Aware Interactions with Participants

The final tenet of our platform, act, combines both sense and analyze outputs to engage with 

a participant during his/her study period. Together with sensor data, direct inputs from 

participants are also collected in research studies. Participant interaction is generally 

grouped into three categories: voluntary, prompted, and glance-able. Voluntary inputs can be 

provided through self-report buttons. Prompted interactions allow the system to obtain 

information from a participant through an EMA or to provide ecological momentary 

intervention (EMI). Prompts are also generated to ask participants to collect episodic sensor 

data or to remind them to take medications. Finally, glanceable interactions are implemented 

by updating the graphical user interface. For example, real-time data quality assessment is 

displayed on the home screen. Of these, prompted inputs and interventions represent 

interruptions to the participant, and hence must be carefully coordinated to limit user burden.

There are several new challenges in the design of scheduling EMA and EMI prompts in 

research studies collecting both streaming sensor data with sense-analyze-act capability and 

EMAs and EMIs. First, prompts should be coordinated from all sources, including those 

generated by biomarkers, to limit burden on participants while satisfying all study 

requirements. This includes using sensor-inferred contexts and deliver prompts or 

interventions only when the participant is available. The second challenge is to incorporate 

sensor data quality in prompt generation so that good quality sensor data is available 

preceding self-reports. We describe study requirements in Section 6.1 and our design of 

participant interaction manager that is both burden- and context-aware in Section 6.2.

6.1 EMA/EMI Scheduling Requirements

Ecological Momentary Assessments (EMAs) are a cornerstone for biomedical studies 

because of their ability to obtain a participant response in the moment. They can be 

prompted randomly (to obtain unbiased daily estimates), based on time of day (to ensure 

coverage), based on self-reported events (to obtain context surrounding a self-reported event 

such as smoking lapse), and now also based on events detected by sensors (e.g., elevated 

stress). In addition, participants can also be prompted to engage in an intervention (e.g., 

stress relaxation), to collect episodic data from devices (e.g., blood pressure), and to remind 

them to take medications. Each prompt involves its specific constraints and irrespective of 

the source, each prompt represents an interruption and burden on the participant.

Each study has a unique protocol (i.e., usually part of their innovation), requiring the EMA 

scheduler to work in conjunction with study-specific configuration that implements the rules 

of the study protocol. Studies may involve: (1) scheduled assessments, such as the beginning 

of the day, the end of the day, or at specific times, (2) random assessment, where the time of 

this assessment is randomly generated within a specified window, (3) in response to self-
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reported events, and (4) event-triggered assessment (e.g., in response to sensor-detected 

events such as stress or smoking).

Second, the EMA scheduler needs to support conditional operations based on computed data 

streams. Some of the conditions include: (1) driving status, to ensure that an EMA is not 

delivered to a person in a moving vehicle, (2) data quality, allows the system to verify that 

the sensors are worn properly before generating the assessment (to ensure labels and sensor 

data are both available together), and (3) battery level, to ensure that assessments are 

happening either with sufficient battery or as a way to prompt a participant to charge a 

particular device of the system.

Third, the last EMA or EMI triggering time can be used to ensure that subsequent prompting 

or interventions do not occur in close proximity to each other. Fourth, the total number of 

prompts triggered are limited to a maximum (in each time block) to constrain the user 

burden according to study protocol rules. Fifth, the day may be divided into time blocks with 

minimum number of EMA's in each block to ensure sufficient temporal distribution of 

EMA's. Sixth, no prompts are to be delivered if privacy controls are exercised to suspend 

prompts. Finally, start and end of day can be provided so that no prompts will occur before 

or after these times.

6.2 Burden- and Context-aware EMA/EMIScheduling

Intelligent scheduling mechanisms for delivering prompts has been proposed in earlier 

works such as InterruptMe [19] and our prior work [29]. The key innovation of mCerebrum 

framework is its flexibility so as to allow implementation of these and other scheduling 

mechanisms via changes only to configuration files.

mCerebrum uses a bipartite-graph design (see Figure 10) that fulfills all of the above 

requirements and is thus able to satisfy the requirements of all ten studies listed in Table 3. 

In addition, our design supports dynamic adaptation to use the user response (or lack of) to 

meet study requirements with gradual relaxation of constraints (see feedback loop in Figure 

10).

The inputs column (left-side) enumerates many current choices available in mCerebrum and 

include: burden constraints, random and event-triggered inputs, restrictions on actions 

through privacy constraints, start and end of day, and various time operations, user context, 

and data quality and battery assessments. These inputs can be mapped in arbitrary ways to a 

set of actions or controllers (right-side) and are defined as constraints across multiple 

applications as part of a study protocol. Ultimately, the output of an action or controller 

results in feedback information being incorporated back into the input side. These feedback 

loops allow mCerebrum to adapt to changing burden, personal preferences, or to gradually 

escalate the prompting to become more aggressive in requesting an action from a participant 

in order to meet study requirements.

For random and time based assessments, the EMA scheduler estimates the time of when it 

should be triggered. Due to the dynamic nature of self-reported event and event-triggered 

assessment, the EMA scheduler schedules it preemptively based on their appearance. There 
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might be a case when multiple assessments may appear at the same time. To handle this 

issue, the EMA scheduler takes each of these events one by one as in a FIFO queue and 

checks all of the constraints for this event and deliver the EMA. After completion of an 

EMA, it returns back to process the next event. This approach also ensures that multiple 

EMAs are not triggered simultaneously. For random assessments, if it fails to deliver due to 

the constraints or conficts with another assessment, it is rescheduled. Before delivering the 

EMA, the EMA scheduler checks constraints and if all constraints are satisfied, EMA is 

prompted and the delay in response is used to measure user burden and constraints. In 

several studies, the EMA/EMI scheduler attempts an average of 55 prompt deliveries per day 

with an average processing time of 0.18 seconds each, negligible when compared to the 

CPU execution time of a complex multi-sensor biomarker (e.g., stress or smoking).

7 Energy Estimation & Management

Battery life is a principle concern for smartphone platforms and the collection of raw sensor 

data exacerbates this issue. We conduct power measurements with various configurations to 

show the impact of sense-analyze-act stages on the battery life and compare with an existing 

framework, namely AWARE [7].

We use a Monsoon power monitor [17] to measure the average current draw on a Samsung 

S4 phone over 10 minutes as various components of mCerebrum are activated and 

deactivated.

Table 5 shows the impact of introducing an increasing set of sensors and processing modules 

on the overall system lifetime. A common case scenario of collecting raw sensor data from 

wrist sensors on both wrists, computing biomarkers, scheduling notifications, and collecting 

self-reports via user inputs is presented. Other options such as collecting phone sensor data, 

location data, and chest band sensors can further reduce the lifetime.

We make several observations. First, introducing a streaming wearable sensor over 

Bluetooth low energy (BLE) consumes significant energy (79 mA), but is lower than 

enabling location services. Second, adding a second wearable that uses the same radio incurs 

only a minimal energy cost (10.88 mA). Third, real-time biomarker computation that 

involves data screening, cleaning, extractions of tens of features, feature normalization, and 

the application of machine learning models consumes half the energy needed to add the first 

BLE sensor. Making scheduling decisions from biomarkers incurs only minimal energy cost 

(9.37 mA). Fourth, using the screen for 25 minutes to complete EMA or EMI (10 times a 

day for 2.5 minutes each [29]) consumes one-third the energy needed for adding the first 

BLE sensor. In a base configuration consisting of two wrist sensors, of the total energy, 

baseline operation consumes 9%, sensing consumes 48%, computation consumes 28%, and 

user interaction with the screen consumes the remaining 15%.

To compare the energy efficiency of mCerebrum with existing platforms, we compare with 

the AWARE framework [7] with a similar set up as described in Section 5.2.1. Figure 11 

shows that at data rates less than 20 hertz, both mCerebrum and AWARE have comparable 

energy footprints, However, once the data rate exceeds this threshold, mCerebrum exhibits 
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lower energy consumption as the data rate increases. At 150 hertz, AWARE consumes nearly 

twice the energy due to increased CPU usage and frequent storage use.

8 Lessons Learned

System design processes are necessarily iterative due to the uncertainties involved in 

developing and running real-world studies. For mCerebrum, we setup a bug and feature 

tracking site which logged about 1,000 requests that have been successfully resolved in the 

past year. An accompanying forum for discussing software changes resulted in a 

participatory design process that continues throughout the ongoing deployments. We briefly 

summarize two key architectural decisions that resulted from real-life deployments.

The storage of raw sensor data proved to be a serious problem, leading to data corruptions 

and abrupt slowdowns that only appeared after many hours of data collection. This led to the 

development of Pebbles. The second major hurdle to be resolved was that of system 

overload, which was again only intermittently reproducible with multiple hours of data 

collection. Various apps were killed by Android to preserve its quality of service. Resolving 

the system overload issue led to the idea of microbatching.

A principal goal of mCerebrum is to maximize the data yield in real-life deployments. In 

addition to refining architectural choices to minimize data losses, we also developed 

mDebugger [21, 22] to discover deficiencies in study protocol or participant compliance. 

Fixing them have led to substantial improvements in data yield.

9 Limitations and Future Work

This work focused on presenting the design of mCerebrum as implemented on mobile 

phones. Its coordination with software on the external wearable sensors, and its coordination 

with the cloud platform was omitted due to lack of space and will be presented elsewhere. 

Also, Graphical User Interfaces (GUIs) as well as other aspects of human experience are not 

presented here due to a focus on the systems aspects of mCerebrum. We now discuss some 

limitations of mCerebrum that can be addressed in future works.

First, mCerebrum is currently implemented only on Android. iOS requires that “apps 

moving to the background are expected to put themselves into a quiescent state as quickly as 

possible so that they can be suspended by the system.” which effectively removes the ability 

for a software package to run continuous processing. Porting it to iOS will, therefore, 

involve significant redesign to ensure its persistent data collection, computation, and 

communication mechanisms function properly.

Second, adaptive power management techniques are needed in mCerebrum to enable 

selective sampling, power-aware sensing, or cloud offloading of computations to meet 

system lifetime expectations. Third, sharing of raw sensor data, especially physiological 

data, raise different privacy challenges [28]. mCerebrum provides a privacy controller 

(Figure 2) that allows participants to suspend data collection from specific sensors while 

allowing the system to automatically turn data collection on after the privacy period expires; 
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however, we recognize this is just a first step in a much larger set of security and privacy 

issues.

Fourth, an implementation strategy for classifiers and more generally, processing of sensor 

data is a concern that is largely orthogonal to the mCerebrum architecture and left for 

application developers to handle. For example, applications could make use of optimized 

and accelerated machine learning frameworks that have begun to appear on smartphone 

platforms, as well as context inferences directly provided by the platform such as motion 

state related ones that some platforms now provide. mCerebrum allows applications creating 

derivative sensory data streams to publish them back for other applications to use, thus 

eliminating duplicative processing. Nevertheless, mCerebrum can potentially play a role in 

certain aspects of the problem, such as providing support for cascaded activation/

deactivation of sensors and classifiers based on contextual triggers that could be developed 

in future research.

Fifth, the Pebbles frameworks does not currently support temporal and location-based 

querying of data. However, temporal and spatial indexes (e.g., R-Trees) are slated for a 

future version. mCere-brum provides real-time subscription capabilities designed to support 

the processing of sensor data without the need for extensive query support and in our 

experience, we have not needed to query for temporal or spatial information from the high-

frequency data.

In summary, the mCerebrum platform provides a comprehensive ecosystem that others can 

improve on many aspects such as power management, inference making, or user 

engagement.

10 Conclusion

Future success and utility of mobile and wearable sensors for health and wellness depends 

on our ability to discover new biomarkers. mCerebrum is designed to support high-rate data 

collection to develop and validate new biomarkers for whom native support does not yet 

exist in the resident OS (e.g. Android and iOS). As new biomarkers are developed and 

validated using mCerebrum, we should begin to see native support for them in resident OS, 

similar to how physical activity, driving, etc. are now part of Android library, and in 

wearables for the consumer market.

We note that platforms like mCerebrum provide support for collecting high-rate sensor data, 

but collecting such data from real-life participants still requires significant time, effort, and 

resources. Sharing such data can accelerate scientific progress and facilitate comparative 

evaluation. But, sharing high-rate mHealth sensor data for third party research requires 

significant work not only in preserving behavioral privacy of contributing participants, but 

also requires extensive works in efficient and meaningful annotations of the data, together 

with provenance of each stage of the processing pipeline that converts sensor data into 

biomarkers. Developing a complementary provenance cyberinfrastructure system for 

automatic generation and processing of metadata for high-rate mHealth sensor data can 

amplify the scientific utility of platforms like mCerebrum.
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Figure 1. mCerebrum overview illustrating key components such as ingestion of high-frequency 
sensor data, real-time data quality assessment and biomarker computation
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Figure 2. 
mCerebrum's architecture consists of 5 layers: (1) Communication, (2) Data Sources, (3) 

Storage, (4) Signal Processing, and (4) Participant Interaction, all connected through a data 

router. The colors indicate different categorizations of applications — red for high-rate and 

orange for lower-rate sensors, blue indicates core components of mCerebrum, cyan 

represents system services, and green represents user-centric applications.
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Figure 3. Data rates obtained by various platforms as number of samples (with a common 
timestamp) are written
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Figure 4. 
mCerebrum supports sensors ranging from 2 samples/day to 300 Hz per device including: 

BLE (green), Bluetooth 4.0 (red), ANT+ (orange), and internal (yellow). Additionally, it 

support short audio and video clips with a high data rate storage mechanism.
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Figure 5. 
Maximum write throughput with increasing write size. Pebbles achieves 92% of the optimal 

write throughput while SQLite and SQLite cluster (used in AWARE [7]) achieve 22% and 

18% respectively at their steady states while writing large blocks of data.
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Figure 6. 
The effect of micro-batch latency on DataKit's communication bandwidth and CPU usage. 

We observe that with no latency, communication bandwidth is limited by bandwidth limits 

of IPC, while at higher latency, bandwidth is limited by the buffer size limits of IPC.
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Figure 7. 
mCerebrum is compared with the AWARE framework by adjusting the total sample rate of 

the accelerometer, gyroscope, and magnetometers between 18 and 150 hertz per sensor. 

mCerebrum's benefits by up to 8.4 times lower CPU load when recording at 150 hertz)
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Figure 8. Features are shared among various biomarker computation algorithms, allowing for 
computation reuse
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Figure 9. 
The effects of computation reuse on CPU and memory efficiency. The first columns show 

the CPU and memory usage when computing four biomarkers without sharing computation. 

Areduction of 27%CPUtime and 47% memory is achieved through reuse, as shown in the 

second columns.
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Figure 10. 
A bipartite graph design of EMA/EMI scheduler. Boxes on left side show the inputs to the 

actions/controllers on the right, which prompt the participants. Feedback is accomplished by 

examining the conditions surrounding the participant response and passed back to key input 

blocks.
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Figure 11. 
mCerebrum is compared with the AWARE framework by adjusting the total sample rate of 

the accelerometer, gyroscope, and magnetometers between18 and 150 hertz per sensor. 

mCerebrum's benefit on power consumption is improved as the sampling rate increases, thus 

pushing the CPU into higher-power states.
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Table 2
Overview of mCerebrum apps and libraries

Application Description

DataKit Handles routing, privacy, and storage

DataKitAPI API library for apps to use DataKit

Plotter Real-time data visualizer

Privacy Controller Allows the participant to suspend data collection and EMA prompting

Utilities Common helper functions

Phone Integrates the smartphone sensors

Chestband Data collection from ANT+ sensor suite

Wrist BLE wrist-worn motion capture device

iCO Carbon Monoxide sensor support

Smartwatch Bluetooth 4 connected watch

UWB RF BLE chest sensor for measuring heart function and lung fluid

Blood Pressure BLE-connected blood pressure cuff

Weight BLE-connected weight scale

Smart Toothbrush BLE-connected smart toothbrush

Stream Processor Provides real-time computation of biomarkers (e.g. stress, smoking, etc.)

Mood Surfing A custom built stress reduction app

Thought Shakeup A custom built stress reduction app

Medication Medication adherence compliance app and reminder system

Self Report Customizable self-report prompts

EMA Customizable EMA delivery application

Study Main study interface; provides application management for all other apps

EMA/EMI Scheduler Customizable scheduler for delivering user prompts based on biomarkers

Adherence Reminder A scheduler for episodic data collection

Notification Manager Gatekeeper for all user prompts
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Table 3

mCerebrum powered studies span 10 sites – Northwestern, Rice, Utah, Vermont, Moffitt, Ohio State, UCLA, 

Johns Hopkins, Dartmouth, and Minnesota.

ID Study Users Person-Days Samples (Billions)

1 Smoking & Eating 225 3,150 136

2 Smoking 300 4,200 182

3 Smoking 300 4,200 182

4 Smoking & fMRI 90 1,260 55

5 Smoking & Stress 24 336 15

6 Heart Failure 225 6,750 224

7 Oral Health 162 29,160 968

8 Cocaine Use 25 350 18

9 Behavior Change 100 1400 58

10 Job Performance 800 56,000 2,891

Total 2,251 106,806 4,729
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Table 4

CPU time (normalized to 60 seconds) decreases as the buffer size is increased from 30 to 300 seconds. 0.34 

seconds (17%) can be saved through buffering; however, it comes with an increase in memory load (156%).

Iteration time

30s 60s 120s 300s

Computation time (s/min) 2.67 2.48 2.33 2.23

Memory load (MB) 64.26 73.71 80.49 100.38
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Table 5
Impacts on expected (2600 mAh) bettery life by incrementally adding sensing and 
processing capabilities

Module Set Current Lifetime

Baseline Power 17.13 mA 151.78 hrs

+ Wrist Sensor 1 96.28 mA 27.00 hrs

+ Wrist Sensor 2 107.16 mA 24.26 hrs

+ Biomarker Computation 151.05 mA 17.21 hrs

+ Decision Making 160.42 mA 16.21 hrs

+ EMA/EMI (25 minutes) 187.23 mA 13.89 hrs

+ Location Service 273.77 mA 9.50 hrs

+ Phone Accelerometer 284.33 mA 9.14 hrs

+ Phone Gyroscope 287.67 mA 9.04 hrs

+ Chest Sensor 327.46 mA 7.94 hrs
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