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In 1997, the first published reports highlighted PPARy as a novel cancer therapeutic target regulating differentiation of cancer cells.
A subsequent flurry of papers described these activities more widely and fuelled further enthusiasm for differentiation therapy, as
the ligands for the PPARy were seen as well tolerated and in several cases well-established in other therapeutic contexts. This initial
enthusiasm and promise was somewhat tempered by contradictory findings in several murine cancer models and equivocal trial
findings. As more understanding has emerged in recent years, a renaissance has occurred in targeting PPARy within the context
of either chemoprevention or chemotherapy. This clarity has arisen in part through a clearer understanding of PPARy biology,
how the receptor interacts with other proteins and signaling events, and the mechanisms that modulate its transcriptional actions.
Equally greater translational understanding of this target has arisen from a clearer understanding of in vivo murine cancer models.
Clinical exploitation will most likely require precise and quantifiable description of PPARy actions, and resolution of which targets
are the most beneficial to target combined with an understanding of the mechanisms that limits its anticancer effectiveness.

Copyright © 2008 Moray J. Campbell et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. CURRENT UNDERSTANDING OF PPARy BIOLOGY
1.1. PPARyis a transcription factor

The human PPARy was cloned in 1994 and subsequently
two murine isoforms were identified in mouse: gamma-1
and gamma-2, resulting from the use of different initiator
methionines [1, 2]. Subsequently, at least three isoforms
have been identified in humans with common expression
in adipocytes and the large intestine and more restricted
isoform expression in other tissues [3]. PPARy plays a key
role in energy metabolism and differentiation (reviewed
in [4-7]); and reflecting this, the murine Ppary™~ is
embryonically lethal, and if rescued, the animal lacks normal
adipocytes [8].

PPARy is a phylogenetic member of subfamily 1 the
nuclear receptor (NR) superfamily and shares a number
of generic mechanistic features in common with other
subgroup members, including the retinoic acid receptors
(RARs), vitamin D receptor (VDR), farnesoid X receptor

(FXR), and liver X receptors (LXRs). These receptors are
most commonly located in the nucleus and heterodimerize
with one of three retinoid X receptor (RXR) subtypes, to bind
specific response elements in target gene regulatory regions.
Crystallization studies of PPARy bound with RXRa« proved
pivotal for deciphering the basis for heterodimerization with
RXR for multiple NRs [9]. The presence of ligand changes
the receptor confirmation and also influences choice of
association with either coactivator (CoA) or corepressor
(CoR) complexes. In the absence of ligand, NR heterodimers
are contained within multimeric complexes (~2.0 MDa)
containing CoRs (e.g., NCOR1) [10]. Also, within these
complexes is a range of enzymes, which act to modify the
posttranslational status of histone tails and maintain a locally
closed repressive chromatin environment, for example, his-
tone deacetylases (HDAC), such as HDAC3 and SIRT1 [10—
15].

Ligand activation shifts receptor conformation and
distribution to enhance interaction with CoA complexes.
A large number of interacting CoA proteins have been
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described, which can be divided into multiple families
including the NCOA/SRC family and members of the
large bridging mediator complex including PPARy binding
protein (PBP/MED1) complex [16, 17]. Through the latter,
the NR receptor complex links to the cointegrators CBP/p300
and basal transcriptional machinery. For example, PPARy is
known to associate with proteins, such as SRC-1, PGCl1-a,
CARM]1, and a battery of histone modifying enzymes, such
as histone acetyltransferases (HAT), which together initiate
and promote transactivation [18-22].

The complex choreography of these events is a very active
area of research, being at a crossroads of several important
areas in contemporary biology, such as multimeric protein
complex assembly and chromatin remodeling. Transcrip-
tion involves cyclical rounds of promoter-specific complex
assembly, gene transactivation, complex disassembly, and
proteosome-mediated receptor degradation [23-25].

1.2. Newly characterized and unique features of PPARy

Outside of these general characteristics, uncertainty and
ambiguity remain in constructing a predicative schema for
understanding PPARy function and signaling in cancer
biology. Some of the uncertainties arise due to a number
of structural and regulatory variations of PPARy outside
the core features of NRs, thereby leading to apparently
pleiotropic actions. Compounding these difficulties is the
issue of studying PPARy signaling in cancer biology, which is
intrinsically an unstable and evolving disease environment.
By contrast to a high-affinity receptor, such as estrogen
receptor « (ERa), the members of the subfamily 1 of the
NR superfamily are typified by their large ligand-binding
domain and may therefore accept different ligands. The
PPARy ligand-binding pocket has a volume of more than

1400 A> and therefore can bind a wide range of different
lipophilic molecules (see Figure 1). As shown in Figure 1,
free fatty acids are metabolized to arachidonic acid, and then
through either lipooxygenase (LO) or cyclooxygenase (COX)
activities to give rise to a range of natural ligands for PPARy.
Many of these reactions are tightly controlled such that a
ligand metabolite is enzymatically generated and cleared.
Circulating and cellular fatty acids give rise to the
majority of the natural ligands for PPARy; therefore, the
PPARs in general and PPARy specifically form a sensing
mechanism to maintain homeostasis in changing physio-
logical circumstances such as feeding and exercise. This
capacity, as discussed later, is implicated in a range of
disease settings including cancer. The omega 6 fatty acid,
linoleic acid, is highly inflammatory and therefore carefully
controlled in vivo. It is a PPARy ligand and, through
subsequent desaturase and elongase activities, is metabolized
to arachidonic acid. A wide range of natural ligands for
PPARy is subsequently derived through arachidonic acid
metabolism. LO activity (e.g., arachidonate 5-LO and 15-LO)
generates oxidized lipids which act as PPARy ligands, such
as 8 (S)-hydroxyeicosatetraenoic acid (8-(S)-HETE), 15-(S)-
HETE, 9-hydroxy-10,12-octadecadienoicacid (9HODE), and
13-HODE. Subsequent dehydrogenase activity, for example,

of 13-HODE by 13-HODE dehydrogenase, can result in a
further series of PPARy ligands prior to their subsequent
conversion to leuktrienes [26-28].

In parallel, arachidonic acid can be metabolized
through cyclooxygenase activity (through COX-1 and -2)
to prostaglandins such as PGH, and subsequently PGD,,
PGE,, PGF,, and PGI,. These compounds exert a diverse
range of cellular actions, but key metabolites in these
cascades appear to exert potent PPARy activation. PGD,,
the product of prostaglandin D synthase (encoded by
PGDS), is able to undergo nonenzymatic degradation to
a ] series prostaglandin, 15-deoxy-'>!4-prostaglandin J,
(15d-PGJ,), which is a potent PPARy ligand [26, 29—
33]. Similarly, metabolites of PGE, can activate PPARy,
and their generation is controlled during differentiation,
for example, of adipocytes [34]. Many of these reactions
appear to be regulated through classical feedback loops, thus,
the regulation of arachidonic acid metabolism to provide
prostaglandins and leukotrienes is regulated at multiples
levels by the actions of PPARy, for example, regulation of
LOs and of COX-2 activity and several of the downstream
enzymes [26, 29-35].

The discovery of synthetic ligands for this receptor has
been driven by the identification of a number of significant
disease settings, in which PPARy signaling is implicated
(inflammation, metabolic disorders, and cancer). A goal of
this research is the identification of novel pharmacological
compound that display gene- and cell-selective actions [36].
The diversity of cell function, and presumably the relatively
large ligand-binding pocket, has encouraged investigators to
undertake rational screening approaches to identify a diverse
panel of ligands [31, 37-51]. Indeed, novel selective com-
pounds frequently display differential ligand-binding pocket
docking sites. Implicit, within these discoveries is that the
subtly different induced receptor conformations allow for the
different spatiotemporal associations of CoA and ancillary
proteins thereby deriving target gene specificity [40, 41,
52-55]. Thiazolidinediones (TZDs) were the first synthetic
compounds investigated as PPARy ligands [56]; this class
also includes rosiglitazone, pioglitazone, and troglitazone.
The latter caused a severe idiosyncratic liver problem and
thus has been discontinued. The TZDs have proven to be
a breakthrough in the therapy of type II diabetes because
they decrease insulin resistance by promoting glucose uptake,
mitochondrial biogenesis and fatty acid absorption by
increasingly differentiated adipocytes (reviewed in [57]).

This focus at the level of the PPARy ligand may be too
exclusive. For example, the RXR member of this complex
can also bind simultaneously with its ligand, which can
result in enhanced transcriptional activity (6). Perhaps more
importantly, the receptor structure allows it to influence both
the basal and regulated transcription levels of target genes
independent of ligand. That is, the unliganded structure
of PPARy also exposes a number of critical amino acids
on helix 12 that allows CoA binding and may explain
the high basal expression levels of PPARy target genes in
the absence of ligand. In this regard, PPARy most closely
resembles another xenobiotic metabolizing NR, constitutive
androstane receptor (CAR) [58]. These findings may also
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FIGURE 1: Generation of natural PPARy ligands (solid arrows = direct conversion, broken arrows = multiple step conversion. Metabolites are

indicated and some of the key regulating enzymes are shown in boxes).

suggest that the expression of CoA and CoR proteins are
actually more important for regulating gene targets than
either the levels or specificity of ligands.

The biology of PPARy is intimately associated with that
of the PGC-1a CoA and a number of other cofactors. The
actions of these proteins have most clearly been described
in well-established PPARy systems, such as adipocyte dif-
ferentiation and regulation of energy metabolism. The Pgc-
la murine knockout displays abnormal metabolic rates,
temperature fluctuations, and a lethal cardiac defect [59, 60].
Reflecting its importance for regulating PPARy function,
levels of PGC- 1« are tightly regulated by ubiquitination [61].

PPARy receptor activity is also regulated by a cohort
of posttranslational mechanisms, such as small ubiquitin-
related modifier (SUMO) process. Sumoylation of the
ligand-binding domain, in the presence of ligand, prevents
the release and subsequent ubiquitination of NCORI1, and
therefore sustains the repressive action, leading to the
so-called ligand-dependent transrepression [62, 63]. This
process is antagonized, by the removal of the SUMO
modification by the SUSP-1 enzyme [64] thus establishing
a dynamic level of regulation to modify the actual impact
of ligand. Furthermore, PPARY is serine phosphorylated, for
example, in response to MAPK signaling leading to nuclear
export and attenuation of transcriptional ability [65-67].
By contrast, PBP/MED]1 is regulated at multiple sites by
phosphorylation to enhance signaling by PPARy [68].

To place the expression and regulation of PPARy within
the broader context of NR biology, several scientists have
proposed and utilized system level approaches to dissect
NR function including PPARy. One of the most significant

examples of this approach has been the spatiotemporal
profiling of all 49 murine NRs in multiple tissues at different
time points during the circadian rhythm [69, 70]. These
approaches have revealed a number of provocative findings.
In terms of tissue expression, Ppary most closely follows Lxra
and Gr, and forms a triumvirate that is intimately implicated
in the control of inflammation. The expression of PPARy was
shown also to follow circadian rhythm expression in white
adipose tissue and the liver, but not other tissues [69, 70].
Similarly, others have shown that Pgc-1a follows a circadian
rhythm in the liver and skeletal muscle of mice [20], and it
cooperates with other NRs to regulate additional members
of the clock family.

1.3. Transcriptional targets of PPARy

One approach to defining PPARy specificity has been to
describe the cohort of target genes regulated by its actions;
generally, these studies involve microarray studies in a range
of cell types including adipocytes [71] and macrophages
[72]. Commonly, a range of gene targets has been identified
associated with metabolism and transport of lipids, includ-
ing lipoprotein lipase, fatty acid binding, and transport pro-
teins and acyl-CoA synthase. Similar approaches have been
used to study the impact of PPARy signaling on proliferation
and differentiation. For example, in chondorosarcoma and
ovarian cancer cells, PPARy actions were associated with
changes in the ratio of BAX to BCL-2, induction of
programmed cell death [73], and upregulation of cyclin-
dependent kinase inhibitors (CDKIs), such as CDKNIA
(encodes p21vafl/cipl)y [74], In MCEF-7 breast cancer cells
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PPARy upregulated a similar spectrum of CDKIs [75]. A
number of studies have identified the IGF axis as a target of
PPARy signaling. For example, in bone marrow cells [76],
and in silico and in vitro studies have characterized a range
of PPAR response elements (PPREs) in several insulin-like
growth factor binding protein (IGFBPs) genes [77]. Other
scientists have attempted to increase the accuracy of gene
target identification by using selective ligands, for example,
in colorectal cells, and identified gene targets associated with
mitotic restraint and cell adhesion [78-82]. Complimentary
approaches have utilized adenoviral transfection of receptor
subtypes to identify differentially expressed genes, confirmed
with chromatin immunoprecipitation (ChIP) approaches
[83].

The accurate prediction of target genes is compounded
by the highly integrated nature of PPARy signaling with
other NR family members. For example, its activities are
mutually antagonized with ERe signaling, and appear to be
cooperative with both VDR and RAR, in part by increased
retinol synthesis [84-86]. To investigate this apparent tran-
scriptome plasticity will require the integrations of in silico
response element identification protocols combined with
ChIP-sequencing approaches to establish specificity and
redundancy; comparable approaches have been undertaken
for ERa [87]. Building towards this goal, we have undertaken
a meta-analyses of PPRE sequences to generate an algorithm
to predict PPAR subtype binding and screened chromosome
19, as a test set, to identify and confirm a number of novel
genes [88].

Together, these findings suggest that ligand is just one
of a number of mechanisms to regulate receptor function.
Other regulatory contributions are determined by PPARy
expression level, isoform, posttranslational modification,
location, crosstalk with functionally related receptors and
cofactor expression. Together, these components combine
with wider transcriptional programs, such as energy utiliza-
tion, circadian rhythm, and the control of inflammation to
drive and specify the timing of transcriptional outputs.

2. CONTROL OF SELF-RENEWING TISSUES

2.1. Common cancers and leukemia arise in
self-renewing tissues

The weighted contribution of the underlying forces, acting
at the levels of genes, chromosomes, signaling cascades and
tissue organization, that drive cancer initiation and pro-
gression remain poorly understood. Historically, a paradigm
of exclusive genetic causality was the basis for investi-
gating cancer etiology and it identified certain key nodal
points of cellular control, such as p53. In the postgenomic
era, other strong penetrance genes have not been readily
identified. The sporadic, multistage acquisition of a cancer
phenotype requires disruption of multiple mechanisms of
cellular restraint and tissue organization (reviewed in [89]).
Reflecting a sporadic multifactorial cancer phenotype, the
single greatest risk factor for most cancers is age, with the
average age of onset of breast, prostate, and colon cancer in
the sixth and seventh decades of life.

Further understanding of transformation processes has
arisen through appreciation of the diverse cell types present
at the sites of high-profile malignances. Epithelial linings of
the prostate and mammary glands, the gastrointestinal tract
and hematological systems all typify self-renewing tissues
containing stem cell populations [90-94]. These cells give
rise to committed progenitors, and in turn the multiple-
cell lineages required for tissue function. Stem cells are
relatively rare and long-lived, but frequently quiescent. They
are uniquely able to undergo asymmetric division, to give
rise to both other stem cells and transiently amplifying
populations of progenitor cells, that in turn give rise to the
differentiated cell types. The differentiated epithelial cells
are functional but short-lived and lost through programmed
cell death processes, to be replaced by newly differentiated
transiently amplifying cells. Cellular control of the intricate
balance of the processes of division, differentiation, and
programmed cell death include common roles for Wnt,
Hedgehog, and other developmental signal transduction
processes. Convergent targets for these signals include
key regulators of cellular proliferation, such as Myc and
pzl(waﬂ/cipl).

As a result of their long life cycle and high proliferative
capacity, stem cells, rather than their short-lived terminally
differentiated daughter cells, are the candidates for trans-
formation. However, a range of mechanisms is in place
to maintain stem cell genomic integrity, perhaps including
retention of the so-called “immortal” DNA strand and
enhanced protection mechanisms [95-103]. These controls
notwithstanding, the transformation of stem cells has given
rise to the concept of cancer stem cells. Such cancer stem cells
are well established in leukemia and accumulating evidence
supports the presence of these cells in prostate, breast, and
colon cancers [104-108].

2.2. Restoration of controlled self-renewal as
a therapeutic goal

Members of the NR superfamily play a number of well-
established roles in the control of self-renewal and the
process of normal differentiation. For example, the AR
and ERa receptors play pivotal roles in prostate and breast
tissue development and maintenance. Distortion of some
of these actions is, in turn, central to the development
of cancer in these tissues and is targeted therapeutically
though antagonism, either completely in the case of the
AR, or selectively in the case of the ERa. Agonism of other
receptors has been pursued to induce differentiation and
inhibit proliferation of cancer cells. The best example of
this paradigm is the induction of remission of patients with
acute promyelocytic leukemia using the RAR ligand, all-trans
retinoic acid, and also to prevent recurrence of head and neck
cancers.

As a consequence of the induced terminal differentiation
of normal preadipocytes by ligands for PPARy [1, 2],
investigators were encouraged to use TZDs to attempt to
induce differentiation of human liposarcoma cells in vivo
[109]. Successes in vitro encouraged these same physician-
scientists to give troglitazone to a series of patients with
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liposarcoma, which resulted in a retardation of growth and
induction of differentiation of these tumor cells. The long-
term effect of TZD on liposarcomas requires further study;
nevertheless, these pioneer studies spurred the examination
of the effect of TZDs on a number of cancers both in vitro
and in vivo in colon, breast, prostate, myeloid leukemia,
neuroblastoma, glioblastoma, lymphoma, lung, cervical,
bladder, head and neck, esophageal, gastric, pancreatic, and
choriocarcinoma cancers [21, 81, 110-140]. The multiple
findings from studies illustrate the promise and failings of
targeted therapies toward PPARy to restore mitotic restraint
and induce differentiation.

3. PPARy SIGNALING IN CANCER
3.1. Colon cancer

To establish a role for PPARy to protect against the devel-
opment of colon cancer, investigators have used a range
of in vivo and in vitro approaches. In murine models,
the expression of Ppary has been manipulated in either
an environmental or a genetic background that displays
enhanced susceptibility to colonic cancer. For example,
mice with heterozygous germ-line deletions of Ppary have
an increased proclivity to develop N-methyl-N-nitrosourea
carcinogen-induced colon cancer compared with wild-type
mice, supporting a growth inhibitory role for Ppary. Signif-
icantly, troglitazone reduced the tumor incidence in wild-
type but not heterozygote mice [122]. By contrast, other
scientists have utilized the well-established APC,,;, model
of colon cancer with apparently contradictory findings.
These mice have a germ-line mutation of the APC gene
resulting in deregulated f-catenin signaling, and a very
significantly increased frequency of small and large intestinal
adenocarcinomas. Surprisingly, administration of TZD to
APCpyin mice resulted in increased frequency of colon cancers
compared to control animals [141]. Subsequently, however,
generation of the intestinal specific Ppary~/~ and APCpi,
bigenic mouse demonstrated an unequivocal effect of Ppary
to suppress tumor formation and suggests that significant
off-target effects of TZD occur in mice, especially in the
APCpin mouse colon cancer model [142]. Off-target effects
of TZD generally appear to also have broad anticancer
properties; therefore, the findings in this model appear
quite unusual. For example, Ppary inactive analogs of TZD
initiate the proteosomic degradation of S-catenin [143]
and cyclin D1, as well as, interfering with BAX family
member interactions to bring about apoptosis [144, 145].
Nevertheless, why APCpin mice receiving a TZD have more
colon cancers still is not fully elucidated. APCp, mice
have high levels of Ppary in the colonic cells and are
inappropriately sequestrated by S-catenin to a unique set
of gene targets [146]. Interestingly, PPAR« ligands inhibit
polyp formation in the APC,i, model [118] re-enforcing the
concept that the TZD-driven enhanced tumor formation in
the APCp,, mouse is a model artifact, or at least not general
phenomena.

In humans, multiple lines of evidence support an
unequivocal function for PPARy signaling in colon cancer.

Mutations of the receptor have been reported, although
rare [147], and polymorphisms are functionally linked with
an increased incidence of this cancer [148]. A range of
natural and synthetic PPARy ligands inhibit proliferation,
induce programmed cell death and exert prodifferentiation
actions in vitro and in vivo, for example, when tested in
human xenografts [149-151]. The potency of the ligand
actions can be significantly enhanced further by combining
the treatment with RXR ligands [124, 152]. Furthermore,
this signaling capacity is integrated with the control of
other proliferative signals, such as gastrin [153] (reviewed by
[154]).

3.2. Breast cancer

The findings on breast cancer support the broad anti-
cancer activities of PPARy signaling, and also reflect the
studies in colon cancer. That is, generally in vitro and
in vivo studies support a clear role for this receptor
to suppress proliferation, induce differentiation and pro-
grammed cell death. In rodent models, the PPARy ago-
nists block N-nitroso-N-methylurea-induced breast cancer
in Sprague-Dawley rats [155] and DMBA-induced breast
cancer in mice [114]. Similarly, Ppary™~ mice have a
greater susceptibility to develop breast and ovarian can-
cers after their exposure to 7,12-dimethylbenz(a)anthracene
[156].

By contrast, transgenic mice having a constitutively active
PPARy in their breast tissue crossed with the MMTV-
neu mouse model of breast cancer displayed accelerated
kinetics of breast cancer development, although the authors
noted that the tumors surprisingly were more secretory
and differentiated in nature [157]. Similar to the APCpy,
model, this tumor model depends on deregulated Wnt
activity, and the authors suggested that the effects may also
reflect aberrant interplay between PPARy and Wnt signal-
ing.

Human breast cancer cells express PPARy [158] and
can be targeted, for example, with TZD, and a range
of other PPARy ligands to induce differentiation and
inhibition of cell growth both in vitro and in xenograft
models, effects which can be enhanced by cotreatment
with either retinoids, TGFS or TNFa [110, 111, 113,
114, 130, 158-163]. For example, PPARy ligands plus
selective retinoid ligands converge on targets, such as
RARp, which is known to act as a tumor suppressor
and is commonly silenced in malignancy [164]. Similarly,
PPARy activation results in upregulation of E-cadherin
and thereby redistribution of fS-catenin [130]. Natural
ligands, such as dietary fatty acids, change expression in
syndecan-1 with an impact on cytoskeleton structure and
the induction of apoptosis [165]. Furthermore, 15d-PGJ,
inhibits ERa signaling in a PPARy-independent manner
by covalent modification of the receptor [166]. PPARy
expression is a favorable prognostic factor [167] and asso-
ciates with ERa positive disease [75]. A note of caution,
however, phase II trials of TZDs in women with hor-
mone refractory metastatic breast cancer were equivocal
[168].
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3.3. Prostate cancer

The biology of the prostate is intimately associated with the
synthesis of prostaglandins, as suggested by the name. These
growth regulatory factors are readily secreted by the gland
[169] and give rise to the H and D series prostaglandins
and 15d-PGJ,. Equally, the biology of the prostate is
associated with the metabolism of fatty acids 15S-HETE [33].
Therefore, the prostate seems a tissue where PPARy may play
a strong role in governing cell growth and differentiation. For
example, signals derived from PGDS activity in the adjacent
stroma, such as PGD,, activate PPARy, and control epithelial
proliferation [170].

PPARy actions in prostate cancer cell lines [171] and
primary cancer models [120] are well documented and
include the induction of type II programmed cell death
also known as autophagy [112]. These studies encouraged
several groups to undertake clinical trials with PPARy
ligands and disease stabilization was reported [115]. Again
in this disease setting, PPARy-independent actions of TZDs
were apparently identified, which were nonetheless potent
anticancer signals [172, 173].

Set against these findings, the Evans team used a prostate
cancer, the TRAMP model, to demonstrate that Ppary
heterozygote mice have no change in disease progression
compared to wild-type litter mates [174].

3.4. Leukemia and lymphoma

Previously, we showed that human myeloid and lymphoid
leukemia cells express PPARa and PPARy; ligands, such
as troglitazone, inhibited their cell growth [139, 175].
This antiproliferative effect was markedly enhanced in
the presence of various retinoids. Also, macrophages and
myelomonocytic leukemic cells express abundant PPARy
(73), and PPARy ligands can induce acute myelomonocytic
leukemic cells (THP-1) to differentiate toward macrophages
with an increased expression of the CD36 scavenger recep-
tors, as well as other surface markers associated with
differentiation including CD11b, CD14, and CD18 (73).
Studies by others and us have also shown that PPARy
ligands can inhibit growth and/or induce apoptosis of
Hodgkin’s disease [139] and multiple myeloma cells [176,
177]. The mechanism, by which PPARy ligand inhibits the
proliferation of malignant hematopoietic cells, is not totally
clear. Some of the antileukemic effects of PPARy may be
independent of the PPARy receptor. Furthermore, we have
found that a dual PPAR«/y ligand (TZD18) has the ability to
induce marked apoptosis and to inhibit growth of lymphoid
leukemia cells [178]. In general, the effect of PPARy ligands
on myeloid leukemic growth and differentiation is modest
(74).

3.5. Mechanisms of resistance

Genetically, the PPARy generally appears to retain its
integrity. Rare mutations have been reported and more
recently dominant negative variants of the receptor were
identified although the biological impact remains to be

established firmly [179]. Similarly, altered isoforms may be
overexpressed in cancer [180-183]. Cytogenetic rearrange-
ment has been identified in follicular thyroid cancer fusing
the PAX-8 transcription factor to PPARy. In vitro studies
suggest PAX-8-PPARYy acts in a dominant negative fashion
toward wild-type PPARy [184] (Figure 2).

In parallel to these genetic changes, the actions of
PPARy appear to be attenuated by changes in receptor
expression and known cofactors. The range of interactions
with partner proteins of PPARy appears to be altered.
Interactions with PGC1-« are reduced in several cancers [21,
185, 186]; and oppositely the known CoRs associated with
PPARy are overexpressed and the transcriptional actions of
PPARy are repressed by epigenetic mechanisms involving
HDACS3 [187-189]. Equally, the control of posttranslational
modifications appears to be altered. SUSP-1 [64], which
removes the SUMO mark (required for ligand-dependent
transrepression) appears to be downregulated in a number
of breast and prostate cancers [190]. Within the NR network,
PPARy is coexpressed and interacts both positively and
negatively with a cohort of other receptors. For example,
the ERa and Cyclin D1, (itself a well-known ERw target
gene and CoA) can both repress the PPARy gene promoter
(191, 192].

The natural ligands for PPARy are diverse and it is
more challenging to make definitive statements concerning
their altered generation in malignancy. Equally, the ability
for PPARy to act in a significant and ligand-independent
manner also reduces, to an extent, the significance of ligand
levels. These considerations aside, the patterns of ligand
generation for PPARy appear to be altered in malignancy.
The balance between LO and COX-2 is dysregualted to favor
generation of PGH production [193] and accompanied by
downregulation of PPARy [194]. This causes an elevation
of PGH;, which in turn is converted to protumorigenic
prostaglandins, such as PGE,, through other synthases.
The levels of PGD,, which gives rise to 15-PGJ,, are
closely regulated by an aldo-ketoredcutase (AKR1C3) that is
upregulated in malignancy [195-199].

An emergent area of distortion is the extent to which
PPARy signaling is at the mercy of more dominant signal
transduction and transcriptional programs. The two tumor
promotion models associated with signaling by PPARy
involved elevated levels of signaling by the Wnt pathway.
These findings combined with observations on the diversity
of genes regulated by the receptor suggest that PPARy sig-
naling displays plasticity in terms of exact promoter choice.
Gene regulatory options are distilled by the combination of
receptor-associating cofactors and other signal transduction
events. For example, overwhelming Wnt signaling pulls
Ppary to f-catenin gene targets [146]. This plasticity of
signaling is probably reflected by the fact that complete
loss or mutation of PPARy in malignancy is relatively rare.
Rather, expression is retained but probably sequestrated
and distorted by more dominant signaling events. Resolving
these interactions will require a quantitative and hierarchical
understanding of the signaling paths through which PPARy
combines with other NRs and signal transduction events to
regulate cell fates.
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4. ISPPARy A LIGAND-ACTIVATED
TUMOR SUPPRESSOR?

A tumor suppressor can be characterized as a protein that
reduces the probability that a cell in a metazoan will undergo
transformation. Initiation and progression of cancer are
associated with attenuation, corruption, expression, and
protein function of tumor suppressor genes, increasing the
likelihood of tumor formation.

Approximately 10 years have past since the first few
reports of PPARy exerting anticancer cellular effects [109,
111]. Taken together the overwhelming body of data suggests
that PPARy can behave as a ligand-activated tumor suppres-
sor.

(1) PPARy ligands through activating PPARy can inhibit
proliferation and induce differentiation and apopto-
sis of a wide range of neoplastic cell types in vitro and
in murine xenograft tumor models.

(2) Ppary™~ mice are more susceptible than wild-type
mice to mammary, colon, ovarian, and skin tumors
after exposure to carcinogens and enhance tumor
formation in some genetic models of cancer, for
example, APC,in model of colon cancer.

(3) The actions of these receptors are attenuated in
malignancy by genetic, cytogenetic, and epigenetic
mechanisms, and ligand generation is compromised.

Set against, these data are two findings of enhanced tumor
formation related to PPARy in murine cancer models. TZD
enhances tumor formation in the APC,,;, model [141] and
the bigenic mice overexpressing PPARy in the MMTV-neu
breast cancer model have more, highly differentiated tumors
[157]. In retrospect, these high-profile studies perhaps reveal
important facts of the dominant relationship between Wnt
signaling over PPARy in the mouse. This understanding
may have important implications for the necessary molecular
diagnostics required to target PPARy therapies most effec-
tively.

5. FUTURE DIRECTIONS

5.1. Exploiting dietary understanding
from chemoprevention

Recently, the appreciation of the impact of diet on either
the initiation or progression of cancer has come significantly
to the fore. The World Health Organization has now stated
that after smoking diet forms the most preventable cause of
cancer. Aspects of these relationships are found in breast,
prostate, and colon cancer, where the rate of initiation and
progression of disease may be influenced both positively
and negatively by the cumulative impact of dietary factors
over an individual’s lifetime. Beyond the specific micro
and macronutrient constituents, the energetic status of an
individual is emerging as a risk factor with increased calorific
intake and decreased energy expenditure, both contributing
deleteriously to cancer initiation and progression (reviewed
in [200]).

The NR network has emerged as a systemic sensor
of lipid and energetic status [201]. This capacity includes
components for sensing carbohydrates [202, 203], choles-
terol homeostasis through LXRs and FXR, regulation of
metabolic rate through TRs, and sensing of diverse lipids
by PPARs. Crosstalk within the superfamily ensures that
these sensing and regulatory functions integrate with other
receptors such as those for sex steroids. Multiple aspects of
these relationships are observed in cancer. For example, fatty
acids, such as those present in fish oil and a range of other
dietary factors, can activate PPARy and are associated with in
vivo prevention of colon cancer in mouse models [165, 204—
206] and in human trials in breast cancer [207]. Equally,
convergence on PPARs and VDR to regulate IGFBPs and
other negative regulatory components of the AKT signaling
cascade [208] provides attractive targets for therapeutic
intervention.

To exploit this, understanding in either dietary guidelines
for the general population or as a chemoprevention strategy
for groups defined at risk (e.g., by age or molecular
diagnostic) is highly demanding. Despite the significance and
potential clinical benefit of these relationships, it remains
unclear the critical time frame and dose range when dietary
factors may be protective against cancer development, for
example, during embryogenesis, childhood, or adult life.
By comparison, considerable resources were required to
elucidate what is now established as a clear causal rela-
tionship between cigarette smoke and lung cancer [209].
There are reasons to be encouraged in targeting PPARy in
a chemoprevention context as studies on the consequences
of long-term usage TZDs in diabetes patients have revealed a
protective benefit against lung cancer [210].

To address the impact of diet on disease, the emerging
field of nutrigenomics aims to dissect the impact of dietary
factors on genomic regulation, and thereby physiology and
pathophysiology, utilizing a range of postgenomic tech-
nologies [211, 212]. This level of integration is emerging.
For instance, PPARy polymorphisms recently have been
shown to play a role in determining cancer susceptibility
only when patients are above a certain body mass index
threshold [213]. Exploitation of such understanding will
require modeling of these functions in a network context
(reviewed in [214, 215]). Most likely, the application of such
rational approaches will resolve the significance of PPARs to
mediate anticancer actions of potent dietary factors, such as
conjugated linoleic acid [130, 216].

5.2. PPARy and the regulation of cellular energetics

A number of deleterious side effects occur through the use
of fatty acids as an energy store, including the generation of
reactive oxygen species as a result of lipid peroxidation. The
PPAR family combines roles in lipid sensing and utilization
with cellular protection against lipid excess. Specifically,
PPARy plays a role in fatty acid uptake and transport (e.g., by
adipocytes) and acts to control inflammation that can arise
from increased adipocyte differentiation and proliferation
(reviewed in [217, 218]). These actions are all altered in
malignancy. As proposed by Otto Warburg in the 1930s
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FiGURre 2: The actions of the PPARy to regulate target genes are highly choreographed, being influenced by many factors. This is reflected
by the multiple mechanisms that distort PPARy signaling in cancer. PPARy-RXR heterodimer binds to specific response elements contained
within upstream, intronic, and downstream sequences of target genes. The ability of this heterodimer to participate in either transactivation
or transrepression is disrupted by multiple mechanisms in cancer cells. (1) Genetic mechanisms; although relatively rare, mutations to the
PPARG gene occur, as do cytogenetic rearrangements, notably in thyroid cancer with the generation of the PAX-8-PPARy fusion product. (2)
Epigenetic mechanisms; the PPARy receptor normally exists in a dynamic equilibrium with each of two large complexes, namely, coactivator
(CoA) and corepressor (CoR) complexes to regulate genes targets. Central components of these complexes are a cohort of ancillary proteins
that act to regulate a cohort of posttranslational modifications (PTMs) to histone tails and thereby determine local chromatin organization.
In cancer, the stochiometry of this equilibrium is disrupted with downregulation of CoA components such as PGC1-« and upregulation of
CoR components such as NCOR1. The net result is the distortion of gene regulation abilities, most likely in a promoter specific manner.
(3) Posttranslational mechanisms; PPARy is regulated by a number of posttranslational modification including sumoylation, which can
allow the liganded receptor to retain associations with the CoR complex and bring about ligand-dependent transrepression. The enzymes
responsible for this activity appear altered in malignancy suggesting that the levels of sumoylated PPARy are in turn distorted. In parallel,
associated cofactors, such as PBP/Medl, are also regulated by PTMs and further manipulate and PPARy signaling. (4) Nuclear receptor
network dynamics; the PPARy is a member of a highly interactive network of receptors and in malignancy these interactions appear distorted.
For example, the ERar (E) homodimer is able to repress the PPARG promoter, and equally PPARy is both coexpressed with, and regulates
expression of other receptors such as PPAR«, LXRs, FXR, and VDR to coordinate transcriptional programs. (5) Ligand generation; PPARy
senses a wide panel of lipophilic ligands many of which are derived from and catabolized downstream of metabolism of arachidonic acid. Key
steps include generation of fatty acids, which are PPARy ligands, through lipooxygenase (LO) activity (e.g., 5-LO). To counterbalance these
activities, the generation of prostaglandins is mediated in large part through the actions of cyclooxygenase (COX) activity (e.g., COX-2).
While this can also give rise to PPARy ligands, these effects are protected further by the clearance of potent prostaglandin PPARy ligands by
the actions of enzymes, such as AKR1C3. In malignancy, an inversion of COX-2 to 5-LO occurs, and further protection from generation of
potent prostaglandin ligands occurs, for example, through upregulation of AKR1C3. (6) Dominant transcriptional programs; the actions of
the PPARy appear to be distorted as a consequence of deregulated dominant transcriptional programs, such as Wnt signaling. These effects
are mediated by enhanced f-catenin () levels and include sequestration of PPARy to -catenin responsive genomic regions. Implicit within
this is that there is a high degree of plasticity of PPARy signaling and that transcriptional signals can be placed within a quantifiable hierarchy.

(and summarized later [219]), cancer cells derive their
energy increasingly from anaerobic glycolysis; this concept
has received renewed support in recent years [220-222].

the metabolic syndrome, to suppress inflammation, for
example, in colitis models [224], and to promote mitotic
restraint and induce differentiation within cancer cells.

The altered energetics of cancer cells are common events,
and cancer patients frequently display symptoms which in
many ways mimic type II diabetes [223]. Associated with
many of these events is an increased propensity for local
inflammation.

PPARy therapeutics have been explored within these
separate arenas in different disease settings. That is, to
regulate fatty acid metabolism and insulin resistance within

These functions are not separated, but rather all distorted
within malignancy. The fact that PPARs, in general, and
PPARy specifically play an integrated regulatory role in
these processes suggests that new avenues of exploitation
will require a more detailed and quantitative understanding
of the contribution of PPAR signaling against a tissue and
whole body background of inflammation and altered cellular
energetics.
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5.3. Ongoing questions

The current challenges in PPARy cancer biology include the
following.

(1) Determine at which stage PPARy can influence nor-
mal tissue self-renewal.

(2) Understand in cancer systems which combina-
tion of critical cellular processes to exploit: exert
mitotic restraint, induce differentiation, regulate
local inflammation, and impact on cellular energetic
processes.

(3) Define to what extent conformationally restricted
synthetic ligands (the so-called SPARMS [225]) can
regulate target of these cellular processes through
selective cohorts of PPARy target genes.

(4) Identify the mechanisms that attenuate, manipulate,
dissociate, and redirect PPARy signaling in cancer
cells and address to what extent the proteins involved
in these processes are drugable therapeutic targets.

(5) Reveal whether this understanding can be best
exploited in the setting of either chemoprevention
and/or chemotherapy.

(6) Quantify, model, and predict to what extent PPARy is
anodal point within the NR network and other signal
transduction process. Establish hierarchies that place
PPARy specifically, and NRs generally, in the context
of other signal processes that collectively maintain
homeostasis.

ABBREVIATIONS

APC: Adenomatous polyposis coli
AR: Androgen receptor

CAR: Constitutive androstane receptor
CDKI: Cyclin-dependent kinase inhibitors
ChIP: Chromatin immunoprecipitation
CoA: Coactivator

CoR: Corepressor

COX: Cyclooxygenase

DMBA: 7,12-dimethylbenz[a] anthracene
ERa: Estrogen receptor «

FXR: Farnesoid X receptor

GR: Glucocorticoid receptor

HAT: Histone acetyltransferase

HDAC: Histone deacetylase

HETE: Hydroxyeicosatetraenoic acid
HODE: Hydroxyoctadecadienoic acid
IGFBP: Insulin-like growth factor binding protein

LXR: Liver X receptor
NCOA/SRC: nNuclear receptor coactivator/steroid
receptor coactivator

NCORTI: Nuclear corepressor
NR: Nuclear receptor
p: Prostaglandin

PBP/MED1: PPARy binding protein/mediator 1
PGCl-a: Peroxisome proliferator-activated receptor y
coactivator 1

PPARy: Peroxisome proliferator-activated receptor y

9
PSA: Prostate specific antigen
RAR: Retinoic acid receptor
RXR: Retinoid X receptor
SIRT: Sirtuin 1
SUMO:  Small ubiquitin-related modifier
TCE: T-cell factor
TNEF: Tumor necrosis factor
TR: Thyroid receptor
TZD: Thiazolidinedione
VDR: Vitamin D receptor

15d-PGJ,: 15-deoxy-'>'*-prostaglandin J,.
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